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Abstract
In this article, a new iterative process is introduced to approximate a common
element of a fixed point set, the solutions of equilibrium problems, the solution set of
variational inequality problems, and the set of zeros of maximal monotone operators
in a uniformly smooth and strictly convex Banach space by using a hybrid projection
method. Also, we prove new strong convergence theorems for this proposed iterative
precess in a Banach space.
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1 Introduction
Let E be a real Banach space, E* be the dual space of E. A set-valued mapping A : D(A) ⊂
E → E* with graph G(A) = {(x,x*) : x* ∈ Ax}, domain D(A) = {x ∈ E : Ax �= ∅}, and range
R(A) = ∪{Ax : x ∈ D(A)}. A is said to be monotone if 〈x – y,x* – y*〉 ≥  whenever x* ∈ Ax,
y* ∈ Ay. Amonotone operatorA is said to bemaximalmonotone if its graph is not properly
contained in the graph of any other monotone operator. Let A ⊂ E × E* be a maximal
monotone operator. We consider the problem for finding x ∈ E

 ∈ Ax, (.)

a point x ∈ E is called a zero point of A. Denote by A– the set of all points x ∈ E such
that  ∈ Ax. We know that if A is maximal monotone, then the solution set A– = {x ∈
D(A) :  ∈ Tx} is closed and convex. One popular algorithm for approximating a solution
of this problem is called the proximal point algorithm which was first proposed by Mar-
tinet [] and studied further by Rockafellar [] in Hilbert spaces. Since the proximal point
algorithmweakly converges in general which is the proximal point algorithm is defined by
x ∈ E and

xn+ = Jrnxn, for n = , , , , . . . , (.)
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where {rn} ⊂ (,∞) and Jrn are the resolvent ofA. Solovov and Svaitor [] proposed amod-
ified proximal point algorithmwhich converges strongly to a solution of the equationA–
by using the projection method. Many problems in nonlinear analysis and optimization
can be formulated by the proximal point algorithm (see [–]).
Let E be a real Banach space with dual E* and let C be a nonempty closed and convex

subset of E. Let f : C × C → R be a bifunction. The equilibrium problem is to find x ∈ C
such that

f (x, y)≥ , ∀y ∈ C. (.)

The equilibrium problem is very general in the sense that it includes, as special cases,
optimization problems, variational inequality problems, min-max problems, saddle point
problem, fixed point problem, Nash EP. In , Takahashi and Zembayashi [, ] intro-
duced iterative sequences for finding a common solution of an equilibrium problem and
a fixed point problem.
A mapping A :D(A) ⊂ E → E* is said to be α-inverse-strongly monotone if there exists a

constant α >  such that

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

If A is α-inverse strongly monotone, then it is 
α
-Lipschitz continuous, i.e.,

‖Ax –Ay‖ ≤ 
α

‖x – y‖, ∀x, y ∈ C.

Let C be a nonempty closed and convex subset of a real Banach space E. Let A be a
monotone operator from C into E . The variational inequality problem for an operator A
is to find ẑ ∈ C such that

〈y – ẑ,Aẑ〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by VI(A,C).
Let C be a nonempty closed and convex subset of E. A mapping T from C into itself is

said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be total asymptotically nonexpansive if there exist nonnegative real se-
quences νn, μn with νn → , μn →  as n→ ∞ and a strictly increasing continuous func-
tion ϕ :R+ →R

+ with ϕ() =  such that

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ +μnψ

(‖x – y‖) + νn, ∀x, y ∈ C,∀n≥ .

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the fixed point set
of T ; that is, F(T) = {x ∈ C : Tx = x}. A point p in C is called an asymptotic fixed point of

http://www.journalofinequalitiesandapplications.com/content/2013/1/23


Saewan and Kumam Journal of Inequalities and Applications 2013, 2013:23 Page 3 of 18
http://www.journalofinequalitiesandapplications.com/content/2013/1/23

T [] if C contains a sequence {xn} which converges weakly to p such that limn→∞ ‖xn –
Txn‖ = . The asymptotic fixed point set of T is denoted by F̂(T).
The value of x* ∈ E* at x ∈ E will be denoted by 〈x,x*〉 or x*(x). For each p > , the gener-

alized duality mapping Jp : E → E* is defined by

Jp(x) =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖p,∥∥x*∥∥ = ‖x‖p–}

for all x ∈ E. In particular, J = J is called the normalized duality mapping. If E is a
Hilbert space, then J = I , where I is the identity mapping. Consider the functional defined
by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for x, y ∈ E. (.)

If E is a Hilbert space, then φ(y,x) = ‖y – x‖. It is obvious from the definition of φ

that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

T is said to be φ-nonexpansive [, ] if

φ(Tx,Ty) ≤ φ(x, y), ∀x, y ∈ C.

T is said to be quasi-φ-nonexpansive [, ] if F(T) �= ∅ and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C and p ∈ F(T).

T is said to be asymptotically φ-nonexpansive [] if there exists a sequence {kn} ⊂ [,∞)
with kn →  as n→ ∞ such that

φ
(
Tnx,Tny

) ≤ knφ(x, y), ∀x, y ∈ C.

T is said to be quasi-φ-asymptotically nonexpansive [] if F(T) �= ∅ and there exists a
sequence {kn} ⊂ [,∞) with kn →  as n→ ∞ such that

φ
(
p,Tnx

) ≤ knφ(p,x), ∀x ∈ C,p ∈ F(T),∀n≥ .

T is said to be total quasi-φ-asymptotically nonexpansive if F(T) �= ∅ and there exist non-
negative real sequences νn, μn with νn → , μn →  as n → ∞ and a strictly increasing
continuous function ϕ :R+ →R

+ with ϕ() =  such that

φ
(
p,Tnx

) ≤ φ(p,x) + νnϕ
(
φ(p,x)

)
+μn, ∀n≥ ,∀x ∈ C,p ∈ F(T).

Amapping T is said to be uniformly L-Lipschitz continuous, if there exists a constant L > 
such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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T is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x and
limn→∞ Txn = y, Tx = y.

Remark . Every quasi-φ-nonexpansivemapping implies a quasi-φ-asymptotically non-
expansive mapping and a quasi-φ-asymptotically nonexpansive mapping implies a total
quasi-φ-asymptotically nonexpansive mapping, but the converse is not true.

On the other hand, Alber [] introduced that the generalized projection �C : E → C is
a map that assigns to an arbitrary point x ∈ E the minimum point of the functional φ(x, y),
that is, �Cx = x̄, where x̄ is the solution of the minimization problem

φ(x̄,x) = inf
y∈C φ(y,x). (.)

The existence and uniqueness of the operator�C follow from the properties of the func-
tional φ(x, y) and strict monotonicity of the mapping J . Let �C be the generalized projec-
tion from a smooth strictly convex and reflexive Banach space E onto a nonempty closed
convex subset C of E. Then �C is a closed relatively quasi-nonexpansive mapping from E
onto C with F(�C) = C.
Matsushita and Takahashi [] proposed the following hybrid iteration method with a

generalized projection for a relatively nonexpansive mapping T in a Banach space E:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJxn + ( – αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z,xn)},
Qn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Cn∩Qnx.

(.)

They proved that {xn} converges strongly to �F(T)x. Many authors studied the methods
for approximating fixed points of a countable family of (relatively quasi-) nonexpansive
mappings (see [–]).
Recently, Qin et al. [] considered a pair of asymptotically quasi-φ-nonexpansive map-

pings. To be more precise, they proved the following results.

Theorem QCK Let E be a uniformly smooth and uniformly convex Banach space and C
be a nonempty closed and convex subset of E. Let T : C → C be a closed and asymptotically
quasi-φ-nonexpansive mapping with the sequence {k(t)n } ⊂ [,∞) such that k(t)n →  as n →
∞ and S : C → C be a closed and asymptotically quasi-φ-nonexpansive mapping with the
sequence {k(t)s } ⊂ [,∞) such that k(s)n →  as n → ∞. Let {αn}, {βn}, {γn}, and {δn} be real
number sequences in [, ]. Assume that T and S are uniformly asymptotically regular on
C and � = F(T)∩ F(S) is nonempty and bounded. Let {xn} be a sequence generated in the

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = �Cx,

zn = J–(βnJxn + γnJ(Tnxn) + δnJ(Snxn)),

yn = J–(αnJxn + ( – αn)Jzn),

Cn+ = {w ∈ Cn : φ(w, yn) ≤ φ(w,xn) + (kn – )Mn},
xn+ = �Cn+x,

(.)

where kn =max{k(t)n ,k(s)n } for each n ≥ , J is the duality mapping on E, Mn = sup{φ(z,xn) :
z ∈ �} for each n ≥ . Assume that the control sequences {αn}, {βn}, {γn}, and {δn} satisfy
the following restrictions:
(a) βn + γn + δn = , ∀n≥ ;
(b) lim infn→∞ γnδn, limn→∞ βn = ;
(c)  ≤ αn <  and lim supn→∞ αn < .

In , Alber et al. [] proved the strong convergence theorems to approximate a fixed
point of a total asymptotically nonexpansive mapping in a Hilbert space. In , Chang et
al. [, ] proved the strong convergence theorems for finding the set of fixed points of a
total quasi-φ-asymptotically nonexpansive mapping in the framework of Banach spaces.
Motivated and inspired by the work mentioned above, in this paper, we introduce a

new hybrid projection algorithm for a pair of total quasi-φ-asymptotically nonexpansive
mappings for finding a set of solutions of the equilibrium problem, a zero point of maxi-
mal monotone operators, and a set of solutions of the variation inequality in a uniformly
smooth and strictly convex Banach space.

2 Preliminaries
In this article, we denote the strong convergence and weak convergence of a sequence {xn}
by xn → x and xn ⇀ x, respectively.
A Banach space E with the norm ‖ · ‖ is called strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ E
with ‖x‖ = ‖y‖ =  and x �= y. Let U = {x ∈ E : ‖x‖ = } be the unit sphere of E. A Banach
space E is called smooth if the limit limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ U . It is also called

uniformly smooth if the limit exists uniformly for all x, y ∈ U . Themodulus of convexity of
E is the function δ : [, ]→ [, ] defined by

δ(ε) = inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : x, y ∈ E,‖x‖ = ‖y‖ = ,‖x – y‖ ≥ ε

}
.

A Banach space E is uniformly convex if and only if δ(ε) >  for all ε ∈ (, ]. Let p be a
fixed real number with p ≥ . A Banach space E is said to be p-uniformly convex if there
exists a constant c >  such that δ(ε) ≥ cεp for all ε ∈ [, ]. Observe that every p-uniformly
convex is uniformly convex. One should note that no Banach space is p-uniformly convex
for  < p < .

Remark . The basic properties of E, J , and J– are as follows (see []).

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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• If E is an arbitrary Banach space, then J is monotone and bounded;
• If E is strictly convex, then J is strictly monotone;
• If E is smooth, then J is single-valued and semi-continuous;
• If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E;

• If E is reflexive smooth and strictly convex, then the normalized duality mapping J is
single-valued, one-to-one, and onto;

• If E is a reflexive strictly convex and smooth Banach space and J is the duality
mapping from E into E*, then J– is also single-valued, bijective and is also the duality
mapping from E* into E, and thus JJ– = IE* and J–J = IE ;

• If E is uniformly smooth, then E is smooth and reflexive;
• If E is a reflexive and strictly convex Banach space, then J– is
norm-weak*-continuous.

Remark . If E is a reflexive strictly convex and smooth Banach space, then φ(x, y) = 
if and only if x = y. It is sufficient to show that if φ(x, y) = , then x = y. From (.), we have
‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of J , one has Jx = Jy.
Therefore, we have x = y (see [–] for more details).

Recall that a Banach space E has the Kadec-Klee property [, , ] if for any sequence
{xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞. It is well
known that if E is a uniformly convex Banach space, then E has the Kadec-Klee property.
The generalized projection [] from E into C is defined by �C(x) = argminy∈C φ(y,x).

The existence and uniqueness of the operator �C follow from the properties of the func-
tional φ(y,x) and the strict monotonicity of the mapping J (see, for example, [, , , ,
]). If E is a Hilbert space, then φ(x, y) = ‖x – y‖ and �C becomes the metric projection
PC : H → C. If C is a nonempty closed and convex subset of a Hilbert space H , then PC

is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not
available in more general Banach spaces.We also need the following lemmas for the proof
of our main results.

Lemma . (Alber []) Let C be a nonempty closed convex subset of a smooth Banach
space E and let x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . (Alber []) Let E be a reflexive strictly convex and smooth Banach space, C
be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma . (Change et al. []) Let C be a nonempty closed and convex subset of a
uniformly smooth and strictly convex Banach space E with the Kadec-Klee property. Let
S : C → C be a closed and total quasi-φ-asymptotically nonexpansive mapping with non-
negative real sequences νn andμn with νn → ,μn →  as n→ ∞ and a strictly increasing
continuous function ζ :R+ → R

+ with ζ () = . If μn = , then the fixed point set F(S) is a
closed convex subset of C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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For solving the equilibrium problem for a bifunction f : C × C → R, let us assume that
f satisfies the following conditions:
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t↓ f

(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for each x ∈ C, y �→ f (x, y) is convex and lower semi-continuous.
The following result is in Blum and Oettli [].

Lemma . (Blum and Oettli []) Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let f be a bifunction from C × C to R satisfying
(A)-(A), and let r >  and x ∈ E. Then there exists z ∈ C such that

f (z, y) +

r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Lemma . (Takahashi and Zembayashi []) Let C be a closed convex subset of a uni-
formly smooth strictly convex and reflexive Banach space E and let f be a bifunction from
C × C to R satisfying conditions (A)-(A). For all r >  and x ∈ E, define a mapping
Kr : E → C as follows:

Krx =
{
z ∈ C : f (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
() Kr is single-valued;
() Kr is a firmly nonexpansive-type mapping [], that is, for all x, y ∈ E,

〈Krx –Kry, JKrx – JKry〉 ≤ 〈Krx –Kry, Jx – Jy〉;

() F(Kr) = EP(f );
() EP(f ) is closed and convex.

Lemma . (Takahashi and Zembayashi []) Let C be a closed convex subset of a smooth
strictly convex and reflexive Banach space E, let f be a bifunction fromC×C toR satisfying
(A)-(A) and let r > . Then, for x ∈ E and q ∈ F(Kr),

φ(q,Krx) + φ(Krx,x)≤ φ(q,x).

Lemma . [] Let E be a uniformly convex Banach space and Br() = {x ∈ E : ‖x‖ ≤ r}
be a closed ball of E. Then there exists a continuous strictly increasing convex function
g : [,∞) → [,∞) with g() =  such that

‖λx +μy + γ z‖ ≤ ‖λx‖ + |μy‖ + ‖γ z‖ – λμg
(‖x – y‖)

for all x, y, z ∈ Br() and λ,μ,γ ∈ [, ] with λ +μ + γ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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Let E be a smooth strictly convex and reflexive Banach space, C be a nonempty closed
convex subset of E and A ⊂ E × E* be a monotone operator satisfying D(A) ⊂ C ⊂
J–(

⋂
λ> R(J + λA)). Then the resolvent Jλ : C → D(A) of A is defined by

Jλx =
{
z ∈D(A) : Jx ∈ Jz + λAz,∀x ∈ C

}
.

Jλ is a single-valued mapping from E to D(A). For any λ > , the Yosida approximation
Aλ : C → E* of A is defined by Aλx = Jx–JJλx

λ
for all x ∈ C. We know that Aλx ∈ A(Jλx) for all

λ >  and x ∈ E.

Lemma . (Kohsaka and Takahashi []) Let E be a smooth strictly convex and reflexive
Banach space, C be a nonempty closed convex subset of E and A ⊂ E × E* be a monotone
operator satisfying D(A) ⊂ C ⊂ J–(

⋂
λ> R(J + λA)). For any λ > , let Jλ and Aλ be the

resolvent and the Yosida approximation of A, respectively. Then the following hold:
(a) φ(p, Jλx) + φ(Jλx,x)≤ φ(p,x) for all x ∈ C and p ∈ A–;
(b) (Jλx,Aλx) ∈ A for all x ∈ C;
(c) F(Jλ) = A–.

Lemma . (Rockafellar []) Let E be a reflexive strictly convex and smooth Banach
space. Then an operator A ⊂ E × E* is maximal monotone if and only if R(J + λA) = E* for
all λ > .

3 Main result
Theorem . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly uniformly convex Banach space E with the Kadec-Klee property. Let f be a bi-
function from C × C to R satisfying the conditions (A)-(A) and let A ⊂ E × E* be a
maximal monotone operator satisfying D(A) ⊂ C and Jrn = (J + rnA)–J for all rn > .
Let S : C → C be a closed and total quasi-φ-asymptotically nonexpansive mapping with
nonnegative real sequences νS

n , μS
n with νS

n → , μS
n →  as n → ∞ and a strictly in-

creasing continuous function ψS : R+ → R
+ with ψS() = . Let T : C → C be a closed

and total quasi-φ-asymptotically nonexpansive mapping with nonnegative real sequences
νT
n , μT

n with νT
n → , μT

n →  as n → ∞ and a strictly increasing continuous function
ψT : R+ → R

+ with ψT () = . Assume that S and T are uniformly L-Lipschitz continu-
ous and F = F(S) ∩ F(T) ∩ EP(f ) ∩A– �= ∅. For an initial point x ∈ E, C = C, define the
sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = Jrnxn,

un = Krnxn,

yn = J–(αnJxn + βnJSnzn + γnJTnun),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ζn},
xn+ = �Cn+x, n ∈ N,

(.)

where {αn}, {βn}, and {γn} are sequences in (, ) such that αn + βn + γn = , {rn} ⊂ [d,∞)
for some d >  μn = sup{μS

n,μT
n }, νn = sup{νS

n ,νT
n }, ψ = sup{ψS,ψT } for all n ≥ , ζ =

νn supq∈F ψ(φ(q,xn))+μn. If limn→∞ αnβn =  and lim infn→∞ αnγn < , then {xn} converges
strongly to �Fx.

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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Proof First, we show that Cn is closed and convex for all n ∈ N since C = C is convex.
Suppose thatCn is convex for all n ∈N. For any v ∈ Cn, we know that φ(v, yn)≤ φ(v,xn)+ζn

is equivalent to

〈v, Jxn – Jyn〉 ≤ ‖xn‖ – ‖yn‖ + ζn.

That is, Cn+ is convex for all n ∈ N. By the definition of Cn, it is obvious that Cn is closed
for all n ∈N.
We show that {xn} is well defined. It is obvious that F ⊂ C = C. Suppose F ⊂ Cn for

n ∈N, from Lemma . and Lemma ., S, T are total quasi-φ-asymptotically nonexpan-
sive mappings. For each q ∈ F ⊂ Cn, it follows that

φ(q, yn) = φ
(
q, J–

(
αnJxn + βnJSnzn + γnJTnun

))
= ‖q‖ – 

〈
q,αnJxn + βnJSnzn + γnJTnun

〉
+

∥∥αnJxn + βnJSnzn + γnJTnun
∥∥

≤ αnφ(q,xn) + βnφ
(
q,Snzn

)
+ γnφ

(
q,Tnun

)
≤ αnφ(q,xn) + βn

(
φ(q, zn) + νS

nψ
S(φ(q, zn)) +μS

n
)

+ γn
(
φ(q,un) + νT

n ψT(
φ(q,un)

)
+μT

n
)

= αnφ(q,xn) + βnφ(q, zn) + βnν
S
nψ

S(φ(q, zn)) + βnμ
S
n

+ γnφ(q,un) + γnν
T
n ψT(

φ(q,un)
)
+ γnμ

T
n

≤ αnφ(q,xn) + βnφ(q, zn) + βnν
S
nψ

S(φ(q,xn)) + βnμ
S
n

+ γnφ(q,un) + γnν
T
n ψT(

φ(q,xn)
)
+ γnμ

T
n

≤ αnφ(q,xn) + βnφ(q, zn) + βnνnψ
(
φ(q,xn)

)
+ βnμn

+ γnφ(q,un) + γnνnψ
(
φ(q,xn)

)
+ γnμn

≤ αnφ(q,xn) + βnφ(q, zn) + γnφ(q,un) + ( – αn)νnψ
(
φ(q,xn)

)
+ ( – αn)μn

≤ αnφ(q,xn) + βnφ(q, zn) + γnφ(q,un) + νn sup
q∈F

ψ
(
φ(q,xn)

)
+μn

≤ αnφ(q,xn) + βnφ(q, zn) + γnφ(q,un) + ζn

≤ αnφ(q,xn) + βnφ(q,xn) + γnφ(q,un) + ζn

≤ αnφ(q,xn) + βnφ(q,xn) + γnφ(q,Krnxn) + ζn

≤ αnφ(q,xn) + βnφ(q,xn) + γnφ(q,xn) + ζn

≤ φ(q,xn) + ζn, (.)

where ζn = νn supq∈F ψ(φ(q,xn)) +μn. This shows that q ∈ Cn+, thus F ⊂ Cn+. Hence, F ⊂
Cn for all n≥ . This implies that the sequence {xn} is well defined.
We show that limn→∞ xn = p. From the definition of Cn+ with xn = �Cnx and xn+ =

�Cn+x ∈ Cn+ ⊂ Cn, it follows that

φ(xn,x)≤ φ(xn+,x), ∀n≥ . (.)
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By Lemma ., we get

φ(xn,x) = φ(�Cnx,x)

≤ φ(q,x) – φ(q,xn)

≤ φ(q,x), ∀q ∈ F . (.)

From (.) and (.), we have that limn→∞ φ(xn,x) exists. In particular, it follows from
(.) that the sequence {xn} is bounded and so are {zn}, {un}, and {yn}. Since xn ∈ Cn ⊂ E
and E is reflexive, the sequence {xn} converges weakly to an element of E, we assume that
xn ⇀ p. Note that Cn is closed and convex and xn ∈ Cn. We have that p ∈ Cn, that is,

xn ⇀ p ∈ Cn as n→ ∞. (.)

For p ∈ Cn, we have

lim inf
n→∞ φ(xn,x) = lim inf

n→∞
{‖xn‖ – 〈xn, Jx〉 + ‖x‖

}
≥ ‖p‖ – 〈p, Jx〉 + ‖x‖

= φ(p,x).

On the other hand, xn = �Cnx, we have

φ(xn,x)≤ φ(p,x), ∀p ∈ Cn.

It follows that

φ(p,x)≤ lim inf
n→∞ φ(xn,x) ≤ lim sup

n→∞
φ(xn,x) ≤ φ(p,x).

This implies that limn→∞ φ(xn,x) = φ(p,x). Hence, we get

‖xn‖ → ‖p‖ as n→ ∞. (.)

From (.), (.), and the Kadec-Klee property of E, we have

lim
n→∞xn = p. (.)

Therefore,

lim
n→∞ ζn = lim

n→∞νn sup
q∈F

ψ
(
φ(q,xn)

)
+μn = . (.)

From (.), it follows that

lim
n→∞‖xn – xn+‖ =  (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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and hence

lim
n→∞‖Jxn – Jxn+‖ = . (.)

We show that p ∈ F(S)∩ F(T)∩A–∩ EP(f ).
Now, we show that p ∈ EP(f ). For xn+ ∈ Cn+ ⊂ Cn and xn = �Cnx, it follows that

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

Since limn→∞ φ(xn,x) exists, we have

lim
n→∞φ(xn+,xn) = . (.)

Since xn+ ⊂ Cn and the definition of Cn+, we have φ(xn+, yn) ≤ φ(xn+,xn) + ζn. From
(.), we also have

lim
n→∞φ(xn+, yn) = . (.)

From (.) and (.), it follows that

‖yn‖ → ‖p‖ as n→ ∞, (.)

and hence

‖Jyn‖ → ‖Jp‖ as n→ ∞. (.)

This implies that {‖Jyn‖} is bounded. Note that E is reflexive and E* is also reflexive, we can
assume that Jyn ⇀ x* ∈ E*. Since E is reflexive, we see that J(E) = E*. Hence, there exists
x ∈ E such that Jx = x* and we have

φ(xn+, yn) = ‖xn+‖ – 〈xn+, Jyn〉 + ‖yn‖

= ‖xn+‖ – 〈xn+, Jyn〉 + ‖Jyn‖.

Taking lim infn→∞ on the both sides of the equality above, in view of the weak lower semi-
continuity of the norm ‖ · ‖, it follows that

 ≥ ‖p‖ – 
〈
p,x*

〉
+ ‖x*‖

= ‖p‖ – 〈p, Jx〉 + ‖Jx‖

= ‖p‖ – 〈p, Jx〉 + ‖x‖

= φ(p,x).
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From Remark ., we have p = x, which implies thatJyn ⇀ Jp as n → ∞. From the Kadec-
Klee property of E*, we obtain that

Jyn → Jp as n→ ∞. (.)

Note that J– : E* → E is demicontinuous, that is, yn ⇀ p as n → ∞. From the Kadec-Klee
property of E, it follows that

lim
n→∞ yn = p. (.)

From (.), (.), and (.), it follows that limn→∞ φ(q,un) = φ(q,p). Since un = Krnxn and
from Lemma ., we have

φ(un,xn) = φ(Krnxn,xn)≤ φ(q,xn) – φ(q,Krnxn) = φ(q,xn) – φ(q, zn) →  as n → ∞.

From (.), it follows that

‖un‖ → ‖p‖ as n→ ∞. (.)

Since {un} is bounded and E is also reflexive, we can assume that un ⇀ u ∈ E and we have

φ(un,xn) = ‖un‖ – 〈un, Jxn〉 + ‖xn‖.

Taking lim infn→∞ on the both sides of the equality above, in view of the weak lower semi-
continuity of the norm ‖ · ‖, it follows that

 ≥ ‖u‖ – 〈u, Jp〉 + ‖p‖

= φ(u,p).

FromRemark ., we have u = p, that is, un ⇀ p as n→ ∞. From the Kadec-Klee property
of E, we obtain that

lim
n→∞un = p. (.)

Since limn→∞ un = p and limn→∞ xn = p, we have that

lim
n→∞‖un – xn‖ = . (.)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞‖Jun – Jxn‖ = .

From rn > , we have ‖Jun–Jxn‖
rn →  as n→ ∞ and

f (un, y) +

rn

〈y – un, Jun – Jxn〉 ≥ , ∀y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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By (A),

‖y – un‖‖Jun – Jxn‖
rn

≥ 
rn

〈y – un, Jun – Jxn〉
≥ –f (un, y)

≥ f (y,un), ∀y ∈ C,

and un → p, we get f (y,p) ≤  for all y ∈ C. For  < t < , define yt = ty + ( – t)p. Then
yt ∈ C, which implies that f (yt ,p) ≤ . From (A), we obtain that

 = f (yt , yt) ≤ tf (yt , y) + ( – t)f (yt ,p) ≤ tf (yt , y).

Thus f (yt , y) ≥ . From (A), we have f (p, y) ≥  for all y ∈ C. Hence, p ∈ EP(f ).
Next, we show that p ∈ A–. From (.), (.), (.), and (.), it follows that

limn→∞ φ(q, zn) = φ(q,p). Since zn = Jrnxn and from Lemma ., we have

φ(zn,xn) = φ(Jrnxn,xn)≤ φ(q,xn) – φ(q, Jrnxn) = φ(q,xn) – φ(q, zn) →  as n→ ∞.

From (.), it follows that

‖zn‖ → ‖p‖ as n→ ∞. (.)

Since {un} is bounded and E is also reflexive, we can assume that zn ⇀ z ∈ E and we have

φ(zn,xn) = ‖zn‖ – 〈zn, Jxn〉 + ‖xn‖.

Taking lim infn→∞ on the both sides of the equality above, in view of the weak lower semi-
continuity of the norm ‖ · ‖, it follows that

 ≥ ‖z‖ – 〈z, Jp〉 + ‖p‖

= φ(z,p).

From Remark ., we have z = p, that is, un ⇀ p as n→ ∞. From the Kadec-Klee property
of E, we obtain that

lim
n→∞ zn = p. (.)

Since limn→∞ zn = p and limn→∞ xn = p, we have that

lim
n→∞‖zn – xn‖ = , (.)

and hence

lim
n→∞‖Jxn – Jzn‖ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/23
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From the condition {rn} ⊂ [d,∞) for some d > , we have

lim
n→∞


rn

‖Jxn – Jzn‖ = .

Thus, since zn = Jrnxn, we have

lim
n→∞‖Arnxn‖ = lim

n→∞

rn

‖Jxn – Jzn‖ = .

For any (w,w*) ∈ G(A), it follows from the monotonicity of A that 〈w – zn,w* – Arnxn〉 ≥
 for all n ≥ . Letting n → ∞, we get 〈w – p,w*〉 ≥ . Therefore, since A is maximal
monotone, we obtain p ∈ A–.
On the other hand, we have

φ(q,xn) – φ(q, yn) = ‖xn‖ – ‖yn‖ – 〈q, Jxn – Jun〉
≤ ‖xn – yn‖

(‖xn + yn‖
)
+ ‖q‖‖Jxn – Jyn‖.

In view of ‖xn – yn‖ →  and ‖Jxn – Jyn‖ →  as n→ ∞, we obtain that

φ(q,xn) – φ(q, yn) →  as n → ∞. (.)

From Lemma ., we have

φ(q, yn) = φ
(
q, J–αnJxn + βnJSnzn + γnJTnun

)
≤ ‖q‖ – 

〈
q,αnJxn + βnJSnzn + γnJTnun

〉
+

∥∥αnJxn + βnJSnzn + γnJTnun〉
∥∥

– αnβng
(‖Jxn – JSnzn‖

)
= αnφ(q,xn) + βnφ

(
q,Snzn

)
+ γnφ

(
q,Tnun

)
– αnβng

(‖Jxn – JSnzn‖
)

≤ φ(q,xn) + ζn – αnβng
(‖Jxn – JSnzn‖

)
. (.)

It follows from lim infn→∞ αnβn > , (.), (.), and the property of g that

lim
n→∞

∥∥Jxn – JSnzn
∥∥ = .

Since xn → p as n→ ∞ and J is uniformly continuous, it yields that Jxn → Jp, we have

JSnzn → Jp. (.)

Since J– is demicontinuous, we also have

Snzn ⇀ p. (.)

On the other hand, we observe that

∣∣∥∥Snzn∥∥ – ‖p‖∣∣ = ∣∣∥∥J(Snzn)∥∥ – ‖Jp‖∣∣ ≤ ∥∥J(Snzn) – Jp
∥∥,
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we obtain that ‖Snzn‖ → ‖p‖. Since E has the Kadee-Klee property, we get

lim
n→∞Snzn = p. (.)

By the assumption that S is uniformly L-Lipschitz continuous, we have

∥∥Sn+zn – Snzn
∥∥ ≤ ∥∥Sn+zn – Sn+zn+

∥∥ +
∥∥Sn+zn+ – zn+

∥∥ + ‖zn+ – zn‖ +
∥∥zn – Snzn

∥∥
≤ (L + )‖zn+ – zn‖ +

∥∥Sn+zn+ – zn+
∥∥ +

∥∥zn – Snzn
∥∥. (.)

Since limn→∞ zn = p and limn→∞ Snzn = p, it yields that ‖Sn+zn–Snzn‖ → , n→ ∞. From
Snzn → p, we get Sn+zn → p, that is, SSnzn → p. In view of the closeness of S, we have
Sp = p. This implies that p ∈ F(S). By the same way, we have that p ∈ F(T).
We show that p = �Fx. From xn = �Cnx, we have 〈Jx – Jxn,xn – v〉 ≥ , ∀v ∈ Cn. Since

F ⊂ Cn, we also have

〈Jx – Jxn,xn – y〉 ≥ , ∀y ∈ F .

By taking limit n→ ∞, we obtain that

〈Jx – Jp,p – y〉 ≥ , ∀y ∈ F .

By Lemma ., we can conclude that p = �Fx and xn → p as n → ∞. The proof is com-
pleted. �

Let A be a continuous and monotone operator of C into E*. Then we can find a solution
ofVI(A,C) in a uniformly smooth and strictly convex Banach space E with the Kadec-Klee
property by using the following lemma.

Lemma . (Zegeye and Shahzad []) Let C be a nonempty closed convex subset of a
uniformly smooth strictly convex real Banach space E. Let A : C → E* be a continuous
monotone mapping. For any r > , define a mapping Wr : E → C as follows:

Wrx =
{
z ∈ C : 〈y – z,Az〉 + 

r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}

for all x ∈ C. Then the following hold:
() Wr is single-valued;
() F(Wr) = VI(A,C);
() VI(A,C) is a closed and convex subset of C;
() φ(q,Wrx) + φ(Wrx,x)≤ φ(q,x) for all q ∈ F(Wr).

Corrollary . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly uniformly convex Banach space E with the Kadec-Klee property. Let f be a bifunc-
tion from C × C to R satisfying the conditions (A)-(A) and let A be a continuous and
monotone operator of C into E*. Let S : C → C be a closed and total quasi-φ-asymptotically
nonexpansive mapping with nonnegative real sequences νS

n , μS
n with νS

n → , μS
n →  as

n → ∞ and a strictly increasing continuous function ψS : R+ → R
+ with ψS() = . Let
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T : C → C be a closed and total quasi-φ-asymptotically nonexpansive mapping with non-
negative real sequences νT

n , μT
n with νT

n → , μT
n →  as n → ∞ and a strictly increasing

continuous function ψT : R+ → R
+ with ψT () = . Assume that S and T are uniformly

L-Lipschitz continuous and F = F(S) ∩ F(T) ∩ EP(f ) ∩ VI(A,C) �= ∅. For an initial point
x ∈ E, C = C, define the sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn =Wrnxn,

un = Krnxn,

yn = J–(αnJxn + βnJSnzn + γnJTnun),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ζn},
xn+ = �Cn+x, n ∈ N,

(.)

where {αn}, {βn} and {γn} are sequences in (, ) such that αn + βn + γn = , {rn} ⊂ [d,∞)
for some d >  μn = sup{μS

n,μT
n }, νn = sup{νS

n ,νT
n }, ψ = sup{ψS,ψT } for all n ≥ , ζ =

νn supq∈F ψ(φ(q,xn))+μn. If limn→∞ αnβn =  and lim infn→∞ αnγn < , then {xn} converges
strongly to �Fx.

Proof From the proof of Theorem ., we known that limn→∞ zn = p and limn→∞ xn = p.
We obtain that

lim
n→∞‖zn – xn‖ = , (.)

and hence

lim
n→∞‖Jxn – Jzn‖ = .

Since {rn} ⊂ [d,∞) for some d > , we have

lim
n→∞


rn

‖Jxn – Jzn‖ = . (.)

From the definition ofW , it follows that

〈y – zn,Anzn〉 + 
rn

〈y – zn, Jzn – Jxn〉 ≥ , ∀y ∈ C.

For  < t < , define yt = ty + ( – t)p, then yt ∈ C. We have

〈yt – zn,Anzn〉 + 
rn

〈yt – zn, Jzn – Jxn〉 ≥ , ∀yt ∈ C. (.)

It follows that

〈yt – zn,Anyt〉 ≥ 〈yt – zn,Anyt〉 – 〈yt – zn,Anzn〉 + 
rn

〈yt – zn, Jzn – Jxn〉

= 〈yt – zn,Anyt –Anzn〉 +
〈
yt – zn,

Jzn – Jxn
rn

〉
.
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SinceAn are continuous andmonotonemappings, we have 〈yt –zn,Anyt –Anzn〉 ≥ . From
(.) and (.), it follows that 〈yt – zn,Anyt〉 ≥ . Take the limit as n → ∞ and zn → p.
We get 〈yt – p,Anyt〉 ≥  for all yt ∈ C. Therefore, 〈y – p,Anyt〉 ≥  for all y ∈ C. If t → ,
we have that 〈y – p,Anp〉 ≥  for all y ∈ C. Hence, p ∈ VI(A,C). The proof is completed.

�

Corrollary . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly uniformly convex Banach space E with the Kadec-Klee property. Let A be a continu-
ous andmonotone operator of C into E* and let B ⊂ E×E* be amaximalmonotone operator
satisfying D(B) ⊂ C and Jrn = (J + rnB)–J for all rn > . Let S : C → C be a closed and to-
tal quasi-φ-asymptotically nonexpansive mapping with nonnegative real sequences νS

n , μS
n

with νS
n → , μS

n →  as n → ∞ and a strictly increasing continuous function ψS : R+ →
R

+ with ψS() = . Let T : C → C be a closed and total quasi-φ-asymptotically nonexpan-
sive mapping with nonnegative real sequences νT

n , μT
n with νT

n → , μT
n →  as n → ∞

and a strictly increasing continuous function ψT : R+ → R
+ with ψT () = . Assume that

S and T are uniformly L-Lipschitz continuous and F = F(S)∩ F(T)∩VI(A,C)∩ B– �= ∅.
For an initial point x ∈ E, C = C, define the sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = Jrnxn,

un =Wrnxn,

yn = J–(αnJxn + βnJSnzn + γnJTnun),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ζn},
xn+ = �Cn+x, n ∈ N,

(.)

where {αn}, {βn}, and {γn} are sequences in (, ) such that αn + βn + γn = , {rn} ⊂ [d,∞)
for some d >  μn = sup{μS

n,μT
n }, νn = sup{νS

n ,νT
n }, ψ = sup{ψS,ψT } for all n ≥ , ζ =

νn supq∈F ψ(φ(q,xn))+μn. If limn→∞ αnβn =  and lim infn→∞ αnγn < , then {xn} converges
strongly to �Fx.
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