
Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27
http://www.almob.org/content/7/27

RESEARCH Open Access

Separating metagenomic short reads into
genomes via clustering
Olga Tanaseichuk1*, James Borneman2 and Tao Jiang1

Abstract

Background: The metagenomics approach allows the simultaneous sequencing of all genomes in an environmental
sample. This results in high complexity datasets, where in addition to repeats and sequencing errors, the number of
genomes and their abundance ratios are unknown. Recently developed next-generation sequencing (NGS)
technologies significantly improve the sequencing efficiency and cost. On the other hand, they result in shorter reads,
which makes the separation of reads from different species harder. Among the existing computational tools for
metagenomic analysis, there are similarity-based methods that use reference databases to align reads and
composition-based methods that use composition patterns (i.e., frequencies of short words or l-mers) to cluster reads.
Similarity-based methods are unable to classify reads from unknown species without close references (which
constitute the majority of reads). Since composition patterns are preserved only in significantly large fragments,
composition-based tools cannot be used for very short reads, which becomes a significant limitation with the
development of NGS. A recently proposed algorithm, AbundanceBin, introduced another method that bins reads
based on predicted abundances of the genomes sequenced. However, it does not separate reads from genomes of
similar abundance levels.

Results: In this work, we present a two-phase heuristic algorithm for separating short paired-end reads from different
genomes in a metagenomic dataset. We use the observation that most of the l-mers belong to unique genomes
when l is sufficiently large. The first phase of the algorithm results in clusters of l-mers each of which belongs to one
genome. During the second phase, clusters are merged based on l-mer repeat information. These final clusters are
used to assign reads. The algorithm could handle very short reads and sequencing errors. It is initially designed for
genomes with similar abundance levels and then extended to handle arbitrary abundance ratios. The software can be
download for free at http://www.cs.ucr.edu/∼tanaseio/toss.htm.

Conclusions: Our tests on a large number of simulated metagenomic datasets concerning species at various
phylogenetic distances demonstrate that genomes can be separated if the number of common repeats is smaller
than the number of genome-specific repeats. For such genomes, our method can separate NGS reads with a high
precision and sensitivity.

Keywords: Metagenomics, NGS short reads, Genome separation, Clustering

Background
Metagenomics [1] is a new field of study that provides
a deeper insight into the microbial world compared to
the traditional single-genome sequencing technologies.
Traditional methods for studying individual genomes
are well developed. However, they are not appropriate
for studying microbial samples from the environment

*Correspondence: tanaseio@cs.ucr.edu
1Department of Computer Science and Engineering, University of California,
Riverside, CA, USA
Full list of author information is available at the end of the article

because traditional methods rely upon cultivated clonal
cultures while more than 99% of bacteria are unknown
and cannot be cultivated and isolated [2]. Metagenomics
uses technologies that sequence uncultured bacterial
genomes in an environmental sample directly [3], and thus
makes it possible to study organisms which cannot be iso-
lated or are difficult to grow in a lab. It provides hope for a
better understanding of natural microbial diversity as well
as their roles and interactions. It also opens new oppor-
tunities for medicine, biotechnology, agricultural studies
and ecology.

© 2012 Tanaseichuk et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81888101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.ucr.edu/~tanaseio/toss.htm

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 2 of 15
http://www.almob.org/content/7/27

Many well-knownmetagenomics projects use the whole
genome shotgun sequencing approach in combination
with Sanger sequencing technologies. This approach has
produced datasets from the Sargasso Sea [4], Human
Gut Microbiome [5] and Acid Mine Drainage Biofilm [6].
However, new sequencing technologies have evolved over
the past few years. The sequencing process has been
greatly parallelized, producing millions of reads with
much faster speed and lower cost. Since NGS technologies
are much cheaper, they allow sequencing to be performed
at a much greater depth. The only drawback is that read
length is reduced - NGS reads are usually of lengths
25-150 (Illumina/SOLiD) compared to 800-1000 bps in
Sanger reads.
The primary goals of metagenomics are to describe the

populations of microorganisms and to identify their roles
in the environment. Ideally, we want to identify complete
genomic sequences of all organisms present in a sample.
However, metagenomic data is very complex, containing
a large number of sequence reads from many species.
The number of species and their abundance levels are
unknown. The assembly of a single genome is already a
difficult problem, complicated by repeats and sequencing
errors which may lead to high fragmentation of contigs
and misassembly. In a metagenomic data, in addition to
repeats within individual genomes, genomes of closely
related species may also share homologous sequences,
which could lead to even more complex repeat patterns
that are very difficult to resolve. A lot of research has been
done for assembling single genomes [7-10]. But due to the
lack of research on metagenomic assemblers, assemblers
designed for individual genomes are routinely used in
metagenomic projects [4,6]. It has been shown that these
assemblers may lead not only to misassembly, but also
severe fragmentation of contigs [11]. A plausible approach
to improve the performance of such assemblers is to sep-
arate reads from different organisms present in a dataset
before the assembly.
Many computational tools have been developed for sep-

arating reads from different species or groups of related
species (we will refer to the problem as the clustering
of reads). Some of the tools also estimate the abundance
levels and genome sizes of species. These tools are usu-
ally classified as similarity-based (or phylogeny-based)
and composition-based. The purpose of similarity-based
methods is to analyze the taxonomic content of a sam-
ple. Small-scale approaches involving 16S rRNAs and
18S rRNAs [12] are commonly used to determine evolu-
tionary relationships by analyzing fragments that contain
marker genes and comparing them with known marker
genes. These methods take advantage of small number of
fragments containing marker genes and require reads to
have at least 1000 bps. Two other tools handle a larger
number of fragments: MEGAN [13] and CARMA [14].

MEGAN aligns reads to databases of known sequences
using BLAST [15] and assigns reads to taxa by the lowest
common ancestor approach. CARMA performs phyloge-
netic classification of unassembled reads using all Pfam
domains and protein families as phylogenetic markers.
These two methods work for very short reads (as short as
35 bps for MEGAN and 80 bps for CARMA). However,
a large fraction of sequences may remain unclassified by
these methods because of the absence of closely related
sequences in the databases.
The second class of methods use compositional proper-

ties of the fragments (or reads). These methods are based
on the fact that some composition properties, such as
CG content and oligonucleotide frequencies are preserved
across sufficiently long fragments of the same genome,
and vary significantly between fragments from different
organisms.K-mer frequency is themost widely used char-
acteristics for binning. For example, the method in [16]
utilizes the property that each genome has a stable dis-
tribution of k-mer frequencies for k = 1.6 in fragments
as short as 1000 bps. It shows that these fragments have
very similar “barcodes” and thus can be clustered based on
their barcode similarities. Barcode similarity also corre-
lates with phylogenetic closeness between genomes. The
main challenge in the k-mer frequency approach is that
these frequencies produce large feature vectors, which can
be even larger than the sizes of fragments. Different meth-
ods have been proposed to deal with this problem. Com-
postBin [17], which uses hexamer frequencies, adopts a
modified principle component analysis to extract the top
three meaningful components and then cluster the reads
based on principal component values. Self-organizing
maps are another way to reduce dimensionality by map-
pingmultidimensional data to two dimensional space. The
work in [18] uses SOMs for tri- and tetranucleotide fre-
quency vectors. In TETRA [19], z-scores are computed for
tetranucleotide frequencies and fragments are classified
by the Pearson correlation of their z-scores. MetaClus-
ter 3.0 [20] uses Spearman Footrule distance between
k-mer feature vectors. Another composition feature is
used in TACOA [21]: the ratio between observed oligonu-
cleotide frequencies and expected frequencies given the
CG content. To cluster fragments, the k-NN approach is
combined with the Gaussian kernel function. The main
limitation of composition basedmethods is that the length
of fragments may significantly influence their perfor-
mance. In general, these methods are not suitable for
fragments shorter than 1000 bps [22].
AbundanceBin [23] is a recently developed tool for

binning reads that uses an approach different from the
above similarity and composition based techniques. It is
designed to separate reads from genomes that have dif-
ferent abundance levels. It computes frequencies of all
l-mers in a metagenomic dataset and, assuming that these

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 3 of 15
http://www.almob.org/content/7/27

frequencies come from amixture of Poisson distributions,
predicts the abundance levels of genomes and clusters
l-mers according to their frequencies. Then reads are
clustered based on the frequencies of their l-mers. This
method is suitable for very short NGS reads. The limita-
tion is that genomes whose abundance levels do not differ
very much (within ratio 1:2) will not be separated.
In this paper, we present a two-phase heuristic algo-

rithm for separating short paired-end reads from different
organisms in a metagenomic dataset, called TOSS (i.e.,
TOol for Separating Short reads). The basic algorithm is
developed to separate genomes with similar abundance
levels. It is based on several interesting observations about
unique and repeated l-mers in a metagenomic dataset,
which enables us to separate unique l-mers (each of
which belongs to only one genome and is not repeated)
from repeats (l-mers which are repeated in one or more
genomes) at the beginning of the first phase of the algo-
rithm. During the first phase, unique l-mers are clustered
so that each cluster consists of l-mers from only one of
the genomes. This is possible due to the observation that
most l-mers are unique within a genome and, moreover,
within a metagenomic dataset. During the second phase,
we find connections between clusters through repeated
regions and then merge clusters of l-mers that are likely to
belong to the same organism. Finally, reads are assigned
to clusters. In order to handle metagenomic datasets with
genomes of arbitrary abundance ratios, we combine the
method with AbundanceBin which attempts to separate
l-mers from genomes with significantly different abun-
dance levels. The integrated method works for very short
reads, and is able to handle multiple genomes with arbi-
trary abundance levels and sequencing errors. We test
the method on a large number of simulated metagenomic
datasets for microbial species with various phylogenetic
closeness according to the NCBI taxonomy [24,25] and
show that genomes can be separated if the number of
common repeats is less then the number of genome-
specific repeats. For example, genomes of different species
of the same genus often have a large number of common
repeats and thus are very hard to separate. In the tests, our
method is able to separate fewer than a half of groups of
such closely related genomes. However, with the decrease
in the fraction of common repeats, the ability to accu-
rately separate genomes significantly increases. Due to the
lack of appropriate short read clustering tools for compar-
ison, we modify a well-known genome assembly software,
Velvet [26], to make it behave like a genome separation
tool and compare our clustering results with those of the
modified Velvet.
The paper is organized as follows. In the “Methods”

section, we consider properties of l-mers in a metage-
nomic dataset and make several observations which form
the intuition behind the algorithm, present the main

algorithm, and extend the algorithm to handle arbitrary
abundance ratios. The “Experimental results” section
gives the comparison with the modified Velvet on short
reads and comparison with the well-known composition-
based tool CompostBin on longer reads.

Methods
Preliminaries
The algorithm we are going to present is based on l-mers
from metagenomic reads. In this section, we will discuss
some properties of l-mers that are important for our algo-
rithm, and also make some important observations that
lead to the intuition behind the algorithm.
First, let us analyze the expected number of occurrence

of l-mers in reads sequenced from a single genome of
lengthG. Let the number of paired-end reads beN (which
corresponds to 2N read sequences) and read length L. In
shotgun sequencing projects, as well as NGS, the reads are
randomly distributed across the genome. Since reads may
begin at any positions of the genome with equal proba-
bility, Lander and Waterman suggested that the left ends
of reads follow a Poisson distribution [27], which means
that the probability for a read to begin at a given posi-
tion of the genome is α = 2N/(G − L + 1) and the
number of reads starting at each position has a Poisson
distribution with parameter α. Consider a substring wi of
length l that begins at the i-th position of the genome.
Let x(wi) be the number of reads that cover this particular
l-mer. Since there are L − l + 1 possible starting posi-
tions for such reads, x(wi) has a Poisson distribution with
parameter λ = α(L − l + 1) (this parameter represents
the effective coverage [27,28]). This analysis assume that
the l-mer wi occurs uniquely in the genome, but in gen-
eral, an l-mer may occur multiple times. Suppose that an
l-merw has n(w) copies in the genome located at positions
i1, . . ., in(w). Then the total number of reads containingw is

x(w) =
n(w)∑
j=1

x(wij). If we assume that a read covers at most

one copy of w, then x(wij), j = 1,. . . , n(w), are independent
and identically distributed. So by the additivity property of
the Poisson distribution, the total number of occurrences
of w in the reads, x(w), follows a Poisson distribution with
parameter α(L − l + 1)n(w). In [29], this model is used
to find repeat families for a single genome, where a repeat
family is a collection of l-mers that have the same number
of copies in the genome.
In a metagenome, besides repeats that occur within

individual genomes, genomes of different species may
share common l-mers. Consider S genomes gj, j=1 , . . . , S,
and assume that an l-mer w has nj(w) copies in each
genome gj, j=1 ,. . . , S. Then the number of reads contain-

ing w is x(w) =
S∑

j=1
αj(L − l + 1)nj(w) =

S∑
j=1

λjnj(w),

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 4 of 15
http://www.almob.org/content/7/27

where λj represents the effective coverage of genome gj.
Since sequencing depth is the same for all genomes, we
will refer to it as the abundance. This model is quite diffi-
cult to use in practice because we do not know the number
of genomes and their repeat structures, common repeats
and abundance levels. A simplification of this model is
used in AbundanceBin [23], by assuming that for large
enough l, most l-mers appear only once in the genomes
(not that in AbundanceBin, 20-mers are considered, com-
pared to 12-mers considered in [29]). This allows the
authors to estimate the abundance levels of genomes by
modeling the abundance levels of the genomes as a mix-
ture of Poisson distributions, where the parameters are
the abundance levels of the genomes and their observed
values are the counts of the l-mers (i.e., the number of
reads containing these l-mers). This approach works well
if the abundance levels are sufficiently different. Also, it is
applicable only if the above simplifying assumption holds.
Below, we will discuss the validity of this assumption in
real bacterial genomes and make three important obser-
vations about the distribution of l-mers. Before going into
the details of the observations, let us introduce some
notations. Consider two different genomes, g1 and g2,
of lengths G1 and G2. Let ndist1 denote the number of
distinct l-mers in g1, n

uniq
1 the number of l-mers that

have only one copy in g1 (we will call them the unique
l-mers in g1) and ntot1 the total number of l-mers in g1
(including copies). Obviously ntot1 = G1 − l+ 1. The nota-
tions for genome g2 are defined similarly (see Figure 1
for an illustration of these notations). Our first observa-
tion is the following: (1) Most of the l-mers in a bacterial

Figure 1 Unique and repeated l-mers. A and G: unique l-mers; B
and F: individual repeats; C, D, E, and H: common repeats where C
and E contain repeats only for one of the genomes, D contains
repeats for both genomes, and H contains l-mers that are common to
both genomes. Note that ndist1 = A + B + C + D + E + H ,

ndist2 = C + D+ E + F + G+ H, nuniq1 = A+ E + H, nuniq2 = G+ C + H,
ndist = A + B + C + D + E + F + G + H and nuniq = A + G.

genome are unique in this genome. To confirm it, we have
computed the ratio of unique l-mers to distinct l-mers for
all complete bacterial genomes downloaded from NCBI.
Figure 2 shows the estimated density of this value. We
can conclude that fraction of unique l-mers with l = 20
is between 96% and 100% for most of complete bacterial
genomes.
In order to explain the second observation, let us intro-

duce more notations. Let us consider l-mers from two
genomes g1 and g2. Denote by ndist the total number
of distinct l-mers in both genomes together. We say
that an l-mer is unique if it is present only in one
genome and, moreover, unique in this genome. Then nuniq
denotes the number of unique l-mers in the genomes.
Obviously, nuniq1 + nuniq2 ≥ nuniq, because some l-mers
that are unique in one genome may not be unique
in both genomes due to common repeats. Our second
observation is concerned with the percentage of unique
l-mers in a metagenome: (2) Most l-mers are unique
in a metagenome if it consists of genomes of species
separated by sufficiently large phylogenetic distances. To
validate it, we show that the number of l-mers that are
unique in an individual genome but are not unique in the
metagenome is small. We compute this value for pairs
of genomes separated by different taxonomic distances.
Figure 3 shows the density function of the fraction of
l-mers that lost their uniqueness due to common repeats,
i.e. 1 − nuniq/(nuniq1 + nuniq2). We can see that the big-
ger is the phylogenetic distance, the fewer unique l-mers
are lost.
From now on, by “unique l-mers” we will mean l-mers

that appear only once in all the genomes. The remaining
l-mers are repeats.We will further classify the repeats into
two groups: individual repeats are l-mers which appear
only in one genome (but have several copies) and com-
mon repeats are l-mers that appear in at least two genomes
(see Figure 1). Our final observation is: (3) If genomes
are separated by sufficient phylogenetic distances (they
are at least from different families), then most of the
repeats are individual repeats. In addition, the bigger is
the phylogenetic distance between genomes, the fewer the
common repeats. Figure 4 demonstrates the validity of
this observation.
Our algorithm is based on these three observations.

Since most of the l-mers are unique in a metagenome,
we can cluster the unique l-mers by using their com-
mon membership in reads so that each cluster contains
l-mers from only one genome in the first phase. The
second phase of our algorithm uses the property that
most of repeats are specific to an individual genome.
This allows us to merge clusters using the repeated
l-mers in the metagenome. Figure 5 illustrates a flowchart
of our algorithm. Each main step of the algorithm is
explained below.

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 5 of 15
http://www.almob.org/content/7/27

85 90 95 100

0.
0

0.
2

0.
4

0.
6

0.
8

unique_to_distinct

E
st

im
at

ed
 d

en
si

ty

l = 20
l = 18
l = 16
l = 14

85 90 95 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

unique_to_total

E
st

im
at

ed
 d

en
si

ty

l = 20
l = 18
l = 16
l = 14

Figure 2 The fraction of unique l-mers. Estimated density functions of the fraction of unique l-mers in fully sequenced bacterial genomes for
l = 14, 16, 18, 20. Left: the ratio of unique l-mers to distinct l-mers. Right: the ratio of unique l-mers to total l-mers.

Finding unique l-mers
Before performing the first phase of the algorithm, which
clusters the unique l-mers, l-mers have to be separated
into unique l-mers and repeats. This is done by choosing
a threshold value K for the counts of l-mers so that l-mers

with counts less than K are most likely unique and the
remaining are most likely repeats. Below, we discuss how
to chose K.
First, consider error-free metagenomic reads of

genomes with equal abundance levels. Let n be the

0 20 40 60 80 1000.
00

0.
10

0.
20

0.
30

The faction of lost unique l−mers

E
st

im
at

ed
 d

en
si

ty

0 5 15 25 35

0.
0

1.
0

2.
0

3.
0

The faction of lost unique l−mers

E
st

im
at

ed
 d

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

The faction of lost unique l−mers

E
st

im
at

ed
 d

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
20

30

The faction of lost unique l−mers

E
st

im
at

ed
 d

en
si

ty

Figure 3 The fraction of lost unique l-mers. Estimated density of the ratio of the number of unique l-mers nuniq to the total number of l-mers that
are unique in an individual genome, nuniq1 + nuniq2 . Top left: pairs of genomes from the same genus but different species. Top right: pairs of genomes
from the same family but different genera. Bottom left: pairs of genomes from the same order but different families. Bottom right: pairs of genomes
from the same class but different orders.

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 6 of 15
http://www.almob.org/content/7/27

0 20 40 60 80 1000.
00

0.
02

0.
04

The fraction of common repeats

E
si

tm
at

ed
 d

en
si

ty com_rep_d/all_rep_dist
com_rep_total/all_rep_total

0 20 40 60 80 1000.
00

0.
02

0.
04

The fraction of common repeats

E
si

tm
at

ed
 d

en
si

ty com_rep_d/all_rep_dist
com_rep_total/all_rep_total

0 20 40 60 80 1000.
00

0.
05

0.
10

0.
15

The fraction of common repeats

E
si

tm
at

ed
 d

en
si

ty com_rep_d/all_rep_dist
com_rep_total/all_rep_total

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

The fraction of common repeats

E
si

tm
at

ed
 d

en
si

ty com_rep_d/all_rep_dist
com_rep_total/all_rep_total

Figure 4 The fraction of common repeats. Estimated density function of the ratio of the number of common repeats (or distinct common
repeats) to the total number of all distinct repeats (or all repeats, respectively). Top left: pairs of genomes from the same genus but different species.
Top right: pairs of genomes from the same family but different genera. Bottom left: pairs of genomes from the same order but different families.
Bottom right: pairs of genomes from the same class but different orders.

number of distinct l-mers w1,w2, . . . ,wn with counts
x(w1), x(w2), . . . , x(wn). Let n(i) be the number of distinct
l-mers with counts i. As we discussed in the previous
section, the unique l-mers follow a Poisson distribution
and we may approximate the parameter of the Poisson

distribution by the most frequent count of any l-mers
because most l-mers are supposed to be unique. Then,
given the estimated parameter, we can estimate the
expected number of l-mers with counts i, y(i). Figure 6
shows the count distributions of unique and non-unique

Get l-mers

Find unique
l-mers

Cluster unique l-mers s.t. in
each cluster l-mers are form

the same genome

Merge clusters that potentially belong
to the same genome

Assign Reads

Metagenomic Reads

P
re

-p
ro

ce
ss

in
g

P
ha se

1
P

has e
2

P
os t- processi ng

Figure 5 Flowchart of the algorithm.

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 7 of 15
http://www.almob.org/content/7/27

l-mers, where the non-unique l-mers (i.e., repeats) are
assumed to be from a mixture Poisson distributions and
the shaded area shows the expected rate of misclassified
l-mers for the given threshold value K. In the figure, if
we choose the threshold higher or lower, more repeats
or unique l-mers would be undetected, respectively. As
a balance, we would choose the intersection point of the
two distributions as shown in Figure 6. Although we do
not know the distribution of the repeats, we can see that
the observed number of l-mers with count K is twice the
expected number of unique l-mers with count K, and this
ratio increases for count values greater than K. Based on
this intuition, we can estimate the value of K. The details
are given in Figure 7. A similar approach is used to deal
with sequencing errors, by finding a threshold value for
counts of l-mers that separates unique l-mers and l-mers
with errors.
The set U of unique l-mers is then used to construct

a graph which can help detect more repeats and will be
used to do the clustering. The nodes of the graphG corre-
spond to the elements of U and there is an edge between
two nodes if both l-mers are contained in a same read. To
remove previously undetected repeats, we use the fact that
nodes that correspond to truly unique l-mers cannot have
more than 2(L − l) neighbors.

Clustering the unique l-mers
We use graph G described above to perform the cluster-
ing. The purpose is to obtain clusters so that each cluster
contains unique l-mers from only one genome. Note that
the number of such clusters for each genome can be
large. We initialize the first cluster with the l-mers from
a randomly selected read and then iteratively find sets of
unclustered nodes that are connected to at least T nodes
in the current cluster (the choice of T is discussed later
in the subsection). It is important to note that the num-
ber of unique l-mers we can add at each step is limited by
2(L − (l + T) + 1), since we could add l-mers from both
ends of a read. If we need to add more than this many
l-mers at some step, it means that we have encountered

Figure 7 Algorithm 1. Detection of unique and repeated l-mers.
Given l-mers wi , i = 1, . . . , n, and their counts n(wi), the algorithm
classifies l-mers into repeats R and unique l-mers U.

true repeats that have not been removed and thus we stop
expanding the current cluster. We also stop expanding the
current cluster if no more nodes could be added. Then we
go to the next iteration and construct the next cluster. For
each such subsequent iteration, we initialize a new cluster
with l-mers from some read that does not correspond to
any of the current clusters. A read corresponds to a clus-
ter if at least a half of its l-mers belong to the particular
cluster. We create new clusters until there are no more
unclustered reads left. At the end of clustering, we obtain
a set of disjoint clusters of l-mers. The paired-end infor-
mation is then used to consolidate the clusters. The details
are given in Figure 8.

K

Frequency

Counts of
l-mers

Figure 6 Threshold choice for the separation of l-mers from different distributions. K is a threshold to separate l-mers from two distributions.

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 8 of 15
http://www.almob.org/content/7/27

Figure 8 Algorithm 2. Clustering of the unique l-mers. Given the
graph of unique l-mers G = (U, E), cluster l-mers in U.

Threshold T (the minimum required number of edges
between an unclustered node and the nodes in a cluster
so that the node can be added to this cluster) is chosen
to make the expected number of coverage gaps less than
one. Recall that the effective coverage is Cov = 2N(L −
(l + T) + 1)/(G − L + 1) and expected number of gaps is
2Ne−Cov [28].

Merging clusters and the final clustering of metagenomic
reads
The goal of the second phase is to merge clusters obtained
during the previous phase, based on the repeats and infor-
mation provided by the paired-end reads. First, for each
cluster Ci, we compute the set of repeats Ri that may

potentially belong to the same genome as the unique
l-mers in Ci. Each Ri consists of two types of l-mers. For
each read corresponding to clusterCi, it may contain some
number of repeats. These repeated l-mers are assigned
to the set Ri. For each read corresponding to Ci, we also
consider its mate (in a paired-end read) and add to Ri all
l-mers of the mate that have not been assigned to any
clusters. Then for each pair of sets Ri and Rj, we find the
intersection of these sets, Rij. Then, we build a weighted
graph F, where nodes correspond to clusters Ci and the
weight of an edge (i, j) equals the size of set Rij. Finally,
the clusters are merged by using the algorithm MCL [30]
on the graph F. MCL is an efficient algorithm for cluster-
ing sparse weighted graphs and ideal for our situation. To
avoid confusion, we will call clusters produced by MCL
the m-clusters. MCL has a parameter (we denote it by r),
corresponding to granularity of clusters. We use an iter-
ative algorithm to find the best parameter so that the
m-clusters are big enough (in terms of the number of
l-mers contained in each m-cluster) and the total weight
of connections between elements within an m-cluster is
higher than the total weight of connections between two
different m-clusters. Let us call m-clusters that satisfy the
first property big, and a subset of big m-clusters that sat-
isfy the second property (with respect to all other big
m-clusters) valid. We start with a parameter r which cor-
responds to a high granularity and evaluate the resultant
clusters in terms of size and validity. Based on the eval-
uation, we either decrease the parameter to have less
granularity or choose the current value of r as the parame-
ter for MCL. We obtain final clusters of the unique l-mers
by merging clusters that belong to the samem-cluster (see
Figure 9 in for details).
Now we discuss how to define big and valid m-clusters.

The minimum size of a big m-cluster is specified by the
user based on the minimum expected length of a genome.
Valid m-clusters are chosen from big m-clusters in the fol-
lowing way. Let Wjj and Wii be the total weights of the
connections within each of the m-clusters j and i, andWij
the total weight of the connections between these two m-
clusters. The big m-cluster i is defined to be valid if for

every other big m-clusters j, the inequality
√

Wij
WiiWjj >

10−3 holds. The threshold of 10−3 is chosen empirically.
In the final step of the algorithm, the reads are assigned

to the resultant clusters of unique l-mers. Iterative algo-
rithm is used to assign the reads. At the first step, each
reads that correspond to some cluster is assigned to this
cluster. During the second step, unassigned reads that
have assigned mates are assigned to the same clusters as
their mates. In the third step, for each cluster of unique
l-mers we add all the l-mers from the reads assigned to the
cluster. We iteratively repeat the three steps for the unas-
signed reads until no more reads can be assigned. If the

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 9 of 15
http://www.almob.org/content/7/27

Figure 9 Algorithm 3.Merging clusters. Given the weighted graph
F = (C,W), construct the m-clusters.

read correspond to several clusters, we assign it to one of
the clusters.

Handling genomes with arbitrary abundance levels
We would like to extend the above algorithm to metage-
nomic data containing genomes with different abundance
levels. If the abundance level difference is not significant,
the above algorithm would still work well. In this case,
the number of wrongly determined unique l-mers and
repeats in the first phase of the algorithm may slightly
increase, but the clustering of l-mers based on their counts
using the Poisson mixture model may incur a significantly
higher drop of performance. For genomes with signifi-
cantly different abundance levels, it makes sense to first
separate reads according to genome abundance levels.
Otherwise, repeats from genomes with lower abundance
levels will not be detected, which could lead to a sig-
nificant increase of granularity in the clustering result
produced by the first phase of the above algorithm. For
this reason, we propose to use the algorithm Abundance-
Bin [23] for the initial abundance-based binning of reads.
Then we run the first phase of our method for each of the
subsets of reads. For the second phase, we use all the reads
to find the connections between clusters so that connec-
tions between clusters from genomes with low abundance
levels are properly recovered, but MCL is performed on
each subset separately.

A key question is what ratios of abundance levels should
be considered as significant? This ratio depends on the
actual values of abundance levels and also on the sizes of
the genomes. Given abundance levels λ1 and λ2 (λ1 < λ2),
genome sizes G1 and G2, and a threshold K for classifying
l-mers into the two genomes based on count frequen-
cies, we can estimate the expected rate of misclassified
l-mers from the count distributions of the l-mers in these
two genomes as discussed in the “Methods” section. More
specifically, the shaded area in Figure 6 represents the
expected fraction of misclassification for two distribu-

tions. The number of l-mer in this area is l2
K−1∑
i=1

λi2e
−λ2

i! +

l1
Max∑
i=K

λi1e
−λ1

i! . So, we first use AbundanceBin to predict

the parameters of count distributions (i.e., the abundance
ratios and genome sizes) and then compute the expected
rate of misclassification. If this rate is unacceptable (we
used 3% as the threshold in the experiments), it means
that the abundance levels are not significantly different
and thus we do not run AbundanceBin.

Experimental results
We test the performance of our algorithm on a variety of
synthetic datasets with different numbers of species, phy-
logenetic distances between species, abundance ratios and
sequencing error rates. Although simulated datasets do
not capture all characteristics of real metagenomic data,
there are no real benchmark datasets for NGS metage-
nomic projects and thus they are the only available option.
Also, to the best of our knowledge, there are no algorithms
that are designed specifically for separating short NGS
reads from different genomes. Although similarity-based
methods work on short reads, they explore the taxo-
nomic content of metagenomic data according to known
genomes rather than classifying reads. AbundanceBin
classifies reads, but it does not separate genomes with sim-
ilar abundance levels. Therefore, we modify a well-known
genome assembly software, Velvet [26], to make it behave
like a genome separation tool and compare our cluster-
ing results with those of the modified Velvet. In addition,
we compare the performance of our algorithm with the
well-known composition-based method CompostBin [17]
on simulated metagenomic Sanger reads. We also apply
the algorithm to a real metagenomic dataset obtained
from gut bacteriocytes of the glassy-winged sharp-
shooter and achieve results consistent with the original
study [31].

Simulated data sets
We use MetaSim [32] to simulate paired-end Illumina
reads for various bacterial genomes to form metage-
nomic datasets. MetaSim is a software for generating

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 10 of 15
http://www.almob.org/content/7/27

metagenomic datasets with controllable parameters, such
as the abundance level of each genome, read length,
sequencing error rate and distribution of errors. Thus, it
can be used to simulate different sequencing technologies
and generate reads from available completely sequenced
genomes (for example, those in the NCBI database). In
our experiments, paired-end reads of length 80 bps are
considered, with the mean insert size 500 bps and devi-
ation 20 bps. The number of reads for each experiment
is adjusted to produce sufficient coverage depth (ranging
between 15 and 30). The sequencing error model is set
according to the error profile of 80 bps Illumina reads. A
detailed description ofMetaSim parameters is provided in
Additional file 1.
The first experiment is designed to test the performance

of our method on a large number of datasets of vary-
ing phylogenetic distances. For this experiment, we create
182 synthetic datasets of 4 categories. Each dataset of the
first category contains genomes from the same genus but
different species. Datasets in the second category consist
of genomes from the same family but different genera,
datasets in the third category involve genomes from the
same order but different families, and datasets in the
fourth category involve genomes from the same class but
different orders. Genomes in each test are randomly cho-
sen according to a category of phylogenetic distances and
assumed to have the same abundance levels. The num-
ber of genomes in the datasets varies from 2 to 10 and
depends on the number of available complete sequences
for each taxonomic group and on the level of the group.
Tests on genomes from the same genus typically involve
2 to 4 genomes since such genomes are similar to each
other and hard to separate, while tests on genomes from
the same class may involve up to 10 genomes. Totally, we
have 79 experiments concerning a genus, 66 concerning a
family, 29 concerning an order, and 8 concerning a class.
These datasets involve 515 complete genomes from the
NCBI.
We also performed some small-scale experiments to test

the performance on genomes with different abundance
levels and on reads with sequencing errors. For each of the
experiments, we choose 10 random sets of genomes from
the 182 datasets. For each set of genomes, two metage-
nomic dataset are simulated, one with abundance ratio 1:2
and and the second with the error model but abundance
ratio 1:1. Finally, we test the performance of the combi-
nation of our algorithm and AbundanceBin on a dataset
of 4 genomes with abundances 1:1:4:4. The exact species
combinations used in all simulated datasets are listed in
Additional file 2.

Comparison with modified velvet
Due to the lack of methods for separating short NGS
reads into genomes, we modify a well-known genome

assembler, Velvet [26], so it behaves like a genome sepa-
rator. Genome assemblers such as Velvet often work with
metagenomic data and produce contigs that may actually
correspond to sections of individual genomes. Hence, we
run Velvet to obtain a set of contigs and use each con-
tig to define a cluster of l-mers. This is equivalent to the
first phase of our algorithm. The only difference is that
all l-mers (instead of unique l-mers) are clustered. For
each read contained in a cluster, we add the l-mers in
the mate of the read to the cluster, and then construct a
weighted graph whose nodes represent clusters and edges
are weighted by the number of common l-mers shared
by the clusters connected by each edge. Finally, we apply
our merging algorithm to the constructed graph. Based
on a series of experiments with the Velvet parameters,
we chose l-mer length as 31, which results in the highest
N50 in most of the experiments. We also set the cover-
age cutoff to half the coverage (i.e., abundance level) of
the least abundant genome in the dataset, so that Velvet
can deal with genomes with different abundance levels
without filtering out low coverage contigs.

Performance evaluation
To evaluate the results of clustering, there are a number
of factors that should be considered. First of all, we would
like most of the reads from each genome to be located in
one cluster. In other words, each genome should corre-
spond to a unique cluster that contains most of its reads.
We say that a genome has been broken if there is no cluster
that contains more than a half of all its reads. It may hap-
pen that several genomes correspond to the same cluster.
In this case, we assign the cluster to all the genomes, and
say that the genomes are not separated. We will measure
the performance of our algorithm in terms of pairwise
separability. For example, if a dataset contains 5 genomes,
where 3 of them are located in one cluster, and each of
the other two are located in its own cluster, then in the
pairwise evaluation, we consider the separability of all 10
pairs of genomes. Since 3 pairs of genomes are not sepa-
rated while the other 7 are separated, the separability rate
is 70%. During the separability analysis, we remove broken
genomes from consideration. Besides separability, we are
interested in the precision and sensitivity of our algorithm
on the separated genomes. Since we assign a genome to
the cluster that has most of its reads, it is also interesting
to know how many of its reads are wrongly assigned to
other clusters.We call this sensitivity. One way to estimate
sensitivity is to compute how many reads are correctly
assigned to each cluster and divide it by the total number
of reads that should be in this cluster. Here, true posi-
tives are the reads from all genomes located in this cluster.
However, consider the case when we have two genomes
in a cluster, of lengths 1 Mbps and 5 Mbps respectively.
Then, even if sensitivity is very low for the first genome,

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 11 of 15
http://www.almob.org/content/7/27

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Fraction of distinct common repeats

E
st

im
at

ed
 d

en
si

ty

pairs sep.
pairs not sep.

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Fraction of distinct common repeats

E
st

im
at

ed
 d

en
si

ty

pairs sep.
pairs not sep.

Figure 10 The fraction of distinct common repeats for separated and unseparated genomes. Estimated density function of the ratio of the
number of distinct common repeats to the number of distinct repeats. Left: pair of genomes from the same genus but different species. Right: pairs
of genomes from the same family but different genera.

the overall sensitivity (for all genomes in the cluster) will
not be significantly affected. Another way to normalize
sensitivity is by computing sensitivity for each genome in
the cluster separately and then to find the average of these
sensitivities. We use the second approach. To compute
precision of a cluster, we find the ratio of the reads that
are wrongly assigned to the cluster to the total number of
reads in the cluster.
To summarize the results for a set of experiments, we

compute separability based on the total number of pairs
of genomes in all the experiments. For the precision and
sensitivity, we take the average values for all the clusters
from all the experiments.

Experiments on genomes separated by different
phylogenetic distances
Our experimental results on metagenomic datasets con-
taining genomes with different phylogenetic distances are
summarized in Table 1. For genomes from the same genus,
separability rate is 45%. It increases to 77% for genomes
from the same family and more than 97% for higher level

taxonomic categories. For separated pairs of genomes,
our sensitivity increases from 90% for genomes from the
same genus to 95% for genomes from the same order. The
range of precision is from 95% to 98%. These results are
consistent with our expectation for correlation between
separability and phylogenetic distance. Figure 10 shows
the estimated density functions of the fraction of common
repeats for separated and unseparated pairs of genomes at
the genus and family levels. It confirms our conjecture that
the higher is the faction of common repeats, the harder is
separation and the worse is the accuracy of our method.
Table 1 also shows the performance of the Velvet-based
approach. Its separability rate is lower than ours (32% for
genus, 62% for family and 91% for order). Its sensitivity
and precision numbers are also worse than ours at the
genus and family levels but become slightly higher at the
order level.

Handling sequencing errors
Our approach for handling sequencing errors is very sim-
ple: we filter out l-mers with counts lower than a certain

Table 1 Performance of our method and the Velvet-based approach on pairs of genomes with different phylogenetic
distances

of genomes # of pairs Broken Separated
Sensitivity Precision

Mean Stdv Mean Stdv

Species
TOSS 229 184 3 83 90.38 8.71 95.55 5.96

Velvet 229 156 22 51 84.11 12.70 92.25 7.88

Genus
TOSS 171 147 2 113 93.40 9.39 97.07 5.52

Velvet 171 123 15 77 89.96 12.97 94.95 8.45

Family
TOSS 80 79 2 75 94.98 6.56 97.46 5.86

Velvet 80 78 2 71 91.90 8.90 97.25 4.16

Order
TOSS 35 71 0 70 95.14 4.87 97.79 2.49

Velvet 35 71 0 69 95.79 4.17 98.77 1.69

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 12 of 15
http://www.almob.org/content/7/27

Table 2 Performance of themethod on data with and without sequencing errors

of genomes # of pairs Broken Separated Sensitivity Precision

TOSS
With errors 24 15 2 15 96.84 98.03

Error-free 24 18 0 18 93.48 96.08

Velvet
With errors 24 16 1 14 87.32 96.84

Error-free 24 18 0 17 88.24 95.06

threshold, since these infrequent l-mers are likely to con-
tain errors. However, there is a simple intuition behind
it. We can aggressively remove potential errors without
attempting to correct them or being afraid to lose impor-
tant information, assuming that the genomes are suffi-
ciently covered by the reads. Note that we could be more
aggressive than genome assemblers in throwing out infre-
quent l-mers here because (i) when the genomes are suf-
ficiently covered, the filtration will not lead to many more
gaps, and (ii) we are less concernedwith the fragmentation
of genomes.
In Table 2, we summarize our experimental results on

pairs of genomes with and without sequencing errors.
We can see that our method is able to separate more
pairs of genomes when the reads are error-free. However,
when broken genomes are discounted, the method actu-
ally achieves a slightly higher sensitivity and precision on
data with errors. The Velvet-based method has a slightly
worse performance, it separates fewer pairs of genomes
and achieves a lower sensitivity and precision on both data
with and without errors.

The issue of abundance levels
In this section, we analyze the ability of our method to
separate genomes with different abundance levels. First,
we test our algorithm (without any modification) on pairs
of genomes with abundance ratio 1:2 and compare the
results with those on the same set of pairs of genomes but
with identical abundance levels. The results are summa-
rized in the Table 3. We can see that sensitivity slightly
drops on genomes with different abundance levels, but
precision actually improves a little. On the other hand,
separability of the Velvet-based method drops signifi-
cantly.
We also test the performance of a combination of Abun-

danceBin and our algorithm on a set of four genomes
with abundance levels (1 : 1 : 4 : 4) and compare its result

with that of our (original) algorithm on the same set of
genomes with identical abundance levels. The results are
summarized in Table 4. As we can see, the result on data
with varying abundance levels is actually better. Sensi-
tivity and precision increase from 92% and 93% on data
with identical abundance levels to 97% and 99% on data
with varying abundance levels. In order to explain this
(somewhat counter-intuitive) phenomenon, we analyzed
intermediate results, and found that two of the six pairs
of genomes, (1,3) and (2,4), have high percentages of com-
mon repeats. These common repeats negatively affected
the result on data with identical abundance levels. How-
ever, they did not cause any trouble for the test on data
with varying abundance levels since for both pairs, reads
from different genomes were separated by AbundanceBin
early on due to the difference in their abundance levels. On
the other hand, the precision of the Velvet-based method
drops significantly.

Comparison with compostBin
In this section, we compare the performance of our
algorithm with a composition-based binning algorithm,
CompostBin [17]. Note that composition-based methods
require sufficiently long reads while TOSS is designed to
separate short NGS reads. On the other hand, our method
requires a high coverage depth. To compare the perfor-
mance with CompostBin, we use the simulated paired-end
Sanger reads of length 1000 bps provided in [17]. We
slightly adapt our method to handle longer reads and
lower coverage. In particular, we use a higher threshold in
the prediction of unique l-mers. Also, we cut the Sanger
reads into fragments of length 80 bps before constructing
the graph of unique l-mers in order to minimize memory
usage. The linkage information of the fragments belonging
to a same read will be recovered and taken advantage of
later in the cluster merging phase. Normalized error rates

Table 3 Performance on synthetic datasets with abundance ratio 1:2

of genomes # of pairs Broken Separated Sensitivity Precision

TOSS
DiffAbund 24 18 0 17 91.00 98.25

IdentAbund 24 18 0 18 93.48 96.08

Velvet
DiffAbund 24 16 1 13 91.88 97.48

IdentAbund 24 18 0 17 88.24 95.06

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 13 of 15
http://www.almob.org/content/7/27

Table 4 Performance on synthetic datasets with abundance ratio (1:1:4:4)

of genomes # of pairs Broken Separated Sensitivity Precision

TOSS
DiffAbund 4 6 0 6 97.42 99.81

IdentAbund 4 6 0 6 92.10 93.81

Velvet
DiffAbund 4 6 0 5 91.41 85.24

IdentAbund 4 6 0 6 90.44 92.65

(as defined in [17]) for our algorithm and for CompostBin
are reported in Table 5. Note that in the last three datasets,
the average coverage of genomes with lower abundance
levels (not shown in the table) is close to 1 and, therefore,
is insufficient for our algorithm. In addition, we simu-
late Illumina reads from the same sets of genomes with
a coverage depth between 15 and 30. Normalized error
rates for these datasets are shown in the last column
of Table 5. The highest error rates of our algorithm on
Sanger and Illumina reads are 4.74% and 4.92% respec-
tively, and are less than 10% for CompostBin. For some of
the Sanger datasets, the performance of our algorithm is
slightly worse compared to CompostBin and for the oth-
ers, it is slightly better. The performance of our algorithm
on the corresponding Illumina datasets is better inmost of
the cases. Clearly, the higher coverage depths in Illumina
datasets helped. A high coverage depth is essential for the

accurate prediction of unique and repeated l-mers in the
preprocessing phase of our algorithm.

Performance on a real dataset
A metagenomic dataset obtained from gut bacterio-
cytes of the glassy-winged sharpshooter, Homalodisca
coagulata, is known to consist of (Sanger) reads from
Baumannia cicadellinicola, Sulciamuelleri and somemis-
cellaneous unclassified reads [31] and studied in [17]. We
apply our algorithm, adapted to handle Sanger reads as
discussed in the previous section, to the dataset. As in
[17], we only measure our ability to separate the reads
from Baumannia cicadellinicola and Sulcia muelleri. The
sensitivity of the classification achieved by our algorithm
is 92.21% and the normalized error rate is 1.59%, which is
lower than the normalized error rate of 9.04% achieved by
CompostBin as reported in [17].

Table 5 Comparison with CompostBin on the datasets described in [17]

Species Ratio
Phylogenetic CompostBin’s TOSS (Sanger) TOSS (Illumina)

distance error error error

Bacillus halodurans & Bacillus subtilis 1:1 Species 6.48 1.05 1.38

Gluconobacter oxydans&
1:1 Genus 3.39 4.72 4.92

Granulibacter bethesdensis

Escherichia coli & Yersinia pestis 1:1 Genus 10.00 3.11 2.58

Methanocaldococcus jannaschii &
1:1 Family 0.51 0.22 0.01

Methanococcusmaripaludis

Pyrobaculum aerophilum &
1:1 Family 0.28 1.05 0.01

Thermofilum pendens

Gluconobacter oxydans &
1:1 Order 0.98 4.74 0.01

Rhodospirillum rubrum

Gluconobacter oxydans,

1:1:8 Family and Order 7.7 - 6.45Granulibacter bethesdensis &

Nitrobacter hamburgensis

Escherichia coli, Pseudomonas putida &
1:1:8

Order and
1.96 - 0.15

Bacillus anthracis Phylum

Escherichia coli, Pseudomonas putida, 1:1: Species, Order,

4.52 - 0.80
Thermofilum pendens, 1:1: Family,

Pyrobaculum aerophilum, 2:14 Phylum, and

Bacillus anthracis & Bacillus subtilis Kingdom

Note that some datasets involve genomes separated at several different taxonomic levels.

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 14 of 15
http://www.almob.org/content/7/27

Conclusions and Discussions
While the NGS sequencing technologies are very promis-
ing for metagenomic projects due to their great sequenc-
ing depths and low costs, they also present new challenges
in the analysis of metagenomic data because of their
short read lengths. In this paper, we developed an
algorithm for separating short paired-end NGS reads
from different bacterial genomes of similar abundance
levels and then combined the algorithm with Abun-
danceBin [23] to handle arbitrary abundance ratios.
We have shown that our algorithm is able to sepa-
rate genomes when the number of common repeats
is small compared to the number of genome-specific
repeats. Since the fraction of common repeats in genomes
correlates with the phylogenetic distance between the
genomes, it is hard to separate genomes of closely related
species. However, for the genomes that are separated
by sufficient phylogenetic distance, they share few l-
mers and can be separated with high precision and
sensitivity.
Our algorithm called TOSS was coded in C. Its running

time and memory requirement depend on the total length
of all the genomes present in a metagenomic dataset and
on the number of reads. The first phase of the algorithm
is the most time and memory consuming. In this phase,
a graph of l-mers is constructed and the clustering of
unique l-mers is performed. The size of the graph is pro-
portional to the total size of the genomes and 0.5 GB of
RAM is required for every million bases of the genomes.
In the experiments, we ran the algorithm on a single CPU
with 2.8GHz AMD machine and 64GB RAM. Each of the
small-scale tests involving 2-4 genomes of total length of
2-6 Mbps was completed within 1-3 hours and required
2-4 GB of RAM. A test on 15 genomes with the total
length of 40 Mbps ran for 14 hours and required 20GB of
RAM.
Our algorithm can be further improved. In this paper,

to separate the input reads, we construct a graph by
using the information about l-mers from all the reads.
After clustering the unique l-mers, some clusters are
merged if they potentially belong to the same genome.
To find connections between clusters, paired-end reads
and common repeats are used. However, we believe
that additional information can be used to improve the
algorithm’s ability in predicting whether two clusters
potentially belong to the same genome. For example,
the compositional properties of the clusters of unique
l-mers may be used to complement the repeat-based
information.
In future work, we plan to explore the compositional

properties of the clusters of unique l-mers and try to
improve the performance of our algorithm by combin-
ing the compositional properties with the distribution of
l-mers in reads.

Endnote
This is aWABI’2011 special issue invited paper.

Additional files

Additional file 1: MetaSim Parameters. Detailed description of MetaSim
parameters used to create the simulated datasets.

Additional file 2: Simulated Datasets. The exact species combinations
used in all simulated datasets.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
OT and TJ conceived the framework of the algorithm. OT implemented and
tested the algorithm. OT wrote the manuscript with some help from TJ and JB.
All authors read and approved the manuscript.

Acknowledgements
The research was supported in part by NSF grant IIS-0711129 and NIH grant
AI078885.

Author details
1Department of Computer Science and Engineering, University of California,
Riverside, CA, USA. 2Department of Plant Pathology and Microbiology,
University of California, Riverside, CA, USA.

Received: 4 January 2012 Accepted: 14 September 2012
Published: 26 September 2012

References
1. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM:Molecular

biological access to the chemistry of unknown soil microbes: a new
frontier for natural products. Chem & Biol 1998, 5(10):R245–R249.

2. Rappé MS, Giovannoni SJ: The uncultured microbial majority. Annu Rev
Microbiol 2003, 57:369–394.

3. Béjà O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, Villacorta R,
Amjadi M, Garrigues C, Jovanovich SB, Feldman RA, DeLong EF:
Construction and analysis of bacterial artificial chromosome
libraries from amarine microbial assemblage. EnvironMicrobiol 2000,
2(5):516–529.

4. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu
D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW,
Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H,
Pfannkoch C, Rogers YH, Smith HO: Environmental Genome Shotgun
Sequencing of the Sargasso Sea. Science 2004, 304(5667):66–74.

5. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI,
Relman DA, Fraser-Liggett CM, Nelson KE:Metagenomic Analysis of the
Human Distal Gut Microbiome. Science 2006, 312(5778):1355–1359.

6. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM,
Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure
andmetabolism through reconstruction of microbial genomes from
the environment. Nature 2004, 428(6978):37–43.

7. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome Res 2008, 18(2):324–330.

8. Warren RL, Sutton GG, Jones SJM, Holt RA: Assembling millions of short
DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500–501.

9. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res 2007, 17(11):1697–1706.

10. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: A
parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117–1123.

11. Charuvaka A, Rangwala H: Evaluation of short readmetagenomic
assembly. BMC Genomics 2011, 12(Suppl 2):S8+ .

12. Chakravorty S, Helb D, Burday M, Connell N, Alland D: A detailed analysis
of 16s ribosomal RNA gene segments for the diagnosis of
pathogenic bacteria. J Microbiol Methods 2007, 69(2):330–339.

http://www.biomedcentral.com/content/supplementary/1748-7188-7-27-S1.xls
http://www.biomedcentral.com/content/supplementary/1748-7188-7-27-S2.xls

Tanaseichuk et al. Algorithms for Molecular Biology 2012, 7:27 Page 15 of 15
http://www.almob.org/content/7/27

13. Huson DH, Auch AF, Qi J, Schuster SC:MEGAN analysis of
metagenomic data. Genome Res 2007, 17(3):377–386.

14. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F,
Edwards RA, Stoye J: Phylogenetic classification of short
environmental DNA fragments. Nucleic Acids Res 2008,
36(7):2230–2239.

15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215(3):403–410.

16. Zhou F, Olman V, Xu Y: Barcodes for genomes and applications. BMC
Bioinformatics 2008, 9:546+.

17. Chatterji S, Yamazaki I, Bai Z, Eisen J: CompostBin: A DNA
Composition-Based Algorithm for Binning Environmental Shotgun
Reads. In Research in Computational Molecular Biology, Volume 4955 of
Lecture Notes in Computer Science. Edited by Vingron M, Wong L. Berlin,
Heidelberg: Springer Berlin / Heidelberg; 2008:17–28.

18. Chan CK, Hsu A, Halgamuge S, Tang SL: Binning sequences using very
sparse labels within a metagenome. . BMC Bioinformatics 2008, 9:215+.

19. Teeling H, Waldmann J, Lombardot T, Bauer M, Glockner F: TETRA: a
web-service and a stand-alone program for the analysis and
comparison of tetranucleotide usage patterns in DNA sequences.
BMC Bioinformatics 2004, 5:163+.

20. Leung HCM, Yiu SM, Yang B, et al.: A robust and accurate binning
algorithm for metagenomic sequences with arbitrary species
abundance ratio. Bioinformatics 2011, 27(11):1489–1495.

21. Diaz N, Krause L, Goesmann A, Niehaus K, Nattkemper T: TACOA -
Taxonomic classification of environmental genomic fragments
using a kernelized nearest neighbor approach. BMC Bioinformatics
2009, 10:56+.

22. Bentley SD, Parkhill J: Comparative genomic structure of prokaryotes.
Annu Rev Genet 2004, 38:771–791.

23. Wu YW, Ye Y: A Novel Abundance-Based Algorithm for Binning
Metagenomic Sequences Using l-Tuples. In Research in Computational
Molecular Biology, Volume 6044 of Lecture Notes in Computer Science. Edited
by Berger B. Berlin, Heidelberg: Springer Berlin / Heidelberg;
2010:535–549.

24. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,
Church DM, Dicuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y,
Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J,
Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov
A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E:
Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res 2007, 35(Database issue):D173–D180.

25. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. .
Nucleic Acids Res 2009, 37(Database issue):D26–D31.

26. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 2008, 18(5):821–829.

27. Lander ES, Waterman MS: Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics 1988, 2(3):231–239.

28. Wendl M, Waterston R: Generalized gapmodel for bacterial artificial
chromosome clone fingerprint mapping and shotgun sequencing.
Genome Res 2002, 12:1943–1949.

29. Li X, Waterman MS: Estimating the Repeat Structure and Length of
DNA Sequences Using l-Tuples. Genome Res 2003, 13(8):1916–1922.

30. van Dongen S: Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht 2000.

31. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ,
Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA:Metabolic
Complementarity and Genomics of the Dual Bacterial Symbiosis of
Sharpshooters. PLoS Biol 2006, 4(6):e188+.

32. Richter DC, Ott F, Auch AF, Schmid R, Huson DH:MetaSim: a
Sequencing Simulator for Genomics andMetagenomics. PLoS ONE
2008, 3(10):e3373+.

doi:10.1186/1748-7188-7-27
Cite this article as: Tanaseichuk et al.: Separating metagenomic short reads
into genomes via clustering. Algorithms for Molecular Biology 2012 7:27.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Preliminaries
	Finding unique l-mers
	Clustering the unique l-mers
	Merging clusters and the final clustering of metagenomic reads
	Handling genomes with arbitrary abundance levels

	Experimental results
	Simulated data sets
	Comparison with modified velvet
	Performance evaluation
	Experiments on genomes separated by different phylogenetic distances
	Handling sequencing errors
	The issue of abundance levels
	Comparison with compostBin
	Performance on a real dataset

	Conclusions and Discussions
	Endnote
	Additional files
	Additional file 1
	Additional file 2

	Competing interests
	Author's contributions
	Acknowledgements
	Author details
	References

