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Abstract

Background: Increasingly, biologists and biochemists use computational tools to design experiments to probe the
function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely
on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an
experimental structure is not available and that models of different quality are used instead. On the other hand, the
relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it
has been analyzed in detail only for specific application.

Results: This paper describes a database and related software tools that allow testing of a given structure based
method on models of a protein representing different levels of accuracy. The comparison of the results of a
computational experiment on the experimental structure and on a set of its decoy models will allow developers
and users to assess which is the specific threshold of accuracy required to perform the task effectively.

Conclusions: The ModelDB server automatically builds decoy models of different accuracy for a given protein of
known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of
deposited protein structures are available for analysis and download in the ModelDB database.

Implementation, availability and requirements: Project name: A resource for benchmarking the usefulness of
protein structure models. Project home page: http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php.
Operating system(s): Platform independent. Programming language: Perl-BioPerl (program); mySQL, Perl DBI and
DBD modules (database); php, JavaScript, Jmol scripting (web server). Other requirements: Java Runtime
Environment v1.4 or later, Perl, BioPerl, CPAN modules, HHsearch, Modeller, LGA, NCBI Blast package, DSSP, Speedfill
(Surfnet) and PSAIA. License: Free. Any restrictions to use by non-academics: No.
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Background
The function of a protein is brought about by its three-
dimensional structure the knowledge of which can be in-
strumental to several applications, ranging from function
assignment to the prediction of its mode of interaction
with its molecular partners to the interpretation and de-
sign of re-engineering experiments.
The obvious limiting step in exploiting the power of

protein structures in many of these applications clearly
lies on the availability of a relatively small number of
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experimentally determined protein structures, stored in
the PDB [1], compared to the number of known protein
sequences [2]. This limitation can be partially overcome
by the use of methods for inferring the structure of pro-
teins from their sequences.
At present several methods are available to this end

the most reliable of which remains comparative model-
ing, based on the observation that evolutionarily related
proteins have similar structure and therefore that the
knowledge of the structure of one member of a protein
family (template) can be used as starting model for the
others, provided that the evolutionary relationship can
be detected at the sequence level. Because functional
relevant regions are better preserved in evolution, the
method has the advantage that it will produce better
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results for the biologically relevant parts of the target
protein.
Comparative modeling has an additional advantage

over other protein structure prediction methods: there is
a known and well-studied relationship between the di-
vergence between the sequences of two homologous
proteins, indicative of their evolutionary distance, and
the structural changes between the backbone atoms of
their core [3]. This implies that, when a single template
is used, it is possible to estimate beforehand the error
affecting the model by measuring the percentage of
identity between its sequence and that of the target
protein.
The relationship has been validated several times, for

example using the results of blind tests in the CASP
(Critical Assessment of Methods of Protein Structure
Prediction) series of initiatives [4]. The results of the
experiments also repeatedly showed that the quality of
models can be substantially improved when the whole
set of sequences of the protein family are taken into ac-
count and this affects several steps of the modeling pro-
cedure, from the detection of the template to the quality
of the alignment to the use of different regions from dif-
ferent templates in the final model. However, in this case
and when multiple templates are used, the relationship
between sequence and structure divergence is more dif-
ficult to estimate.
CASP has also tested the ability of independent meth-

ods to estimate the quality of models demonstrating that
they can achieve a significant accuracy in selecting the
best model among a set of diverse predictions for the
same proteins, while methods for assigning an estimated
quality to single models still lag behind [5].
It is obvious that the quality of a protein model dic-

tates how effective it is for subsequent studies, however
the identification of a precise and general relationship
between the quality of a model and its usefulness for a
specific application is still eluding the efforts of the com-
munity. The aim of the server described here is to allow
developers of structure based methods to quickly test
how well their method performs when models of differ-
ent quality are used instead of experimental structures.
It has been shown that high-resolution models 1-2 Å

RMSD away from the native counterpart can provide
relevant functional information, such as the inference of
enzyme reaction mechanisms [6] and the interpretation
of disease-causing mutations [7]. In some cases they
have been shown to be useful in ligand-docking studies
[8], experimental structure determination aid [9,10] and
drug design [11,12]. As accuracy drops, the range of
applications narrows.
We reasoned that the easiest and most straightforward

way to help solving the issue is to provide method devel-
opers with a curated and annotated set of models at
different level of accuracy for each known protein struc-
ture to rapidly test the level of accuracy required for a
model to be used in place of an experimental protein
structure.
We describe here how we obtained models at different

levels of quality for each of the proteins of known struc-
ture and introduce a tool, ModelDB, which allows easy
access to them and to several relevant information about
the modeled proteins.
The user can select entries on the basis of several

annotations, structural and functional domains, gene
ontology and Enzyme Commission Numbers extracted
directly from publicly available databases.
The server also includes a tool to build a homology

model of a protein of unknown structure and to com-
pare the model with the template(s) used to build it.

Methods
Dataset
The initial dataset of proteins included proteins
solved by X-ray crystallography alone or in complex
with other molecules as available on January 3rd
2011, filtered not to contain any pair with more than
50% sequence identity (using PISCES [13]), excluding
those structures with only Cα atoms, with a reso-
lution worse than 2 Å, with a sequence length outside
the range 20–10000 residues, and with an R-factor
higher than 0.3. We were left with a total of 8,609
PDB chains. We could detect suitable templates, and
therefore build comparative models, for 7,166 of
them. Of these 2,999 have an EC number (72,648 in
the whole PDB), 2,452 with a complete 4-digit EC
number (63,474 in the whole PDB); 5,106 bind to
ligands (97,388 in the whole PDB), 3,742 of them to
more than one (70,780 in the whole PDB), and there
are 1,199 different ligands found binding to this
subset of modeled chains (9,891 in the whole PDB);
2,261 have at least one annotated catalytic site
(51,437 in the whole PDB), 982 of them have more
than one catalytic site (23,686 in the whole PDB);
4,546 are annotated in Swiss-Prot (125,966 in the
whole PDB).

Modeling strategy
The ModelDB modeling pipeline, written in Perl, relies
on HHsearch [14] for template identification and Model-
ler [15–18] for building the complete model.
The sequence of each PDB chain is used as query in

HHsearch to search for templates in the 70% non-
redundant PDB database. All target-single template
alignments with 80% minimum sequence coverage and
10-1 maximum E-value were used as input for Modeller
to produce an all non-hydrogen atom single-template
model for each of the selected sequences.



Figure 1 Density distribution of the number of decoy models
produced for the 7,166 PDB chains in the input list. The majority
of PDB chains have a number of decoy models between 0 and 10,
the average being 17 and the maximum 206.

Figure 2 Scatter plot representing the mean vs. the standard
deviation of GDT-TS in each decoy set.
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Superposition of the models to the corresponding
experimental structure
Each model of each target protein was compared to
the corresponding experimental structure using LGA
(Local–global Alignment) [19]. We record the GDT-TS
and RMSD values and allow sorting the models according
to these parameters (see later) as well as to HHsearch
probability, E-value, score and coverage.

Functional annotation
Each PDB structure in the input list (as well as its corre-
sponding models) is annotated whenever possible at the
residue level, using the CREDO database [20] that col-
lects protein-ligand interactions, the Catalytic Site Atlas
(CSA) [21,22] that includes information about enzyme
catalytic sites, and Swiss-Prot.

Model visualization
Experimental structures and their models can be visua-
lized and colored at the residue level according to solv-
ent accessibility and secondary structure as computed by
DSSP [23], cavity occurrences and average depth as
defined by Speedfill [24], and protrusion and burial in-
dexes obtained via PSAIA [25].
This visualization is obtained using an in-house Perl pro-

gram named mappON. A stand-alone version of mappON
is also available to visualize the parameters described above
and also the disorder probability (computed using Dis-
EMBL [26]), evolutionary residue conservation and variabil-
ity (retrieved from the ConSurf-DB [27]) on user provided
structures. The tool is accessible via the ModelDB site.
Subsets of proteins can be selected on the basis of
their functional and structural domains, GO annotation
and Enzyme Commission Numbers.

Model building
The user can build a homology model of a protein of
unknown structure using Modeller [17] on the basis of
templates identified using HHPred [14] and compare its
structure with those of the templates used to build it
taking advantage of all the described visualization tools.

Results
Database composition
Models for the 7,166 proteins obtained as described in
Methods and annotated at the residue level with informa-
tion about secondary structure, solvent accessibility, cavity
occurrence, average depth and protrusion and burial in-
dexes are stored in the ModelDB relational database.
The average number of models per PDB chain in the

database is 17, the largest number of models being 206
for [PDB:2RHE] chain A. The distribution of the number
of models is shown in Figure 1, while Figure 2 shows the
distribution of the average GDT-TS and standard devi-
ation values for the models in the database.

ModelDB
The ModelDB database can be accessed via the publicly
available ModelDB web server. Both can also be down-
loaded and installed locally.

ModelDB server
The ModelDB pipeline was used to build the pre-
calculated model sets stored in the database and can be



Figure 3 ModelDB result page. The structure of T4 lysozyme chain A (PDB code [PDB:118 l]) and of one of its decoy models (the third sorted
according to HHsearch [14] score of the template used) are displayed in the Jmol window as cartoons and colored according to solvent
accessibilities. For the model, the transparent solvent excluded surface is also shown. A ligand binding Isoleucine is highlighted in both structures,
as well as in the most accurate model for the same protein. The Isoleucine in one of the models is predicted to be in an incorrectly modeled
loop, far away from its correct position.
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used to build models for user-provided structures. In
this case, input sequences are subjected to the same pro-
cedure described in Methods for building the database.
The ModelDB web interface (http://bl210.caspur.it/

MODEL-DB/MODEL-DB_web/MODindex.php) is con-
ceived to be as user-friendly as possible and has several
features. A user can either specify a PDB code or upload
a protein structure of interest, in both cases the chain
needs to be specified (by default the first chain present
in the structure is analyzed).
If the input protein is not present in the database

or the user changed the default parameters for
modeling, the modeling program is launched. This is
followed by a BLAST search with stringent para-
meters (90% coverage and an e-value of 10-4) against
PDB and Swiss-Prot, to retrieve information and
functional annotations for the protein entry or for a
very close homologue.
Upon completion of these steps, the output page

described next, which is directly displayed if the entry is
already stored in the database, is shown.
The page contains a short description of the pro-

tein and a sortable table (Figure 3B) where the mod-
els are listed and can be ranked. One or more

http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php
http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php


Figure 4 Percentage of protein models with different GDT-TS values in which at least 75% of the exposed (left) and buried (right)
residues can be correctly identified.
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models can be visualized using a Jmol applet
(Figure 3A) and are shown superimposed to the
experimental structure. Different representations are
possible (cartoons, spacefill, trace, backbone repre-
sentations, etc.) and solvent excluded and solvent
accessible surfaces can be rendered. A state win-
dow records what happens in the Jmol applet
(Figure 3C). The user can also rotate the axes in the
Jmol window and create images.
There is the possibility to color the structures

and surfaces according to different coloring schemes
(Figure 3D). Collapsible boxes provide functional an-
notation (Figure 3E). Functional residues as well as
the distance in Å between corresponding Cαs of the
experimental and modeled structure can be visua-
lized in the structure(s). Finally, the models of a
given protein can be downloaded as a zip file.
Figure 5 Percentage of models with different GDT-TS values in which
least 75% of its residues). On the left results are shown for all entries in t
[21,22] are considered.
Some examples of application
We show here examples of how the ModelDB server
can be used to identify the level of accuracy required for
simple structure-based computations.
For example, models are often used to identify suitable

locations for modifications or functionalization of the
protein. Therefore one could ask to which extent the
classification between exposed and buried residues can
still be made using a model and which is the minimum
level of model quality required to obtain meaningful
results. We defined exposed residues as those with a
solvent accessibility value above 70% (and buried ones
those with a value below 30%) with respect to the max-
imum residue value, as defined by Miller et al. [28]. As
shown in Figure 4, one can correctly identify 75% of the
exposed residues in more than 40% of models with a
GDT-TS above 90, and in almost 30% of those with a
it is possible to correctly identify the largest surface cavity (at
he database, while on the right only enzymes annotated in CSA



Figure 6 Mean (left) and maximum (right) average Euclidean distance differences for residues of catalytic sites annotated in CSA
[21,22] for models with different values of GDT-TS.
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GDT-TS above 80. Below the latter threshold, the per-
centage of models where at least 75% of the exposed
residues are correctly detected reaches 10%. This is rele-
vant to keep in mind when using models as frameworks
for experiments.
Another common use of models concerns the identifi-

cation of enzyme active sites. It is known that binding
sites tend to occur in the largest cavity on the surface of
proteins [29], so the obvious question is how well this
property is conserved in models of different quality. Our
data (Figure 5) show that only in a 20% of the models
with a GDT-TS above 90 can at least 75% of the residues
constituting the largest cavity be detected (a residue is
considered to belong to a cavity if any of its atoms
belongs to it). It follows that this approach is not very
suitable for medium to low quality models and perhaps
it should be parameterized differently for these cases.
The situation moderately improves when the subset of
enzymes stored in CSA is considered (Figure 5).
The last question we asked is whether the relative pos-

ition of residues forming an active site, and therefore
well conserved throughout evolution, can be reliably
measured using models. This is relevant because in
many cases the identification of specific residues at a
given distance from each other are very good signs of
the presence of an active site.
We measured the Euclidean distance differences be-

tween every permutation of catalytic residue Cαs consti-
tuting an active site (with two or more residues) in the
native structure and in its models of varying quality.
Averaging all the differences over each active site
showed an increasing mean Euclidean distance differ-
ence as model quality decreases in terms of GDT-TS
(Figure 6). However, the maximum mean value of the
difference per site (when model quality is the lowest) is
never much higher than 0.5 Å, implying that the catalytic
residues relative positions can be effectively estimated also
in models of relatively low quality (Figure 6B).

Conclusions
Since the gap between known protein sequences and struc-
tures continues to increase, researchers need to make use
of protein structural models more routinely. Models usually
contain structural inaccuracies that vary in number and se-
verity, but they can still provide important insights into a
protein role. There is no general rule that relates model ac-
curacy with its usefulness for different applications, there-
fore there is the need to test the model quality tolerance for
each specific structure-based method. ModelDB, the tool
introduced here, serves this purpose by rapidly generating
decoy sets for the proteins of interest. These decoys are
intended to be used to test structure-based methods and
decide to which extent each method can be applied to com-
puted protein structure models. The tool allows the estab-
lishment of the quality threshold at which interpretable
results, analogous to the ones that would be obtained with
native structures, can be produced.
The project has involved the implementation of a

pipeline divided in programs that work together, but also
exist independently, either on-line or for local use when
larger calculations are demanded. The ModelDB model-
ing pipeline takes a protein structure as input to gener-
ate single-template decoy models; it makes use of an in-
house program named mappON to visualize the struc-
tures and the models colored according to different
descriptors (solvent accessibilities, cavity occurrences,
etc.). The on-line versions of both ModelDB and map-
pON query a relational database that not only contains
pre-calculated decoy models, but also functional annota-
tions extracted from different sources.
ModelDB contains decoy models created for a signifi-

cant subset of the PDB, thereby covering a significant
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portion of the protein structural space compared to the
other resources; this portion will increase as new decoy
sets will be built and stored in the database. Individual
decoy sets themselves are expected to cover wider qual-
ity ranges in new releases as more structures are
deposited in the PDB. Last but not least, ModelDB also
provides a visualization window where any decoy in a
set, colored according to different descriptors, can
be loaded, inspected and compared with its native
counterpart.
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