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Abstract
• Context This review paper provides an overview of
approaches to which we may resort for handling the
complex decision problems involving uncertainty and risk
that climate change implies for forest managers. Modelling
approaches that could support adaptive management strat-
egies seem to be called for, not only as climate change
denotes increased economic uncertainty but also because
new and more reliable information becomes available as
time passes and climate changes.
• Aims The paper (1) provides a broad overview of state-of-
the-art methods for optimal decision making under risk and
uncertainty in forestry and (2) elaborates on the possible
use of these methods in adaptive forest management under
climate change.

• Method A survey of the current literature is carried out to
identify approaches and developments that may prove most
promising in relation to different challenges to the adaptive
management of forest ecosystems under climate change.
• Results Most studies focusing on changing, typically
increasing, risks in forest management under climate
change tend to build on existing approaches about changes
in risk levels contingent on climate change scenarios.
• Conclusion Finally, we discuss what to emphasise in
future studies to improve the understanding of adaptive
forest management and decision support tools needed to
cope with climate change.

Keywords Adaptive forest management . Climate change .

Operations research .Market uncertainty . Abiotic and biotic
risk

1 Introduction

Risk and uncertainty is, today, widely included in forest
modelling. Recent reviews focus on the modelling of
hazards and risks (Hanewinkel et al. 2010) or on the
handling of price and other market risks (Hildebrandt and
Knoke 2011; Buongiorno and Zhou 2011). However, we
are facing a new kind of uncertainties, which has been little
addressed in the forest management and decision-making
literature and that are those implied by climate change.
Climate change is likely to have significant impact on forest
ecosystems. A crucial word here is ‘likely’ because the
issue is highly uncertain as there is a lack of complete
knowledge or historical parallels. There is uncertainty about
the reactions of forest ecosystems to climate change, but
more fundamentally, there is considerable uncertainty as to
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what degree of climate change we are facing. This has
important implications for how we adapt decision-making
approaches to the new challenge.

While a few studies do address adaptive decision
approaches to forest management faced by climate change
(e.g. Huang et al. 1998; Jacobsen and Thorsen 2003;
Armstrong et al. 2007), much more is to be learned and
considered regarding the potential of many other approaches
in the literature on different kinds of uncertainty in decision-
making models.

The key objective of the present review is to provide an
overview, and hence a better understanding, of approaches
and models suitable for handling uncertainty and risk likely to
be part of the complex decision problems that climate change
implies for forest owners and managers. The dynamic nature
and inherent uncertainty of climate change and its impacts on
forests are particularly important aspects of these decision
problems. It seems that the situation calls for modelling
approaches that would support adaptive management strate-
gies because the ecological and economic uncertainty is
augmented by climate change and because new and more
reliable information becomes available as time passes and
climate changes (Prato 2008; Probert et al. 2010). We stress
that our aim of the review is to provide a representative
overview of approaches relevant to the decision-making
problem in focus and not to provide an exhaustive review of
all the many different kind of studies that in different ways
deal with risk and uncertainty in forestry.

Forest decision making under uncertainty is a large and
productive cross-disciplinary research field (Fina et al.
2001; Kangas and Kangas 2004; Hein and van Irland
2006). Thus, even if climate change is a relatively new
issue, much can be learned by supplementing a review of
climate change literature, with a broader review of forest
research literature and some guiding examples from other
disciplines, addressing conceptual issues of adaptive deci-
sion making under uncertainty (e.g. Albers and Goldbach
2000; Amacher et al. 2005; Weintraub and Romero 2006;
Armstrong et al. 2007; Prato 2000, 2008; Probert et al.
2010). Therefore, this review includes examples of
approaches from the handling of risk (e.g. Dixit and
Pindyck (1994); Heikkinen 2003; Redmond and Cubbage
1988; Scholtens and Spierdijk 2010), over the operational
risk assessment (Borchers 2005; Linkov et al. 2006), to the
handling of uncertainty and information scarcity (Albers
1996; Benítez et al. 2006; Forsyth 2000; Kaloudis et al.
2005; Regan et al. 2005). In our discussion, we highlight
the need for further development of existing methods that
better incorporate key risk components and dynamics
implied by climate change, which are not yet addressed
adequately in the literature.

In order to provide a basic understanding of the decision-
making challenge in focus of the review, we start with a

description of what characterises the uncertainty associated
with climate change and forest management. Then follows
what is the main emphasis of the paper: a quantitative
analysis and categorisation of more than 100 references.
The categorisation is made by focusing on different
dimensions and issues of relevance to many of the specific
problems of adaptive forest management and should aid
anyone interested in investigating specific sub-fields of the
literature. We finish the paper with a discussion of how
current knowledge and methods can be used in forest
management facing the new challenge of climate change.

1.1 A framework for modelling adaptive management
under climate change

At the core of adaptive management is the ambition to
collect and integrate in forest management the necessary
knowledge—as it becomes available—about how ecosys-
tems are likely to respond to alternative management
schemes and changing environmental conditions, within a
continuous decision process (Prato 2000, 2008; Hahn and
Knoke 2010; Probert et al. 2010). This involves a chain of
state–dose–response–impacts, where management actions
affect all the individual links. The outcome of such a chain
of events is a set of flows of forest-based goods and
services and, potentially, a final or steady (average) state of
the forest ecosystem. A good adaptive forest management
strategy is thus designed so as to pursue the best possible
expected overall outcome in terms of a specific perfor-
mance measure. For example, it can be designed to
minimise risk (Meilby et al. 2003; Nitschke and Innes
2008) or maximise expected net present value (Yin and
Newman 1996; Spring et al. 2005; Jacobsen and Helles
2006; Yousefpour and Hanewinkel 2009), expected overall
welfare (Gong and Löfgren 2007; Wintle and Lindenmayer
2008), or a particular multi-criteria objective function
(Linkov et al. 2006; Ohlson et al. 2006; Zhou et al. 2008;
Ananda and Herath 2009). To meet these objectives, we
need adequate descriptions of the forest ecosystem as well
as relevant parts of the surrounding socioeconomic system
(Hoogstra 2008; Blennow 2008; Hahn and Knoke 2010).
What is relevant depends on the issue and objectives of the
specific models applied, but it may range from uni-
dimensional data in conceptual or stand-level models to
multi-dimensional datasets in more complex models, e.g. at
the landscape level (Meilby et al. 2003; Ohlson et al. 2006).

With climate change development, a new source of
change and uncertainty needs attention in adaptive forest
management. Climate change can be considered a signifi-
cant source of exogenous and stochastic ‘doses’ of
changing climatic conditions, variability and associated
catastrophic events (Lindner et al. 2002; Prato 2008;
Böttcher 2008; Hahn and Knoke 2010). General ecological
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effects of changing climate are likely to include changes
with regard to growth, competition within and between
species, flowering and fructification, regeneration, mortality
rates and lifetime. Catastrophic events include windthrow,
snow breakage, mortality caused by flooding or severe
drought, fire and insect attacks. The ‘doses’ may also
include indirect socioeconomic effects of climate change,
such as increased insurance rates and increased fluctuations
of market prices, interest rates, taxes and owner’s needs for
cash income.

The link between the ‘doses’ and the state of the forest
ecosystem is tracked in models of the ‘response’ of the
ecosystem to a given ‘dose’. This is the system’s intrinsic
response, which may be described by a stochastic model
emphasising, e.g. forest health decline, dieback, increasing
or decreasing growth, and change with respect to regener-
ation success, mortality, genetic selection pressure, species
composition, biodiversity and soil development. Finally, this
flow of dose–response will have an impact on the values that
owners and society at large derive from forest ecosystems
(Knoke et al. 2005; Lien et al. 2007; Hemery 2008;
Hyytiäinen and Penttinen 2008; Heller and Zavaleta 2009).
By ‘forest management’, we refer to the whole range of
decisions that a decision maker must consider concerning the
forest: choice of species, provenances, regeneration ap-
proach, thinning and tending practices, harvest age or size,
drainage, protection measures, afforestation, deforestation,
etc. Management of course directly influences the state of the
forest, but it may also affect the dose–response relationship,
e.g. susceptibility to windthrow or consequences of drought,
and the economic impact of a given ecological response may
be modified through management (cutting losses, enhancing
benefits). Management decisions are described by actions in
time and context (Hahn and Knoke 2010). Individual
management decisions may be part of a long-term strategy
including a set of pre-planned actions, triggered by basic
state variables, such as age or stand density. Typically, such
strategies are designed to perform well under a given set of
deterministic assumptions about the future, or they are
designed to cope with known variability in, e.g. seed
production, regeneration risks, storms, etc., and are not
subject to adjustment based on climate-induced changes in
current trends and fluctuations. Forest owners will likely face
hazard risks, growth patterns across species and other
important factors to vary and change in the future in ways
that cannot be well described by the past, known variation
and information about the productivity of species.

By contrast, an adaptive forest management approach
taking into account also climate change could include a set
of contingent decision rules, specifying a range of different
good or optimal decisions for several possible future states
of the world (Prato 2000, 2008; Jacobsen and Helles 2006;
Zhou et al. 2008; Yousefpour 2009). Hence, using an

adaptive management approach, individual decisions are
made on the basis of observed trends and fluctuations and
resulting beliefs about the future, and since future develop-
ments are uncertain, the decisions are not assumed to
always lead to perfect results but to outcomes that are, on
average, the best possible. Prato (2008) noted that if
different stakeholders’, depending on their set of preferences
for the attributes of ecosystem services, prefer different best
adaptation strategies, in this case, a compromise best
adaptation strategy would need to be developed using a
multi-attribute evaluation.

At this point, a comment is needed on the distinction
between risk and uncertainty applied in the remainder of this
paper. While it is sometimes common to see these two terms
assigned distinctly different meanings in the Knightian sense
that the former implies a form of empirically or objectively
measure of risk, e.g. probabilities and/or impacts, whereas
uncertainty do not (or rely on subjective probabilities).
However, this distinction is far from being used consistently
in the literature. In fact, many papers and even books (see, e.g.
Dixit and Pindyck) apply the term uncertainty about, e.g.
variation in prices and similar, but clearly apply empirical
(objective) measures and models of this uncertainty (e.g.
Thorsen 1999a, b). In fact, one could argue that there’s a
tendency to use the risk term mainly for downside events
like storm and fire and of course in the literature relating
strongly to the issue of risk aversion, where risk has the
broader definition of variation in outcomes. For this reason,
we consider both of the terms risk and uncertainty, which
may have been used interchangeably in the literature, and try
to remain true to the formulations and applications. We
stress, however, that while much of the literature deals with
empirically quantifiable risks and uncertainties, we shall
argue that the inherent uncertainty about what climate
change we face is hardly quantifiable without some use of
subjectivity or beliefs about, e.g. future mitigation actions.

A final topic to address here is what rationale to assume
on behalf of forest managers and their decision making
(Hoogstra 2008). Implicitly, most state-of-the-art models
assume forest managers to be rational within the limits of
the decision-making model, e.g. knowledgeable about
forest growth, risk and uncertainties and impacts of various
changes and shocks. However, much evidence suggests that
forest managers base their decisions on different sets of
information and in ways quite different from those assumed
(Ananda and Herath 2005; Couture and Reynaud 2008;
Hoogstra 2008). This is a crucial issue as the success of
decision making in adaptive forest management depends on
managers being aware of changes with regard to state and
development of the forest and knowledgeable about
available management strategies (Gong 1994; Jacobsen
and Thorsen 2003; Linkov et al. 2006; Moore and Conroy
2006; Yousefpour 2009). According to Blennow (2008),
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adaptation to forthcoming risks (including extreme events)
has not been actively implemented in Swedish forestry,
while similar studies of risk management in forestry of
other countries appear to be rare as well. While forest
owners certainly already applies silvicultural measures to
deal with known risks and variability, e.g. in seed
production, regeneration risks and variation in prices, there
is some evidence (Blennow 2008) that forest owners’ belief
in their personal adaptive capacity or that of the forest
ecosystem and their scepticism regarding climate change
may limit their motivation for taking adaptation measures.
Research aiming to cope with such deficits is largely
lacking in forest research.

Different decision-making models reflecting what could
be termed a ‘bounded rationality’, including bounded sets
of information, have been developed and outline different
ways of addressing forest managers’ use of information and
development of expectations regarding the future (Hoogstra
2008; Jacobsen et al. 2010; Probert et al. 2010).

Looking at risk of climate change in the above framework,
research into climate change and adaptive forest management
should make sure to include (1) risk flow modelling (e.g.
modelling endogenous risk for multiple risk types); (2) models
allowing for spatial relations and interdependence as well as
for the inclusion of values, goods and services other than
wood production; (3) methods and techniques enabling the
handling of problems at the scale of forests or landscapes; and
(4) approaches that explicitly allow for evaluating the effect of
learning as future climate unfolds.

2 Materials and methods

To access and collect the papers relevant for this review
effort, an extensive literature search was conducted, as
illustrated in Fig. 1. A combination of the key words was
applied so that at least one word from each of the search
terms in boxes (logical OR operator) and at least one term
from each box should appear (logical AND operator) either
in the title or the abstract of the paper. Five different search
engines were used: ‘Web of Science’, ‘Scopus’, ‘Scirus’,
‘Science Direct’ and ‘CAB’. This brute force search
resulted in a gross list of about 225 papers, of which 113
were not relevant for the focus of this paper, leaving 112
papers for the review and the quantitative analysis. The
selected papers were either representative of decision-
making approaches to handle risk and uncertainty in
forestry or dealing with adaptive management under
climate change. The later applies not only for forest
resources but for a broad variety of the biophysical systems
like land resources, urban areas, agro-forestry, agriculture
and non-renewable resources and, moreover, for different
gaols (e.g. conservation, landscape management, resource

allocation). A number of deterministic studies came into
consideration to mention precautionary approaches in
adaptation to climate change. Excluded papers were mainly
studies that do not address the thematic of this paper, e.g.
from topics like genetics, soil science or meteorology. The
selection may subsequently entail a compact analysis for
the outlined purposes of this review; however, the quanti-
tative results are just valid for this sample.

The selected papers were all comprehensively reviewed
by at least one of the authors of this paper, and a number of
characteristics related to forest risk modelling were noted.
A summary of the review notes was made in a table for
each paper. In the summarising part, characteristics of the
study were described together with notes on the investigated
issue, the source of risk, the analytical and operational
research (OR) techniques used and the paper’s implications
for future research.

3 Results

Risk modelling in forest management studies has shown an
increasing trend over the last two decades (see Fig. 2).
While there were just occasional publications on the topics
under investigation (cf. Fig. 1) in the early 1990s (one to
two publications per year), the number of publications has
considerably increased in recent years (i.e. 2005 and
thereafter). Most likely, attention to risk analysis in forestry
would grow even more in the coming years, as climatic
changes and uncertainties will manifest themselves into
concrete management challenges, knowledge shortages and
decision support needs.

3.1 Classification of reviewed papers

Figure 3 shows the number of contributions categorised
into different classes depending on the source of risk and
uncertainty in focus. Price uncertainty stands out as the
single most studied topic, followed by catastrophic events
taken together, here fire (Gonzáles et al. 2005b; 2008),
windthrow (e.g. Thorsen and Helles 1998; Meilby et al.
2001, 2003; Hanewinkel 2005; Insley and Lei 2007), ice
(Goodnow et al. 2008) and biotic risks. In much of the
literature on catastrophic events, risk levels depend entirely
on exogenous factors, biotic and climatic. Exceptions do
exist, e.g. Thorsen and Helles (1998) explicitly model risk
as partially endogenous to stand treatment. This approach
has also been extended to fire risk (Gonzáles et al. 2005a).
While these sources all address the stand level, focusing on
specific stands or trees, some risks depend on the spatial
context. Studies addressing decision making under risk at
forest or landscape levels include Reed and Errico (1985,
1986, 1987), Lohmander (1987, 2000), Gonzáles et al.
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(2005b) and Eriksson (2006). However, except for
Lohmander (1987), these studies essentially use a single-
stand approach, and the forest-level models are, in practice,
simple aggregates of stand-level models where interdepen-
dence exists only through forest-level constraints. More
recent studies have developed forest and landscape-level
models, including spatial interdependence between individ-
ual forest stands with respect to risks (Meilby et al. 2001,
2003; Gonzáles et al. 2005b). These studies show that
considerable challenges remain regarding large-scale anal-
yses, related to the dimensionality of stochastic optimisa-
tion models involving a large number of time steps and
interdependent states.

Price uncertainty has been in focus in many studies,
either as a part of a net present value (NPV) calculation or
separately. An early example is Brazee and Mendelsohn
(1988), but numerous studies followed (e.g. Teeter and
Somers 1993; Gong 1994, 1999; Plantinga 1998; Zhou

1999; Thorsen 1999a; McGough et al. 2004; Zhou and
Buongiorno 2006; Penttinen 2006; Chladná 2007; Manley
and Bare 2001).

Other approaches, based on NPV measures or other
measures of profitability, have also been taken to investi-
gate effects of price uncertainty including addressing forest
investment analysis in the framework of the Capital Asset
Pricing Model (e.g. Redmond and Cubbage 1988; Washburn
and Binkley 1990, 1993; Wagner and Rideout 1991, 1992;
Lundgren 2005; Scholtens and Spierdijk 2010) and also
studies relying on the expected mean–variance rule or similar
simulation based decision criteria, e.g. Yoshimoto and Shoji
(1998) using a binominal option pricing model, Reeves and
Haight (2000) and Knoke et al. (2001). Other sources of
uncertainty, such as interest rate (Alvarez and Koskela 2001;
Buongiorno andZhou 2011), climate change effects (Jacobsen
and Thorsen 2003; Bodin and Biman 2007) and society’s
preferences for non-market values, e.g. Abildtrup and Strange

AND 

AND 

Management* 
(forest management, risk management, adaptive management,…) 
Plan* 
(forest planning, management plan,…) 
Sustainab*  
(sustainable management, sustainability,...) 

Uncertain* 
(uncertain, uncertainty,…) 
Risk* 
(natural risk, hazard risk,…)
Vulnerab* 
(Vulnerability, vulnerable,…) 
Climat* 
(climate, climatic, …) 
Disturbance*

Decision* 
(decision making, decision support,…)
Adapt* 
(adaptation, adaptive, adapting,…) 
Model* 
(modelling, forest model, …)

Fig. 1 Keywords used to search
for relevant papers on forest risk
modelling. Keywords in each
box are connected by logical OR
operators, and asterisk stands
for variable endings

Fig. 2 Number of publications
on forest risk modelling over the
last 17 years
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(1999) and Ananda and Herath (2005), are much less
common.

3.2 Models of risk analysis

There are various ways to include different types of risk in
decision-making models. Figure 4 shows the observed
frequency of different approaches to the modelling of
forest-related risks in the reviewed literature. The Geometric
Brownian Motion (GBM) dominates in forest risk analysis
and is applied in 19% of the papers, in particular those looking
at stochastic price or NPV changes (e.g. Willassen 1998;
Thorsen 1999b; Sødal 2002; Duku-Kaakyire and Nanang
2004; Malchow-Møller et al. 2004) and also studies on other
types of values, e.g. Bulte et al. (2002). The GBM is a
simple model of how a stochastic process may develop over
time. For example, the paper by Jacobsen and Thorsen
(2003) presents a model of the decision problem of choosing
between two species, which may be favoured or disfavoured
by forthcoming climate change. Changes in growth trends
are subject to stochastic increases or decreases following a

random walk (a discrete Brownian motion) adding to or
detracting from the empirical growth function. The risk
element is based, however, on assumptions, whereas the
impact on each of the two spruce species is based partly on
physiological evidence. The paper shows that with uncer-
tainty about future climate change and impacts on growth, it
is worthwhile keeping both species longer in mixed stands
than in the absence of uncertainty. While this decision
approach certainly has significant merits, the paper has an
important limitation: The modelling of forthcoming climate
change is at the same time overtly simple and yet assumes
knowledge about direction and variance of possible impacts.
This requires assigning known probabilities to the outcome
of specific combinations of state and action. With the
direction and speed and variance of climate change and its
impacts on forests being unknown, this is a difficult
requirement often replaced by strong assumptions.

Alternatives used in the literature include the autore-
gressive process, (AP), (e.g. Plantinga 1998; Gong 1999;
Gjolberg and Guttormsen 2002) and vector AP (VAP), e.g.
Gong and Yin (2004) and Jacobsen and Helles (2006).

Fig. 3 Prevalence of different
sources of risk and uncertainty
in the literature

Fig. 4 Frequency of different
risk models applied in forest
risk analysis
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Compared with the GBM and other models of stochastic
processes, a simpler competing risk model, with a much
wider application space, is the specification of static
probability distributions (PD) for key variables. This
approach, however, fails to handle the potential correlation
in the time domain of stochastic variables like prices. This
approach is used in 17% of the papers and hence mainly in
papers dealing with other sources of risk, though it was
essentially used also in Brazee and Mendelsohn (1988).

Turning to other sources of risk, forest analyses use the
Poison process (PP) to model risk of fire and windthrow
directly (e.g. Reed 1984; Yin and Newman 1996; Fina et al.
2001; Ohlson et al. 2006; Armstrong et al. 2007; Jacobsen
2007) or in modified and more complex versions (e.g.
Thorsen and Helles 1998) and also the simple uniform
distribution (Uni, e.g. Amacher et al. 2005; Gong et al.
2005; Zhou et al. 2008). Other approaches and models like
Markov chains (MC, e.g. Knoke et al. 2001; Meilby et al.
2003; Spring et al. 2005; Zhou and Buongiorno 2006),
Bayesian (By) approaches (e.g. Prato 2000, 2009; Kangas
et al. 2000), and binominal trees (BT, e.g. Gove and
Fairweather 1992; Duku-Kaakyire and Nanang 2004;
Yoshimoto 2009) were applied only in a few studies.

Climate change will affect many types of risk and
uncertainty, which may be captured using many of the
approaches found here. The change in these risk variables,
as well as many other state variables describing the forest,
will likely follow the development in core climate variables
like temperature, precipitation, and wind patterns. However,
the modelling of this should likely differ from that found in
the literature reviewed: It seems likely that it should reflect
a transition from current climate, growth and risk dynamics
to a new, yet unknown but hopeful by then stable, climate,
with related growth and risk dynamics. Thus distributions
of all variables can be thought of as non-stationary in
means and higher orders for a considerable period, but not
in a way adequately captured by, e.g. GBM processes or
similar as these do not have the important tendency of mean
reversion, which we generally are accustomed to find for a
stable climate. An alternative model for possible future
scenarios of climate development could be to model the
development of core variables with some form of trend-
stationary process, potentially with a heteroscedastic, time-
dependent variance.

3.3 Variables in the objective functions

The goal or objective functions of the bulk of studies have
emphasised traditional objectives, i.e. timber production
and non-timber products and services like biodiversity,
water, carbon, recreation and amenities. Maximisation of
present values from timber production under risk was the
most common objective, in particular of course in studies
evaluating price or other market value risks, and 80% of the
papers included this as one of the main aims (Fig. 5).
Amenity was also included in a considerable part of the
literature (16%) compared with other objectives (Pukkala
and Miina 1997; Prato 2000; Bulte et al. 2002; Alvarez and
Koskela 2007a; Zhou et al. 2008). However, non-timber
products and services like biodiversity, carbon, wildlife and
water were only considered in a smaller number of studies

Fig. 5 Attention to different categories of products and services in the
literature on decision making under risk

Fig. 6 Technical solutions ap-
plied in forest risk analysis
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(Huang et al. 1998; Creedy and Wurzbacher 2001; Bulte et
al. 2002; Spring and Kennedy 2005; Spring et al. 2008;
Galik and Jackson 2009; Yousefpour 2009), which made up
9%, 8% and 6% of the papers. The least common objective
in forest risk management was recreation, addressed in only
3% of the papers.

3.4 Operations research methods

Risk analysis integrated into decision-making under uncer-
tainty can either be done using analytical approaches, e.g. Itô
calculus, or OR (operations research). Using simply the
expected value (EV) as the decision basis was common in
the investigative phase of analysis in many papers, e.g.
Thorsen (1999a). Apart from that, as shown in Fig. 6,
stochastic dynamic programming (SDP) was the most
common technical tool used to deal with risk in forestry.
The studies are closely related to the real options literature as
shown by Plantinga (1998) and with examples like Thorsen
(1999a, b), Abildtrup and Strange (1999), Duku-Kaakyire
and Nanang (2004), Gjolberg and Guttormsen (2002) and
many others. To a large extent, this group of studies
correlates with the literature considering uncertainty in terms
of the stochastic evolution of future prices (Brazee and
Mendelsohn 1988; Thomson 1992; Gong 1994; Yoshimoto
and Shoji 1998; Gong et al. 2005), present value measures
(Norstrøm 1975; McCarthy et al. 2001; Abildtrup and
Strange 1999; Malchow-Møller et al. 2004), stochastic
interest rates (Alvarez and Koskela 2001, 2003; Buongiorno
and Zhou 2011) and similar, but not exclusively. For
example, SDP has also been applied in various versions to
analyse decision making under risk of hazards as windthrow
(Meilby et al. 2003; Hanewinkel 2005; Heinonen et al. 2009)
and fire (Reed 1984; Boychuk and Martell 1996; Amacher et
al. 2005; Gonzáles and Pukkala 2007; Prestemon and
Donovan 2008; González et al. 2008).

Common to all of these problems and decision approaches
is the ability of the researcher to validly describe the stochastic
process for the uncertain variables in a way that allowed for a
known and stationary state transition matrix within a confined
state and time matrix (e.g. Buongiorno and Zhou 2011). This
is a strong feature of the real options approach, which is
essentially also at the heart of the reservation price literature.
Similar approaches have only rarely been used to climate
change and uncertainty about the effect on, e.g. growth
patterns of species under climate change. This has, however,
so far been in the form of essentially non-stationary
processes, e.g. a branch-out binomial or trinomial tree
(Jacobsen and Thorsen 2003). They lend themselves
reasonably well to SDP algorithms, but as stressed also in
Section 3.2, the effects of climate change are not likely to be
well described by the type of non-stationary processes and
changes in core climate variables implied by the models of

these studies. Rather, we are in the midst of a stochastic
transition from one, known, stable climate (equilibrium) with
considerable variability, but nevertheless fairly stable and
stationary (cyclic), to a new but largely unknown climate,
which we may expect or not to stabilise (in a cyclic
equilibrium). Although the later statement is conjecture, it
gives an essential opportunity to explore options to adapt to
possible future climate states via management (considering
more future equilibriums may alleviate the assumption).
Thus, the change is non-stationary in a way that does not
offer the researcher a firm fundament for, e.g. setting up even
a stationary state transition matrix, or even a time bounded
non-stationary such. Assessment of transition probabilities
will change as new information about the transition and its
implications arise.

Taking a wider look into the literature, linear program-
ming (LP) and simulation analysis techniques (applying
probabilistic modelling of risk without integration in OR
techniques) were also frequently used to solve or analyse
problems involving decision making under risk (Reed and
Apaloo 1991; Buongiorno 2001; Yousefpour and Hanewinkel
2009). Evolutionary techniques like genetic algorithms,
simulated annealing and taboo search were all included in
the heuristics category and were present in 9% of the
literature (Kangas et al. 2000; Zeng et al. 2007; Yousefpour
2009). Other techniques like mathematical and numerical
determination of optimal stopping in the real options literature
(including also Itô calculus), information gap and the
analytical hierarchy process were all less common (e.g.
Thorsen 1999a, b; Insley 2002; Duku-Kaakyire and Nanang
2004; Rocha et al. 2006; Jacobsen 2007; McCarthy and
Lindenmayer 2007).

Again, most of these OR methods make rather strong
assumptions on the ability of the decision maker to assign
stable and well-defined probability structures to the

Table 1 Prevalence of different characteristics and aspects of studies
emphasising climate change and associated risk

Climate change and risk

Contribution (%)

NPV maximum 7

Risk 8

Fire 6

Wind 4

Biotic 5

Social 1

Non-timber 15

Scale Stand 4

Forest 9

Landscape 9
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different outcomes and dynamics of stochastic events and
variables. The most flexible but also simple approach is the
simulation analysis techniques, which—because of their
often computational low requirement—typically offer
themselves better to, e.g. analysis of the effects of varying
stochastic parameters and the like over decision time span.
What this method is often lacking is a procedure for
reflecting knowledge update and knowledge contingent
decision making. A possible alternative here, which appears
largely unexplored in the forest management literature, is
the use of Bayesian methods (Kangas et al. 2000; Prato
2000, 2008 and 2009; Jacobsen et al. 2010). Kangas and
Kangas (2004) noticed that application of Bayesian
approach was suffering from computational difficulty until
recently and advancements in simulation methodology.

4 Discussion of climate change focus

The literature on various aspects of risk, uncertainty and
decision making in forest management is a rather compre-
hensive. We have not included all studies in this review, but
have selected a large sample representing the development in
the research on handling uncertainty and risk if forest, which
appeared relevant for the design of adaptive management
approaches under climate change. More than a hundred (112)
publications dealing with risk analysis in forest modelling
were included, but only some of them explicitly take into
account climate change and related environmental impacts
(21%=24 of total 112 references, Fig. 3). We also examined
which risks and changes were the main focus.

Table 1 shows the occurrence of different aspects of risk
analysis in the study of climate change and forest modelling
from selected pool (112 references). It reveals that only 7%
(eight references) of the studies focusing on NPV max-
imisation used some type of risk model to solve a forest
management problem under climate change. Risk of biotic
and abiotic hazards and the impact of climate change on
these were also rarely investigated, making up only 4–6%
of the studies (five to seven studies). Social risk analysis, or
taking into account the possible changes in the preferences
of society, in studies emphasising climate change amounted
to only 1% (i.e. one study). It thus appeared to be the least
studied aspect of risk analysis in forestry.

4.1 Impacts in focus of risk analyses

Traditionally, timber production and its value is the main,
or at least one of the main, objectives of forest management
modelling and studies of decision making under risk (e.g.
Gong 1994; Weintraub and Bare 1996; Pukkala and Miina
1997; Vettenranta and Miina 1999; Buongiorno 2001;
Chang 2005; Zhou et al. 2008). However, social and

environmental services of forest ecosystems are becoming
more and more important in forest management and must
therefore be integrated into forest modelling procedures.
Several studies address this challenge and apply techniques
and approaches of relevance to multi-functionality (e.g.
Albers 1996; Weintraub and Bare 1996; Creedy and
Wurzbacher 2001; Krcmar et al. 2001; Bulte et al. 2002;
Zhou and Gong 2004; Fernandez 2005; Gong et al. 2005;
Spring et al. 2005; McCarthy and Lindenmayer 2007;
Ananda and Herath 2009; Heller and Zavaleta 2009). In the
present review, just 15% of the studies emphasised climate
change and associated risk considering non-timber forest
products and services like biodiversity, carbon, water, amenity
values and recreation. The inclusion of non-timber products
and services requires a valuation measure of operational
relevance, which, together with other quantitative measures,
can be linked to the utility and welfare to be maximised (Gong
and Yin 2004; Yousefpour and Hanewinkel 2009). This is
especially true when there is no real market for them. For
example, this is the case for biodiversity, carbon sequestra-
tion, oxygen production, improvement of local wind climate
and soil preservation. Furthermore, the review observed only
few investigations of the real impacts of biotic hazards on
forest utilisation (5%), and the economics of biotic risk in
forest management was emphasised by only Wilson and
Baker (2001) and Xu et al. (2009).

Most studies focusing on changing, typically increasing,
risks in forest management under climate change tend to
build on existing approaches and then make assumptions
about (or more rarely model) changes in risk levels
contingent on climate change scenarios (Jacobsen and
Thorsen 2003; Yousefpour 2009). Thus, the studies do not
adequately deal with the issue that the uncertainty about
what climate scenario will become real may be much more
important for significant decision than the actual changes in
known risk levels for given climate change (Cordonnier et
al. 2008). However, the precautionary principle from envi-
ronmental management (see Rogers et al. 1997) and for
adaptation to the risk in forestry, e.g. climatic changes, has
been taken into account in some studies applying appropriate
silvicultural interventions (Knoke et al. 2001, 2005; Knoke
and Wurm 2006; Knoke 2008; Jacobsen et al. 2004;
Yousefpour 2009). For instance, Yousefpour (2009) exam-
ined adaptation to climate change in the Black Forest area of
south-western Germany by the conversion modelling of
Norway spruce monocultures towards mixed spruce beech
forests subject to multiple goals and found an optimal
solution asking for diversified silvicultural interventions.

4.2 Spatial scale in climate change studies

Climate change is considered a regional or global phenom-
enon rather than a local one, even if observed locally
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(Lindner et al. 2002; Spring et al. 2005; Böttcher 2008;
Galik and Jackson 2009; Xu et al. 2009; Heller and
Zavaleta 2009). Therefore, one could argue that the scale
of climate change studies should be at landscape or at least
forest enterprise level to reasonably address the effects of
changing environment on forest structure. The present
review reveals that in fact most of the investigations of
forest risk modelling under climate change (21% of 112
selected studies) were conducted either at landscape (9%)
or forest level (9%) and that only a few studies (3%)
considered the risk of climate changes solely at the stand
level. For analysis of uncertainty and risk associated with
climate change, it appears crucial to be able to handle
problems defined at the forest or landscape level. It should,
however, be noted that decision problems at landscape level
are often complex, multi-dimensional integer optimisation
and are therefore difficult to solve for optimal solutions,
even in a static setting. Adding uncertainty and a long time
perspective further complicates the issue, and most likely
landscape-level models require substantial simplification of
the adaptive decision problems (see Jacobsen et al. 2010;
Meilby et al. 2001, 2003 for complex examples of
aggregating from stand to forest level). While this may
seem like a limitation—not making use of the full
underlying information—it will be useful to illustrate some
spatial aspects of the uncertainty, which can then, at first in
a qualitative way, be handled together with more compli-
cated but deterministic landscape models. However, Heller
and Zavaleta (2009) warn that problems of scaling may
raise uncertainty, including scaling-down global climate
models to fit maenagment scales or scaling-up empirical
observations to predict larger scale processes. This is even
more crucial when attributes like biodiversity, mainly
indicated non-linearly (Yousefpour 2009), are under con-
sideration of adaptive management.

4.3 Model and solution approaches relevant for climate
change

From a technical point of view, it is always a challenge to
integrate risk into the modelling procedures. Finding a
solution to sophisticated risk-including models is itself a
comprehensive scientific task, where there is no general
analytical solution to most of the relevant formulations and
problems. Furthermore, if a solution at the operational level is
demanded, numerous technicalities and modelling challenges
will be faced to find numerical solutions. However, Kangas
and Kangas (2004) conclude that the most important point is
not to ignore uncertainty and to take it into account in
decision making one way or another and to make the
decision makers be aware of that. Weintraub and Romero
(2006) agree that incorporating risk and uncertainty in OR
models in agriculture and forestry is crucial, and there is a

need to adapt methods and concepts specifically conceived
for the particulars of the forestry and agriculture sector.

In the present review, SDP was the most frequently applied
technique to solve the above-mentioned problems (25% of the
literature, see Fig. 5). The SDP algorithm guarantees an
optimal solution within the problem formulation. In spite of
its advantages, the SDP also suffers from heavy increases in
computational complexity as the dimensionality of the
problem grows. Along with SDP, the E-V analysis approach
was also a widely used (25%) methodology, but it does not
comprise an optimal solution as such. This also applies to
simulation techniques (16%), which are used to explore the
solution space for different management scenarios without
producing any concrete suggestions in the form of optimal
solutions, but which may lead to a plethora of good
solutions. Another approach that offers a real global
optimum solution within the problem formulated is LP.
Unfortunately, LP involves rigorous assumptions regarding
the linearity of objectives and constraints (Weintraub and
Bare 1996; Insley and Rollins 2005; Weintraub and Romero
2006; Yousefpour and Hanewinkel 2009), which hampers its
wider application. Furthermore, flexible formulations of
dynamic decision problems under uncertainty are difficult
to obtain within LP formulations of a reasonable size. LP
was applied in 16% of the literature and might be combined
with SDP. Other techniques were less commonly repre-
sented, possibly because of their ambiguous application
[fuzzy, information gap theory, non-linear programming,
Heuristics, real options, Ito (ito calculus), analytic hierarchy
process (AHP) and quasy optimum]. However, it seems that
due to the increasing importance of society’s preferences in
forest risk analysis (Kangas and Kangas 2004; Ananda and
Herath 2005; Hoogstra 2008) and in order to legitimise
decisions regarding the governance of forest ecosystems
(Satake et al. 2007), solution methods like AHP or similar
techniques that are able to integrate socio-economic analysis
into the decision-making process should be more commonly
applied in future studies (Kangas and Kangas 2004;
Weintraub and Romero 2006; Heller and Zavaleta 2009).
Hahn and Knoke (2010) stress that adaptation is fundamen-
tally about human needs and not about nature aiming to
decrease vulnerability in forest ecosystems, and measures
carried out should be depending on both ecological and
socio-economic understanding.

Recent advances in computational capacity may allow
applyingmore sophisticated techniques like heuristics to solve
comprehensive decision problems (Kimmins et al. 2008;
Yousefpour 2009; Jacobsen et al. 2010). Most of the above
approaches, as stressed earlier, have so far been used in the
climate change and forest management literature, in ways that
do not incorporate the fact that the degree and speed of climate
change are both highly uncertain, yet crucial to the analysis of
any of the derived changes in otherwise known risks.
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5 Conclusion with a focus on future research needs

Looking across all the studies reviewed here, we find that
there are two important challenges that need to be
addressed to be able to break new ground with respect to
decision-making models for adaptive forest management
under climate change.

The first challenge is the modelling of uncertainty
related to climate change. In the literature reviewed,
uncertainty is modelled in ways that usually assume that
the parameters of the probability distributions or applied
stochastic processes are known (Gove and Fairweather
1992; Weintraub and Bare 1996; Palma and Nelson 2009).
The important implication is that even if future states and
events are unknown and need to be assessed as stochastic,
the models can explicitly assign a (treatment conditional)
probability to any model outcome in model state space and
time. The stochastic models often base their parameter-
isation on empirical observations of, e.g. windthrow or fire
risks and price behaviour. However, the uncertainties and
risks related to climate change cannot be observed
historically. There is an inherent uncertainty about the
future probability space for climate development, which
does not offer itself to simple parameterisations. Rather,
model developments will need to address the challenge of
handling non-stationary and perhaps even belief-based
parameters of stochastic processes and probability distribu-
tions, like Bayesian updating (Kangas et al. 2000; Prato
2000, 2009). Kangas and Kangas (2004) and Prato (2000,
2008) admit the suitability of knowledge management
approaches like probability theory of Bayes and evidence
theory of Dempster–Shafer for coping with non-stationary
risks in adaptive management of forest resources. Probert et
al. (2010) introduce an adaptive modelling applying
Bayesian theory combined with optimization algorithms

with an example of conservation planning for a threatened
species Tasmanian Devil, Sarcophilus harrisii.

The second challenge concerns the need for simple but
valid forest growth models that (1) can provide good
estimates of timber production and preferably also other
goods and services as a function of stand level character-
istics, (2) are constructed in ways that allow them to react to
changes in climate with respect to, e.g. two parameters,
temperature and precipitation, (3) are able to link together
stand output functions to form forest and landscape levels
models and (4) are simple enough to provide good
conditional predictions of key state variables and flows at
low computational costs, hence allowing for evaluation of
numerous decision alternatives. Looking into the literature,
it appears that most climate-sensitive models are computa-
tionally very demanding, e.g. process-based models. These
are good models for advanced studies of ecosystem
dynamics at a very detailed level (i.e. high complexity
and precision, green area along the X-axis of Fig. 7), but
their usefulness for decision analysis is quite limited as they
are considered to embody too many uncertainties and
require too many (poorly known) parameters for their
application to be as reliable in practice as empirical models
(e.g. Böttcher 2008; Galik and Jackson 2009; Yousefpour
2009). Thus far, they have not been able to predict the effect
of different management prescriptions as required for adaptive
forest management (less decision diversity, green area along
Y-axis of Fig. 7). Furthermore, because of their often heavy
computational demands (in terms of run time, etc.), they do
not form an attractive basis for the more advanced decision
modelling approaches, which are themselves either computa-
tionally demanding (e.g. SDP) or at least require numerous
stochastic runs of the models under varying assumptions, e.g.
Bayesian updating with simulation.

In comparison, a large amount of research conducted in
economic risk modelling of forest management applied
substantially more advanced approaches to decision mod-
elling. This research especially emphasised timber price,
interest rate and rotation period, and it has been based
mostly on Faustmann formulations (high risk decision
diversity, brown area along the Y axis in Fig. 7). The field
is closely related to the real options literature as shown by
Plantinga (1998) and with examples like, e.g. Thorsen
(1999a, b), Abildtrup and Strange (1999), Duku-Kaakyire
and Nanang (2004), Gjolberg and Guttormsen (2002) and
many others. The main limitation but also advantage of
these types of studies is that they usually apply empirically
based models to predict forest development or development
in prices over time (e.g. Brazee and Mendelsohn 1988;
Gong 1994; Pukkala and Miina 1997; Willassen 1998;
Thorsen 1999b; Buongiorno 2001; Jacobsen and Thorsen
2003; Orois et al. 2004; Zeng et al. 2007; Alvarez and
Koskela 2006, 2007a, b; Yoshimoto 2009). The advantage
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is that these models are often easy to implement in more
complex decision models, and they have low computational
demands. The disadvantage and limitation is the fact that,
by their very nature, empirical models are based on
historical evidence, and although the climate has also
varied historically, so that empirical growth models may
include effects of annual weather, the effects of short-term
fluctuations of the weather on growth, regeneration and
mortality are likely to differ considerably from the effects
of long-term climate change.

Developing operational growth models that are based on
(stand-level) empirical information and include causal
components would solve the problem and facilitate devel-
opment of adaptive management schemes. Moreover, future
studies should attempt to bridge the gap between compre-
hensive ecological models and economic models to assist
forest decision makers with appropriate and complete
modelling tools.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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