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Abstract

Background: The mitochondrial GTPase mitofusin-2 (MFN2) gene encodes a mitochondrial membrane protein that
can induce apoptosis of hepatocellular carcinoma (HCC) via the mitochondrial apoptotic pathway, as validated in
our previous research. However, little is known of the clinical significance of MFN2 expression and its signaling
pathways in HCC.

Methods: MFN2 mRNA expression in tumor and adjacent non-tumor tissues from 115 patients with HCC was
investigated using quantitative real-time PCR. The association of the MFN2 mRNA expression level with clinical and
pathological parameters was evaluated statistically, while a comparative microarray analysis was used to identify
MFN2 signaling pathways in HepG2 cells.

Results: MFN2 was significantly (p < 0.0001) downregulated in HCC tissues. Low MFN2 expression was significantly
correlated with sex and preoperative alpha-fetoprotein (p < 0.05). Both a Kaplan–Meier survival curve and
multivariate analyses showed that MFN2 was related to overall survival. A comparative gene expression microarray
revealed 211 upregulated (58 %) and 153 downregulated (42 %) genes. Eighteen pathways were identified as the
most significant pathways correlated with MFN2.

Conclusions: Low MFN2 expression in HCC indicated a worse overall survival. Crucial signaling molecules such as
PI3K-AKT, cytokine receptor, and focal adhesion may participate in MFN2-mediated signaling pathway changes in
HCC.
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Background
Hepatocellular carcinoma (HCC) is one of the most lethal
cancers [1], accounting for approximately 600,000 deaths
annually worldwide [2]. Viral infections, excessive alcohol
intake, and exposure to aflatoxin are common risk factors
for developing HCC. In China and Africa, hepatitis B virus
causes more than 50 % of HCC, whereas hepatitis C virus
is the leading cause in Europe and North America [3]. In
addition, hereditary liver diseases and non-alcoholic fatty
liver disease are associated with HCC. The pathogenesis of

HCC includes the stepwise development of liver injury,
regeneration, fibrosis and cirrhosis, dysplasia, and malig-
nancy, which ultimately transforms normal liver cells into
cancer cells via genetic and epigenetic alterations [4]. To
comprehend the molecular biology of HCC, recent whole-
genome research and exome sequencing analyses have
found key pathway changes in HCC, including inactivation
of the p53 pathway and activation of the wnt/β-catenin and
Ras/PI3K pathways and telomerase [5].
The mitofusin 2 (MFN2) gene, also known as the

hyperplasia suppressor gene, encodes a protein belong-
ing to the GTPase family that is located on the mito-
chondrial outer membrane [6, 7] and is involved not
only in mitochondrial fusion but also in mitochondrial
trafficking and mitophagy [8]. Mutations or
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abnormalities of MFN2 may occur in various diseases,
including Charcot–Marie–Tooth disease, obesity, and
diabetes mellitus [9–11]. Recent studies have shown that
MFN2 overexpression suppresses the proliferation of
vascular smooth muscle cells and cardiac myocytes in
the rat [12, 13]. Our research team has reported on the
pro-apoptosis effects of MFN2 in HCC over the past
5 years [14–16]. Furthermore, MFN2 acts as a tumor
suppressor in diverse cancers of the bladder, stomach,
and lung [17–19].
However, the relationship between MFN2 expression

and the clinical characteristics of HCC has not been ex-
plored. Therefore, we investigated MFN2 mRNA expres-
sion in tumor and adjacent non-tumor tissues from 115
patients with HCC and statistically evaluated the associ-
ation of MFN2 mRNA expression with clinical and
pathological parameters. A gene expression microarray
was used to determine whether MFN2 correlated with
differentially expressed genes (DEGs) in HepG2 cells.
We also constructed an MFN2-related functional inter-
action (FI) network by mapping these DEGs to the FI
data.

Methods
Patients
This study enrolled 115 patients with HCC who under-
went curative hepatectomy. The study was approved by
the ethics committee of the First Affiliated Hospital of
Zhejiang University, and informed consent was obtained
from all patients. HCC was diagnosed in all patients
before or after hepatectomy and was confirmed histo-
pathologically. None of the patients received presurgical
chemotherapy or radiation therapy. The baseline charac-
teristics of the patients are summarized in Additional file
1: Table S1. Most patients were followed regularly as
outpatients. A diagnosis of recurrence was based on
typical contrast computed tomography (CT) or magnetic
resonance imaging (MRI) findings.

Cell lines and cell culture
The HepG2 HCC cell line was cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, Grand
Island, NY, USA) supplemented with 10 % heat-
inactivated fetal bovine serum (Sigma-Aldrich, St.
Louis, MO, USA) and 100 U/mL penicillin/strepto-
mycin. HepG2 cells were maintained in a humidified
atmosphere containing 5 % CO2 at 37 °C and were
passaged using standard cell culture techniques.

Total RNA extraction and cDNA synthesis
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s
protocol. The concentration and purity of RNA were
assessed spectrophotometrically at 260 and 280 nm. cDNA

was synthesized from total RNA (2 μg) using M-MLV Re-
verse Transcriptase (Promega, San Luis Obispo, CA, USA),
following the manufacturer’s instructions.

Quantitative real-time PCR
Quantitative real-time PCR was performed with the ABI
PRISM 7500 Sequence Detection System (Applied Bio-
systems) using a SYBR Premix DimerEraser kit (Takara
Biotechnology, Dalian, Liaoning, China). Amplification
reactions included 1 μl cDNA template, 0.3 μl each of
the forward and reverse primers (10 μM), 0.2 μl of 50×
ROX Reference Dye II (Takara), and 5 μl of 2× SYBR
Premix DimerEraser in a total volume of 10 μl. The
primers used were 5′-AATCTGAGGCGACTGGTGA-
3′ (forward) and 5′-CTCCTCCTGTTCGACAGTCA-3′
(reverse) for MFN2 and 5′-CTTAGTTGCGTTACA
CCCTTTC-3′ (forward) and 5′-CACCTTCACCGTT
CCAGTTT-3′ (reverse) for β-actin. The transcripts were
amplified with an initial denaturation at 95 °C for 30 s,
followed by 40 cycles at 95 °C for 5 s, 55 °C for 30 s, and
72 °C for 34 s. The comparative threshold cycle (2−ΔΔCT)
method was used for relative quantification. β-Actin was
used as an internal control for normalization. All real-
time PCRs were performed in triplicate to evaluate data
reproducibility.

Plasmid transfection
The plasmid vector (pIRES2-EGFP Vector) and plasmid-
MFN2 were purchased from Invitrogen, USA. The plas-
mids were transfected in HepG2 cells using Lipofecta-
mine 2000 (Invitrogen), according to the manufacturer’s
instructions. The efficiency of transfection was evaluated
by qPCR and western blot analysis after plasmid treat-
ment for 48 h.

Gene expression microarray
Total RNA was extracted from HepG2 cells trans-
fected with plasmid vector-NC (pIRES2-EGFPVector)
or plasmid-MFN2 for 48 h using TRIzol (Invitrogen).
The Affymetrix Human Genome U133Plus 2.0 Array
(Affymetrix, USA) was used for gene expression profiling.
Microarray experiments were performed at ShanghaiBio
(National Engineering Center for Biochips, Shanghai,
China). MAS 5.0 and the “Oligo” package from Bioconduc-
tor (http://www.bioconductor.org) were used to normalize
the data and annotate probe information.

Data preprocessing and identification of DEGs
Normalized signal intensity data were imported into BRB-
ArrayTools ver. 4.5 (National Cancer Institute, http://
linus.nci.nih.gov/BRB-ArrayTools.html) for preprocessing.
We excluded those genes for which the percentage absent
exceeded 50 %. We identified DEGs using paired t tests
with a random variance model. The nominal significance
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level for each univariate test was <0.05. Only genes with a
fold change of ≥2 were selected as DEGs.

Construction of the MFN2-related FI network
In total, 217,249 pairs of FIs were downloaded from Reac-
tome [20] (ver. 2014, http://www.reactome.org). These pair-
wise relationships are derived from datasets of protein–
protein interactions from BioGRID [21], the Database of
Interacting Proteins [22], the Human Protein Reference
Database [23], I2D [24], IntACT [25], and MINT [26]. This
interaction information was imported into Cytoscape ver.
3.2.1 [27] (http://www.cytoscape.org). By mapping the
MFN2-related DEGs to the FI data, we constructed the
MFN2-related FI network.

Pathway enrichment analysis for the FI network
The ReactomeFIViz app was used in Cytoscape for pathway
enrichment analysis [28]. The sources of pathway annota-
tions include Cell Map (http://cancer.cellmap.org), Reac-
tome [20], the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [29], Panther Pathways [30], NCI-PID [31], and
BioCarta (http://www.biocarta.com/genes/index.asp). A
false discovery rate (FDR) of <0.05 was selected as the cut-
off criterion.

Statistical analysis
Statistical analyses of continuous variables are presented
the mean ± standard deviation. The non-parametric
Mann–Whitney U test was used to analyze differences
in the MFN2 mRNA expression between the tumor tis-
sue and corresponding non-tumor tissue. Pearson’s chi-
square test was used to compare categorical variables,
whereas Student’s t test was used for continuous vari-
ables. We divided the patients into high and low expres-
sion groups using the median MFN2 mRNA expression
as a cutoff because the median is not affected by ex-
treme values (outliers). Survival curves were generated
using the Kaplan–Meier method, and the differences
were compared using the log-rank test. Multivariate ana-
lysis was performed using the Cox proportional hazard
regression model. A two-tailed p value of <0.05 was con-
sidered statistically significant. All statistical analyses
were performed using the Statistical Package for the
Social Sciences (SPSS 20.0 for Windows, SPSS, Chicago,
IL). Graphs were created using GraphPad Prism (ver.
6.01).

Results
Expression of MFN2 mRNA in HCC paired tissues
MFN2 mRNA levels were determined in 115 pairs of hu-
man HCC and corresponding non-tumor hepatic tissues.
The MFN2 mRNA expression was higher in 76.5 % of the
non-tumor hepatic tissues than in the paired HCC tissue
(Additional file 2: Figure S1A). MFN2 was significantly (p <

0.0001) downregulated in tumor tissue compared with
non-tumor tissue (Additional file 2: Figure S1B), with aver-
age mRNA expression levels of 6.76 ± 8.04 and 4.34 ± 6.06,
respectively (Table 1).

Correlation between MFN2 expression and
clinicopathological parameters
The patients with HCC were divided into low (n = 58) and
high (n = 57) expression groups based on the median value
of MFN2 expression. Table 2 lists the patients’ clinicopath-
ological variables. Sex and preoperative alpha-fetoprotein
correlated significantly (p < 0.05) with MFN2 mRNA ex-
pression, whereas age, HBsAg, HBV-DNA replication, liver
cirrhosis, tumor number, tumor size, vascular invasion,
lymph node metastasis, intrahepatic metastasis, liver cap-
sular invasion, differentiation, and TNM stage did not.

Prognostic significance of MFN2 expression
Evaluating the relationship between MFN2 mRNA expres-
sion and patient survival using the Kaplan–Meier survival
curve, patients with relatively high MFN2 expression in
HCC had substantially longer overall survival (OS) than
those with low MFN2 expression (p < 0.05) (Fig. 1a). How-
ever, MFN2 expression did not seem to affect the
recurrence-free survival (p > 0.05) (Fig. 1b), even after con-
sidering postoperative prophylactic transhepatic arterial
chemotherapy and embolization (TACE) (Fig. 1c).
Furthermore, univariate analysis revealed that liver cap-

sule invasion and MFN2 expression were significant pre-
dictors of OS (Table 3). Multivariate analysis using the
Cox proportional hazards model also indicated that liver
capsule invasion (hazard ratio (HR) = 7.206, p = 0.011) and
MFN2 expression (HR = 0.063, p = 0.009) were independ-
ent predictors in patients with HCC (Table 3).

Identification of DEGs after MFN2 overexpression
In total, 364 genes were differentially expressed
(Additional file 3: Table S2) in HepG2 cells transfected
with plasmid-MFN2 compared with HepG2 cells trans-
fected with vector-NC (Additional file 5: Figure S2). Of
these, 211 genes (58 %) were upregulated and the
remaining 153 (42 %) were downregulated.

Table 1 Distribution of MFN2 mRNA level and survival in HCC
patients

Variables Mean ±
SD

Range Percentiles

25 50 75

MFN2 in non-tumor tissues 6.76 ± 8.04 0.32–58.06 1.55 4.05 9.32

MFN2 in tumor tissues 4.34 ± 6.06 0.20–30.36 0.99 1.81 4.66

MFN2 mitofusion 2
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Analysis of FI network affected by MFN2
By mapping the MFN2-related DEGs to the FI data, we
constructed the MFN2-related FI network. This network
comprised 93 nodes in 11 clusters, with the largest clus-
ter containing 62 nodes (Fig. 2a). Using hierarchical
clustering based on the gene expression level (Fig. 2b),
the 93 genes in the network could be differentiated into

two groups. The 93 nodes were connected via 114 FIs,
corresponding to an effective mean degree of 2.5. Degree
refers to the number of nearest neighbors of a node.
Nodes with degrees of ≥5 were selected as hub nodes.
The hub nodes in the FI network were JUN, JAK2, FN1,
MAP2K6, ITGA6, RPS15A, PLCB4, RBM8A, RPS28,
IGF1R, TBL1XR1, and SP1, suggesting that these genes
are related to MFN2.
To functionally classify these 93 significant genes, we

used ReactomeFIViz to identify significant enrichment of
these genes in 18 pathways (Fig. 2c, Additional file 4:
Table S3). The most significant pathways were the PI3K–
Akt signaling pathway, cytokine–cytokine receptor inter-
action, focal adhesion, influenza A, and direct p53
effectors.

Discussion
Mitofusin 2 was first recognized as a key protein not
only regulating mitochondria fusion but also participat-
ing in tumor cell proliferation. Although MFN2 has not
been proven to act as a tumor suppressor gene in can-
cer cells [32], its antitumor function, as revealed in
various tumors, continues to be accepted. Previously,
we proved that overexpression of the MFN2 gene in
HCC resulted in tumor cell apoptosis via mitochondrial
pathways mediated by calcium influx [14–16]. MFN2 is
a downstream target gene of P53 [33], and such direct
regulation is altered by hepatitis B virus X protein in
HCC [34]. Here, we examined the clinical significance
of MFN2 mRNA expression in 115 HCC specimens.
MFN2 was downregulated dramatically in HCC tissues,
which is consistent with our previous findings. In fact,
we have investigated the possible mechanism of MFN2
downregulation for about 8 years. Firstly, we suspected
MFN2 gene downregulated by aberrant promoter CpG
methylation. However, we found normal methylation
level in MFN2 gene promoter region (data not shown
here). Secondly, a lot of potential upstream genes of

Table 2 Correlation between MFN2 expression in tumor tissue
with clinicopathological factors in hepatocellular carcinoma
patients

Variables MFN2 expression

Low High P value

n = 58 n = 57

Age (year) 57.1 ± 11.4 57.1 ± 9.9 0.996

Gender (female/male) 3/55 12/45 0.012

HBsAg (no/yes) 15/43 7/50 0.065

HBV-DNA replication
(no/yes)

34/24 32/25 0.789

Liver cirrhosis
(no/yes)

22/36 18/39 0.476

Preoperative AFP 6292.3 ± 14073.3 4075.1 ± 13793.9 0.048

Tumor number
(1/>1)

44/14 42/15 0.789

Tumor size (cm) 6.9 ± 3.6 6.3 ± 3.0 0.610

PV or VI invasion
(no/yes)

37/21 43/14 0.177

Lymph node
metastasis (no/yes)

51/7 47/10 0.410

Intrahepatic
metastasis (no/yes)

38/20 33/24 0.402

Liver capsular
invasion (no/yes)

40/18 41/16 0.729

TNM stage (I/II–IV) 23/35 22/35 0.908

Differentiation
(well/moderate
or poor)

20/38 28/29 0.113

HBsAg hepatitis B surface antigen, HBV-DNA hepatitis B virus deoxyribonucleic
acid, AFP alpha-fetoprotein, PV portal vein, VI intrahepatic vein

Fig. 1 Survival curves for patients with HCC with high and low MFN2 expression were plotted using the Kaplan–Meier method, and the
differences were evaluated using the log-rank test. a MFN2 expression differed significantly with the overall survival rates between the two
groups. b, c However, no significant difference was found in the recurrence-free survival rates, even considering postoperative prophylactic TACE
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MFN2 were chosen to be investigated. Fortunately, we
found that MFN2 is a novel target of P53 which may
partly explain the low expression level of MFN2 in
HCC [33]. Furthermore, MicroRNAs were considered
as candidate regulation factors of MFN2. And we did
demonstrate an upregulated MicroRNA called miR761
that could directly regulate MFN2 in HCC [35]. We
suggest that the possible molecular mechanism behind
MFN2 downregulated is very complicated that cannot
be clarified by one factor recently. Maybe, a new critical
factor served as a MFN2 regulator will be found in the
future.
According to statistical analysis in Table 2, we found

that tumor MFN2 expression was significantly corre-
lated with sex and the preoperative alpha-fetoprotein
level. A recent paper reported significant differences
in the expression of a key regulator of mitochondrial
biogenesis between males and females in the mouse
brain [36]. Therefore, it is possible that MFN2 is
expressed differently in human males and females.
However, there may be sampling errors in these stud-
ies; a larger sample is needed to confirm this finding.
Additionally, as a tumor marker, AFP served as an im-
portant indicator for HCC diagnosis and patient
follow-up. In our findings, preoperative AFP level in
serum and MFN2 mRNA level in HCC tissue showed

opposite tendency, hypothesized a potential regulation
relationships between them. However, we had not
found any evidence to demonstrate this hypothesis
yet. Combined with survival analysis, we thought the
patient who had a high level of MFN2 and low level
preoperative AFP may have a better overall survival
after operation. But such interpretation was not logical
because various factors could affect overall survival
rate after hepatectomy for HCC patient. Perhaps, it is
better to correlate MFN2 with postoperative AFP.
However, we were unable to obtain all postoperative
AFP level in this study.
Despite the weak relationships between MFN2 expres-

sion and clinicopathological parameters, survival analysis
showed that a higher MFN2 expression level was associ-
ated with better postoperative survival of patients with
HCC. Furthermore, univariate analysis revealed that liver
capsule invasion and MFN2 expression were significant
predictors of OS. Therefore, MFN2 has an important
role in the development of HCC. We propose that
MFN2 could serve as a biomarker in HCC tissue for pre-
dicting survival after hepatectomy.
Most research of MFN2 in tumors has concentrated on

the regulation of mitochondrial function. For a more com-
prehensive evaluation of MFN2-associated genes, we used a
comparative gene expression microarray. This microarray

Table 3 Risk factor analysis of overall survival in tumor tissue

Prognositic factors Univariate analysis Multivariate analysis

HR (95 % CI) P value HR (95 % CI) P value

Age (<60/≥60) 0.704 (0.250–1.983) 0.507

Gender (female/male) 0.263 (0.034–2.007) 0.197

HBsAg (no/yes) 1.688 (0.379–7.521) 0.492

HBV-DNA replication(no/yes) 1.491 (0.539–4.122) 0.441

Liver cirrhosis (no/yes) 1.117 (0.355–3.515) 0.850

Preoperative AFP (<20/≥20 ng/ml) 0.741 (0.262–2.100) 0.573

Preoperative AFP (<400/≥400 ng/ml) 1.033 (0.351–3.035) 0.954

Tumor number (1/>1) 0.861 (0.251–3.174) 0.893

Tumor size (<5/≥5 cm) 1.304 (0.462–3.677) 0.616

Tumor size (<8/≥8 cm) 2.193 (0.729–6.594) 0.162

PV or VI invasion (no/yes) 0.959 (0.268–3.433) 0.949

PVTT (no/yes) 0.517 (0.067–3.973) 0.526

Lymph node metastasis (no/yes) 0.773 (0.098–6.077) 0.807

Intrahepatic metastasis (no/yes) 1.264 (0.429–3.726) 0.670

Liver capsular invasion (no/yes) 5.811 (1.975–17.096) 0.001 7.206 (1.571–33.063) 0.011

TNM stage (I/II–IV) 2.322 (0.772–6.980) 0.134

Differentiation (well/moderate or poor) 1.529 (0.541–4.318) 0.423

TACE (no/yes) 0.877 (0.276–2.794) 0.825

MFN2 expression (low/high) 0.263 (0.074–0.933) 0.039 0.063 (0.008–0.496) 0.009

HBsAg hepatitis B surface antigen, HBV-DNA hepatitis B virus deoxyribonucleic acid, AFP alpha-fetoprotein, PV portal vein, VI intrahepatic vein, PVTT portal vein
tumor thrombus, MFN2 mitofusion 2, TACE transcatheter arterial chemoembolization
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revealed 364 DEGs after MFN2 overexpression, of which
93 significant genes were classified functionally into 18
pathways, including the PI3K–Akt signaling pathway, cyto-
kine–cytokine receptor interaction, focal adhesion, and dir-
ect p53 effectors. As we know, these pathways play
important roles in tumor development and progression
[37–40]. Multiple genes, such as mTOR, NF-kB, BCL2, and
BAX, participate in PI3K-AKT signal pathway in HCC [41–
43]. Therefore, MFN2 may function powerfully through
regulating PI3K-AKT. For cytokine–cytokine receptor
interaction and focal adhesion, it makes MFN2 pos-
sible to regulate such membrane receptors result in
tumor cell migration and invasion which will bring us
new sight about how MFN2 inhibits tumor cell me-
tastasis. Previous research has found that MFN2 was
related to virus infection mechanism [44] which could
verify our findings with respect to influenza A. It is
interesting that the relationship between MFN2 and
P53 may create a positive feedback mechanism based
on our findings [33]. These results support previous
studies of MFN2 in HCC and may shed new light on
the complicated proapoptotic and antiproliferative
mechanism of MFN2 in the tumor.
In the future, our first-step study on MFN2 may focus

on verifying the comparative microarray analysis results
by various experimental methods. After that, we will select
a promising downstream pathway of MFN2 to further

investigate the regulation mechanism. A cell membrane
receptor regulated by MFN2 is also taken into our account
in our future research.

Conclusions
In conclusion, our data suggest that the MFN2 expres-
sion level in tumors is closely related to the survival of
patients with HCC after hepatectomy. Numerous critical
signaling pathways take part in the MFN2-mediated
functional changes in HCC.
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Additional file 1: Table S1: Patients demographic and
clinicopathological characteristics. (DOC 52 kb)

Additional file 2: Figure S1: Expression of MFN2 mRNA in HCC
tumors and corresponding non-tumor hepatic tissues. (A) MFN2 was
downregulated in most HCC tumors (76.5 %). (B) MFN2 was significantly (p<
0.0001) downregulated in the tumor compared with the non-tumor hepatic
counterpart using the non-parametric Mann–Whitney U test. Standard error of
the mean (SEM) was used as error bar. (TIF 59 kb)

Additional file 3: Table S2: DEGs after MFN2 overexpression in HepG2
cells. (DOC 197 kb)

Additional file 4: Table S3: Significant enrichment of 93 genes in 18
pathways. (DOC 47 kb)

Additional file 5: Figure S2: Efficiency of transfection evaluation by qPCR
and western blot analysis in HepG2 cells. (A) MFN2 mRNA was significantly
upregulated by plasmid-MFN2. Standard deviation (SD) was used as error bar.
(B) MFN2 protein was also upregulated by plasmid-MFN2. (TIF 46 kb)

Fig. 2 a Functional interaction (FI) network constructed using MFN2-related differentially expressed genes. Edges are displayed based on FI annotation,
including “->” for activating/catalyzing, “-|” for inhibition, “-” for FIs extracted from complexes or inputs, and “—” for predicted FIs. Node colors represent
the fold changes in MFN2-related DEGs, ranging from red for high expression to green for low expression, relative to vector-NC. b Heat map of the 93
MFN2-related differentially expressed genes. c The pathway analyses of differentially expressed genes identified by microarray
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