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Abstract 

Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of 
disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progres-
sion; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, 
provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine 
is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and 
other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in 
relation to MSCs in the treatment of osteoarthritis.
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Introduction
Osteoarthritis (OA) is a chronic degenerative disease of 
articular cartilage that is the leading cause of joint disease 
in the United States. OA is characterized by the inability 
of chondrocytes to produce adequate functional matrix 
to compensate for matrix damage and depletion. Comor-
bidities such as aging, obesity, heart disease, diabetes, and 
mechanical stress become prevalent concerns in patients 
with osteoarthritis; in 2013, the center for disease control 
and prevention (CDC) found that 52.5 million adults over 
the age of 18 had self-reported physician-diagnosed arthri-
tis, which is 22.7  % of the adult population [1, 2]. Treat-
ment costs for solely knee OA are estimated to be $185.5 
billion per year [3]. Conventional pharmacological inter-
ventions are not effective to prevent the OA progression. 
Recent advances in cell therapeutics offer potential meth-
ods to treat OA.

Current therapies
OA is a chronic degenerative condition with no cure. 
Patients often experience pain, stiffness, swelling, loss of 
mobility, loss of flexibility, and weight gain secondary to 

reduced mobility/activity. Conventional OA therapeutics 
are directed toward symptomatic treatment, mainly pain 
management. Current treatment modalities for OA such 
as exercise, anti-inflammatory medication, and surgery 
are summarized below in Table  1. Current traditional 
therapies for OA have numerous downfalls in being per-
fect treatment strategies. Most importantly, these thera-
pies fail to regenerate degenerated cartilages and prevent 
further degenerative processes. Recent advancements in 
molecular biology, regenerative, and reparative medicine 
offer new hope to develop novel therapeutic agents for 
OA like conditions.

Cellular therapies
Advancement in the field of cellular therapy for osteoar-
thritis is an exciting and quickly evolving area of research 
and medicine. Current cellular therapies are summa-
rized in Table 2 and Fig. 1. One example of a cell based 
treatment that has improved over the past 20  years is 
a technique called autologous chondrocyte implanta-
tion (ACI). ACI is the only cellular based treatment with 
FDA approval and works by surgically obtaining autolo-
gous cartilage (i.e. the patient’s own cartilage) from a 
non-weight bearing area of the affected joint, isolat-
ing the chondrocytes via collagenase, expanding the 
chondrocytes in  vitro, and finally injecting the cultured 
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chondrocytes into the periosteum of the affected joint, 
with a graft to hold the cells in the desired location. 
[15, 19, 20]. The grafts that hold the cells in place have 
evolved from periosteal flaps and collagen I/III covered 
membranes to the latest method, matrix-induced ACI 
(MACI) [19]. While ACI has shown a success rate in 
patient improvement from 76 to 86  % (with Viste et  al. 
showing the highest success), numerous problems and 
questions have been raised surrounding the procedure, 
including de-differentiation of the chondrocytes. ACI is 
also limited only the site of cartilage damage and not for 
generalized OA treatment [19–21].

Recent development in stem cell tissue engineering has 
created a lot of excitement in the field of cartilage regen-
eration biology. Stem cells are progenitor cells which dif-
ferentiate into various cell types including osteoblasts, 
osteocytes, adipocytes, and cartilage [37–40]. Because of 
this, stem cells are being investigated for their abilities to 
regenerate cartilage in OA patients. These cells also have 
demonstrated the capability to inhibit T cell growth, thus 
showing that they have the ability to down-regulate the 
natural inflammatory response in OA [41]. While stem 
cells can both differentiate into new cartilage cells as well 
as suppress inflammation, recent studies have found that 
stem cells can also combat OA through paracrine mecha-
nisms. They release important cytokines such as epider-
mal growth factor (EGF), transforming growth factor 
beta (TGFB), vascular endothelial growth factor (VEGF), 

as well as other cytokines and new cartilage proteins that 
are essential in combating OA and degenerative pro-
cesses. It has also been suggested that stem cells could 
release cytokines and proteins that could help combat 
neurogenic pain, which would have numerous benefits in 
treating OA pain [40, 42]. Further research needs to be 
done in order to better understand stem cells mechanism 
of action in regard to their immunomodulatory, differen-
tiating, paracrine, regenerative, and anti-inflammatory 
abilities as well as their cellular trafficking mechanisms.

Two types of stem cells being investigated are embry-
onic stem cells (ESCs, captured from embryonic mam-
malian cells) and induced pluripotent stem cells (iPSCs). 
Both cells possess the pluripotent ability to differentiate 
into chondrocytes or any type of cell; ESCs have been 
found to improve cartilage repair in animal models, and 
Wei et al. have generated iPSCs from human OA chon-
drocytes and subsequently induced the cells into chon-
drocytic differentiation [15, 25]. While there is some 
promise for both ESCs and iPSCs to differentiate into 
human cartilage to treat OA, many problems exist such 
as both cell types tend to cause teratoma growth as well 
as immunogenicity [26].

The other type of stem cell currently being investigated 
for its ability to treat OA is the mesenchymal stem cell 
(MSC). MSCs are a heterogeneous group of stromal cells 
that can come from a variety of sources including adipose 
tissue, bone marrow, and synovium; numerous studies 
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Fig. 1 Schematic diagram illustrating the current clinical approaches to cell-based therapy for cartilage tissue engineering
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have proven MSCs’ abilities to differentiate into chondro-
cytes and regeneratively treat OA [20]. While MSCs have 
a limited proliferative potential in comparison to pluri-
potent stem cells, many advantages exist for MSC based 
therapies [31]. MSCs and iPSCs offer the most realistic 
and best potential for viable regenerative cell treatment 
of OA; however, MSC based therapies have less risks 
associated with them and an easier means of production. 
The source of MSCs for treatment of OA is an important 
factor in cartilage tissue engineering and each cell type 
has its pros and cons (Table 2).

Adipose‑derived Mesenchymal Stem Cells (ADSCs)
Adipose-derived mesenchymal stem cells (ADSCs) can 
be harvested from the patient’s own adipose tissue most 
commonly via surgical resection or liposuction; spe-
cifically, infrapatellar fat pads (IFPs) provide cells with 
higher chondrogenic potential in comparison to other 
sources [43]. ADSC therapy for OA in animal studies is 
well documented, and the process of isolating ADSCs 
is not overly invasive [19]. Toghraie et  al. demonstrated 
that ADSCs derived from IFPs in rabbits given to rab-
bits with OA-induced knees had less cartilage destruc-
tion, less subchondral sclerosis, less osteophyte buildup, 
as well as better cartilage overall than the control group 
[43]. Desando et  al. also demonstrated that autologous 
ADSC therapy decreased the progression of degenera-
tion in cartilage and in the synovial membrane. Further-
more, autologous ADSC therapy improved meniscal 
repair. Desando et  al. suggested these findings could be 
due to the release of growth factors and cytokines. The 
regenerative effect of autologous ADSCs is dose and time 
dependent [44]. Another group also reported cartilage 
regeneration following autologous ADSC therapy in a 
surgically induced osteoarthritic sheep model. Autolo-
gous ADSCs were labeled and intra-articularly injected, 
leading to the cells populating the area of damaged carti-
lage as well as a decreased progression of OA [45]. While 
these animal models showed the promise of ADSCs in 
OA therapy, more studies like these need to be done in 
order to better understand the mechanisms so that they 
can be practiced in a routine clinical setting.

Several clinical studies also prove ADSCs’ efficacy in 
treating OA in human patients. Koh et al. treated patients 
with knee OA undergoing arthroscopic debridement 
with injected autologous ADSCs derived from IFPs and 
prepared in platelet rich plasma (PRP). Treated patients 
demonstrated improved mobility and function in the 
affected knees, reduced pain levels, and better clini-
cal prognoses in a 1 year follow up [46]. In a 2 year fol-
low up, Koh et  al. found the patients had significantly 
improved Western Ontario and McMaster Universities 
Osteoarthritis (WOMAC) pain scores, VAS pain scores, 

and cartilage regeneration as confirmed by MRI [47]. 
This study suggests that these intra-articular injections 
are safe, and more clinical trials like these should be done 
to improve surgical and clinical outcomes. In a different 
proof-of-concept clinical trial, autologous ADSCs were 
injected in patients with knee OA. The high dose injec-
tion group had increased WOMAC scores 6 months after 
injections, decreased cartilage defects in affected areas, 
and increased cartilage volumes with thick, hyaline car-
tilage-like regeneration [48]. These results further proved 
the promising efficacy of autologous ADSCs in treating 
OA in humans, as well as demonstrated its safety as there 
were no adverse events. In 2011, Pak demonstrated the 
potential of ADSCs in osteonecrosis of the hip and OA in 
the knees of several patients. Results revealed bone for-
mation in the osteonecrosis patients as well as cartilage 
regeneration in the OA knee patients. These patients’ 
MRIs had increased meniscus cartilage volume and 
thickness due to the ADSCs injections [49]. More similar 
clinical trials are necessary to further prove ADSCs’ effi-
cacy and safety for routine use in the human OA setting.

Bone marrow‑derived mesenchymal stem cells 
(BM‑MSCs)
Another source of MSCs for the treatment of OA is bone 
marrow-derived MSCs (BM-MSCs). BM-MSCs have a 
higher chondrogenic capability than ADSCs [50], and 
they have been studied more extensively than ADSCs 
[19]. Numerous animal models have demonstrated the 
potential therapeutic value of BM-MSCs, including one 
by Chiang et al. in 2016. They used allogenic BM-MSCs 
in combination with hyaluronic acid to treat knee OA-in 
a rabbit model, with the contralateral osteoarthritic knee 
only receiving hyaluronic acid. These treated rabbits were 
compared to untreated OA-induced rabbits. The joints 
treated with BM-MSCs and hyaluronic acid underwent 
less cartilage loss, fewer surface abrasions, and improved 
cartilage content [51]. This study showed that allogenic 
BM-MSCs can reduce the progression of OA. In a sheep 
OA model, autologous BM-MSCs were intra-articularly 
injected into the knees of sheep with arthroscopically-
caused medial femorotibial condylar and meniscal 
defects. In comparison to the control group, the treated 
sheep showed signs of regeneration in their articular car-
tilage and menisci. The treatment group exhibited signs 
of statistically significant improvement in respect to both 
microscopic and histological guidelines [52]. These ani-
mal studies demonstrate the capability of BM-MSCs to 
combat OA.

In a human trial, Orozco et  al. used autologous BM-
MSCs to treat OA knee patients who were unresponsive 
to conservative treatments. BM-MSCs were intra-artic-
ularly injected, and their results indicated strong clinical 
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efficacies such as improved cartilage quality in T2 mapping 
in 11 of the 12 patients and pain relief without hospitali-
zation or surgery [53]. These findings suggest that BM-
MSCs can be safely implemented in treatment strategies 
for treatment-resistant OA patients. Another study tested 
the efficacy of autologous BM-MSCs in treating patients 
with knee, hip, or ankle OA. Each patient received one 
autologous BM-MSC injection after the cells were isolated 
and cultured, and they were followed for 30  months. All 
patients enjoyed increased walking distances, improved 
WOMAC scores, and improved cartilage regeneration 
as demonstrated on MRI [54]. This study once again pre-
sented the regenerative potential of BM-MSCs in OA 
joints with minimal side effects. A randomized control 
trial in 2015 demonstrated the efficacy of allogenic BM-
MSCs in treating knee OA. The study treated OA patients 
who had chronic knee pain and were unresponsive to con-
servative OA treatments with intra-articularly injected 
BM-MSCs in comparison to the control group who only 
received intra-articularly injected hyaluronic acid. The 
treatment group demonstrated decreases in poor carti-
lage areas, improved cartilage quality, and pain relief [55]. 
These findings are promising because it demonstrates BM-
MSCs’ ability to inhibit the progression of OA; however, 
more clinical and basic science research, including human 
trials, must be done to understand molecular mechanisms 
and how the cells can better prevent the progression of OA 
in humans. Also, more studies must be done in order to 
effectively compare the chondrogenic abilities of different 
classes of stem cells (i.e. ADSCs and BM-MSCs) [56–59].

Synovial‑derived mesenchymal stem cells (S‑MSCs)
Several human studies have been conducted on ADSCs 
and BM-MSC treatments for OA, but less has been done 
in recent times with synovial-derived MSCs (S-MSCs). 
In a rat knee OA model, S-MSCs injected weekly, rather 
than at a single time, were found to have migrated into 
the synovium and retained their undifferentiated S-MSC 
properties. The S-MSCs increased genetic expression of 
chondroprotective proteins such as BMP-2 and an anti-
inflammatory gene, TSG-6 [60]. This suggests that peri-
odic injections of S-MSCs can allow the MSCs to retain 
their MSC properties as well as inhibit the advancement 
of OA through genetic transcription. In a micromini-
pig model, S-MSCs demonstrated the ability to enhance 
repair of longitudinally torn menisci in avascular areas. 
The group treated with S-MSCs had significantly 
improved meniscal healing at 12  weeks in comparison 
to the control group macroscopically, histologically, and 
by T1rho mapping [61]. In 2014, Hatsushika et al. further 
demonstrated the potential of S-MSCs by intra-articu-
larly injecting them into the knees of pigs that had under-
went medial meniscal resections. These damaged menisci 

regenerated cartilage significantly better than the control 
group in respect to MRI and histology. The treatment 
group’s cartilage was better preserved, and new synovial 
tissue filled the area of meniscal resection at 2 weeks [62]. 
This study, along with the previously mentioned studies, 
demonstrate that S-MSCs can provide a real answer in 
preventing the progression of OA as well as promoting 
regeneration of cartilage.

Stem cell‑derived exosomes
Although MSCs have demonstrated the unique abil-
ity and promise to combat degenerative diseases such 
as OA, they possess another mechanism of regenera-
tive abilities not previously discussed: their exosomal 
products. Exosomes are packaged microvesicles that can 
contain proteins, lipids, factors, and/or genetic material 
that can be released in times of cellular stress [63, 64]. 
Furthermore, recent studies demonstrated transfer of 
genetic (miRNA, mRNA) material and protein through 
exosomal machinery [64, 65]. Large scale exosomes can 
be produced in the laboratory from stem cells and these 
exosomes can be used to combat the disease progres-
sion [64, 66]. If MSCs can be grown in culture and an 
environment similar to one of a chondrocyte undergo-
ing osteoarthritic changes (via osteoarthritic cytokines), 
then the MSCs will release chondroprotective exosomes 
in response to the stress; these exosomal products could 
then be screened for, packaged in exosomes, and given 
to OA patients to promote cartilage regeneration [64]. 
Some miRNAs have already been identified in being 
involved in chondrogenesis and cartilage degeneration, 
including miRNA-101, miRNA-140, and miRNA 455 
[67, 68]. Xu et  al. found that human BM-MSCs release 
exosomes containing miRNAs that upregulate the Wnt 
pathway, leading to osteogenic differentiation [69]. These 
exosomal products can help explain how MSCs perform 
their regenerative abilities in combatting OA in a parac-
rine fashion, although it is impossible to say at this time 
how much of the healing is solely due to exosomes, and 
they may only offer a one-time relief instead of continu-
ous relief that MSC-based treatment has demonstrated. 
More research is required to better understand how 
MSC-derived exosomal products mechanistically work, 
how they can be identified, and how they can be pro-
duced in Good Manufacturing Practices (GMP) in order 
to prevent the progression of OA in clinical medicine.

Conclusions
Current treatment strategies for OA are inadequate and 
costly. Due to the increasing incidence and prevalence of 
OA, more innovative and effective therapeutic modali-
ties need to be investigated, including MSCs. More ran-
domized clinical trials need to be completed in order to 
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demonstrate the efficacy, safety, and benefits of MSCs 
in treating patients with OA. Most of MSC research on 
humans only involves knee OA, and additional analy-
sis should include clinical trials for ankle OA, shoulder 
OA, hip OA, and elbow OA. MSC-based cellular therapy 
has the potential and opportunity to effectively combat 
OA, but more extensive clinical trial and animal studies 
are required to understand the basic molecular mecha-
nisms of MSC dependent cartilage regeneration. Further 
research is also necessary to better understand the poten-
tial of MSC-derived exosomes in the treatment of OA.
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