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Abstract In analyses of unrelated individuals, the pro-

gram multivariate gene-based association test by extended

Simes (MGAS), which facilitates multivariate gene-based

association testing, was shown to have correct Type I error

rate and superior statistical power compared to other

multivariate gene-based approaches. Here we show,

through simulation, that MGAS can also be applied to data

including genetically related subjects (e.g., family data), by

using p value information obtained in Plink or in general-

ized estimating equations (with the ‘exchangeable’ work-

ing correlation matrix), both of which account for the

family structure on a univariate single nucleotide poly-

morphism-based level by applying a sandwich correction

of standard errors. We show that when applied to family-

data, MGAS has correct Type I error rate, and given the

details of the simulation setup, adequate power. Applica-

tion of MGAS to seven eye measurement phenotypes

showed statistically significant association with two genes

that were not discovered in previous univariate analyses of

a composite score. We conclude that MGAS is a useful and

convenient tool for multivariate gene-based genome-wide

association analysis in both unrelated and related

individuals.

Keywords GWAS � Multivariate � Gene-based � Family

data � MGAS � GATES � TATES

Introduction

Multivariate genotype–phenotype data are often collected

in families, e.g., twins and their siblings, or parent-off-

spring trios. Yet, genetic association tests that take family

relatedness into account generally consider the associations

of a single phenotype with many single nucleotide poly-

morphisms (SNPs), i.e., are univariate and SNP-based in

nature. Here we show, through simulation and application

to eye measurement data, that the multivariate gene-based

tool, multivariate gene-based association test by extended
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Simes (MGAS) procedure van der Sluis et al. 2015), can be

used on family data.

In genome-wide association studies (GWAS), a uni-

variate phenotype, e.g., a sum score or a case–control

dichotomy, is regressed on a large number of common

SNPs. Under specific circumstances,1 a sum score provides

a sufficient phenotypic operationalization in the sense that

it captures all relevant information in the underlying trait-

generating genotype–phenotype model. However, as the

specific circumstances do not usually hold, the use of sum

scores often implies a loss of information, and conse-

quently a loss in power (van der Sluis et al. 2010; Minică

et al. 2010; Medland and Neale 2010). Recently, a new

multivariate gene-based test MGAS (van der Sluis et al.

2015) was introduced. MGAS integrates TATES (van der

Sluis et al. 2013), a multivariate SNP-based test, and

GATES (Li et al. 2011), a univariate gene-based test.

Like these two methods, MGAS combines p-value

information obtained in standard univariate SNP-based

analyses into multivariate gene-based p-values while cor-

recting for the correlations between the multivariate phe-

notypes on the one hand, and the correlations between SNPs

within genes (i.e., linkage disequilibrium, LD) on the other.

MGAS has been shown to perform well under diverse trait-

generating genotype–phenotype models (e.g., 1- and

4-factor models, network models, models in which the

SNPs in the gene affected either the latent trait or the

observed traits directly, and models including opposite

effects), and often to have superior power over gene-based

analyses of univariate phenotypic sum scores (GATES,

multiple regression), MANOVA (all phenotypes as depen-

dent variables and all SNPs as predictors), and GATES on

MANOVA p-values (i.e., MANOVA on each SNP sepa-

rately, and subsequent combining of the multivariate SNP-

based p-values using GATES to arrive at a single multi-

variate gene-based p-value). So far, however, investigations

on the MGAS procedure focused on data of unrelated

individuals. GWAS may, however, involve related subjects

(e.g., family-based data including twins, parents, siblings).

The aim of the present paper is to demonstrate that the

MGAS procedure can be used on family based GWAS

data, by applying MGAS to the results of generalized

estimating equations (GEE) regression analysis (Dobson

2008), with an appropriate (‘‘sandwich’’) correction of

standard errors to accommodate the effect of family clus-

tering. We demonstrate by means of simulation that the

Type I errors associated with this procedure are correct.

We consider the issue of power by applying GEE with two

choices of the working correlation matrix (i.e., the provi-

sional model to account for familial clustering): the inde-

pendence working matrix (as used in Plink; Purcell et al.

2007), and the exchangeable working matrix. We consider

both options because Minică et al. (2014b) demonstrated

that the choice of working matrix has a bearing on the

power of GEE to detect SNP–phenotype associations.

Methods

Simulation

To demonstrate the accuracy of multivariate gene-based

analyses using MGAS as performed on p-values obtained

in family data, we simulated multivariate phenotypes and

genetic data of SNPs in genes in genetically related sub-

jects. All simulations concerned Nfam = 500 families,

including parents and either monozygotic (MZ: 50 % of

the families) or dizygotic (DZ) twin pairs, i.e., 2000 indi-

viduals in total. For each individual, six normally dis-

tributed phenotypes were generated under either a 1- or a

2-latent factor model, with each observed phenotype rela-

ted to either one of the two factors (i.e., simple structure,

see Fig. 1 for a schematic representation of simulation

settings). The 1-factor setting was chosen because the use

of univariate sum scores or case–control dichotomies as

dependent variables in GWAS implies a 1-factor model,

and because the 1-factor model is consistent with practical

and diagnostic conceptualizations in psychology and

medicine. However, many psychological traits are con-

ceptualized and measured in a multidimensional manner.

For instance, verbal and non-verbal IQ are distinguished in

cognition research, and twin- and family studies have

shown that this phenotypic multidimensionality partly

reflects genetic multidimensionality (e.g., Rijsdijk and

Vernon 2002; Posthuma et al. 2001; Hoekstra et al. 2007;

Price et al. 2000). Therefore, we included the 2-factor

model in our simulations. Note that for both the 1- and

2-factor simulations, the six observed phenotypes (not the

latent factor scores) feature as the dependent variables in

the genetic association analyses.

The phenotypes were simulated according to the model

R ¼ K�W� Kt þH ð1Þ

where, in the 1-factor model, R is the 24 9 24 variance–

covariance matrix between the six phenotypes of each of

the four family members, K is the 24 9 4 matrix of factor

loadings (superscript t denotes matrix transpose), W is a

4 9 4 variance–covariance matrix of the four common

factors within a family, and H is the 24 9 24 diagonal

1 Specifically, the sum score is a sufficient statistic if (a) all

correlations between the phenotypes comprising the sum can be

explained by 1 latent factor or trait, (b) all phenotypes show identical

relations to this latent factor (i.e., identical factor loadings), (c) all

phenotypes have identical residual variances (i.e., the phenotypes

adhere to a Rasch model (Rasch 1980), and (d) the genetic effect is on

this latent factor, see e.g. van der Sluis et al. 2010.
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matrix of residual variances. In case of a 2-factor model, the

latent factors, each indicated by three phenotypes, were

simulated to correlate (r = 0.3) within individuals, with the

correlation caused by both genetic and shared environmental

influences (see Fig. 1b).K then is the 24 9 8 matrix of factor

loadings, and W is the 8 9 8 variance–covariance matrix of

the latent factors within a family. In all simulations, factor

loadings were set to 0.8, so that 64 % of the phenotypic

variation was explained by the latent factor, leaving 36 %

unexplained residual variance. All data were generated

under the ACE model, including additive genetic (A), shared

(C), and unshared environmental (E) effects. The phenotypic

variance at the latent level was decomposed as follows: 40 %

A, 40 % C, and 20 % E (the ACE model), or 80 % A, 0 % C,

and 20 % E (i.e., the AE model). The residual variances were

all specified to be due to E only. For each individual, 10 SNPs

were simulated (MAF = 0.5), that together formed a gene

(LD *0.9). In simulating the genotypes, first the haplotypes

of the parents were simulated, under the assumption of

Hardy–Weinberg Equilibrium, with known phase, and then

these haplotypes were used to simulate the offspring haplo-

types with recombination rate based on 5 cM distance

between SNPs, which is roughly equivalent to 5 % recom-

bination probability. We note that the resulting region is

unrealistically large for a gene, but as MGAS can also be

used to test regions rather than genes, we wanted to study the

Fig. 1 Schematic

representation of simulation

settings. a Schematic

representation of the 1-factor

model. b Schematic

representation of the 2-factor

model. A, C, and E represent the

genetic factor (A), shared

environmental factor (C), and

unique environmental factor

(E), influencing the latent factor

F of either twin (tw1, tw2) or

parents (not shown). Each latent

factor (or two in case of the

2-factor model), influences the

observed variables, depicted as

squares. A gene (Genetw1 and

Genetw2 are the genes of twin 1

and twin 2; parents not shown)

harboring 1 or 0 effective SNPs

out of 10, influences the latent

factor or an observed variable.

Concerning the 1-factor model:

in case of 40 % genetic, 40 %

shared environmental, and 20 %

unique environmental variation;

e1 = H0.2, c1 = a1 = H0.4.

In case of 80 % genetic, 0 %

shared environmental, and 20 %

unique environmental variation;

e1 = H0.2, c1 = 0, a1 = H0.8.

Concerning the 2-factor model:

in case of 40 % genetic, 40 %

shared environmental, and 20 %

unique environmental variation;

e1 = e3 = H0.2,

c1 = a1 = H0.4,

c2 = a2 = H0.05625,

a3 = c3 = H0.34375. In case

of 80 % genetic, 0 % shared

environmental, and 20 %

unique environmental variation;

e1 = e3 = H0.2,

c1 = c2 = c3 = 0, a1 = H0.8,

a2 = H0.1125, a3 = H0.6375
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Type I error rate under circumstances including recombi-

nation. We also note that the power of MGAS is known to

depend on the number of SNPs covering the gene or region,

and the LD structure between these SNPs, but not on the

physical distance between the SNPs per se (van der Sluis

et al. 2015). Only one of the 10 SNPs in the region was

actually associated with the phenotype(s). We considered the

power to detect the signal attributable to this disease-sus-

ceptibility locus (DSL) given that the DSL explained either

1 % variation in the (first) latent factor, or 0.5 % variation in

the last observed phenotype. We also evaluated the Type I

error rate by simulating data in which none of the SNPs were

related to any of the phenotypes. These settings resulted in a

total of 16 simulation scenarios: one or two factor models,

two different ACE decompositions, DSL-effect either on the

observed or latent phenotype, and DSL either with an effect

(on the factor or on the last observed phenotype) or without

an effect (to ascertain the Type I error). All simulations were

repeated Nsim = 2000 times. Note that the standard error of

the p-value equals H((p(1 - p))/Nsim). Therefore, p-values

between 0.04 and 0.06 lie within the 95 % confidence

interval for an unbiased nominal p-value when there is no

effect (given a = 0.05, p & 0.05 is expected), and are thus

considered correct.

Analyses

All analyses were performed in R, using the packages

MASS, psych, and corpcor for simulation, and the packages

OpenMx (Boker et al. 2011) and gee for data analysis. We

denote the model used to simulate the data the true model,

and used the package OpenMx to fit it. In the true model,

all parameters were estimated (i.e., variable means, factor

loadings, residual variances, regression coefficients, and a,

c, and e paths; with variable means, factor loadings, and

residuals error variances constrained to be equal between

family members), and the family relations were represented

correctly. In practice, the actual data generating genotype–

phenotype system is generally unknown. However, fitting

the true model is useful in simulations because it provides

information on power and Type I error rate under the

optimal circumstances of no misfit or misspecification of

the actual data generating genotype–phenotype model. In

the true model, the p-value for the test of association

between the 10 SNPs on the one hand and the latent trait or

last phenotype on the other hand, was obtained using a

10 df likelihood ratio test, i.e., comparing the fit of the true

model with all 10 regression parameters estimated freely,

to the fit of the model with these parameters fixed to 0 (i.e.,

because the gene is our functional unit of interest, we tested

the effects of all 10 SNPs in the gene simultaneously,

instead of only the effective SNP).

Results obtained by fitting the true model in OpenMx,

were compared with MGAS results. The MGAS procedure

is explained in van der Sluis et al. (2015). Briefly, MGAS

uses the p-values obtained in regressing each of the six

observed phenotypes individually on each of the 10 SNPs

while correcting for familial relatedness between partici-

pants by using GEE with the working correlation matrix set

to independent or exchangeable. The working correlation

matrix represents the background correlations between the

family members conditional on the SNP under study. As

our simulations concerned four members per family, the

working correlation matrix is a 4 9 4 matrix. Under the

independent setting, this matrix is diagonal, with the vari-

ances equal (i.e., one parameter), and all off-diagonal

elements fixed to 0. Under the exchangeable setting, the

matrix contains equal variances and equal covariances (i.e.,

two parameters). Given four family members, i.e., MZ or

DZ twins and their parents, both GEE settings entail mis-

specification, as residual covariances between family

members conditional on the tested SNP are unlikely to be

either zero or equal. Practically, this misspecification

results in underestimation of the standard error of the

parameter of interest, i.e., the regression weight relating the

SNP to the phenotypic data. The sandwich corrected

standard error has been shown to yield correct Type I error

rates in the context of family based association analysis

(Minică et al. 2014b).

MGAS then uses all the GEE based univariate p-values

(i.e., nvar 9 nsnp = 6 9 10 = 60) to obtain one multi-

variate gene-based p-value PMGAS as follows:

PMGAS ¼ min
qepj

qej

� �
ð2Þ

Here, qe denotes the effective number of p-values within

a gene, qej the effective number of p-values among the top

j p-values where j runs from 1 to nvar 9 nsnp, and pj

denotes the jth p-value in the list of ordered p-values.

PMGAS is thus the smallest weighted p-value within a gene

associated with the null hypothesis that none of the nvar

phenotypes are related to the nsnp SNPs within the gene

under study, and the alternative hypothesis that at least one

of the nvar phenotypes is related to at least one of the nsnp

SNPs.

Since the SNPs are correlated and the phenotypes are

correlated, the p-values from the univariate regressions are

also correlated. These p-value correlations are not observed

but can be accurately approximated from the p-value-sor-

ted Kronecker product between the SNP- and phenotype

correlation matrices using a sixth order polynomial (Li

et al. 2011; van der Sluis et al. 2015). The effective number

of p-values qej among the top j p-values is then calculated

from this p-value-sorted Kronecker product using
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qej ¼ j�
Xj

i¼1

IðkiÞ � ðki � 1Þ ð3Þ

where ki is the ith eigenvalue of the sorted Kronecker

product, and I(ki) is an indicator function taking on value 1

if ki[ 1 and value 0 if ki B 1. qej is thus calculated as

j minus the sum of the difference between ki and 1 for those

eigenvalues [1, and qe = qej for the special case that

j = nvar 9 nsnp (i.e., when the selection of j p-values

covers all nvar 9 nsnp p-values). MGAS thus accommo-

dates correlations between phenotypes and SNPs within

individuals, while GEE corrects for the relatedness

between subjects but only in a univariate SNP-based set-

ting. Whether the combination of these two corrections

suffices to account for the correlations that are expected

within families between phenotypes and between SNPs, is

the topic of our investigation.

Results

Table 1 shows the Type I error rates and power of the true

model, and the two different MGAS models, based on

GEE-independent (i.e., Plink) or GEE-exchangeable. None

of the Type I error rates deviated significantly from 0.05,

irrespective of the used analysis method or simulation

settings. The fact that both MGAS models have correct

Type I error rates indicates that the sandwich correction of

the standard error following the GEE regression adequately

handles the relatedness between participants in the sample.

MGAS can thus be used on family data as long as the

relatedness between participants has been sufficiently

accommodated in the univariate SNP-based association

analyses.

Furthermore, as shown by Minică et al. (2014b), the test

of association based on the GEE-independent option is less

powerful than that based on the GEE-exchangeable option.

The difference in power is a function of the phenotypic

covariance matrix: the greater the phenotype covariance

between family members, the larger the power advantage

of GEE-exchangeable over GEE-independent.

When the DSL-effect is limited to one latent variable,

the power of the MGAS model is adequate (*0.8) com-

pared to the true model (*0.8). However, when the DSL-

effect is specific to one observed variable, a notable drop in

power (from *0.9 to 0.5) is observed for MGAS compared

to the true model. This is understandable since in the true

model the DSL-effect is part of the residual of the observed

variable (i.e., the variance in the observed variable that is

not explained by the latent factor), while it is part of the

total variance in the GEE models used in MGAS. That is,

the true model tests how much of the residual variance of

the specific phenotype (i.e., conditional on the latent factor)

is due to the DSL, while the GEE models test how much of

Table 1 Type I error rates and

power for the true model and

MGAS

Simulation settings True model MGAS

Effect size Location effect A2 C2 E2 GEE-indep. GEE-exch.

Type I error

1fac 0 Lat1 0.4 0.4 0.2 0.060 0.051 0.052

0.8 0 0.2 0.050 0.037 0.041

0 Obs2 0.4 0.4 0.2 0.049 0.042 0.044

0.8 0 0.2 0.059 0.039 0.045

2fac 0 Lat 0.4 0.4 0.2 0.055 0.039 0.047

0.8 0 0.2 0.050 0.052 0.050

0 Obs 0.4 0.4 0.2 0.055 0.045 0.049

0.8 0 0.2 0.050 0.055 0.059

Power

1fac 0.01 Lat 0.4 0.4 0.2 0.848 0.757 0.927

0.8 0 0.2 0.848 0.757 0.927

0.005 Obs 0.4 0.4 0.2 0.946 0.405 0.539

0.8 0 0.2 0.942 0.442 0.490

2fac 0.01 Lat 0.4 0.4 0.2 0.802 0.685 0.855

0.8 0 0.2 0.749 0.764 0.827

0.005 Obs 0.4 0.4 0.2 0.892 0.404 0.539

0.8 0 0.2 0.899 0.462 0.507

1 DSL-effect is on the level of the latent variable
2 DSL-effect is on the level of the observed variable
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the total variance in the observed phenotype is due to the

DSL.

Occasionally, the power of MGAS is higher than the

power of the true model. Although this may seem counter-

intuitive since the true model is the model used for simu-

lation, this can be explained by the difference in the

number of estimated parameters between the true model

and the MGAS model; the true model estimates all

parameters describing the relations between the phenotypes

and SNPs within and between subjects (31 in case of a

1-factor model, 37 in case of a 2-factor model) while

MGAS is based on univariate regression, in which only one

parameter is estimated. When constraining the association

parameters (b1 in Fig. 1a, b) to zero, the resulting misfit

can, in the OpenMx model, partly be accommodated by

other parameters, while such ‘‘compensation’’ is impossi-

ble in the univariate regression context.

Finally, because MGAS is based on TATES (i.e., mul-

tivariate SNP-based test) and GATES (i.e., univariate gene-

based test), we also considered the Type I error rates of

these procedures using the same simulated family-data (see

Online Resource 1). Since TATES is based on a single

SNP, only the effective SNP was used for analysis. Since

GATES is based on a single phenotype, three different

phenotypic approaches were taken. First, only one (directly

or indirectly) affected observed variable was regressed on

the gene. Second, in case of the 1-factor model, the overall

sum score calculated across all six observed variables was

regressed on the gene. Third, in case of the 2-factor model,

the sum score of the observed variables under the latent

variable including the affected observed variable, or the

sum score of the observed variables under the affected

latent variable, was regressed on the gene. Type I error

rates proved correct for TATES and all variants of GATES,

and again analyses based on GEE-exchangeable proved

more powerful than analyses based on GEE-independent.

Note that occasionally, TATES and GATES outperform

MGAS with respect to power. This is due to only using the

effective SNP in case of TATES, and only using the

affected observed variable, or factor sum score including

the affected observed variable, in case of GATES. Note

also that when the DSL is on the observed variable, the

sum score approach of GATES has very low power (*0.1,

see also van der Sluis et al. 2015).

Implementation: Myopia data

To illustrate the application of MGAS to family data, we

analyzed data consisting of seven eye measurements

obtained in families of the Twins Eye Study of Refractive

Error and Glaucoma Endophenotypes (TES) Database of

the TwinsUK Cohort. We gained acces to these data

through dbGaP. The TES cohort initially consisted of 2928

subjects, of whom 84 were removed during quality control

(Quality control was performed according to the Anderson

et al. (2010) protocol; see Online Resource 2 for more

information), leaving 2844 subjects, clustered in 2115

families. Of the 2115 families, 1416 included a single

member, 674 included two members, 20 included three

members, and five included four members. The seven

phenotypes were: sphere right eye (SPHR), cylinder right

eye (CYLR), axis right eye (AXISR), sphere left eye

(SPHL), cylinder left eye (CYLL), axis left eye (AXISL),

and cataract (CATARACT). The genotypic data initially

included 589,296 SNPs, of which 51,462 were removed

during quality control, leaving 537,834 SNPs, to be inclu-

ded in analyses. MGAS was run in KGG v3.5 (van der Sluis

et al. 2015) (http://statgenpro.psychiatry.hku.hk/limx/kgg/).

KGG requires as input a phenotypic correlation file, and a

file containing p-values from the seven univariate analyses

of all SNPs. The univariate analyses were run in GEE

(option: ‘exchangeable’) through PLINK (see Minică et al.

2014b) with sex and age as covariates. The genomic infla-

tion factor was 1.03. Principal components were calculated

using multidimensional scaling (MDS) based on raw

Hamming Distances in Plink. As adding Principal Com-

ponents as covariates did not reduce the inflation factor, all

reported analyses were run without Principal Components

as covariates. The phenotypic correlations entered in

MGAS (Online Resource 3) were corrected for sex and age.

Of the total 537,834 SNPs, 314,900 were located within

genes, covering 22,739 genes in total. In KGG v3.5, SNPs

were mapped onto genes or genic regions defined by the

RefGene database with 5 kb boundary extensions on both

sides. Using a Bonferroni Family Wise Error Rate thresh-

old of a = 2.20e-6, MGAS identified two significant

genic regions that were not previously reported for these

phenotypes: LINC00583 (PMGAS = 1.03e-8, mainly con-

tributing to CYLR), and OGDH (PMGAS\ 8.95e-7,

mainly contributing to AXISR; see Online Resource 4 for

univariate p-values of all SNPs within these two genes).

Although GWAS has not been performed on this

specific dataset, this dataset has been included in a larger

GWAS (Hysi et al. 2010) and was part of a GWAS meta-

analysis (Verhoeven et al. 2013). In both studies, the

dependent variable was ‘‘spherical equivalent’’, which is a

composite score created from an individual’s sphere and

cylinder measures. Using MERLIN (Abecasis et al. 2002)

to analyze that data, the SNP rs8027411, located in the

RASGRF1 gene, had the strongest (yet not genome-wide

significant) association with spherical equivalent in (Hysi

et al. 2010) (p = 7.91e-8), and this SNP did reach gen-

ome-wide significance (p = 2.07e-9) in a replication

sample of six cohorts combined. The RASGRF1 gene was

also significantly associated with spherical equivalent in

Verhoeven et al. (2013).
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SNP rs8027411 was only included in our analyses when

larger boundary extensions than 5 kb were used. However,

we did not replicate this result in our analyses. Even when

we used the composite score of spherical equivalent as a

dependent variable, i.e., using the GATES method, we did

not replicate this finding. In this GATES analysis, the

strongest associated gene, PXDNL, did not reach genome-

wide significance (p = 3.42e-5). Our non-replication

could be due to the fact that both the studies by Hysi et al.

(2010) and Verhoeven et al. (2013) included larger sam-

ples. However, it is interesting to note that most SNPs that

are strongly associated with mean spherical equivalent in

our analyses, are most strongly (but not significantly)

associated to both left and right eye sphere, and not to

cylinder of either eye. We refer the reader to Online

Resource 5 for the details of these results. Furthermore,

while sphere of left and right eye are correlated (r = 0.87)

and both cylinder measures are correlated (r = 0.60),

neither sphere measure is correlated with cylinder (r be-

tween -0.03 and 0.06). These correlations do not support

the choice to use a composite of sphere and cylinder, such

as spherical equivalent, as a composite of uncorrelated

phenotypes may decrease the power to detect associated

SNPs or genes (van der Sluis et al. 2013). This present

application shows that multivariate gene-based methods

like MGAS can reveal associations which may be missed

when using univariate SNP-based, or univariate gene-based

analyses on composite scores.

Discussion

Here we have shown that MGAS, which combines p-value

information obtained in regressing univariate phenotypes

on common SNPs into one multivariate gene-based

p-value, has a correct Type I error rate when the data

include (genetically) related participants. This implies that

no additional corrections are required after using a sand-

wich correction in GEE to account for the residual relat-

edness in families conditional on the SNP under study.

Therefore, MGAS is a convenient tool for multivariate

gene-based genome-wide association analysis that can be

used on data of unrelated as well as related individuals. We

found that GEE-exchangeable generally has greater power

than GEE-independent (see Minică et al. 2014b). The dif-

ference in power (between 4.5 and 17 % for the current

simulation settings) depends on the magnitude of the

covariance between the family members conditional on the

SNP under study. As GEE is a freely available R-package

(http://cran.r-project.org/web/packages/gee/gee.pdf) that

can be called from the Plink environment, we advise to use

MGAS, TATES, and GATES on p-values obtained in

GEE-exchangeable when data include related individuals.

We note that while our simulations are limited (i.e., only

two trait-generating models with two choices for ACE-

decomposition), the main objective of this study was to

verify that MGAS has correct Type I error rate when used

on family data. To test this, we choose realistic settings for

A and C that created considerable covariance between

phenotypes of different family members, ranging from 0 to

0.26 between parents, from 0.26 to 0.38 between DZ twins,

and equaling 0.51 for MZ twins. As the Type I error rates

of MGAS were correct for all these settings, we believe

that further testing using different settings (e.g., higher or

lower factor loadings, different choices for the ACE-de-

composition) will add little, especially since in other papers

(Minică et al. 2014a, b), Type I error rates were found to be

correct in both Plink and GEE-exchangeable for various

genetic settings, suggesting sufficient correction for relat-

edness. For this reason we also did not include scenarios

with mixes of families of different sizes and single member

families, as this would not pose additional problems to

MGAS. We refer to the original MGAS paper (van der

Sluis et al. 2015) for a comprehensive simulation study on

the power of MGAS under many different circumstances

(e.g., 1- and 4-factor models, network models, models in

which the SNPs in the gene affected either the latent trait or

the observed traits directly, and models including opposite

effects). In conclusion, MGAS, GATES, and TATES can

be applied to results obtained in samples characterized by

family clustering (e.g., samples from twin- and family

registers).

Acknowledgments This work was funded by The Netherlands

Scientific Organization (NWO/MaGW: VIDI-452-12-014 and

Aspasia 015.009.016). Danielle Posthuma is also funded by NWO

(VICI 016.140.052). We thank SURFsara (www.surfsara.nl) for the

support in using the Lisa Compute Cluster. Simulations were run on

the Genetic Cluster Computer, which is financially supported by an

NWO Medium Investment Grant (480-05-003); by the VU

University Amsterdam, The Netherlands, and by the Dutch Brain

Foundation. The funders had no role in study design, data collection

and analysis, decision to publish, or preparation of the manuscript.

The dataset used for the real data implementation described in this

manuscript was obtained from the Twins Eye Study of Refractive

Error and Glaucoma Endophenotypes (TES) Database found, con-

trolled through dbGaP Accession Number phs000142. Funding

support for TES at http://www.ncbi.nlm.nih.gov/gap was provided

by the Wellcome Trust, Guide Dogs for the Blind Association (UK),

NHMRC (350415), the Ophthalmic Research Institute of Australia,

the Clifford Craig Medical Research Trust, the National Glaucoma

Research-American Health Assistance Foundation, and the National

Eye Institute (R01EY018246). We wish to thank the TES partici-

pants and the TES Research Group for their valuable contribution to

this research.

Compliance with ethical standards

Conflict of interest César-Reyer Vroom, Danielle Posthuma, Miao-

Xin Li, Conor V. Dolan, and Sophie van der Sluis declare no conflict

of interest.

724 Behav Genet (2016) 46:718–725

123

http://cran.r-project.org/web/packages/gee/gee.pdf
http://www.surfsara.nl
http://www.ncbi.nlm.nih.gov/gap


Human and Animal Rights and Informed consent All procedures

performed in studies involving human participants were in accor-

dance with the ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki declaration and its

later amendments or comparable ethical standards. Informed consent

was obtained from all individual participants included in the study

under a protocol reviewed by the St. Thomas’ Hospital Local

Research Ethics Committee.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-

rapid analysis of dense genetic maps using sparse gene flow

trees. Nat Genet 30:97–101

Anderson CA, Pettersson FH, Clarke GM, Cardon GM, Morris AP,

Zondervan KT (2010) Data quality control in genetic case–

control association studies. Nat Protoc 5:1564–1573

Boker S, Neale M, Maes H et al (2011) OpenMx: an open source

extended structural equation modeling framework. Psychome-

trika 76:306–317

Dobson AJ (2008) In: Chatfield C, Zidek J (eds) An introduction to

generalized linear models, 3rd edn. Chapman & Hall/CRC,

London

Hoekstra RA, Bartels M, Boomsma DI (2007) Longitudinal genetic

study of verbal and nonverbal IQ from early childhood to young

adulthood. Learn Individ Differ 17:97–114

Hysi PG, Young TL, Mackey DA et al (2010) A genome-wide

association study for myopia and refractive error identifies a

susceptibility locus at 15q25. Nat Genet 42:902–905

Li MX, Gui HS, Kwan JSH, Sham PC (2011) GATES: a rapid and

powerful gene-based association test using extended Simes

procedure. Am J Hum Genet 88:283–293

Medland S, Neale MC (2010) An integrated phenomic approach to

multivariate allelic association. Eur J Hum Genet 18:233–239
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