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Abstract To validate an established breast cancer inci-

dence model in an independent prospective data set. After

aligning time periods for follow-up, we restricted popula-

tions to comparable age ranges (47–74 years), and fol-

lowed them for incident invasive breast cancer (follow-up

1994–2008, Nurses’ Health Study [NHS]; and 1995–2009,

California Teachers Study [CTS]). We identified 2026

cases during 540,617 person years of follow-up in NHS,

and 1,400 cases during 288,111 person years in CTS. We

fit the Rosner–Colditz log-incidence model and the Gail

model using baseline data. We imputed future use of hor-

mones based on type and prior duration of use and other

covariates. We assessed performance using area under the

curve (AUC) and calibration methods. Participants in the

CTS had fewer children, were leaner, consumed more

alcohol, and were more frequent users of postmenopausal

hormones. Incidence rate ratios for breast cancer showed

significantly higher breast cancer in the CTS (IRR = 1.32,

95 % CI 1.24–1.42). Parameters for the log-incidence

model were comparable across the two cohorts. Overall,

the NHS model performed equally well when applied in the

CTS. In the NHS the AUC was 0.60 (s.e. 0.006) and

applying the NHS betas to the CTS the performance in the

independent data set (validation) was 0.586 (s.e. 0.009).

The Gail model gave values of 0.547 (s.e. 0.008), a sig-

nificant 4 % lower, p \ 0.0001. For women 47–69 the

AUC values for the log-incidence model are 0.608 in NHS

and 0.609 in CTS; and for Gail are 0.569 and 0.572. In both

cohorts, performance of both models dropped off in older

women 70–87, and later in follow-up (6–12 years). Cali-

bration showed good estimation against SEER with a non-

significant 4 % underestimate of overall breast cancer

incidence when applying the model in the CTS population

(p = 0.098). The Rosner–Colditz model performs consis-

tently well when applied in an independent data set. Per-

formance is stronger predicting incidence among women

47–69 and over a 5-year time interval. AUC values exceed

those for Gail by 3–5 % based on AUC when both are

applied to the independent validation data set. Models may

be further improved with addition of breast density or other

markers of risk beyond the current model.
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Introduction

For over a decade since developing and expanding the

Rosner–Colditz model for breast cancer incidence [1, 2],

we have sought approaches to estimating performance in

an independent validation data set. Although we have

conducted internal validation using split sample approa-

ches [3], we have not previously used an independent data

set to assess performance. This has largely been due to the

need for data on age at each birth for women, an input to

spacing of births that directly relates to breast cancer risk in

early studies [4] and is confirmed in our model [5] and by

others [6]. The closer births are together, the more rapidly

breast tissue-aging decreases and the lower total risk

accumulates through premenopausal years [7]. In addition,

details on age at menopause and type of menopause as well

as type and duration of postmenopausal hormone therapy

(HT) are important risk factors.

Our approach then is to use an independent data set to

estimate performance following the principles outlined in

literature addressing validation and application of predic-

tion models in medicine [8, 9]. To date, no model of breast

cancer incidence has been implemented as part of routine

clinical care where risk estimates might guide level of

screening, genetic counseling, or chemoprevention.

As previously noted, the Rosner–Colditz model includes

a range of established reproductive factors, body mass

index (BMI), and alcohol intake in its basic form [2]. This

is one of a large number of breast cancer risk prediction

models. In a systematic review and meta-analysis, Meads

et al. [10] identified 17 breast cancer risk models with

differing sets of modifiable and non-modifiable risk factors,

with many omitting age at menopause, type of menopause,

and use of postmenopausal hormones, all factors strongly

related to future breast cancer risk. Only four models had

validation in potentially independent data sets. These

models included Gail [11] and also the Rosner–Colditz

model [1, 2, 12]. The performance of the Gail model

summarized as AUC in a previous validation within the

NHS data was 0.58, though both have not been compared

in a common independent data set.

Moons and others emphasize a sequence of model

development, validation, application, and assessment of

performance in application/clinical setting [8, 9]. To date,

we find no reports on the last aspect of breast cancer model

performance in routine clinical settings. Here we focus on

the conduct of validation in an independent data set.

We collaborated with California Teachers Study (CTS)

investigators to draw on an independent prospective data set

and assess the performance of the Rosner–Colditz model,

which was developed and refined in the Nurses’ Health Study

(NHS). We also compare model performance against the

Gail model when both are fit to the independent data set.

Methods

As noted above, a key issue in identifying an independent

prospective study with appropriate risk factor collection

included the need for details of age at each pregnancy, a

refinement of usual reporting of age at first birth and

number of births typical of epidemiologic studies. Details

on age and type of menopause were also important since

this is omitted from the Gail model despite a long record of

being established as a modifier of future breast cancer risk

[5, 13, 14]. Other key risk factors not included in the Gail

model are duration and type of postmenopausal HT used

[15], BMI [16], and alcohol intake [17]. These are all in the

Rosner–Colditz log-incidence model.

CTS This cohort contains the necessary data collected at

baseline in 1995 for the cohort. The CTS approach to

questionnaire follow-up, after 2 years, then after 3 more

years, then at varying intervals each updating some expo-

sures, together with case ascertainment ongoing annually

through the California tumor registry, meant we use

baseline data only. We limit the population to women who

were postmenopausal at baseline. To compare incidence

during common follow-up time periods we use the time

frame for CTS from baseline 1995 to 2009.

NHS This cohort of women followed from 1976 has

routinely updated information every 2 years on reproduc-

tive risk factors for breast cancer, family history of breast

cancer, use of postmenopausal hormones, and from 1980

onwards alcohol intake. The original Rosner–Colditz

model was developed in the broader NHS cohort [1, 2, 5].

For comparability with data available from the CTS, we

limit the population for this analysis to women who were

postmenopausal at baseline in 1994. Thus the correspond-

ing time available for the NHS is 1994–2008. In 1994,

NHS participants were 47–74. Hence, we limit the CTS

participants included in the analysis to a comparable age

range, excluding their older cohort members.

Model fitting issues

Limited only to baseline data from the CTS, we modified

the Rosner–Colditz model to omit updating. Because this

differs from our standard approach of updating exposure

information every 2 years [2], we estimate the impact of

this modification on overall performance.

Duration of current use of postmenopausal HT is signifi-

cantly related to incidence of breast cancer [2, 18], and to

type of menopause, age at menopause, and time since men-

opause. These factors are all importantly related to post-

menopausal breast cancer incidence. We, therefore, used

imputation methods to estimate future duration of use for

postmenopausal HT in the CTS [19]. We used a two-step

process to estimate use according to type of hormone used
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currently, and duration of use. We first fit a model to NHS

data to estimate the duration of hormone use from 1994 to the

return of the 2006 follow-up questionnaire for each type of

HT (estrogen, E, alone and estrogen plus a progestin, E&P).

Predictors included menopause type and time since meno-

pause, and duration of use of HT among current users (see

Tables 8 and 9). In addition to these characteristics of men-

opause, parity was positively related to ever use of E alone

but not E&P, and positively to duration of use of estrogen

alone, but inversely to duration of estrogen plus progestin.

BMI was inversely related to ever use of E and E&P, but was

unrelated to duration of use of either. Alcohol use was

inversely related to ever use of E alone and to ever use of

E&P, but not to duration of use of either formulation. We

developed this model separately for use of E alone and for use

of E&P. We then used this model with baseline CTS data to

impute future use by type and duration for participants,

taking the average of 5 imputations for each participant. (See

Tables 8 and 9 for the imputation models and Appendix 2 for

a summary of the imputation strategy.)

Time frame

To compare incidence of breast cancer in the two cohorts

over a common time frame, we identified common subsets

from the two cohorts. We use the CTS baseline in 1995 and

1994 as the start point for inclusion of NHS follow-up. We

then draw on the age range of the NHS participants to

define a comparable age range for CTS participants. Thus

we limit NHS follow-up data to the interval 1994–2008.

CTS data for the corresponding years are included with

follow-up from 1995 to 2009.

During follow-up of the NHS cohort from 1994 to 2008,

we identified 2,026 invasive breast cancer diagnoses

among postmenopausal women during 540,617 person

years. In the CTS, we identified 1,400 incident invasive

breast cancer diagnoses among postmenopausal women

during 288,111 person–years.

Description of the log-incidence model of breast cancer

We assume that the incidence of breast cancer at time t (It)

is proportional to the number of cell divisions accumulated

throughout life up to age t (i.e., It = kCt).

Ct is obtained from

Ct ¼ C0x
Yt�1

i¼0

Ciþ1=Cið Þ ¼ C0x
Yt�1

i¼0

ki ð1Þ

Thus, ki ¼ Ciþ1

Ci
¼ the rate of increase in Ct from age i to

age iþ 1.

Log (kiÞ is assumed to be a linear function of risk factors

that are relevant at age i: The set of relevant risk factors

and their magnitude and/or direction may vary according to

the stage of reproductive life. We fit PROC NLIN of SAS

to estimate the parameters of the model with breast cancer

risk factors including (1) duration of premenopause, (2)

duration postmenopause, (3) type of menopause, natural or

surgical (4) parity, (5) age at each birth, (6) current, past

HRT use, (7) duration of HT use by type, (8) BMI, pre-

menopause : BMI1, (9) BMI, postmenopause : BMI2,

(10) height, (11) benign breast disease (BBD), (12) alcohol

intake, (13) family history of breast cancer.

We fit the base model using baseline variables and

imputed HT duration without updating exposures and

assessed covariates using the CTS comparing their mag-

nitude and direction to the variables in the NHS. We assess

the performance of the model from the NHS in the CTS by

fitting the NHS model and averaging five imputations of

HT use. We fit the Gail model [11] using the formula from

page 1880, with the caveat that in each cohort the number

of previous biopsies is scored 0 or 1 and the number of

relatives with family history is scored 0 or 1. We compare

the c-statistic for Gail versus Rosner–Colditz log-incidence

using the Wilcoxon rank sum test [20].

To assess calibration, we use the NHS model to esti-

mate relative risks for individual women in the CTS and

combine these with SEER data to estimate absolute risk.

We then group the CTS participants by decile of esti-

mated absolute risk and compare observed and expected

counts of incident breast cancers and test for trend using

Poisson regression approaches (for additional details, see

Appendix 1).

To assess calibration, we apply the NHS risk model to

the CTS population using imputed data for HRT use over

12 years. Suppose there are N subjects in the CTS popu-

lation who are followed for T person–years. We divide the

T person–years into L age strata and let Tl = number of

person–years in the lth age stratum. Based on the NHS risk

model, we compute the relative risk for the ith person at the

jth person–year given by RRij compared to a hypothetical

person at baseline risk where all covariate values are 0. Let

h1
*(l) be the age-specific incidence rate for the lth age group

from SEER 1995–2006. We use the methods of Gail (1989)

to combine the RRij from the NHS model with h1
*(l) to

estimate h1(l) = baseline incidence rate for the lth age

group of CTS. An estimate of the incidence rate for the ith

subject in the jth person–year is then given by

Îij ¼
XL

l¼1

h1ðlÞdijlRRij

where dijl ¼ 1 if the ith subject is in age group l at the jth

person–year, = 0 otherwise.

The corresponding estimate of cumulative incidence for

the ith subject over ti person–years is given by
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Ei ¼ 1� expð�
Xti

j¼1

ÎijÞ

Let Oi = 1 if the ith subject develops breast cancer over ti
person–years, = 0 otherwise.

If the NHS model is well calibrated in the CTS popu-

lation, then Oi should follow a Poisson distribution with

mean = Ei. To test this we let li ¼ EðOiÞ and consider the

Poisson regression model

ln lið Þ ¼ aþ lnðEiÞ

A test of the calibration of the model at the individual

level is

H0 : a ¼ 0 vs:H1 : a 6¼ 0

which we can perform using a Poisson regression model

with intercept only and offset given by lnðEiÞ.
We also can group the subjects into deciles by cumu-

lative incidence per year (or E�i ¼ Ei=ti) and compute the

observed (O(d)) and expected (E(d)) number of cases in the

dth decile and run a Poisson regression at the aggregate

level of the form:

ln lðdÞ
� �

¼ aþ lnðEðdÞÞ

where lðdÞ ¼ EðOðdÞÞ:
The individual and aggregate Poisson regression models

are actually equivalent. The Poisson regression approach

should be a more sensitive model of goodness of fit than

the Hosmer–Lemeshow statistic given by

X2
HL ¼

X10

d¼1

ðOðdÞ � EðdÞÞ2

EðdÞ

which is more similar to a test of hetereogeneity than the

test for trend approach given by Poisson regression.

Finally, to combine inferences over several imputed data

sets, multiple imputation approaches are used to obtain an

overall test of calibration based on averaging estimates of a
over several imputations. More detail on the calibration

methodology is given in Table 8.

Results

Risk factor prevalence differences (Tables 1, 2)

Baseline data for the NHS and CTS are presented in

Table 1, for women 47–59 years at baseline, and Table 2,

for women 60–74 years of age. The mean age, age at

menarche, and age at menopause were comparable in the

cohorts as were the prevalence of biopsy confirmed BBD

and family history of breast cancer. The CTS included

more nulliparous women (25 %) versus 6 % in the NHS for

women 47–59 years, and 18 versus 6 % for women

60–74 years. CTS cohort members versus women in the

NHS had an average of 1 fewer births per woman; more

current postmenopausal hormone use (age 47–59 years: 70

vs. 56 %, age 60–74 years: 53 vs. 35 %) and longer

duration of use; leaner current BMI (age 47–59 years: 25.3

vs. 26.6, age 60–79 years: 25.3 vs. 26.1) and higher current

alcohol intake (age 47–59: 7.9 g/day vs. 5.0 g/day, 60–79:

8.2 g/day vs. 5.1 g/day).

Incidence rates (Table 3)

Age-specific and age-adjusted incidence rates show breast

cancer incidence rates are higher in the CTS for women

over age 60 years (Table 3). Across all ages, 47–87 years,

the age-adjusted incidence rate ratio shows that the CTS

has significantly higher incidence (age-adjusted IRR 1.32,

95 % CI 1.24–1.42).

Comparing parameter estimates in each cohort

(Table 4)

The modified model using only baseline data and imputed

HT duration of use was fit separately to the NHS and then

to the CTS cohort data to compare coefficients side by side

(see Table 4). We note a number of important similarities

across the two independent cohort studies supporting

favorable performance. The magnitude of the coefficient

for age at first birth (gynecologic age at first birth) is

comparable, being positive in both cohorts. The associated

birth index (a summary of total years from each birth to

minimum [age, or age at menopause], summed over all

births in parous women and = 0 for nulliparous women)

shows a strong inverse association of comparable magni-

tude in both cohorts (-0.0032 in NHS vs. -0.0026 in

CTS). Thus, for a typical woman with menarche at age 13,

menopause at 50, births at 20, 23, 26, 29, (giving a birth

index 102), this translates to a RR 0.72 for the NHS and

0.77 for the CTS. Terms for BBD and family history are

comparable as are the association for alcohol and for height

and BMI among women not taking HT (estrogen negative

time).

We also note some differences between the two cohorts.

The magnitude of the association for duration of E&P has a

larger magnitude in the CTS, b = 0.035 versus 0.015 in

NHS. The term for current use is weaker in the CTS, giving a

combined relative risk for a current user with 5 years of use

of e0.202? 5(0.035) = e0.377 = 1.46 compared to a never user

for the CTS and e0.368?5(0.015) = e0.443 = 1.56 for the NHS.

For current users with 10 years of use, the RRs are 1.74 for

the CTS and 1.68 for the NHS. Thus, the overall associations

for current users are comparable at longer durations of use.

The association for BMI is somewhat weaker during
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estrogen negative time (postmenopause, non-use of post-

menopausal hormones) in the CTS compared to the NHS

(0.00038 vs. 0.00195 per BMI unit per year).

Summary model performance in NHS and CTS cohorts

(Table 5)

We fit model coefficients from Table 4 to NHS and applied

the coefficients from NHS to CTS data for follow-up from

1995 to 2009 as an external validation of the NHS model

(see Table 5). The overall performance in the NHS was

0.597 for the full follow-up and 0.586 in CTS. For the first

5-year follow-up interval among women 47–69 years, the

risk prediction performance was comparable in both cohorts

(0.608 in NHS and 0.609 in CTS) supporting validity of the

model. We also observed that in NHS during the first 5-year

follow-up period, 1994–1999, performance was higher in

women 47–69 years (c = 0.608) than in those 70–87 years

(c = 0.587). For the second follow-up interval from 2000 to

2008 the model again performed better in younger women

c = 0.599 compared to older women c = 0.577, but in each

group performance was lower than in the first time interval.

This pattern of performance was also observed when the

Gail model was applied to the NHS cohort performance was

higher in younger women and in the first versus second

follow-up interval.

Applying the NHS log-incidence model to the CTS data,

a similar pattern emerged; the performance was better

during the first 5 years of follow-up in younger than older

women (c = 0.609 for 47–69 year old women vs. 0.564 for

70–87 year old women). During the later follow-up,

2001–2009, the performance was further reduced. The Gail

model applied to the CTS data also showed this pattern in

the first follow-up interval.

Table 1 Comparison of baseline risk factors between NHS and CTS, age 47–59

Variable NHS CTS

Mean ± SD Range N Mean ± SD Range N

Age 54.8 ± 3.1 47–59 18,308 54.0 ± 3.3 47–59 11,419

Age at menarche 12.4 ± 1.3 9–21 18,308 12.5 ± 1.4 10–17 11,419

Age at menopause 47.9 ± 5.1 21–59 18,308 48.0 ± 4.8 35–56 11,419

Type of menopause

Natural 13,910 (76 %) 8,393 (74 %)

Bilateral oophorectomy 4,398 (24 %) 3,026 (26 %)

Nulliparous (%) 1,075 (6 %) 2,858 (25 %)

Age at 1st birtha 24.6 ± 3.0 15–46 17,233 25.6 ± 4.6 14–46 8,561

Parity

0 1,075 (6 %) 2,858 (25 %)

1 1,355 (7 %) 1,695 (15 %)

2 6,016 (33 %) 4,094 (36 %)

C3 9,862 (53 %) 2,772 (24 %)

Mean 2.7 ± 1.4 0–15 18,308 1.7 ± 1.3 0–10 11,419

Birth index 58.0 ± 33.9 0–236 18,308 36.3 ± 32.6 0–316 11,419

Age at 1st birth–age at menarche 12.2 ± 3.3 1–32 17,233 13.1 ± 4.8 0–32 8,561

Current PMH use 10,232 (56 %) 7,975 (70 %)

Past PMH use 2,457 (13 %) 1,168 (10 %)

Duration E use (years) 1.4 ± 3.6 0–34.0 18,308 2.0 ± 4.1 0–20.0 11,419

Duration E&P use (years) 1.2 ± 2.1 0–14.0 18,308 2.1 ± 3.0 0–20.0 11,419

Current BMI (kg/m2) 26.6 ± 5.3 12.5–68.7 18,308 25.3 ± 5.3 16.2–60.6 11,419

BMI at age 18 (kg/m2) 21.3 ± 2.9 13.1–43.3 18,308 21.4 ± 3.4 14.5–53.3 11,419

Height 64.6 ± 2.4 48–79 18,308 64.8 ± 2.6 45–76 11,419

Alcohol (g/day) 5.0 ± 9.3 0–292.8 18,308 7.9 ± 9.6 0–112.8 11,419

Alcohol at age 18 (g/day) 3.2 ± 5.1 0–108.1 18,308 5.3 ± 8.2 0–157.2 11,419

Benign breast disease (%) (biopsy confirmed) 4,203 (23 %) 2,181 (19 %)

Family Hx breast cancer (%) 2,049 (11 %) 1,497 (13 %)

a Among parous women
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Comparing the Gail model to the log-incidence model in the

independent CTS data, the AUC for the Gail model perfor-

mance was 4 % lower overall (c = 0.547 vs. 0.586,

p\0.0001); during the first follow-up period for women

47–69 years (c = 0.572 vs. 0.609, difference in AUC = 0.037,

p = 0.008), and in women 70–87 years (c = 0.516 vs. 0.564,

difference in AUC = 0.048, p = 0.09). In the later follow-up

from 2001 to 2009 these differences persisted.

Comparison of c statistic for actual NHS data

versus the use of imputed values in that cohort

(Table 6)

To assess the drop off in model performance induced by

not updating exposure variables, we next fit the model to

NHS data using first imputed and then updated values for

HT duration (see Table 6). Fitting the model to NHS

updated data from 1994 through 2008 (right hand panel of

Table 6) we observe an AUC c statistic value of 0.616 (s.e.

0.006). If instead of using observed updated data, we

impute future duration of HT after menopause, the AUC

c statistic is reduced modestly to 0.600 (s.e. 0.006). When

assessing performance in the early follow-up from baseline

and later follow-up—again the actual data were compara-

ble to imputed data for the first 5 years, but showed

reduced performance in the 2000–2008 interval. For

example, for women 47–69, the AUC decreased from

0.641 with actual updated data to 0.595 using imputed data.

Calibration observed and expected counts in CTS

by decile of risk, predicted with NHS betas

Finally, we use five imputations to estimate the expected

number of cases of breast cancer according to the NHS

Table 2 Comparison of baseline risk factors between NHS and CTS, age 60–74

Variable NHS CTS Variable NHS CTS Variable

Mean ± SD Range Mean ± SD Range

Age 66.0 ± 3.8 60–74 27,434 66.1 ± 4.1 60–74 11,222

Age at menarche 12.7 ± 1.4 9–21 27,434 12.6 ± 1.4 10–17 11,222

Age at menopause 49.2 ± 4.8 20–66 27,434 49.8 ± 4.8 35–56 11,222

Type of menopause

Natural 21,838 (80 %) 9,097 (81 %)

Bilateral oophorectomy 5,596 (20 %) 2,125 (19 %)

Nulliparous (%) 1,744 (6 %) 2,012 (18 %)

Age at 1st birtha 25.7 ± 3.6 16–47 25,690 25.3 ± 4.2 14–46 9,210

Parity

0 1,744 (6 %) 2,012 (18 %)

1 1,879 (7 %) 1,147 (10 %)

2 6,281 (23 %) 3,037 (27 %)

C3 17,530 (64 %) 5,026 (45 %)

Mean 3.2 ± 1.8 0–16 27,434 2.3 ± 1.6 0–13 11,222

Birth index 64.8 ± 39.4 0–259 27,434 52.2 ± 40.6 0–321 11,222

Age at 1st birth–age at menarche 13.0 ± 3.8 1–35 25,690 12.6 ± 4.3 1–34 9,210

Current PMH use 9,474 (35 %) 5,942 (53 %)

Past PMH use 7,580 (28 %) 1,854 (17 %)

Duration E use (years) 2.4 ± 5.2 0–48.4 27,434 3.8 ± 6.5 0–20.0 11,222

Duration E&P use (years) 0.9 ± 2.1 0–14.0 27,434 3.2 ± 4.8 0–20.0 11,222

Current BMI (kg/m2) 26.1 ± 5.0 12.9–69.4 27,434 25.3 ± 4.8 16.0–60.4 11,222

BMI at age 18 (kg/m2) 21.3 ± 3.0 10.8–59.3 27,434 21.5 ± 3.1 15.0–48.4 11,222

Height 64.4 ± 2.4 39–79 27,434 64.4 ± 2.5 56–74 11,222

Alcohol (g/day) 5.1 ± 9.6 0–113.4 27,434 8.2 ± 10.4 0–130.8 11,222

Alcohol at age 18 (g/day) 2.5 ± 4.9 0–161.3 27,434 3.6 ± 6.4 0–116.1 11,222

Benign breast disease (%) (biopsy confirmed) 6,133 (22 %) 2,408 (21 %)

Family Hx breast cancer (%) 3,684 (13 %) 1,687 (15 %)

a Among parous women
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model stratifying the CTS participants by decile of risk. As

shown in Table 7, the observed count was slightly lower

than the predicted case count. Poisson regression across all

women allows estimation of the adjustment factor (a) =

-0.048, s.e. (a) = 0.027, p = 0.074. Overall the model fit

is not significantly different from SEER, O/E = 0.96 a 4 %

underestimate. Thus applying the NHS model with its rich

use of exposure across the life course for established breast

cancer risk factors, and accounting for the risk factor

profile of individual women in the CTS, we fully account

for breast cancer incidence in this independent population.

Discussion

We identified an independent large data set with 1,400

incident invasive breast cancer cases, that allowed evalu-

ation of a breast cancer incidence risk prediction models

using a common definition of incident invasive breast

cancer, over common time periods, and age groups. Age-

standardized breast cancer incidence in the CTS was sig-

nificantly higher than in NHS. Overall performance of the

Rosner–Colditz log-incidence model shows AUC consis-

tent with performance in the original NHS, supporting

external validity of the model. In the external validation

data set the model outperformed the Gail model by 3–5 %

for differing age groups and follow-up intervals based on

the AUC. Although adaptations had to be made using only

baseline data, this approach is comparable to using the tool

in clinical practice to predict risk and stratify women to

guide prevention interventions. Assessment of the lack of

updating but use of imputed duration of hormone use

among postmenopausal women showed modest attenuation

over a 5-year follow-up interval in the NHS. Calibration

against SEER showed good performance and close agree-

ment of predicted with observed incidence.

General issues on validating

Data availability on key reproductive variables including

age at first birth, age at each birth, menopause and type of

menopause, as well as history of biopsy confirmed BBD

and family history of breast cancer, height, weight, and

history of alcohol intake supported use of a common model

in comparable data that had been collected with similar

methods and would reflect approaches in clinical and epi-

demiologic practice. Because HT modifies risk of breast

cancer, imputing future use among current users was nec-

essary as the CTS does not update data every 2 years as

NHS does, and in clinical practice future use is unknown

but is important for risk prediction. Summary imputation

models are provided that may be of use for clinical appli-

cation in other settings where future use of hormones will

be estimated given past history ascertained at a clinic visit

Table 3 Comparison of breast cancer incidence rates between NHS and CTS

Age

group

NHS CTS

Cases p_years Incidence rate (per 105

py)

Cases p_years Incidence rate (per 105

py)

IRR

47–49 7 1,764 396.8 2 2,511 79.6 0.20

50–54 74 23,452 315.5 48 18,792 255.4 0.81

55–59 275 66,427 414.0 177 43,889 403.3 0.97

60–64 434 109,802 395.3 298 60,673 491.2 1.24

65–69 523 127,301 410.8 328 61,539 533.0 1.30

70–74 460 117,401 391.8 274 50,987 537.4 1.37

75–79 217 68,627 316.2 197 32,853 599.6 1.90

80–87 36 25,844 139.3 76 16,867 450.6 3.23

Total 2,026 540,618 1,400 288,111

Crude 374.8 485.9 1.30

Age-adjusted 374.8 500.5 1.32

Crude IRR 1.30

95 % CI 1.21 1.39

Age-adjusted

IRR

1.32

95 % CI 1.24 1.42

Based on SEER data for white women, 1995–2006
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without any updating going forward. As seen in Tables 8

and 9 the imputation performed well in terms of ever use

(c statistic 0.87) and duration of use of estrogen alone and

estrogen plus progestin. Assessment indicates such impu-

tation is robust for 5 years, though predictive performance

may attenuate over longer follow-up or prediction time

intervals.

To fit the Gail model we used a common approach in

both cohorts and used family history positive without the

added detail of more than one relative. An extremely small

Table 4 Relationship between Breast Cancer Risk Factors and Breast Cancer, based on an average of 5 imputations of HT experience over 12

years

Variable Beta NHS California Teachers Study

2,026 cases 1,400 cases

540,618 person–years 288,111 person–years

s.e. p value Beta s.e. p value

Constant -7.420 0.352 \0.001 -8.048 0.322 \0.001

Duration of premenopause 0.044 0.009 \0.001 0.056 0.008 \0.001

Duration postmenopause

Natural menopause -0.009 0.005 0.069 0.017 0.006 0.002

Bilateral oophorectomy -0.015 0.006 0.013 0.012 0.008 0.15

Pregnancy history

Gynecologic age at 1st birtha 0.0089 0.0048 0.062 0.0055 0.0041 0.18

Birth index -0.0032 0.0007 \0.001 -0.0026 0.0008 0.001

BBD

BBD (yes vs. no) 0.237 0.588 0.69 0.314 0.834 0.71

BBD 9 age at menarche 0.021 0.024 0.37 0.078 0.039 0.046

BBD 9 duration of premenopause -0.002 0.011 0.84 -0.021 0.014 0.14

BBD 9 duration postmenopause -0.012 0.006 0.051 -0.018 0.009 0.044

HT use

Duration oral estrogen alone 0.021 0.007 \0.001 0.016 0.008 0.047

Duration oral estrogen plus progesterone 0.015 0.008 0.056 0.035 0.008 \0.001

Current use 0.368 0.093 \0.001 0.202 0.118 0.087

Past use 0.087 0.065 0.18 0.092 0.098 0.35

BMI (kg/m2)

Estrogen positiveb -0.00082 0.00024 \0.001 0.00000 0.00024 0.99

Estrogen negativec 0.00195 0.00042 \0.001 0.00038 0.00056 0.50

Height (in.)

Estrogen positive 0.00035 0.00032 0.27 0.00031 0.00020 0.12

Estrogen negative 0.00033 0.00098 0.74 -0.00030 0.00015 0.049

Alcohol intake (g)

Premenopause 0.00048 0.00014 \0.001 0.00042 0.00021 0.039

Postmenopause, while on HT 0.00004 0.0003 0.99 0.00015 0.00045 0.74

Postmenopause, while not on HT 0.00013 0.00019 0.48 -0.00032 0.00037 0.39

Family history of breast cancer 0.403 0.059 \0.001 0.346 0.069 \0.001

a Age at 1st birth minus age at menarche if parous, = 0 if nulliparous
b Either premenopause or postmenopause while on HT
c Postmenopause while not on HT
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fraction of all cohort members have more than one relative

with breast cancer, limiting the impact of this truncation of

data.

Review of evidence shows many models of breast cancer

incidence have been developed, but few are validated, and

perhaps even fewer evaluated for performance in clinical

Table 5 c Statistics by study, time period, and age group

Time period Age group Number of cases Log-incidence model Gail model Difference

AUC SE AUC SE AUC SE z value p value

NHS

1994–2008 47–87 2,026 0.597 0.007 0.562 0.006 0.034 0.007 4.857 1.191E-06

1994–1999 47–69 852 0.608 0.011 0.569 0.010 0.040 0.011 3.636 2.765E-04

1994–1999 70–87 301 0.587 0.016 0.555 0.017 0.032 0.017 1.882 0.060

2000–2008 47–69 461 0.599 0.013 0.572 0.013 0.026 0.012 2.167 0.030

2000–2008 70–87 412 0.577 0.016 0.543 0.014 0.034 0.016 2.125 0.034

California Teachers Study

1995–2009 47–87 1,400 0.586 0.009 0.547 0.008 0.040 0.009 4.444 8.812E-06

1995–2000 47–69 422 0.609 0.015 0.572 0.014 0.037 0.014 2.643 0.008

1995–2000 70–87 144 0.564 0.025 0.516 0.024 0.048 0.028 1.714 0.086

2001–2009 47–69 431 0.591 0.016 0.537 0.014 0.054 0.015 3.600 0.000

2001–2009 70–87 403 0.565 0.015 0.543 0.014 0.023 0.016 1.438 0.151

AUC area under the curve, SE standard error

Table 6 Comparison of c statistics with actual updated hormone therapy (HT) data versus imputed HT data by time period and age group, NHS

data 1994–2008

Time period Age groupa Imputation of follow-up HT datac Time period Age groupb Actual updated HT data

Number of cases AUC SE Number of cases AUC SE

1994–2008 47–87 2,026 0.600 0.006 1994–2008 47–87 2,026 0.616 0.006

1994–1999 47–69 852 0.620 0.010 1994–1999 47–69 851 0.618 0.010

1994–1999 70–87 301 0.585 0.016 1994–1999 70–87 302 0.590 0.016

2000–2008 47–69 461 0.595 0.013 2000–2008 47–69 457 0.641 0.013

2000–2008 70–87 412 0.575 0.015 2000–2008 70–87 416 0.626 0.014

AUC area under the curve, SE standard error
a Age group was defined by updating baseline (1994) age by 1 year for each succeeding year
b Age group was defined by using actual questionnaire age based on follow-up questionnaires
c Based on an average of five imputations of follow-up HT data

Table 7 Calibration of the NHS model in the California Teachers Study

Risk decile

1 2 3 4 5 6 7 8 9 10

Observed number of cases 71.6 94.6 111.6 119.6 126.0 129.6 152.0 150.4 195.6 248.8

Expected number of cases 66.6 88.6 103.1 116.3 128.6 143.6 160.3 181.4 208.0 272.4

a -0.048

SE (a) 0.027

p value 0.074

SE standard error
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settings. This applies more broadly than just breast or other

cancer prediction—with limited validation and evaluation

of clinical impact of prediction models on disease out-

comes. For breast cancer, Meads [10] show the range of

variables included is substantial with many models not

including menopause, type of menopause, or use of post-

menopausal HT, or alcohol intake. Other than the Rosner–

Colditz model based on NHS data, only Boyle includes

alcohol [21], a known carcinogen for breast cancer [17], and

age at menopause is only included by Rosner–Colditz and

Tyrer [22]. Parity and BMI are more broadly included

across models [10]. The most complete of the 17 models

summarized by Meads is the Rosner–Colditz model with

external validity now established in this independent data

set. Several models were assessed for performance by Amir

et al. [23] in a UK population of 4,536 women attending a

‘‘family history and hereditary screening programme’’,

among whom 52 developed breast cancer. The Tyrer–

Table 8 Imputation models for estimating ever/never use of estrogen alone and duration of use of estrogen alone, NHS, 1995–2006 as a function

of baseline (1994) covariates

Variable Ever/never use of estrogen alone (n = 45,742)a ln(duration estrogen alone) (n = 9,145)b

Beta SE p value Beta SE p value

Constant -3.078 0.212 0.762 0.105

Duration of premenopause -0.002 0.005 0.68 -0.004 0.003 0.15

Duration postmenopause

Natural menopause -0.045 0.004 \0.001 -0.020 0.002 \0.001

Bilateral oophorectomy 0.011 0.004 0.005 -0.007 0.002 0.002

Pregnancy history

Gynecologic age at 1st birthc 0.0033 0.0035 0.35 -0.0022 0.0019 0.25

Birth index 0.0031 0.0005 \0.001 0.00052 0.00027 0.049

BBD

BBD (yes vs. no) 0.863 0.371 0.020 0.213 0.181 0.24

BBD 9 age at menarche -0.035 0.017 0.032 -0.0001 0.0085 0.99

BBD 9 duration of premenopause -0.011 0.007 0.10 -0.0032 0.0032 0.32

BBD 9 duration postmenopause -0.007 0.005 0.16 -0.0080 0.0025 0.001

HT use

Duration oral estrogen alone 0.235 0.005 \0.001 0.0282 0.0017 \0.001

Duration oral estrogen ? progesterone -0.041 0.007 \0.001 -0.0027 0.0041 0.52

Current use 1.978 0.053 \0.001 0.993 0.037 \0.001

Past use 0.580 0.059 \0.001 0.275 0.041 \0.001

BMI (kg/m2)

Estrogen positived 0.00035 0.00015 0.015 -0.00007 0.00007 0.34

Estrogen negativee -0.00081 0.00045 0.074 -0.00002 0.00027 0.94

Height (in.)

Estrogen positived 0.00003 0.00019 0.88 -0.00015 0.00009 0.10

Estrogen negativee -0.00024 0.00090 0.79 0.00113 0.00052 0.030

Alcohol intake (g)

Premenopause -0.00012 0.00010 0.23 -0.00006 0.00006 0.26

Postmenopause, while on HT -0.00102 0.00023 \0.001 0.00009 0.00009 0.29

Postmenopause, while not on HT 0.00073 0.00018 \0.001 -0.00013 0.00012 0.29

Family history of breast cancer 0.148 0.046 0.30 -0.041 0.025 0.099

c statistic 0.871 –

R2 – 0.271

a Over 12 years (1995–2006)
b Among women with duration of estrogen alone [0 over 12 years (1995–2006)
c Age at 1st birth minus age at menarche if parous, = 0 if nulliparous
d Either premenopause or postmenopause while on HT
e Postmenopause while not on HT
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Cuzick model [22] had the best performance based on

c statistic, though the O/E performance was at the level of

0.8 for this model compared to 0.9 for Gail [23]. While

Amir and Tyrer–Cuzick have been evaluated in high-risk

populations where they are likely to perform better, such a

comparison in the general population has not been reported.

For CHD on the other hand, Van Dieren et al. [24]

review evidence on model development and evaluation—

45 prediction models reported in the literature, 12 specific

for patients with diabetes; 31 % validated in independent

population of diabetics, and only one evaluated in clinic for

its effect on patient management.

Table 9 Imputation models for estimating ever/never use of estrogen plus progestin (E&P) and duration of use of E&P, NHS, 1995–2006 as a

function of baseline (1994) covariates

Variable Ever/never use of E&P (n = 45,742)a ln(duration E&P) (n = 11,516)b

Beta SE p value Beta SE p value

Constant 0.405 0.212 1.291 0.115

Duration of premenopause -0.041 0.005 \0.001 -0.0061 0.0030 0.038

Duration postmenopause

Natural menopause -0.077 0.003 \0.001 -0.018 0.002 \0.001

Bilateral oophorectomy -0.309 0.008 \0.001 -0.043 0.004 \0.001

Pregnancy history

Gynecologic age at 1st birthc 0.0010 0.0031 0.74 0.0012 0.0016 0.48

Birth index 0.0000 0.0004 0.94 -0.0008 0.0002 \0.001

BBD

BBD (yes vs. no) -0.336 0.399 0.40 -0.344 0.211 0.10

BBD 9 age at menarche -0.003 0.016 0.84 0.0100 0.0080 0.21

BBD 9 duration of premenopause 0.009 0.008 0.24 0.0049 0.0041 0.23

BBD 9 duration postmenopause 0.001 0.004 0.84 -0.0016 0.0025 0.52

HT use

Duration oral estrogen alone -0.048 0.007 \0.001 0.012 0.004 0.001

Duration oral estrogen plus progesterone 0.414 0.008 \0.001 0.062 0.003 \0.001

Current use 1.356 0.037 \0.001 0.471 0.023 \0.001

Past use 0.453 0.041 \0.001 -0.179 0.028 \0.001

Body mass index (kg/m2)

Estrogen positived -0.00032 0.00014 0.027 -0.00003 0.00008 0.65

Estrogen negativee -0.00088 0.00042 0.036 -0.00011 0.00028 0.69

Height (in.)

Estrogen positived -0.00026 0.00019 0.19 0.00005 0.00009 0.58

Estrogen negativee 0.00031 0.00084 0.71 -0.00079 0.00051 0.12

Alcohol intake (g)

Premenopause 0.00010 0.00009 0.29 -0.00001 0.00005 0.88

Postmenopause, while on HT -0.00121 0.00032 \0.001 -0.00001 0.00014 0.96

Postmenopause, while not on HT 0.00016 0.00017 0.37 -0.00023 0.00012 0.055

Family history of breast cancer -0.23 0.044 \0.001 -0.035 0.024 0.14

c statistic 0.870 –

R2 – 0.207

a Over 12 years (1995–2006)
b Among women with duration of E&P [ 0 over 12 years (1995–2006)
c Age at 1st birth minus age at menarche if parous, = 0 if nulliparous
d Either premenopause or postmenopause while on HT
e Postmenopause while not on HT
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Calibration

While age-standardized incidence rates differ between

NHS and CTS the coefficients for risk factors when fitted

to the Rosner–Colditz breast cancer incidence model are

quite comparable and evaluation of predicted incidence in

the calibration analysis shows no significant deviation from

SEER incidence, with O/E of 0.96. The range of incidence

expected in the SEER calibration study reveals approxi-

mately fourfold difference in expected values between

lowest and highest decile. This is a non-trivial spread in

risk across deciles and is evaluated by the Poisson

regression to assess trend in difference between O and E

over deciles of risk. The observed lower incidence in NHS

may reflect cohort follow-up procedures that do not fully

capture incident breast cancers as efficiently as the sur-

veillance through the state tumor registry in California, a

state with historically low out migration. As all women

should have access to Medicare after age 65, differential

screening and access to care should not be an issue when

comparing these two cohorts.

Future issues

Future applications in routine clinical settings will add

further modeling issues. For example, as approximately

one-third of women report hysterectomy in the United

States and because age at menopause is an important risk

factor in our model, we will need to impute estimated age

at menopause among women with hysterectomy before

menopause. We have previously derived an algorithm for

use in this setting [25]. Other missing data will also need to

be addressed, likely using NHANES data as has been

implemented in clinical applications of a risk model for

progression of age-related macular degeneration using

demographic, genetic, environmental, and ocular factors

[26]. Other clinical application data come from the United

Kingdom where Evans and colleagues have collected

breast risk data in a routine breast screening setting, and

report evaluation of the Tyrer and Cuzick breast risk model

at the level of distributions of 10-year risk and also assess

SNPs in a subset of women. Approximately 34 % of

women attending breast screening enrolled and risk esti-

mates were returned to those with 10-year risk above 8 %

(107 women). Performance assessment of the tool is

ongoing in this routine mammography setting [27]. The

breast cancer surveillance consortium generated a risk

prediction model among more than 1 million women

undergoing mammography [28]. They began with age,

race, ethnicity, and breast density (measure with BI-RADS)

and adjusted estimates of family history and history of

breast biopsy. The model was developed in 60 % of the

population and validated in the remaining 40 %, and is

well calibrated, though it does not include any reproductive

or lifestyle predictors of breast cancer. While these two

examples indicate that risk factors and prediction can be

incorporated into mammography services, issues of miss-

ing data and real time estimation of risk have yet to be

addressed, and the impact of risk presentation on clinical

decision making and outcomes of care has not been

evaluated.

Conclusion

Through validation in an independent data set, we have

shown that the Rosner–Colditz model performs consis-

tently when applied in that independent setting. Perfor-

mance is stronger predicting incidence among women

47–69 years and over a 5-year time interval. AUC values

are significantly higher than the Gail model in the inde-

pendent validation data set, and may be further improved

with addition of breast density or other markers of risk

beyond the current model. Further refinement may be

needed to handle missing data in routine clinical settings.
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Appendix 1: Calibration procedure—CTS validation

study

We follow the general calibration procedure of Gail (1989).

Procedure for the mth imputation

1. We wish to apply the NHS risk model to the CTS

population, where the incidence model is of the form:
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ln Ið Þ ¼ aþ
XK

k¼1

bkxk

2. Suppose there are N subjects in the CTS population

who are followed collectively for T person–years.

3. Suppose the ith subject is followed for ti person

years, where:

XN

i¼1

ti ¼ T ;

and that mij = age of the ith subject at the jth person–

year.

4. We divide the T person–years into L age strata and let

Tl = number of person–years in the lth age stratum,

where

T ¼
XL

q¼1

Tq;

and

q ¼ 1 if a1� mij\ a2;

¼ 2 if a2� mij\a3;

. . .

¼ l if al� mij\alþ1;

. . .

¼ L if aL� mij\aLþ1:

In this case, L = 8 and the age groups are defined by

45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79,

80–87.

5. We define a person as being at baseline risk in the lth

age stratum if x = 0.

6. We define covariate values for the ith person in the

jth person–year by xij1,…, xijK, and let

RRij ¼ exp
XK

k¼1

b̂kxijk

 !
;

i ¼ 1; . . .; N; j ¼ 1; . . .; ti:

7. Let

Yl ¼ observed number of cases in age group l;

l ¼ 1; . . .; L;

Oij ¼ 1 if the ith subject becomes a case in the

jth person� year;¼ 0 otherwise:

dijl ¼ 1 if al� mij\al þ 1;¼ 0 otherwise;

i ¼ 1; . . .; N; j ¼ 1; . . . ti; l ¼ 1; . . .; L:

8. Let

Fl ¼
XN

i¼1

Xti

j¼1

Oijdijl=Yl

RRij

; l ¼ 1; . . .; L:

9. Let

h�1ðlÞ ¼ age-specific incidence rate from SEER

1995�2006; l ¼ 1; . . .; L:

10. Let

h1 lð Þ ¼ h�1 lð ÞFl;

¼ baseline incidence rate in the

lth age stratum of CTS; l ¼ 1; . . . ; L:

11. An estimate of the incidence rate for the ith subject in

the jth person–year is given by:

Îij ¼
XL

l¼1

h1 lð ÞdijlRRij; i ¼ 1; . . .;N; j ¼ 1; . . .; ti

12. An estimate of the cumulative incidence for the ith

subject over ti person–years is given by:

Ei ¼ 1� exp �
Xti

j¼1

Îij

 !
; i ¼ 1; . . .; N

13. Let

Oi ¼ 1 if the ith subject is a case over

ti person-years;

¼ 0 if the ith subject is a control over

ti person-years; i ¼ 1; . . .; N:

14. Compute

E�i ¼ Ei=ti ¼ cumulative incidence per person�
year for the ith subject; i ¼ 1; . . .; N and rank

subjects by decile of E�i :

15. Let

kid ¼1 if subject i is in the dth decile of E�i ;

¼0 otherwise; i ¼ 1; . . .; N; d ¼ 1; . . .; 10:

16. Compute

OðdÞ ¼
XN

i¼1

Oikid ¼ observed number of cases in the

dth decile of E�i ;

EðdÞ ¼
XN

i¼1

Eikid ¼ expected number of cases in the

dth decile of E�i

17. Poisson regression at the aggregate level

Run Poisson regression of O(d) using ln(E(d)) as the

offset based on the model:

ln ldð Þ ¼ aþ ln E dð Þ
� �

; where ld ¼ E O dð Þ
� �

or equivalently ld ¼ expðaÞE dð Þ

Note in the above model, a = 0 implies that

ld = E(d).
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18. Poisson regression at the individual level

Run Poisson regression of Oi using ln(Ei) as the offset

based on the model:

ln lið Þ ¼ aþ ln Eið Þ;

or

Oi ¼ exp að ÞEi;

where

li ¼ E Oið Þ:

Note a = 0 implies that li = Ei. Also, the models in

steps 17 and 18 are equivalent because O(d) is a sum

of Poisson distributions which is also Poisson, where

ld ¼
XN

i¼1

likid ¼ expðaÞ
XN

i¼1

Eikid ¼ exp að ÞE dð Þ:

19. If we average SEER incidence rates for white women

from 1995 to 2000 and 2000 to 2006, we obtain:

Overall inference over m imputations

20. For step 16, let

O dð Þ
m ;E dð Þ

m ; T dð Þ
m ¼ observed count, expected count and

person–years for the dth risk decile in the mth

imputation. The overall estimates of O dð Þ, E dð Þ and

T dð Þ are given by:

O dð Þ ¼
XM

m¼1

O dð Þ
m =M;E dð Þ ¼

XM

m¼1

E dð Þ
m =M; T dð Þ

¼
XM

m¼1

T dð Þ
m =M:

For steps 17 and 18, we obtain the estimate:

âðmÞ for the mth imputation and associated estimate

var½âðmÞ�. The overall point estimate is:

â ¼
XM

m¼1

â mð Þ=M;

with associated variance given by:

var âð Þ ¼
XM

m¼1

var½â mð Þ�=M

þ M þ 1ð Þ=M½ �
XM

m¼1

â mð Þ � â
h i2

=ðM � 1Þ;

and test statistic

zâ ¼ â= var âð Þ½ �1=2�N 0; 1ð Þ under H0 that a ¼ 0;

p-value ¼ 2� 1� Ujzaj½ �:

Appendix 2: Imputation strategy for ever use and duration

of use of postmenopausal hormone therapy

1. Let

ln
Pi1

1� Pi1

� �
¼ a1 þ

XK

k¼1

bk1xik

ln
Pi2

1� Pi2

� �
¼ a2 þ

XK

k¼1

bk2xik

ð1Þ

where pi1 = Prob(duration estrogen alone [ 0,

1994-2006) for the ith NHS woman, i = 1,…, 45742,

pi2 = Prob(duration E&P[0, 1994–2006) for the ith

NHS woman, I = 1,…, 45742, xik = kth breast cancer

risk factor for the ith subject, I = 1,…, 45742, k =

1,…, K and let p̂i1; p̂i2 be the corresponding estimated

probabilities obtained by substituting the estimated

parameters â1; â2 and b̂k1; b̂k2, k = 1, …, K for the

true parameters in Eq. 1.

2. Let yi1 ¼ lnðduration of use of estrogen alone for the

ith NHS woman, where ;yi1 [0yi2

yi2 ¼ ln duration of use of E &P for the

ith NHS woman, where yi2 [0:

3. (a) Let

zi1 ¼ a�1 þ
XK

k¼1

b�k1xik þ e�i1;

zi2 ¼ a�2 þ
XK

k¼1

b�k2xik þ e�i2

ð2Þ

where

zi1 ¼ ln yi1ð Þ; zi2 ¼ ln yi2ð Þ; ei1�N 0; r2
i1

� �
; ei2�Nð0; r2

i2Þ

Age SEER incidence

rate (per 105

person–years)

CTS incidence

rate (per 105

person–years)

CTS number

of cases

45–49 253.3 64.2 1

50–54 336.8 269.2 47

55–59 417.0 407.1 173

60–64 494.2 493.2 297

65–69 538.8 534.6 328

70–74 579.3 540.4 268

75–79 592.6 582.0 166

80–87 517.4 476.1 55

We used the SEER incidence rates in column 2 as our estimates of

h�1ðlÞ, l ¼ 1; . . .; L
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be linear regressions of zi1 and zi2 on ~xi, respectively.

(b) Let

ẑ�i1 ¼ â�1 þ
XK

k¼1

b̂�k1xik;

ẑ�i2 ¼ â�2 þ
XK

k¼1

b̂�k2xik

be the corresponding predicted values of zi1 and zi2,

respectively.

(c) Let r̂2
1; r̂

2
2 be the estimated residual variances

corresponding to zi1 and zi2, in Eq. 2,

respectively.

4. Let Ui1, Ui2 be U(0,1) random variables and let ui1,

ui2 be the realization of these random variables

generated using the RANUNI function of SAS.

Let Vi1, Vi2 be corresponding N(0,1) random vari-

ables and let vi1, vi2 be the realization of these

random variables generated using the RANNOR

function of SAS.

5. Let ŷi1; ŷi2 = imputed estimate of duration of estro-

gen alone and duration of E&P, respectively, for the

ith NHS woman.

(a) If p̂i1\ui1, then di1 ¼ 1; else di1 ¼ 0:

(b) If p̂i2\ui2, then di2 ¼ 1; else di2 ¼ 0:

(c) Let
ŵi1 ¼ ẑ�i1 þ r̂1vi1;

ŵi2 ¼ ẑ�i2 þ r̂2vi2:

(d) (i) If di1 ¼ di2 ¼ 0; then ŷi1 ¼ ŷi2 ¼ 0;

(ii) If di1 ¼ 1 and di2 ¼ 0; then ŷi1 ¼
min exp ŵi1ð Þ; 12½ �; ŷi2 ¼ 0;

(iii) If di1 ¼ 0 and di2 ¼ 1; then ŷi1 ¼ 0; ŷi2 ¼
min exp ŵi2ð Þ; 12½ �;
(iv) If di1 ¼ 1 and di2 ¼ 1; and ŵi1 [ ŵi2; then

ŷi1 ¼ min exp ŵi1ð Þ; 12½ �; ŷi2 ¼ 0;

(v) If di1 ¼ 1 and di2 ¼ 1; and ŵi1\ŵi2; then

ŷi1 ¼ 0; ŷi2 ¼ min exp ŵi2ð Þ; 12½ �:

6. (a) Based on steps 1–5, we estimate duration of e-

strogen alone and duration of E&P for all NHS

women and fit the log-incidence model descri-

bed in step 1, assuming that duration of HT is

continuous starting in 1994 and ceases after d-

uration ŷi1 or ŷi2, respectively.

(b) We repeat (a) five times and obtain five separate

estimates of a and b, respectively. Let âm; b̂k;m

be the estimates of and bk for the mth impu-

tation, k = 1,…, K.

The overall estimates are given by:

â ¼
X5

m¼1

âm=5; b̂k ¼
X5

m¼1

b̂k;m=5;

with

var âð Þ ¼
X5

m¼1

varðâmÞ=5þ ð6=5Þ
X5

m¼1

âm � âð Þ2=4;

var b̂k

� �
¼
X5

m¼1

varðb̂k;mÞ=5þ ð6=5Þ
X5

m¼1

b̂k;m � b̂k

� �2

=4:

7. A similar strategy as in step 6 is used to obtain

multiple imputation estimates of AUC based on

imputed data, where Var̂ðAUCÞ is obtained using the

methods in Rosner and Glynn [20].

8. For imputation with the CTS data, we use the NHS

prediction equations in (1) and (2) and proceed as in

steps 5 and 6 to obtain overall estimates of a and b
for CTS as given in Table 4.

9. Estimates of AUC are obtained for CTS based on the

coefficients â and b̂ obtained from NHS data in step

6. The AUC estimates were obtained for five imputed

CTS datasets and combined using the methods in step

6.

10. Similarly, calibration of the NHS model based on the

coefficients â and b̂ in step 6 were applied to five

imputed CTS datasets. Separate estimates of observed

counts, expected counts and Poisson regression

parameters were obtained for each imputed CTS

dataset and combined using multiple imputation

methods described in Appendix 1.
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