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Abstract

surface waters, domestic mammals and poultry.

Background: Surveillance and field investigations of Campylobacter infections require molecular tools with genetic
markers appropriate for tracing purposes, i.e. based on the principle that some Campylobacter lineages acquire a
host signature under adaptive selection pressure. We developed a sequence-based method targeting the quinolone
resistance determining region within the subunit A of DNA gyrase (gyrA). Host specificity was evaluated by
characterizing two collections of Campylobacter jejuni (N =430) and Campylobacter coli (N =302) originating from

Results: Based on nucleotide identity, a total of 80 gyrA alleles were observed. Thirty nine alleles assigned to C. coli
encoding two peptides fell into three clades: two associated with surface waters and one associated with domestic
mammals and poultry. The variability in GC content generated by synonymous mutations suggested that surface
waters isolates originated from two distinct ecological niches. A total of 42 alleles were recorded from C. jejuni strains
and encoded 8 peptides including one lying in a distinct lineage associated with wildlife. Seven of the 23 alleles
encoding peptide #1 displayed the synonymous mutation G408A not identified in poultry isolates. By contrast, the
substitution Ser22Gly observed in 4 different peptide groups was significantly associated with domestic birds (P =0.001).
The change in amino acid sequences Thr86lle conferring resistance to quinolones was significantly associated with
poultry (P <0.001) in both C jejuni and C. coli with 38.7% and 67.9% of quinolone-resistant strains, respectively.

Conclusions: The gyrA typing method presented here is an informative tool as sequences appear to be predictive of
particular ecological niches. Combined with multi-locus sequence typing, it could increase the resolution of source
attribution, and combined with porA/flaA typing it could be suitable for detecting temporal clusters of human cases. All
gyrA alleles identified were deposited in the freely accessible online database http://pubmist.org/campylobacter.
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Background

According to the EU Summary Report 2013, Campylobacter
infections have superseded Salmonella infections in many
Member States as the most frequently reported food-
borne infection, and many countries have been witnessing
recent increases in reported cases [1]. In 2011, the inci-
dence rate in Luxembourg has increased to 138 per
100,000 population, which is a national record and among
the highest in Europe [1]. As a result, the competent
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national authorities in Luxembourg have recognized the
rising trend of Campylobacter infections as a national
public health priority [2]. Approximately 80 to 90% of the
human cases is caused by the species C. jejuni and the re-
mainder is primarily caused by C. coli. While exposure to
contaminated food (and in particular chicken) is thought to
be the most important route of transmission of campylobac-
teriosis, several studies in Europe have indicated that envir-
onmental routes of transmission could be important [3-5].
As a complimentary approach to classical epidemiology
(e.g. measuring food intake and other exposures), molecu-
lar epidemiology has proved very useful for investigating
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likely sources of Campylobacter infections [6-9]. How-
ever, predicting the biological host from the genotype is
challenging because Campylobacter species display a
weak clonal population structure, in which the different
lineages and the relatedness between isolates cannot
be easily determined. The multilocus sequence typing
(MLST) method exploits the relative conservation in se-
quence of 7 core genes encoding housekeeping functions
in which variations are more likely to be selectively neu-
tral [10]. This approach is now recognized as the gold
standard typing method for this bacteria genus but for
short-term epidemiology like cluster detection or for tra-
cing transmission routes in a defined space-time win-
dow, MLST should be combined with other markers to
increase the discrimination power of the typing scheme.
For that purpose, the loci encoding the flagellin flaA,
flaB and the variable outer membrane protein porA were
proposed [8].

In addition to these genotypic aspects, a phenotypic
trait related to fluoroquinolone resistance has become of
major epidemiologic relevance. Indeed, about half of C.
jejuni isolated from humans in Europe are resistant to
ciprofloxacin, an antimicrobial often used for treating se-
vere foodborne infections. Since Campylobacter is a zoo-
notic bacterium, the emergence of resistant strains has
been linked to a selective pressure generated by the ex-
tensive use of quinolones in food-producing animals
[11]. Enrofloxacin is one of the major fluoroquinolone
agents for prophylactic or therapeutic veterinary pur-
poses. In poultry production, the whole flock is generally
treated by adding this compound to the drinking water,
whereas, in cattle or pig production, treatment is often
restricted to diseased animals. As a result, the highest
levels of quinolone resistance are found in Campylobac-
ter isolated from chicken (Gallus gallus) [12]. Fluoroqui-
nolones are categorized as critically important drugs for
human medicine by the WHO [13], and consequently
surveillance programs to monitor trends in use [14] and
resistance [15,16,12] have been implemented. For Cam-
pylobacter, the principal molecular mechanisms of quin-
olone resistance consists in a single mutation C257T in
the gyrA gene [17,18]. Consequently, PCR or sequenced-
based methods targeting this quinolone resistance deter-
mining region (QRDR) have been shown to be highly
predictive for detecting phenotypically resistant variants
[16]. Moreover, previous work on gyrA suggested this
locus might provide a host signature and thus be a good
candidate for typing purposes [19,20].

The aims of this study were thus to evaluate the host
specificity of the gyrA gene and to monitor quinolone
resistance in a large Campylobacter jejuni and coli
strain collection originating from domesticated animals

and surface water samples potentially contaminated by
wildlife.
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Methods

Isolates from non-human sources

For this study, we characterized 430 C. jejuni and 280 C.
coli isolated in Luxembourg from surface waters (SW),
domesticated mammals (DM) and poultry (P) between
2005 and 2012. Identification to the species level of the
isolates was previously achieved by a duplex real-time
PCR targeting the hipO gene of C. jejuni and a con-
served region of the gyrA gene of C. jejuni and C. coli
(outside the QRDR). Primer and probe combinations for
the hipO Tagman-qPCR and gyrA FRET-qPCR systems
were selected from published methods [21,22]. Real-time
PCRs were performed using the FastStart DNA MasterP"
HybProbe kit (Roche Diagnostic, Prophac, Luxembourg)
in a total reaction volume of 20 pl containing the follow-
ing final primer and probe concentrations: #ijpO primers
0.5 uM, hipO Tagman probe 0.1 pM, gyrA primers 1 uM
and gyrA sensor and anchor probes 0.2 pM. The PCR
programme included an initial activation step of 10 min at
95°C, 30 amplification cycles of 6 s at 95°C, 12 s at 54°C
and 25 s at 72°C, followed by a melting curve analysis step
of 1 min at 95°C, 50 s at 38°C, a rise to 80°C with an in-
crease rate of 0.1°C s™*, and final cooling of 30 s at 40°C.
C. jejuni and C. coli were identified by reading both the
amplification and melting curves. Isolates with an atypical
profile (i.e. #ipO negative and a gyrA melting curve corre-
sponding to no known species) were further confirmed as
C. jejuni with a conventional agarose gel-based PCR tar-
geting the hipO gene with a new set of primers designed
for this study: hipO-58 F ’CAAATTCATGAAAATCCTG
3 and hipO1057R 5TGTCGTTTTCATTTTCTAA 3.

DM isolates were obtained from faeces while P isolates
were obtained from raw meat and faeces. Because only
few local C. coli isolates of pig origin were available for
analysis (N =23), we characterized as part of the DM
collection further 22 porcine C. coli strains from collec-
tions from France (N = 16, year 2008) and Belgium (N =6,
year 2010).

A total of 31 SW sites were sampled from different
geographic areas in Luxembourg (surface 2,586 km?) in-
cluding rivers, pond waters, recreational waters and waste-
water treatment plant outlets between January 2011 and
December 2012. The SW C. jejuni (N =206) and C. coli
(N = 123) isolates were obtained from 23 and 22 different
water sites, respectively, and both species were simultan-
eously obtained from 14 sites.

The C. jejuni collection included 99 DM isolates (bovine,
N = 81; dog, N = 6; ovine, N = 4; equidae, N = 4; goat, N = 3;
cat, N=1) and 125 P isolates (broiler, N = 94; turkey, N =
19, duck, N = 8; quail, N = 3, ostrich, N = 1). The C. coli col-
lection included 46 DM isolates (pig, N = 45; goat, N = 1)
and 133 P isolates (broiler, N = 104; turkey, N = 25; duck,
N =1; guinea fowl, N =1, quail, N=1; ostrich, N=1). All
isolates were stored in FBP medium [23] at —70°C until use.
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DNA isolation

Isolates were subcultured on chocolate PolyVitex agar
(ref 42079, Biomérieux, France) at +42°C for 24 h in a
microaerobic atmosphere (6% O,, 3.6% CO,, 3.6% H,
and 86.9% N,) generated by an Anoxomat™ system
(Mart Microbiology, Belgium). Bacterial DNA was ex-
tracted from these cultures with the DNA QIAamp mini
Kit 250 (ref 51306, Qiagen, The Netherlands). From
stock solutions, tenfold dilutions in buffer AE (10 mM
Tris- Cl; 0.5 mM EDTA; pH 9.0) were prepared for the
PCR assays.

gyrA sequencing

The partial gene sequence of gyrA targeting the quin-
olone resistance determining region (QRDR) was ampli-
fied and sequenced with the forward primer GYR-for
(5-GCTGATGCAAAAGKTTAATATGC-3’) and the re-
verse primer GYR-rev (5-TTTGTCGCCATACCTACA
GC-3’) designed for this study. Amplifications were car-
ried out in a total volume of 20 ul using the AmpliTaq
Gold 360 Master Mix (code 4398901, Applied Biosys-
tems, Belgium). The primer concentration was adjusted
at 0.2 umol 1I™' each in the reaction mix and the cycling
conditions were as follows: 95°C for 10 min then 35 cy-
cles of 95°C 30 s, 55°C 30 s, 72°C 50 s. The reaction was
completed by a final extension of 5 min at 72°C. For the
sequencing step, the PCR products were diluted ten-fold
in water and the sequencing reaction was carried out
directly with 2 pl from these dilutions. The sequencing
reactions were purified by the Agencourt®” CleanSEQ®
method (Protocol 000411v001, Beckman Coulter, USA)
and products were analyzed with an ABI Prism 3130XL
sequencer (ABI, Life Technologies, Belgium).

An in-house nomenclature was determined for the as-
signment of the nucleotide and peptide sequences (length
analyzed = 496 bp corresponding to 165 aa): numbering of
the alleles of C. coli started at #301. All the sequences
identified and assigned were included in the online data-
base Campylobacter Multi Locus Sequence Typing [24]
and sequence query was done by selecting the loci named
fn_gyrA and fp_gyrA (for nucleotide alleles and peptide
sequences, respectively). The number assignment of alleles
was based on a larger strain collection than the one pre-
sented herein, such that not all allele numbers are repre-
sented in this study.

Multi Locus Sequence Typing (MLST)

The MLST protocol for amplification and sequencing of
the seven housekeeping genes developed by Dingle et al.
was used for this study [25,26]. Sequencing steps were
carried out as described earlier (dilution of the PCR
amplicons in water, use of magnetic beads for purification
of the sequence reactions). Automated data analysis and
library matching were set up with SeqScape® software v2.5
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(ABI, Life Technologies, Belgium). New alleles and STs
identified were submitted for assignment to the MLST
database [24].

Data analysis

The START 2 program [27] was used for: (i) calculating
the index of association (I,), reflecting the degree of
clonality in each population (SW, DM and P), from al-
lelic profiles generated by MLST and gyrA data com-
bined; (ii) determining the ratio of non-synonymous
(dn) to synonymous (ds) substitutions per nucleotide
site in the gyrA sequence. The index of population dif-
ferentiation (F statistic, denoted Fst) was estimated using
Arlequin, v3.1 program [28] from the concatenated se-
quences of the 8 loci (MLST combined with gyrA). An Fgr
of 0 indicates that two populations are indistinguishable,
whereas an Fgy value of 1 indicates that two populations
are genetically distinct. The discriminating power of the
molecular methods (MLST, gyrA sequencing) were esti-
mated by the Simpson's Index of Diversity (SID) applied
to the test population and calculated with the freely avail-
able online tool Comparing Partitions [29,30]. The SID
measures the probability that two individuals selected at
random belong to the same genotype. Alignment of gyrA
sequences and calculation of GC content (%) was per-
formed with BioEdit v7.0.5.3 [31]. The neighbour-joining
radial tree was constructed using MEGA 5 [32] with the
gyrA sequences from all the alleles identified in both spe-
cies. The robustness of the nodes was evaluated by boot-
strapping (200 replicates). Normal distribution verification
and unpaired two-sample t-test comparisons on mean GC
percentages between gyrA clusters were done using the
GraphPad Prism software tool.

Results

gyrA sequencing data

With the primers designed in this study, amplification
and partial sequencing of gyrA was successfully per-
formed for all strains tested in both species C. jejuni and
C. coli. An overall total of 80 different nucleotide alleles
were identified. Alignment of the sequences revealed
two main allelic groups, sharing overall 81.3% nucleotide
sequence identity. A first group of 41 alleles contained
all but one C. jejuni isolates (99.8% of the C. jejuni col-
lection). A second group of 39 alleles contained all but 7
C. coli isolates (97.7% of the C. coli collection). Interest-
ingly, the 39 alleles related to C. coli encode only two
different peptide sequences that differ in one single
amino acid (Thr86lle substitution giving rise to quin-
olone resistance). By contrast, the 41 alleles related to C.
jejuni encode 8 different peptide sequences (numbered
between #1 and #14). The dy/ds ratios were lower for
the C. coli (0.0075) than the C. jejuni (0.0498) collec-
tions, reflecting a higher level of synonymous changes
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within the gyrA sequences of the C. coli than in those of
C. jejuni. The phylogenic tree in Figure 1 further high-
lights two clades for C. jejuni and three clades for C. coli.

Genetic diversity among the gyrA sequences within each
species

The nucleotide sequences were aligned to an arbitrarily
chosen reference allele (allele #1 and #301 for C. jejuni
and C. coli, respectively). A total of 36 and 46 poly-
morphic sites were found for C. jejuni and C. coli, re-
spectively. Next, nucleotide alleles were classified in a
two-step approach: first, according to the encoded peptide
(i.e. non-synonymous mutations) and second, according
to similarities in nucleotide sequences (i.e. synonymous
mutations). Tables 1 and 2 display this classification and

PG 301A
PG 301D

PG 301B \
o NN, 1Pe302
e > 91 N
Campylobacter coli °“ o8
= 99
PG 301C *

PG 1V

99 PG1
PG2
. PG3

Campylobacter jejuni o N1 PG 4
L SN PGS

A N\ PG 6

: PG 8

Figure 1 Neighbour-joining radial distance phylogenetic tree
constructed with the 80 nucleotide gyrA alleles identified.

PG = peptide group. Bootstrap support values (%) for each of the
nodes leading to the gyrA sequence clusters are indicated. Key:
surface waters, green; domesticated mammals, blue; poultry, yellow;
multi-source, grey.
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show a selection of synonymous and non-synonymous
changes in sequences that were common to several alleles
and which determined different peptide groups (PG). The
430 isolates of the C. jejuni collection were classified into
9 PGs: 8 corresponded to PGs #1, 2, 3, 4, 5, 6, 8 and 14 re-
lated to C. jejuni (41 nucleotide alleles) and one corre-
sponded to PG #301 related to C. coli (encoded by the
nucleotide allele #301, Table 1). For refining grouping
among the 302 C. coli strains, PG #301 (originally com-
posed of 39 nucleotide alleles) was subdivided in four
parts named A, B, C and D according to similarities in
synonymous mutations in their nucleotide sequences
(Table 2). PG #302 included all strains with the quinolone
resistance C257T mutation (10 nucleotide alleles). The
remaining peptide groups were specific to the C. jejuni
species (PGs #7, 8,9 and 23).

Figure 2 shows the GC contents of the nucleotide se-
quences arranged by PGs. Variations in base composition
can be observed. A significantly higher GC content (un-
paired t-test, p <0.001) was found in PG #301C from C.
coli (average = 37.65%, SD =0.26) compared to the other
two groups PG #301B and PG #301D (average = 36.83%,
SD =0.19). By contrast, alleles from the C. jejuni species
appear more homogeneous in their base contents. The
overall average was of 35.33% (SD = 0.25) when excluding
PG #14, which displays the lowest level recorded in the
gyrA sequences (average = 33.57%, SD = 0.14; p < 0.001).

Distribution of gyrA alleles by source

The collection of strains used in this study originated from
three sources: surface waters (SW), domestic mammals
(DM) and poultry (P). Regarding the C. jejuni collection,
PG #1 is the largest group, including 23 nucleotide alleles
corresponding to more than 50% of the alleles identified
for this species (Table 1). However, data could be subdi-
vided in two main sets: (i) the alleles #1, 4, 5 and 7 were
commonly identified from the 3 sources (N =76 for SW,
N =61 for DM and N =54 for P); (ii) 16 alleles were
shared by 105 strains predominantly from environmental
source (N =90 i.e. 43.7% of the SW collection). Within
this latest set, the synonymous substitution G408A in nu-
cleotide sequences was never identified from poultry
strains. PG #2 is encoded by alleles mainly identified from
animal sources represented by 23.3%, 20.2% and 12.6% of
the P, DM and SW collections respectively. The PGs #3, 4,
5 and 8 share the synonymous substitution A64G in their
nucleotide alleles, significantly associated with poultry
source (unpaired t-test, P < 0.001). Finally, the only strain
harboring an allele specific of the C. coli species was iso-
lated from poultry.

The distribution of the C. coli strains within PGs pre-
viously defined could be summarized as follows: all the
strains (N =77 except one) classified in PG #301B, C
and D were isolated from environmental samples (62.2%
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Table 1 Distribution of C. jejuni gyrA alleles by source and conserved nucleotide

Peptide Allele Nucleotide position Distribution by source** No. of
group no.* 64 111 210 257 276 324 408 438 486 SW DM P ST
1 A G C C G A G C A 26 27 22 26
4 2 14 6 6
5 . . . . . . . . . 3 12 10 1
7 45 8 16 1
1 A . . A . . A 4 . 26 10 22
12 1 1
13 3 4 5
16 4 2
18 1 1
19 6 1
31 22 1 1
1 36 5 5
39 A 1 1
40 A 13 8
41 A 3 3
56 A 3 2
66 A 1 1
73 1 1
74 1 1
75 T 1 1
76 2 1
79 A 1 1
80 1 1
2 T 3 3
3 T 9 3 6 9
8 T 14 17 13 14
2 15 T 2 2
17 T 2 2
30 T 3 1 4
44 T 2 2
3 6 G 1 1
9 G T 2 2 20 11
4 53 G 1 1
78 G 1 1
10 G 7 4 6 10
5 23 G 1 1
27 G 1 1
6 14 A . , A . . A A . 1 1
8 24 G . . T . . A 4 . 1 1 2
14 54 . A T . A G A T G 1 1
55 A A T A A G A T G 2 1
301 301 A T T A A . A A 4 1 1

*Nucleotide allele number, **SW = Surface water, DM = Domesticated Mammals, P = Poultry.
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Table 2 Distribution of C. coli gyrA alleles by source and conserved nucleotide
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Nucleotide position
Peptide Allele

Distribution
by source**

group* no.

21 69 78 81 90 144 177 180 195 257 267 273 276 279 300 414 417 435 477 495

SW DM P

No. of
ST

301 AT T T C C C A A C C @ A AT
308
309
301 A 312
316
321
318

A

@

G

C

G

1 2 9
4 2 14
2

N

323
324
325
327
301 B 334
342
346
349
350

O O 6O 6O 0 60 6o 60 0

R T e e R R N

314
329
330
301 C 331
336
343
345
348

B T B B L L e I T T e R B T
O 000000000000 0060 o0
> > > > > > > >> > > > > > > > >

O 060 000600
OO0 N0 o0 0 00
OO0 0 o0 o0 00
N0 0 o0 o0 00
e T B T B B
O 060 0 60060 0
O 060 000600
e e e e e T
O 060 000600

O 6O 6060 60 600 o0 6060606060600 0

e T e T T T T N I T T B B I B R

> > >» > > > > >

R T e R R R

> > > > > > > >

Bl e T T R T I B R

320

322
301D 332 o T G . . . T

335

337 ... T

302
303
304
305
306
302 310
311
307
313
319

R T T e B L B B R

2
8 21
6

7
28
4 9
s 23 . . C. T T G . T . T T G T

N 0N
- = -
- = -
o0 o
- = -
o -
- = -
- =
o0 o
— = -

> > >

A

— =

T

w N

1

w N

1

*Peptide group #301 is subdivided in 4 parts (A, B, C and D) according to synonymous mutations. **SW = Surface water, DM = Domesticated Mammals, P = Poultry.
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Figure 2 Percentage of GC contents in nucleotide sequences of gyrA alleles arranged by peptide groups. (A) C. coli (B) C. jejuni.
Numbers of nucleotide alleles are displayed above the bars for values > 35.5% in PG#1.

4 5 68 14

of the SW collection); poultry strains predominate in PG
#302 (N =84 ie. 63.1% of the P collection), while all
quinolone-sensitive mammal strains were assigned to
PG #301A (N =33 ie. 71.7% of the DM collection). The
seven strains harboring a “C. jejuni-like allele” all origin-
ate from poultry (Table 2).

Genotype diversity within the C. jejuni collection

All the strains from this study were further characterized
by MLST. For the C. jejuni isolates, a total of 170 differ-
ent STs were identified. Combining MLST with gyrA
yielded 191 distinct genotypes. The Simpson’s Index of
Diversity (SID) was 0.911 (95% confidence intervals (CI)
0.899-0.923) for gyrA alleles only, 0.979 (95% CI 0.974—
0.984) for MLST only and 0.984 (95% CI 0.979-0.988)
for the combination of MLST and gyrA. The indexes of
association I, calculated for each source using a single
representative of each genotype, appeared low and fairly
similar, suggesting that each of these populations was
highly diverse by recombining to some degree: 0.22
(SW), 0.28 (DM) and 0.19 (P). Population differentiation
estimated by the Fst values was highest between SW
and DM (0.07787, P <0.00001), followed by DM and P
(0.04074, P <0.00001) and lowest for SW and P (0.03476,
P <0.00001). Nearly half of the strains from the DM set
(43.4%), 18.9% of the SW set and 23.2% of the P set had
genotypes identified in all three sources (Figure 3A). In

the same way, 60.2%, 22.2% and 52.8% of the strains had
genotypes specific to SW, DM and P origins, respectively.
Finally, 14.6% and 6.3% of the environmental (SW) collec-
tion had genotypes common to DM and P sets, respect-
ively. Genotypes not recovered from SW and common to
both animal sets represented 15.1% and 10.4% of the DM
and P collections, respectively.

Genotype diversity within the C. coli collection

Among the C. coli isolates, a total of 146 STs were identi-
fied and yielded 194 distinct genotypes when combined
with the gyrA locus. The SID value for the combined
methods was of 0.994 (0.992 — 0.996) versus 0.987 (0.984 —
0.991) for MLST alone or 0.945 (0.936 — 0.953) for the
gyrA data alone. The I, determined from the SW collec-
tion had a value similar to those previously calculated
from the C. jejuni sets (0.26). In contrast, the I, values
from each of the animal population displayed a trend
closer to zero indicating a random association between al-
leles of the 8 loci (i.e. in proximity to linkage equilibrium)
by freely recombining (I, for DM =0.03 and I, for P =
0.05). The population pairwise Fss approach generated 3
similar values for each pair combination: SW/DM (0.16295,
P <0.00001); SW/P (0.16455, P <0.00001) and DM/P
(0.15848, P <0.00001). None of the genotypes was common
to all three collections of strains as shown in Figure 3B.
However, 87.8%, 87% and 76% of the strains had genotypes
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Figure 3 Distribution of genotypes (ST + gyrA) by source. (A) C. jejuni collection, (B) C. coli collection. SW = Surface waters, DM = Domesticated

specific to SW, DM and P sources, respectively. In the en-
vironmental collection, 0.8% and 11.4% of the strains had
genotypes common to DM and P sets, respectively. The
genotypes recovered only in both animal sources repre-
sented 10.9% and 4.5% of the DM and P sets, respectively.

Quinolone resistant isolates as defined by the C257T
mutation

Overall, 43.4% and 17.4% of C. coli and C. jejuni, re-
spectively, were classified as resistant to quinolones ac-
cording to the C257T mutation (i.e. the peptide shift

Thr86lle). Quinolone resistance was significantly higher
in isolates of poultry origin (P < 0.001) for both C. coli
(67.9%) and C. jejuni (38.7%). By comparison, 22.7% and
16.7% of the isolates (including both species) originating
from the domestic mammals and surface waters, re-
spectively, were quinolone-resistant.

Discussion

Sequencing of gyrA indicated that this locus was inform-
ative in several different ways for characterizing Cam-
pylobacter isolates. First, the alleles of the 496 nucleotide
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fragments were suitably different in sequence identity
between C. jejuni and C. coli to be assigned to one or
the other of these species. The distribution of these al-
leles confirmed that recombination events between spe-
cies occur rather infrequently and in an asymmetric
gene flow [33]: one C. jejuni had a typical C. coli allele
whereas 4 C. coli had a typical C. jejuni allele. Two other
studies using PCR and sequencing data targeting gyrA
also identified a C. jejuni segment within a C. coli isolate
[34,35], supporting previous findings that gene flow is
rather unidirectional from C. jejuni to C. coli [33,36].
Sequencing of gyrA revealed a similar population
structure as that obtained by MLST or rMLST (Riboso-
mal Multilocus Sequence Typing, [37]). In particular, the
phylogenetic analysis clearly organized C. coli into 3 dis-
tinct clades as previously described by Sheppard et al.
[33,36] (Figure 1). Furthermore, peptide groups 301A
and 302 in our study (Table 2) contain alleles commonly
found in domestic animals, and they correspond to the
agricultural C. coli lineage of the evolutionary scenario
proposed by Sheppard et al. [38]. In addition, peptide
groups 301B and 301C (Table 2) match with the clades 2
and 3 observed by Sheppard et al. [38] including only al-
leles recovered from environmental isolates, ie. from
surface waters in our study. In contrast to C. jejuni, the
C. coli assigned alleles are predominated by synonymous
mutations. As a result, the peptide group 301C is char-
acterized by alleles with a higher GC content (Figure 2A)
generated by nucleotide changes only located in the
third positions of codons. This trend was also reflected
in genotypes linked to this peptide group 301C ie. by
compiling GC content from the internal fragments of
the 7 MLST housekeeping genes with the gyrA alleles (a
total of 3,805 bp in length, see Additional file 1). This
kind of GC rich version of genes, independent of adap-
tive codon usage was significantly associated with effects
on bacterial fitness, which could be explained by higher
stability of mRNAs [39]. The study of Foerstner et al.
[40] linked the genomic GC pattern of bacterial popula-
tions to environmental factors like ultraviolet irradiation
as an example. Thus, the difference in synonymous GC
contents found in the gyrA alleles from the peptide
groups 301B and 301C, suggests that these lineages orig-
inated from two distinct but not yet identified ecological
niches. By using concatenated nucleotide sequences
from MLST data, isolates from our gyrA peptide group
301B would be classified in the clade 2 from the study of
Colles et al. [41] (see Additional file 2) including the ma-
jority of the STs identified from wild Mallard ducks.
Among our collection of surface water isolates, we simi-
larly observed three clades: one associated with domestic
animals and the other two of wildlife origin, one of
which potentially linked to waterfowl. Nevertheless, with
a more discriminative approach based on genotypes
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defined by combining the 7 housekeeping genes from
MLST with the gyrA, the populations of C. coli displayed
a high specificity in their distribution by sources (Figure 3).
None of the 194 genotypes identified was found in all
three collections (SW, DM and P) and Fgr, values calcu-
lated by pair comparisons were about 4 times higher than
those computed from C. jejuni pairs. The fact that domes-
ticated mammal isolates were poorly represented in our
environmental samples could have resulted from a tem-
poral and geographic sampling bias. Half of the collection
was mainly isolated in 2006 [3] and the other half was col-
lected from distant geographic locations. As to the isolates
originating from poultry, it must be emphasized here that
domestic production of broilers is negligible and there is
no poultry hatchery in the country. Thus, direct contam-
ination of environmental waters by local poultry farms is
largely restricted.

Regarding the C. jejuni gyrA sequences, two lineages
were clearly distinguished (Figure 1). One branch is rep-
resented by the peptide group #14, encoded by the al-
leles #54 and #55 recovered from surface waters isolates
only. These nucleotide sequences are again mainly dif-
ferentiated by their GC content, but this time, below the
mean of each of the other groups (Figure 2). The two
STs associated with these strains are newly described
(ST 5841 and ST 6171) and correspond to variants of a
C. jejuni clone associated with bank voles [42]. Interest-
ingly, these strains also displayed atypical profiles with
the duplex-real time PCR implemented in this study for
identifying isolates at the species level. An extra PCR
was needed to confirm the presence of the hipO gene
(see the Methods section). In summary, this phylogen-
etic lineage originated from a wildlife source, whereas
the other one is composed of gyrA alleles mainly shared
by domesticated mammals. However, the peptide group
#1 from the main branch which is encoded by the lar-
gest number of alleles (N = 23), could be subdivided into
two sets of sub-clusters: one set harboring strains iso-
lated from domestic mammals (N =9) and the other set
being highly specific to environmental samples (N = 14).
From this last set, five sequences (#19, 40, 74, 76 and
79) display a slightly higher GC content (Figure 2B) as a
potential “trace signature” of different ecological niches.
In addition, within this same peptide group #1, the nu-
cleotide alleles with the synonymous substitution G408A
(#11, 39, 40, 41, 56, 66 and 79) were never recovered
from poultry strains. This change is also present in al-
leles from peptide group #14 previously discussed and
linked to small mammals [42]. The most obvious host sig-
nature established in our study is the non-synonymous
substitution A64G corresponding to the change Ser22Gly
in the amino acid sequence. This point mutation was pre-
viously observed by Ge et al. [43] in a study on antimicro-
bial resistance of strains isolated from poultry meat in
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which 76.2% ciprofloxacin-resistant C. jejuni harbored this
particular substitution in their gyrA sequence (N =42).
Jesse et al. [44] also noticed this mutation in isolates from
chicken and turkeys and suggested that it does not con-
tribute to quinolone resistance but may be indicative of
gyrA alleles predominantly found in poultry. Our results
confirm this finding: 11 isolates with the Ser22Gly but
without the Thr861le substitution were classified as suscep-
tible to quinolones according to the cut off values recom-
mended by the European commission [45] (see Additional
file 3). Also, peptide groups #3, 4, 5 and 8 with this par-
ticular change on codon 22, are significantly associated
with poultry source (P =0.001). This host signature could
be used as a specific molecular marker of domestic birds.
Our study also found that quinolone resistance was
higher in isolates originating from poultry than from
other sources. Recently, Han et al. [46] demonstrated
that this particular mutation generates a fitness advan-
tage for Campylobacter in chicken through a reduced
supercoiling activity of the GyrA enzyme. As DNA
supercoiling is directly involved in gene expression, their
findings suggested that the altered function of the en-
zyme modulates the fitness of resistant strains whose
prevalence persists in poultry production even in the ab-
sence of fluoroquinolone use. The European report on
antimicrobial resistance in zoonotic bacteria [12] re-
ported very high fluoroquinolone resistance levels in
Campylobacter isolated from broilers (76%) and broiler
meat (58%). Our results concur with the report in that
resistance levels vary substantially in different hosts.

Conclusion

The interest of the sequence-based method described
herein targeting the gyrase subunit A lies not only in
providing information on quinolone resistance but also
on strain origin. As the gyrase is an essential gene for
bacterial viability and also plays a role in gene expres-
sion, some patterns in sequences appear to be inform-
ative as potential host signature, predictive of particular
ecological niches. All the sequences of alleles defined
here are freely accessible on the website of the Campylo-
bacter MLST website (http://pubmlst.org/campylobacter/)
developed by Keith Jolley and sited at the University of
Oxford [47]. We believe that this tool could be useful for
basic surveillance of campylobacteriosis in two ways. For
long-term surveillance, it could be combined with MLST
data for increased discrimination power, and would help
in identifying source attribution of ST complexes shared
by more than one sample population: ST21, ST45 and
ST48 complexes for example [48]. For short term sur-
veillance ie. detection of temporal clusters of human
cases, it could provide some indication on the potential
infection source involved when combined with porA or

flaA typing [8].
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Additional files

Additional file 1: GC contents using concatenated nucleotide
sequence: 7 housekeeping genes from MLST with gyrA alleles
(3805 bp). Results from the 187 genotypes are classified according gyrA
peptide groups. Average in GC% for each group are shown.

Additional file 2: Neighbour-joining radial distance phylogenetic
tree constructed with concatenated nucleotide sequences from STs
identified from this study and from Colles et al. [41] on wild and
domesticated ducks.

Additional file 3: MICs recorded for C. jejuni isolates with Ser22Gly
but without the Thr86lle substitution. Interpretative thresholds for
resistance (R): CIP_R >0.5 and NAL_R > 16.
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