
Agent-based simulation for symmetric electricity market
considering price-based demand response

Ziqing JIANG1, Qian AI1

Abstract With the development of electricity market

mechanism and advanced metering infrastructure (AMI),

demand response has become an important alternative

solution to improving power system reliability and effi-

ciency. In this paper, the agent-based modelling and sim-

ulation method is applied to explore the impact of

symmetric market mechanism and demand response on

electricity market. The models of market participants are

established according to their behaviors. Consumers’

response characteristics under time-of-use (TOU) mecha-

nism are also taken into account. The level of clearing price

and market power are analyzed and compared under

symmetric and asymmetric market mechanisms. The

results indicate that the symmetric mechanism could

effectively lower market prices and avoid monopoly.

Besides, TOU could apparently flatten the overall demand

curve by enabling customers to adjust their load profiles,

which also helps to reduce the price.

Keywords Agent-based simulation, Demand response,

Electricity market, Trading mechanism

1 Introduction

The electricity industry worldwide is undergoing signifi-

cant changes, gradually evolving from a centralized industry

into a distributed and competitive industry. The restructure

has necessitated the decomposition of the three components

of power system: generation, transmission and distribution

[1]. This decomposition begins typically at the supply side,

which separates the power producers and the transmitting

network by establishing independent power plants (IPPs)

and the independent system operator (ISO). In the deregu-

lated environment, generation companies (GenCos) compete

for selling energy by submitting competitive bids to ISO,

significantly changing the traditional pattern.

However, in markets where only the supply side is

restructured, the pricing mechanism is not maturely

developed. ISO only accepts bids from GenCos, and the

load demand was regarded as a constant value depending

on load forecast. End users cannot choose but to passively

accept the result. Because the price remains unchanged or

little changed in the long term, the response potential of

consumers is not motivated, and the elasticity is, if any,

extremely low [2]. Obviously this could cause many

problems, such as the abuse of market power [3, 4] and a

large investment in the long run [5].

In symmetric electricity markets where ISO accepts bids

from both GenCos and retailers, the clearing price is

decided by both sides, thus the competition mechanism is

more complete. On the other hand, demand response (DR),

considered as an important alternative solution to improv-

ing power system reliability and avoiding surging prices,

enables customers to manage load consumption in response

to ever-changing supply conditions[6, 7]. DR programs can

also be implemented under some critical circumstances to

prevent the system from collapsing [8]. Nowadays,
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electricity markets in many countries have incorporated

DR programs, such as the emergency response service and

economic DR programs in PJM market [9, 10], and load

resources participation in fast responding regulation ser-

vice in ERCOT [11], etc.

As an effective approach to studying distributed system,

multi-agent computational economic simulation has been

widely applied in the research of electricity markets

[12–14]. Reference [15] presented an integrative method to

evaluate different wholesale market rules and the effect of

market power mitigation. Reference [16] modeled the

market power in forward and spot electricity markets using

agent-based models. Reference [17] applied two experi-

mental economics methods to a market test suite and dis-

cussed the market outcomes under both methods to

illustrate the difference between the behavior of human and

agents. The new agent-based wholesale market model

presented in [18] uses predictive bidding method and

multi-step optimization to find bidding curves, which

maximize the expected discounted profit. The work

described above mainly focused on wholesale market

issues. However, the difference between trading mecha-

nisms is not compared and the role of retailers is not

incorporated. References [19–21] developed a multi-agent

simulator of competitive electricity market considering

virtual power plant to study possible trading mechanisms,

but only gave a rough comparison between symmetric and

asymmetric markets.

Recently, many researches have been conducted to

study DR characteristics using agent-based approach.

References [22] and [23] proposed the bidding strategy of

GenCos and load serving entities (LSEs) respectively.

However, consumers’ responsive characteristics, namely

how end users react to the time-varying prices, were not

modeled and analyzed under market environment. Refer-

ence [24] modeled the consumption behavior of commer-

cial buildings, and studied the impact from commercial

buildings with price-responsive demand with different

levels of DR penetration, but only GenCo agents were

equipped with learning algorithms. Reference [25] pre-

sented a concept of a new market role, the ‘‘Decentralized

Market Agent’’, which optimized the system operation and

expansion on distribution grid level using demand side

management. However, the relationship and interaction

between market participants are not described clearly.

As the electricity market develops, the participation of

retailers and the response from end customers are playing

an increasingly important role in price forming and market

operation. Therefore, more specific research and analysis

should be done to describe its impact, as well as the

interaction between different participants.

This paper applies agent-based modelling and simula-

tion method to explore the impact of symmetric market

mechanism and price-based DR on electricity markets. The

overall simulation framework is presented in Fig. 1.

Firstly, the trading and clearing mechanism in the sym-

metric day-ahead market is introduced in Section 2, as well

as the simulation procedure. The relationship between

different market participants is also described. In Sec-

tion 3, the detailed models of market participants are

established according to their behaviors: describing the

bidding behavior of IPPs with cost-based bidding strategy

and reinforcement learning algorithm; designing the deci-

sion-making method of retailers from two aspects, namely

purchasing and selling electricity; and taking into account

the response characteristics of consumers under time-of-

use mechanism (TOU) based on consumer psychology.

Finally, the level of clearing prices and market power is

analyzed and compared under different market structures,

as well as the variation in prices, load consumption and

social welfare.

2 Simulation for symmetric electricity market

2.1 Trading mechanism

Day-ahead symmetric markets adopt pool trading pat-

tern and TOU pricing mechanism. The market structure is

shown in Fig. 2. 24 hours within one day are divided into

three periods (i.e. peak period, flat period and valley per-

iod). The prices are different between the three periods,

according to the supply and demand conditions.
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In day-ahead markets, ISO defines a time point before

which bids can be accepted. GenCos submit the bids before

the deadline, which should include the quantity of elec-

tricity supplied and the price. Similarly, buyers, usually

referring to large consumers and retailers, are also required

to submit offers. Then the supply curve and the demand

curve can be obtained. The crossing point of the two curves

is the market equilibrium point. All the bids from GenCos

which are lower than or equal to the clearing price will be

accepted, and GenCos will arrange its production plan

according to the clearing result. The clearing price is

decided by both sides, so both the high bids from sellers

and the low offers from buyers will result in a decrease in

the profit or dissatisfaction of the load demand, which helps

to lower down the price level.

2.2 Price clearing

When solving out the market clearing price in real

markets, relevant constraints should be considered in order

to ensure the safe operation of the system [26]. At present,

there are many solutions to this problem, including merit-

order method, linear programming and dynamic program-

ming [27]. This paper adopts the multi-period linear pro-

gramming method.

In markets where only the wholesale competition exists,

the objective function is to minimize the overall purchasing

fee, while in markets where the wholesale competition and

the retail competition coexist, it is to maximize the social

welfare.

minF1 ¼ min
XT

t¼1

X

i

ðBi;tktÞ ð1Þ

maxF2 ¼ max
XT

t¼1

X

j

Dj;tkt �
X

i

Bi;tCi;B

 !
ð2Þ

where F1 is the purchasing fee; F2 is the social welfare; T is

the total simulation time horizon; Bi;t is the bid of GenCo i

at time t, and Ci;B is the cost to generate that amount of

energy; kt is the system clearing price at time t; and Dj;t is

the offer of retailer j at time t.

The constraints associated with this optimal problem

include supply-demand balance, unit capacity, unit ramp

rate, transmission line capacity, etc.

2.3 Interaction between market participants

In the simulation model of day-ahead market proposed

in this paper, agents representing different market partici-

pants interact with each other to pursue the maximization

of their own profits. The market information is incomplete,

meaning that agents do not have access to the strategies of

others.

In perfect competition markets, all GenCo agents bid

according to their real cost, while in more realistic sce-

narios, some GenCos may have dominant market power so

they could manipulate market price by capacity withhold-

ing. However, the pressure from retailers could force

GenCos to make a reasonable evaluation of clearing prices,

because high bids may cause a loss in market share.

On the other hand, the profit of retailers equals the

revenue minus the purchasing cost. The retail price could

greatly influence the consumption of end users. The

decrease in consumption, in turn, could also affect the

profits of retailers and GenCos. In markets where the price

is time-varying, customers could cut down their expenses

by adjusting their load plans. As a consequence, the rev-

enue retailers earn may decline.

From another perspective, however, the rearrangement

of load may cause market prices to rise in peak hours and

drop in valley ones. Similar changes can be seen in the

purchasing cost of retailers, and the total cost within one

day will decrease to some extent. During this interaction

process, the overall production cost is also reduced.

2.4 Simulation procedures

During the simulation, GenCo agents and retailer agents

will continue adjusting their bidding strategies, while

customers adjusting their load profiles, until an equilibrium

point is reached, which usually takes dozens of rounds. The

procedure of a single simulation round is as follows.

1) GenCo agents apply decision-making approach, which

is based on unit parameters and known market

information, to obtain the best bidding strategy, then

submit the multi-period bids to ISO according to the

predefined format.

2) Retailer agents conduct the load forecast based on the

load characteristics of consumers, determine the

quantity needed and the price, and submit the offer.

3) After receiving all the bids, ISO applies clearing

algorithm to work out the market prices at each period,

as well as successful bids and offers.

4) GenCos calculate the generation cost and expected

profit, which are used as the feedback to improve the

decision-making.

5) Retailers calculate their purchasing cost based on the

clearing result, and determine the retail price.

6) Customers purchase electricity from retailers, and

respond to price signals by adjusting the load profile.

7) Retailers calculate the profit and apply Roth-Erev (R-

E) algorithm to improve the decision-making.
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3 Agent models of market participants

3.1 GenCo agents

The model is made up of three modules: the calculation

of generation cost, the selection of bidding strategy and the

learning algorithm.

The unit cost function can be expressed using a ladder

diagram, as shown in Fig. 3. Let b be the number of seg-

ments, q be the quantity generated, and p be the corre-

sponding cost, then it can be written as:

C ¼ ðp1; q1Þ; ðp2; q2Þ; � � � ; ðpb; qbÞf g ð3Þ

The bid is based on the cost function [28]. Let A be the

set of alternative strategies, of which the elements, also

called strategy coefficients, refer to the value deviating

from the cost.

A ¼ fA0;A1;A2; � � � ;Amg ð4Þ

where m is the number of strategies; A0 ¼ 0, meaning that

units bid the marginal cost.

In this way, the bidding function of GenCo i, for a

certain Ai, can be expressed as:

fðAip1; q1Þ; ðAip2; q2Þ; � � � ; ðAipb; qbÞg ð5Þ

Once the cost function has been confirmed, the key to

GenCos’ strategy is to select an appropriate strategy

coefficient in order to maximize the profit.

The electricity market is modeled as a repetitive auction,

which can be studied through repeated stochastic bidding.

We adopt the roulette wheel method for GenCo agents to

randomly select Ai, and R-E reinforcement learning algo-

rithm to model agents’ learning behavior.

According to the R-E algorithm, selection probabilities

and propensities will be continuously updated on the basis

of the historic profit. If strategy Ak was chosen in the dth

round, and the profit earned is Pd, the probabilities and

propensities can be updated through

qi;dþ1 ¼ ð1� rÞqi;d þ Ri;d ð6Þ

Ri;d ¼
ð1� eÞPd i ¼ k

Pd

m� 1
i 6¼ k

8
<

: ð7Þ

pi;dþ1 ¼
exp

qi;dþ1

c

� �

Pm

j¼1

exp
qj;dþ1

c

� � ð8Þ

where qi;dþ1 and pi;dþ1 are the propensity and the proba-

bility of strategy i in the ðd þ 1Þth round, respectively; Ri;d

is the response factor; r is the forgetting rate; c is the

cooling coefficient; and e is the experience factor.

3.2 Retailer agents

A retailer, which can be viewed as an aggregate of

consumers, is in charge of the power supply in a certain

region. This aggregate way makes it easier to maximize the

profits of overall consumers [29]. Being a retailer does not

entail large physical assets, so the market access threshold

is relatively lower. They make profits by purchasing energy

from GenCos and selling it to consumers in a higher price.

Numbers of retailers could significantly increase the com-

petition. Generally speaking, it is impossible for every

single retailer to occupy a strong share of the market,

which leaves no room for monopoly, the market operation

efficiency thus improved.

The entire purchasing cost can be expressed as:

Cpur ¼ Cgen þ Ctran þ Ccong ð9Þ

where Cgen is the cost of purchasing energy from GenCos;

Ctran is the cost of electricity transmission; and Ccong is the

congestion cost when congestion occurs.

The decision-making process of retailer agents contains

two parts: determining the purchasing offer and the retail

price, respectively. This paper adopts derivative following

method to work out the purchasing price, and still applies

the roulette wheel method and R-E algorithm to settle the

retail price.

The derivative following method adjusts its offer by

making a small change to the price offered in the previous

round. The adjustment is based on the revenue earned

previously and the difference between the current result

and the expected result. If the price offered before cannot

guarantee all the demand to be satisfied, agents will raise

the offer until all the energy needed is bought. Further-

more, if the previous adjustment produced more revenue

per good than the previous period, then a similar change,

otherwise a different one, will be made.

We assume that the price offered in round i is pRi , the

price adjustment is Di, then the price offered in the next

round will be:

q4 Power

Price

q3q2q1

p4

p3

p2

p1

Fig. 3 Cost curve of units
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pRiþ1 ¼ pRi þ Diþ1 ð10Þ

Diþ1 ¼ pRi ðbþ qexp � qpur

qexpa
Þ ð11Þ

0� qpur � qexp ð12Þ

where qpur is the quantity purchased; qexp is the quantity

needed; a and b are relevant coefficients, related to the

changing rate of Di. Di changes every round, decided by the

difference between the quantity needed and purchased.

The selling price is:

psell ¼ Cpur þ pser ð13Þ

0� pser � pmax � Cpur ð14Þ

where pser is the fee charged by retailers for energy pro-

vision service, decided by the random bidding method

discussed before, usually accounting for 0.5%*5.0% of

the total price; and pmax is the maximum price value.

3.3 Consumer agents with DR behaviour

The objective of consumer agents is to minimize the

expense without jeopardizing their load demand. For that

purpose, customers would modify their original load profile

to consume more energy in low-price periods and less

energy in high-price periods. In this section, we apply

consumer psychology theory to model the responsive

characteristics of agents under TOU pricing mechanism.

The mathematical model of this mechanism is shown in

Fig. 4.

The general impact of the price change on consumers’

electricity consumption is illustrated in Fig. 5. Consumers

would not respond if the price change is less than a certain

threshold value (point a). As the change increases above it,

customers will adjust their load consumption accordingly.

The quantity adjusted has an approximate linear relation to

the price incentive. However, there is a limit to users’

response ability, which reflects the rigid demand. Point b in

Fig. 5 is defined as the limit value above which the stim-

ulation loses effect. As is shown in the figure, the

responsive characteristics curve is mainly decided by the

threshold value, the slope and the limit value.

Load shift rate is defined as the ratio of the load trans-

ferred from high-price periods to low-price periods, divi-

ded by the load in high-price periods. For example, the

peak-valley load shift rate lpv can be expressed by (15).

lpv ¼
0 0�Dkpv\apv
kpvðDkpv � apvÞ apv �Dkpv � bpv
lmax
pv Dkpv [ bpv

8
<

: ð15Þ

where Dkpv is the difference between the price in peak

hours and that in valley hours; apv is the threshold value;

bpv is the limit value; lmax
pv is the maximum response; and

kpv is the slope.

The peak-flat shift rate lpf and the flat-valley shift rate

lfv can be expressed by similar equations. We assume that

the load transferred from one period to another is evenly

distributed by hours, as indicated in (16)-(18).

DLpvðkÞ ¼ DLpvðkþ1Þ ¼ � � � ¼ DLpvðkþNvÞ ¼ DLpv ð16Þ

DLvpðkÞ ¼ DLvpðkþ1Þ ¼ � � � ¼ DLvpðkþNpÞ ¼ DLvp ð17Þ

DLpvNv ¼ DLvpNp ð18Þ

where Nv and Np are the numbers of valley hours and peak

hours, respectively; DLpvðkÞ is the load increment at the kth

valley hour caused by the load shift; and DLvpðkÞ is the load
decrement at the kth peak hour.

According to the model proposed, the load after

adjustment can be obtained by (19).

Lt ¼
Lt0 þ lpv �Lp þ lfv �Lf t 2 Tv

Lt0 þ lpf �Lp � lfv �Lf t 2 Tf

Lt0 � lpv �Lp � lpf �Lp t 2 Tp

8
><

>:
ð19Þ

where Tp; Tf ; Tv are peak, flat and valley hours respec-

tively; Lt0 and Lt are the load at hour t before and after

TOU is implemented; �Lp and �Lf are the average peak-hour

load and valley-hour load, respectively.

The entire group of consumers can be divided into three

types (i.e., industrial, commercial and household), the

responsive potential of which differs a lot, reflected by the

Fuzzy 
mathematics 

model

Separation of 
hours

Consumer 
psychology 

model

Load curve 
before TOU Results of TOU

Optimization 
model of TOU

Consumers’ 
response/load 

shift rate

Load types

Fig. 4 TOU mechanism

Consumption 
change

Price changea b

Fig. 5 Consumers’ responsive characteristics
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variation in the parameters. Factors affecting the parame-

ters of the responsive model include the business type,

production procedure, and the proportion of electricity cost

in total cost, etc. [30]. For example, in iron manufacturing

industry, high electricity quality and reliability are

required, and the proportion of shiftable load is limited.

Thus the maximum shift rate and limit value are relatively

small. In contrast, cement enterprises usually work on three

shifts, and the electricity expense makes up approximately

15% of total expense. In this case, they are more willing to

transfer load for the purpose of cutting down electricity

fees, and the limit value and the maximum rate are larger.

As for commercial and domestic users, a large part of

electricity is consumed by air conditioning and lighting

equipment, of which the response potential is considerable.

As a result, the maximum load shift rate of which is rela-

tively larger, as well as the threshold value and the limit

value.

4 Case study

In this section, Java-based multi-agent simulation plat-

form ‘‘Repast’’ is used to simulate day-ahead electricity

markets. The generator parameters are shown in Table 1.

In this case, bidding segments are assumed to be 4, the

number of available strategies to be 10 and the price cap to

be 1.2 times the marginal cost. The electricity is traded on

the system clearing price. Segmented cost information of

units is shown in Table 2, and the typical load curve is in

Fig. 6. There are five retailers in the market, whose load

information in each period are presented in Table 3. The

separation of periods is shown in Table 4. In the region

studied, the proportions of industrial load, commercial load

and domestic load are 60%, 25%, 15%, respectively. Based

on the analysis in [31, 32], the parameters of customers’

responsive models are set. Given the fact that the

automation level of industrial users is relatively higher than

that of commercial and residential users, the parameters of

the former are generally larger.

The asymmetric market is simulated first, where only

bids from GenCos are accepted. Figure 7 shows how the

valley-hour clearing price fluctuates during the simulation,

while the change in the selection probability of GenCo 4’s

optimal action is demonstrated in Fig. 8. At the beginning,

the price keeps fluctuating up and down due to the random

bidding strategy of GenCos, and the selection probability

changes slowly. But the probability value, which is

Table 1 Generator parameters

Unit Node Min power

output (MW)

Max power

output (MW)

Upward ramp

rate (MW/h)

Downward

ramp rate

(MW/h)

Minimum continuous

operation time (hour)

Minimum

continuous

downtime (hour)

Cold start

time (hour)

1 1 40 80 80 80 8 4 12

2 2 60 120 120 120 8 4 12

3 3 60 120 120 120 8 4 12

4 4 66 132 132 132 10 4 12

Table 2 Segmented cost of GenCos

Cost ($/kWh) GenCo 1 output (MW) GenCo 2 output (MW) GenCo 3 output (MW) GenCo 4 output (MW)

0.09 66*70

0.10 60*80 70*72

0.11 40*50 35*45

0.12 45*70 80*95 72*90

0.13 70*90 95*110

0.14 50*60 90*120

0.15 60*70 110*120 110*120

150
200
250
300
350

1 3 5 7 9 11 13 15 17 19 21 24
Time (hour)

Lo
ad

 (M
W

)

Fig. 6 Typical daily load curve
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continuously updated through the simulation, goes up

swiftly after dozens of rounds. In the meantime, the price

also gradually converges to a certain value.

Table 5 demonstrates the optimal bids and profits of

GenCos when the equilibrium has been reached, where

‘‘?’’ means the price added on the basis of marginal cost.

Shown from the results, GenCo 4 seizes a strong share of

market. Its marginal cost is the lowest, so it could commit

market power by bidding much higher than the cost. On the

other hand, in order to maintain enough revenue, other

GenCos also have to raise their bids because their shares

are much smaller. As a result, the market price is obtained

at a relatively high level.

To investigate the impact of market power on price, the

case with ten GenCos is also simulated, whose result shows

an apparent decline in clearing prices. Since more GenCos

increase the competition, every particular one is less likely

to seize a dominant market share. As a consequence, the

price is closer to the system marginal cost.

Next, the symmetric market is simulated and the prices

in different scenarios are compared in Fig. 9. As can be

seen, the participation of buyers’ could lead to a further

drop in market prices, in contrast with the other two sce-

narios. GenCos are forced to lower down their bids in order

to avoid a loss in market share, as shown in Table 6.

Accordingly, the prices are lower than those in the asym-

metric market. In addition, the selling prices set by five

retailers are also presented in Fig. 10.

Table 3 Information of retailers

No Number of consumers Average valley-hour load (MW) Average flat-hour load (MW) Average peak-hour load (MW)

1 100 36 49 58

2 120 43 58 70

3 130 47 63 76

4 90 33 44 52

5 85 31 41 49

Table 4 Separation of periods

Hour segmentation Time range

Peak hours 08:00—12:00, 17:00—21:00

Flat hours 12:00—17:00, 21:00—24:00

Valley hours 00:00—08:00

Table 5 Profits and optimal bids of GenCos

GenCo Profit ($) Best bid ($/kWh)

1 530 ?0.006

2 2140 ?0.008

3 2430 ?0.007

4 14420 ?0.008
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Fig. 7 Fluctuation of system clearing price
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Fig. 8 Fluctuation of selection probability
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Changes in prices and electricity consumption after the

implementation of TOU mechanism are presented in

Fig. 11 and Fig.12, respectively. Customers rearrange their

load schedule by shifting load from high-price hours to

low-price ones, as response to the period-varying prices.

The load adjustment causes similar change in prices. A

gradual decrease can be seen of the peak-hour price. On the

contrary, the prices in flat and valley hours experience

different levels of growth. Besides, the total load con-

sumption slightly rises, so do the profits of retailers, as

shown in Table 7.

5 Conclusion

This paper proposes a multi-agent simulation model of

symmetric electricity market to study the impact of

trading mechanisms and DR on electricity market. Agent

models of different market players are established

according to their behavior. Moreover, the response

characteristics of customers based on consumer psychol-

ogy are also presented. The numerical analysis compares

the results where there are four and ten units in the

market and discusses the impact of market power on the

clearing price. By comparing the simulation results of

symmetric and asymmetric cases, it can be seen that the

participation of retailers could effectively lower down

clearing prices and avoid monopoly. Besides, the imple-

mentation of TOU could encourage consumers to adjust

their original load profiles by shifting load from peak

hours to off-peak hours, which also has a similar effect on

market prices.

In future work, we will further improve the agent model

of consumers by taking into account more factors affecting

the response characteristics, such as user satisfaction and

interaction between different customers.
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Table 6 Comparison of GenCos’ bids in different mechanisms

GenCo Bids (Asymmetric) ($/kWh) Bids (Symmetric) ($/kWh)

1 ?0.006 ?0.003

2 ?0.008 ?0.005

3 ?0.006 ?0.004

4 ?0.008 ?0.006

Table 7 Profit information of retailers

Retailers Profit before TOU ($) Profit after TOU ($)

1 3430 3480

2 5490 5560

3 7430 7530

4 3090 3130

5 2910 2950

0.09
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Valley hours Flat hours Peak hours
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Retailer 1; Retailer 2;

Retailer 4; Retailer 5
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Fig. 10 Selling prices of retailers

Fig. 11 Price change during simulation

Fig. 12 Load curve before and after response
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