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Introduction. Integrability is a powerful tool in theoretical physics. The most spec-

tacular recent achievement it underlies is to determine the spectrum of the N = 4 SYM

theory for an arbitrary coupling constant and to make very precise quantitative predic-

tions confirming the validity the AdS/CFT correspondence [1–3]. For recent reviews on

this subject see [4, 5]. The correlation functions [6–8, 10, 11], the amplitudes [12, 13] and

the Wilson loops [14–16] seem also to be within the reach of integrability methods. At

weak coupling, the problem of computing the three-point function of single-trace operators

at tree level in the su(2) sector was reformulated [6, 7, 17] in the language of spin chains

in terms of scalar products the XXX spin chain. The scalar products are expressible as

determinants [18–20]. The determinantal formula initially proposed for single-chain scalar

products was generalized [21] to the overlaps involving several spin chains. Several special

cases were considered [7, 8] involving at least one operator which is close to BPS. The main

difficulty in taking the classical limit, which is necessary to compare with the string predic-

tions, resides in taking continuum limit of large Slavnov determinants. This difficulty was

overcome very recently by I. Kostov [22], who succeeded to obtain a factorization formula

for the Slavnov determinants. He obtained the continuum limit of the correlator of three

operators with three sets of su(2) charges. At higher loop order, the dilatation operator is

mapped to a spin chain with long range interaction [23]. In [24], it was matched with the

Inozemtsev model [25] up to three loop order. Another related chain which reproduces the

dilatation operator up to three loops is the BDS spin chain [26] which can be be obtained

by reduction [29] of the one-dimensional Hubbard model at half-filling to the spin sector.

Both these models belong to a class of deformations of the XXX model considered in [30].

These models were considered out of reach of the algebraic Bethe ansatz techniques, which

allows to build the eigenvectors of the of the Hamiltonian, because the monodromy ma-

trix was not known. The sole exception was the Inozemtsev model at infinite length [24],

whose monodromy matrix can be obtained by analogy with the one for the Haldane-Shastry

model [31–33]. The construction is based on an (iso)morphism with the inhomogeneous

XXX model. Here, we work out the details for the Inozemtsev spin chain and we postu-

late that an identical construction underlies all the models which are constructed from the

boost charges in [30], including the BDS model. The Hamiltonian obtained from the mon-

odromy matrix at finite length has a periodicity defect but, on the basis of the perturbative

results obtained by Gromov and Vieira for the periodic finite chains [11], we think that it

is possible to modify the construction to include perfectly periodic chains. It is not clear

whether the lack of periodicity of the Hamiltonian really is a drawback in the context of the

computations of the correlation functions in the N = 4 SYM theory, since the procedure

of splitting and joining of the chains effectively breaks the periodicity. We certainly need

to understand the origin of the cancellation between the contact terms necessary to restore

the periodicity and the Hamiltonian insertions at the splitting/joining points which was

observed at one loop in [11]. This work was triggered by discussions with N. Gromov and

P. Vieira and by their recent results [11] on the eigenvectors of the dilatation operator and

the scalar products at two and three loops.
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The Inozemtsev spin chain. The Inozemtsev spin chain [25] is an integrable long-range

interacting spin chain with Hamiltonian

H =
L∑

j=1

L−1∑

n=1

PL,π/κ(n)(1− Pj,j+n) , (1)

where PL,π/κ(z) is the Weierstrass function with periods L and iπ/κ and Pj,j+n permutes

the spins at sites j, j + n. In [24] it has been shown that around the limit κ → ∞ this

Hamiltonian matches the dilatation operator of the N = 4 gauge theory in the su(2)

sector up to three-loop order. In fact, the dilatation operator is a combination of the

Hamiltonian (1) and a higher conserved quantity, but this aspect is irrelevant to the con-

struction of the eigenvectors. The full solution of the Hamiltonian (1) is rather involved

and its integrable structure was not yet fully explored. The limit κ = 0 corresponds to

the Haldane-Shastry spin chain, whose monodromy matrix was constructed in [32]. A sys-

tematic way to construct the integrals of motion was given in [33]. Another limit which is

tractable is L → ∞, when the interaction strength becomes proportional to 1/ sinh2 κn. In

this case, the conserved quantities can be obtained [32] from those of the Haldane-Shastry

model by the exchange of the real and imaginary periods L → iπ/κ. The Yangian gen-

erators are also obtainable by this procedure. The two limiting cases mentioned above,

Haldane-Shastry and infinite length Inozemtsev model share the particular feature that

the Yangian is a symmetry of the Hamiltonian. This can be understood easily from the

fact that the conserved quantities are determined [33] by (a special limit of) the quantum

determinant, which commutes with the monodromy matrix. When κ → ∞, we retrieve

the conserved quantities of the XXX spin chain. Here, we are interested in exploring the

first few corrections to the XXX limit. The expansion parameter will be the gauge theory

coupling constant g2, related to κ by the relation [24]

e−2κ = g2 − 3g4 +O(g6) . (2)

The strategy of the construction is as follow: we use the mondromy matrix of the

Haldane-Shastry spin chain and then we continue it analytically in the positions of the

spins, zj = e2πij/L → e2jκ. The algebra between the generators is not affected by this

change (but the spectrum of the operators will be). The key elements which allow to

incorporate the long-range nature of the interaction [32] are a set of mutually commuting

operators known as the Dunkl operators [27, 28]

[di, dj ] = 0 . (3)

In the case of Inozemtsev spin chain, they have the following expression

dIi =
∑

j;j>i

ΘijKij −
∑

j;j<i

ΘjiKij =
∑

j;j 6=i

ΘijKij −
∑

j;j<i

Kij (4)

where Θij = zi/(zi − zj) and zj = e2jκ. The operators Kij permute the coordinates

Kijzj = ziKij . Under the coordinate permutations, the Dunkl operator behave as

[Ki,i+1, dk] = 0 if k 6= i, i+ 1 , (5)

Ki,i+1di − di+1Ki,i+1 = 1 .
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The Dunkl operators of the Haldane-Shastry and Inozemtsev spin chains are particular in

the sense that they are linear in the permutations Kij . The fact that they commute is

based on the following identity satisfied by the functions Θij defined above

ΘijΘik = ΘijΘjk +ΘikΘkj (6)

for any three indices i, j, k. If we relax this condition by taking Θij = 1/(1− e(j− i)), with

e(n) some function, the commutation relations (3) will not satisfied and we will have to

add to di’s higher odd powers in the permutations to compensate for this defect

di = dIi +
∑

{j,k,l}6=i

η i;jkl Kij Kik Kil +O(K5) . (7)

The coefficients η i;jkl will be determined in terms of Θij by the condition of vanishing of

the terms quadratic in Kij in the commutators. We believe that this procedure will allow

to determine recursively all the coefficients in the expansion (7) and to explicitly build the

integrable long-range spin chains with multi-spin interaction we describe below.

Given the Dunkl operators, one can easily construct the monodromy matrix [32]. The

construction in the rest of this section is rather general, and at this point we do not have

to specify the precise details of the Dunkl operators, except that they are built from the

coordinates permutations Kij as explained above and that they obey the algebra (5). We

define then

Ta(u) ≡ π(T̂a(u)) , T̂a(u) =
L∏

j=1

(
1 +

iPja

u−i dj−i/2

)
, (8)

where a stands for the auxiliary space. The projection operator π acts in the following way:

the coordinate permutations Kij are brought to the right of the expression and then they

are replaced with the spin permutations Pij . This amounts to working on (wave)functions

which are symmetric by simultaneous permutations of spins and coordinates, and then

freezing the coordinates to some specific values. It was shown in [32] that T (u) obeys the

Yang-Baxter equation with the rational R matrix R(u) = u + iP . The proof goes in two

steps: first, one checks that the matrix (8) without the projection obeys the Yang Baxter

equation, which is obvious. Second, it can be shown using the commutation relations (5),

see for example eq. (2.24) in reference [32], that the unprojected monodromy matrix

T̂ (u) preserves the space of function symmetric by simultaneous permutations of spins and

coordinates, so that

π(T̂a(u)T̂a′(v)) = π(T̂a(u))π(T̂a′(v)) . (9)

In other words, the BGHP projection [32] is a morphism. In virtue of this relation, the

projected matrix obeys the Yang Baxter equation as well. For the Inozemtsev spin chain,

the matrix (8) is defined when L → ∞, and is not known how to build the monodromy

matrix for a periodic finite chain. However, since we are interested in expanding the

Hamiltonian in powers of g2, according to (2), on a finite chain we can truncate the sum (4)

to sites from 1 to L. The price to pay is that the resulting Hamiltonian, while remaining

integrable, will not be perfectly periodic anymore and some terms connecting the first few
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and last few sites will be missing. This Hamiltonian will be slightly different from the one

considered in [11], which probably explains the difference with the contact terms which

appear in that reference. Here we will concentrate on (long) spin chains with the integral

structure coming from (8), and we hope to elaborate more on the finite chains and periodic

boundary conditions elsewhere [36].

The normalization of the matrix (8) is chosen such that at dj = 0 we retrieve the

standard expression of the monodromy matrix of the XXX model.1 From the definition

of the projection π it follows that the symmetric combinations of Dunkl operators, for

example the symmetric sums, have the property

π

(
F (d)

∑

i

dni

)
= π

(
F (d)

)
π

(∑

i

dni

)
, (10)

where F (d) is an arbitrary function of di’s. We can therefore define as mutually commuting

quantities the symmetric sums

pn = π

(∑

i

dni

)
, [pn,pm] = 0 . (11)

They cannot be used to generate the Hamiltonians of the model, because they have the

same value on all the states [32, 33]. This means that their eigenvalues can be determined

on any state, for example on |Ω〉 ≡ | ↑↑ . . . ↑〉.
From the expression (8) its is straightforward to obtain the Yangian generators by

considering the coefficients of the expansion around u = ∞,

Qab
0 =

∑

j

Eab
j , (12)

Qab
1 =

∑

j>i

Eac
j Ecb

i +
∑

j

Eab
j π(dj) , (13)

where Eab
j are the elementary generators of gl(2) so that Pij = Eab

i Eba
j .

Let us mention here that the construction of the monodromy matrix based on Dunkl

operators can be done completely similarly for the gl(n) case. The boundary case works as

well, as explained in [35]. There, two type of boundary reflection matrices were considered,

one preserving the su(2) symmetry, the other which breaks it.

The monodromy matrix (8) strongly resembles the monodromy matrix of the inhomo-

geneous XXX model defined as

T0(u; θ) =
L∏

j=1

(
1 +

iPja

u−θj−i/2

)
. (14)

It would be tempting to identify θj with the eigenvalue of dj , but this cannot be done

because of the projection π. However, there is a way to relate the two models. Let us first

use the monodromy matrix acting on the reference state |Ω〉. Since the Dunkl operators

mutually commute and commute with the spin operators, we can formally expand the

1The i in front of dj insures the right ratio between P0j and dj , cf. [32].
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matrix T (u) in powers of dj ’s. Up to trivial powers of i, the coefficients of the expansion

are the same as for the expansion of T0(u; θ) in powers of θj ’s,

T (u)|Ω〉 =
∑

n

∑

j1<...<jn

∑

k1,...,kn

ik1+...kn

k1!...kn!
∂ k1
j1

. . . ∂ kn
jn

T0(u; θ)
∣∣∣
θ=0

π

(
d k1
j1

. . . d kn
jn

)
|Ω〉

or

T (u)|Ω〉 = Dθ T0(u; θ)|Ω〉
∣∣∣
θ=0

(15)

where the theta operator defined as

Dθ =
∑

n

∑

j1<...<jn

∑

k1,...,kn

ik1+...kn

k1!...kn!
Ck1,...,kn
j1,...,jn

∂ k1
j1

. . . ∂ kn
jn

, (16)

Ck1,...,kn
j1,...,jn

|Ω〉 ≡ π

(
d k1
j1

. . . d kn
jn

)
|Ω〉 , (17)

bears strong resemblances to the theta derivative defined in [11] at two-loop and three-loop

order.2 From the property (10) of the projection we deduce that, if G(θ) is a symmetric

function of θ, we obtain3

Dθ[F (θ) G(θ)]|θ=0 = Dθ[F (θ)]|θ=0 Dθ′ [G(θ′)]|θ′=0 . (18)

The action of the theta operator on any symmetric function of the impurities can be

obtained by working out to the action of Dθ on the basis of symmetric functions pn1
. . . pnk

with pn =
∑

j θ
n
j and p0 = L.

Let us define a more general operator Dθ, via

T (u) = Dθ T0(u; θ)
∣∣∣
θ=0

(19)

≡
∑

n

∑

j1<...<jn

∑

k1,...,kn

ik1+...kn

k1!...kn!
∂ k1
j1

. . . ∂ kn
jn

T0(u; θ)
∣∣∣
θ=0

π

(
d k1
j1

. . . d kn
jn

)

so that we can handle the monodromy matrix without acting on a particular state on the

right. The coefficients of the differential operator are now spin operators, and they cannot

be replaced by numbers anymore. Due to the morphism property (9) of the projection π,

we deduce that the operator Dθ is also a morphism, which we call the Bernard-Gaudin-

Haldane-Pasquier (BHGP) morphism

Ta(u)Ta′(v) = Dθ T0,a(u; θ)
∣∣∣
θ=0

Dθ T0,a′(u; θ)
∣∣∣
θ=0

= Dθ [T0,a(u; θ)T0,a′(v; θ)]
∣∣∣
θ=0

(20)

Let us emphasize that the purely differential operator Dθ does not possess this prop-

erty, rather

Dθ [T0,a(u; θ)T0,a′(v; θ)]
∣∣∣
θ=0

= Dθ T0,a(u; θ)
∣∣∣
θ=0

Dθ T0,a′(u; θ)
∣∣∣
θ=0

+ cross terms . (21)

2In a previous version of this article, we have stated that the two differential operators are the same.

In fact, we became aware that there are some subtle differences between the present definition and the one

in [11], concerning in particular the terms which are odd in the derivatives, see below. We thank N. Gromov

for explaining their definition of the differential operator.
3The same property was postulated [34] for theta derivative proposed by N. Gromov and P. Vieira [11];

here it is a straightforward consequence of the properties of the Dunkl operators.
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In (20) the cross terms are taken into account by the commutator of π
(
d k1
j1

. . . d kn
jn

)
with

T0,a′(u; θ). Upon acting on the vacuum state we retrieve the original theta operator action

Dθ [. . .](u; θ)
∣∣∣
θ=0

|Ω〉 = Dθ [. . .](u; θ)
∣∣∣
θ=0

|Ω〉 (22)

where the dots stand for any product of elements of the monodromy matrix.

Two and three loops from the Inozemtsev model. Let us give an example how

to perturbatively compute the operators d2i and di dj and their projection on the vacuum

state |Ω〉 using their expression in the Inozemtsev spin chain (4) . The connection with

the dilatation operator of the N = 4 theory works up to three loops [24], so we are going

to expands to this order. From their definition, it is clear that the coefficients Θij are

invariant by translation, Θij = Θi+n,j+n. The projection π amounts to replacing Kij by

Pij which evaluates to 1 on the spin symmetric state |Ω〉. Up to terms of the order g6

we have

π(d2i )|Ω〉 =
[
−2g2 +O(g6)

]
|Ω〉 , (23)

π(didi+1)|Ω〉 =
[
g2 − 2g4 +O(g6)

]
|Ω〉 (24)

π(didi+2)|Ω〉 =
[
2g4 +O(g6)

]
|Ω〉 , (25)

while the other combinations quadratic in the di’s do not contribute at the order we are

considering. Close to the boundaries i = 1, L the result of the projection is affected by the

boundary conditions and is in general different from the bulk one. In particular, we have

π(di)|Ω〉 = 0, except at the boundary. Collecting the (bulk) g2 terms we obtain

DI
θ = 1 + g2D2,2 +O(g4) , D2,2 ≡ 1

2

∑

i

(∂i − ∂i+1)
2 , (26)

with ∂i = ∂θi . Since we are not particularly interested here in specifying the boundary

terms, we do not specify the limits of summation above. Let us however mention that

these terms are important for insuring the properties of the theta operator defined in (16).

We denote by Dm,n the term appearing at order gm and containing nth powers of

the derivatives. The expression (26) in the bulk coincides with the result of Gromov and

Vieira [11] for the B(u) element of the monodromy matrix at two loops. At order g4 we

have some contributions from the terms cubic in the Dunkl operators

d2i di+1 = −2g4 +O(g6) d2i di+2 = g4 +O(g6) (27)

did
2
i+1 = 2g4 +O(g6) did

2
i+2 = −g4 +O(g6) , (28)

where we should understand these relation after projection and action on the vacuum state

(that we omit in the following to avoid cumbersome formulae). The quadratic and cubic

part in the derivatives at order g4 are reproduced by the operator

D4,2 +D4,3 =
∑

j

[
(∂j − ∂j+2)

2 − (∂j − ∂j+1)
2 + i

6(∂j − ∂j+2)
3 − i

3(∂j − ∂j+1)
3
]
. (29)
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This contribution seems rather innocuous, since it vanishes on functions which are sym-

metric in θ. It is absent from [11], where it is postulated that the odd-order derivatives

are absent. Ruling out the odd-order derivatives might still preserve the relation (18), but

it will probably introduce unnecessary cross-terms. According to N. Gromov, D4,2 may

be retrieved in their formulation if the Hamiltonian is modified by a transformation which

does not change the spectrum.

For the terms quartic in the Dunkl operators, we have two kind of contributions: one

is given by two clusters of operators of the type d2i or didi+1 situated in generic position

with i < j

d2i d
2
j = 4g4 +O(g6) , di−1didjdj+1 = g4 +O(g6) , (30)

d2i djdj+1 = −2g4 +O(g6) , didi+1d
2
j = −2g4 +O(g6) , (31)

and the second type is when the two clusters come close to each other (here we list only

the cases which are different from the general case above)

d4i = 6g4 +O(g6) d2i d
2
i+2 = 3g4 +O(g6) (32)

d2i di+1di+2 = −g4 +O(g6) d3i di+1 = −3g4 +O(g6) (33)

did
2
i+1di+2 = O(g6) did

3
i+1 = −3g4 +O(g6) . (34)

These contributions can be summarized in

D4,4 =
1
8

∑

i,j

(∂i − ∂i+1)
2(∂j − ∂j+1)

2 − 1
4

∑

i

(∂i − ∂i+1)
2(∂i+1 − ∂i+2)

2 (35)

so that, up to terms of order g6 the operator DI
θ in the bulk is given by

DI, bulk
θ = 1 + g2D2,2 + g4(D4,2 +D4,3 +D4,4) +O(g6) . (36)

To compute the action of DI
θ on the basis of symmetric sums pn1

. . . pnk
with pn =

∑
j θ

n
j

it is enough to use the property (18)

DI
θ pn1

. . . pnk
|θ=0 =

k∏

j=1

(
DI

θ pnj
|θ=0

)
. (37)

By direct computation we get DI
θ p0 = L, DI

θ p2 = 2g2L, DI
θ p4 = 6g4L. When checking

the above factorization explicitly we get some subleading 1/L corrections in the products,

but they are an artifact of working with finite chain and imposing periodic boundary

conditions dL+1 = d1, which are obviously not compatible with the definitions of the

Dunkl operators (4). As a consequence of (37), on an arbitrary power of the resolvent

Gθ(u) defined as

Gθ(u) = ∂u ln
∏

j

(u− θj) =
∑

j

1
u−θj

=
∑

n≥0

pn
un+1 (38)

we have

DI
θ Gk

θ(u)
∣∣∣
θ=0

=
(
L d

du ln f(u, g)
)k

. (39)
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This relation implies that the substitution Gθ(u) → L d
du ln f(u, g) can be done on any

function which depends on θ only through the resolvent Gθ(u). The eigenvalues a(u) and

d(u) of the diagonal elements A(u) and B(u) on the vacuum can be similarly evaluated

a(u) = f(u+)L , d(u) = f(u−)L , (40)

with u± = u ± i/2. The function f(u, g), determined above has the same expansion to

order g4 as the Zhukovsky variable

x(u) = 1
2

(
u+

√
u2 − 4g2

)
= f(u, g) +O(g6) . (41)

At the order g6, the dispersion relation for the Inozemtsev model starts to be different

of that of the N = 4 dilatation operator, and from that of the BDS model. For the full

Inozemtsev model, the all-loop expression of the function f(u, g(κ)) is given [25] by the

parametric equation

f(u+)
f(u−)

= eip , u(p) = p
2πiκζ1

(
iπ
2κ

)
− 1

2iκζ1

(
ip
2κ

)
, (42)

with the relation between κ and g from eq. (2). Here ζ1(z) is the elliptic zeta function with

periods 1 and iπ/κ.

We believe that the construction above works for a large class of functions f(u). In [30]

a procedure was given to construct very general spin chains with long range interaction,

and the Inozemtsev model falls in the category of chains constructed from boost charges in

that work. For these models at least, the Dunkl operators and the theta derivatives should

exist, and we should have

pn |Ω〉 = (−i)nLCn |Ω〉 (43)

with Cn the coefficients of the expansion

d
du ln f(u) = 1

u

∑

n≥0

Cn

un . (44)

We hope it is possible to prove this formula by giving an explicit construction of the Dunkl

operators (7).

The BDS spin chain. The BDS spin chain, defined through its Bethe ansatz [26],

[
x(u+

k
)

x(u−

k
)

]L
=

M∏

j 6=k

uk−uj+i
uk−uj−i , (45)

was devised such as to reproduce the all-loop dispersion relation of the dilatation operator

in the su(2) sector. When supplemented with the BES dressing phase [40] it reproduces

the su(2) dilatation operator at all loop. It was noticed in [26] that the BDS ansatz can

be formally derived from the inhomogeneous XXX ansatz with inhomogeneities given by

θj = 2g sin 2πj/L. In [29] it was shown that the BDS spin chain is in fact a projection of

the one-dimensional Hubbard model at half filling to the spin sector. In that construction,
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θj = 2g sin qj ∼ idj are in fact dynamical variables corresponding to the momenta qj of

the underlying fermions, and in principle subject to backreaction from the spin degrees of

freedom. The action of the theta operator at all-loop is given by

DBDS
θ pn

∣∣∣
θ=0

= iLpn = LCBDS
n (46)

with

CBDS
n = (2g)n

∫ π

−π

dq
2π sinn q , ⇒ CBDS

2n = (2g)2n Γ(n+1/2)√
πΓ(n+1)

, CBDS
2n+1 = 0 . (47)

The backreaction decouples from the computation of the symmetric sums, as it can be

seen in appendix E of [29]. Now, in virtue of the equation (39) we can substitute for

any F [Gθ(u)]

DBDS
θ F [Gθ(u)]

∣∣∣
θ=0

= F

[
L√

u2−4g2

]
, (48)

which is of course consistent with the BDS equations (45).

Arbitrary number of magnons. The relations above were given for one-magnon eigen-

states, but generalization to arbitrary magnon eigenstates is straightforward, due to the

morphism property (20). Let us consider the product of M copies of the monodromy ma-

trix with auxiliary spaces a1, . . . , aM . Since the unprojected monodromy matrix preserves

the space of functions which are symmetric under simultaneous permutations of coordi-

nates and spins [32], the product of projections is equal to the projection of the product.

Proceeding exactly as before, we get that

Ta1(u1) . . . TaM (uM )|Ω〉 = Dθ Ta1,0(u1; θ) . . . TaM ,0(uM ; θ) |Ω〉
∣∣∣
θ=0

. (49)

From this expression, one can extract any monomial in the operators A(u), B(u), C(u),

D(u) by appropriate projections in the auxiliary spaces ai. In particular, we have

B(u1) . . . B(uM )|Ω〉 = Dθ B0(u1; θ) . . . B0(uM ; θ) |Ω〉
∣∣∣
θ=0

≡ |{u}〉g , (50)

〈Ω|C(v1) . . . C(vM ) = 〈Ω|Dθ C(v1; θ) . . . C(vM ; θ)
∣∣∣
θ=0

≡ g〈{v}| . (51)

Due to the fact that the R matrix in the Yang-Baxter equation is the same as in the XXX

model, the algebra of the A(u), B(u), C(u), D(u) operators is the same,4 with the only

modification that the eigenvalues of A(u) and D(u) on the vacuum |Ω〉 are now a(u) =

f(u+)L and b(u) = f(u−)L. We conclude that the vectors defined in (50) are eigenvectors

of the BDS Hamiltonian if the rapidities {u} satisfy the BDS ansatz equations (45).

4See for example [37].
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Scalar products and the correlation functions. In [7] the setup was given to compute

the correlation functions of the single-trace operators of theN = 4 gauge theory in the weak

coupling limit. The building blocks entering the correlation functions are the Slavnov-type

scalar products [20]

S{u;θ},{v;θ} = 〈{v; θ}|{u; θ}〉 (52)

where |{u; θ}〉 ≡ B0(u1; θ) . . . B0(uM ; θ) |Ω〉 and, for example, the rapidities {u} obey Bethe

ansatz equations with impurities θ. The variables {v} may obey a different Bethe ansatz.

The tree-level correlation functions can be obtained [7] by setting θ = 0. The scalar

products are given by the Slavnov determinant formula [20, 21, 38]. As observed by direct

computation up to two loop order in [11] and shown above, at higher loop order the Bethe

ansatz eigenstates are deformed according to (50) into

|{u}〉 → |{u}〉g = Dθ|{u; θ}〉
∣∣∣
θ=0

(53)

and their scalar products can be evaluated using (49), or equivalently (50), (51), as

g〈{v}|{u}〉g = Dθ 〈Ω|C0(v1; θ) . . . C0(vM ; θ)B0(u1; θ) . . . B0(uM ; θ) |Ω〉
∣∣∣
θ=0

= Dθ S{u;θ},{v;θ}
∣∣∣
θ=0

. (54)

Let us emphasize that, due to the morphism property (20) of Dθ and to the property (22),

there are no cross terms in the scalar product, as there are in [11]. This is an important

difference between our definitions and theirs, and it may give a considerable computational

advantage at higher loop. The Slavnov determinant depends on the impurities θ only via

the resolvents Gθ(u), Gθ(v). If the theta operator is given by the all-loop expression (46),

the only effect of acting with it on the Slavnov determinant is to substitute

Gθ(u) −→ Ld ln f(u)
du (55)

and to insure that {u} (and possibly {v}) obey the BDS ansatz (45). This would work

even on expressions with finite number of magnons, up to 1/L terms.5 In fact, to compute

the scalar products we do not really need to know about the theta operator; it is enough

to know that the monodromy matrix exists and that its matrix elements obey the same

algebra as for XXX, with modified functions a(u) and d(u). This is insured by the morphism

properties of the BGHP projection. Having an explicit value for the Dunkl operators allows

to determine the microscopic realization of the model (i.e. to determine the Hamiltonians).

The quasiclassical limit of the Slavnov determinants, when the distribution of mag-

nons {u} and {v} condense on some contours Γu and Γv was computed very recently by

I. Kostov [22], by using a fermionic representation. The result, which generalizes previous

5A careful treatment of the boundary terms for the periodic system and of the Hamiltonian insertion

at the splitting point can be found in [11]. In this reference it was found at two loops, or one loop for the

correlator, that the two corrections compensate each other.
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results [7–9] is

lnS{u},{v} =

∮

Cv

dz
2π Li2

(
ei(Gu(z)+Gv(z)−Gθ(z)

)
−

∮

Cu

dz
2π Li2

(
eiGv(z)−iGu(z)

)

with Gu,v(z) =

∫

Γu,v

dz′ ρu,v(z′)
z−z′ (56)

and the closed contours Cu,v encircling Γu,v counterclockwise. We refer to [22] for a discus-

sion of the subtleties in closing the contour Cu around the singularities of the dilogarithm.

Here we have omitted for simplicity some terms coming from the normalization of the

states and which can be reconstituted by comparison with [22]. These terms will drop out

anyway from the physically meaningful quantities which are the scalar products divided

by the norms. The results at tree level is obtained by setting all the impurities to zero. It

is straightforward to generalize this result at all loop for the BDS model, as well as for the

other similar long-range models, via the substitution (55). In these cases, we define the

quasi momentum p(u) through

e2ipu(u) =
[
f(u−)
f(u+)

]L M∏

j

u−uj+i
u−uj−i . (57)

In the classical limit u ∼ L, so pu(u) is related to the resolvent via

pu(z) = Gu(z)− L
2
d ln f(z)

dz . (58)

and the Bethe ansatz equations (45) become in this limit

p/(z) = πn , or G/u(z) = πn+ L
2
d ln f(z)

dz , for z ∈ Γu . (59)

Therefore, the results of [22] can be expressed uniquely in terms of the quasi momentum and

the potential d ln f(z)/dz. The norm eigenvectors of the Hubbard model was conjectured

by Göhman and Korepin [39]; it would be interesting to compare the the result at half

filling with the prediction for the BDS case.

Consequence for the correlation functions for AdS/CFT. The all-loop Bethe

ansatz for the dilatation operator in the su(2) sector can be obtained from (45) by sup-

plementing it with the BES dressing phase σBES [40]. In terms of quasi momentum, this

amounts to substituting

p(u) −→ pBES(u) = pBDS(u)− i lnσBES(u) . (60)

and in the continuum limit

pBES(z) = GBES
u

(z)− L

2
√

z2−4g2
. (61)

When g is large the quasi momentum pBES(z) reproduces the algebraic curve data [41]. It

is remarkable that (56) contains only the quasi momentum p(z) and the potential x′(z) =
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1/
√
z2 − 4g2 via Gθ(z). The simplicity of this result leads us, see also [22], to conjecture

that the dressing phase can be incorporated in the results of [22] simply by substituting

the resolvents

Gu,v(z) −→ GBES
u,v (z) . (62)

According to this conjecture, and assuming that the cancelation between the contact terms

and the Hamiltonian insertions observed in [11] survives at higher loop, the all-loop three-

point correlators in the su(2) sector would be given by

lnC123(g) =−1
2

∑

j=u,v,w

∮

Cj

dz
2π Li2

[
e2ipj(z)

]
(63)

+

∮

C̃∞

u ∪Cv

dz
2π Li2

[
eipu(z)+ipv(z)+iL3/2

√
z2−4g2

]
+

∮

Cw

dz
2πLi2

[
ei(L2−L1)/2

√
z2−4g2

+
ipw(z)

]

with the quasimometa pj(z) defined as

pj(z) = GBES
j (z)− Lj

2
√

z2−4g2
, and (u,v,w) ≡ (1, 2, 3) . (64)

A general strategy to compute the higher loop correlators was also suggested in the con-

clusions of [7], where the authors noticed that the substitution of the full quasi momentum

does not work for finite size systems. Here we conjecture that (63) is true in the quasi clas-

sical limit, when at least the length L1 is large and the corresponding rapidities are large,

ui ∼ L1, and condense on some cuts. If the quasi classical limit of the full solution of the

three-point function depends only on the quasi momenta, then it should be relatively easy

to generalize the result to correlators of three operators in arbitrary positions by using the

algebraic curve data [41, 42]. The recent results [16] about the Wilson loops and correlators

of a Wilson loop and a local operator also seem to point out in this direction. The way the

quasi momentum appears in the classical limit of the Slavnov products reminds the thermo-

dynamical Bethe ansatz for the spectrum [43]. It would be instructive to clarify the interre-

lation between the correlators, the amplitudes/Wilson lines and the TBA for the spectrum.
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