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Abstract We consider a cosmological model dominated
by a stiff fluid with a constant bulk viscosity. We classify
all the possible cases of the universe predicted by the model
and analyze the scale factor and the density as well as the
curvature scalar. We find that when the dimensionless con-
stant bulk viscous parameter is in the range 0 < ζ̄ < 6 the
model begins with a big bang and makes a transition from the
decelerating expansion epoch to an accelerating epoch and
then tends to the de Sitter phase as t → ∞. The transition
into the accelerating epoch would be in the recent past when
4 < ζ̄ < 6. For ζ̄ > 6 the model does not have a big bang
and shows an increase in the fluid density and scalar curva-
ture as the universe expands which eventually saturates as
the scale factor a → ∞ in the future. We have analyzed the
model with statefinder diagnostics and find that the model is
different from the �CDM model but approaches the �CDM
point as a → ∞. We have also analyzed the status of the
generalized second law of thermodynamics with an apparent
horizon as the boundary of the universe and found that the
law is generally satisfied when 0 ≤ ζ̄ < 6, and for ζ̄ > 6 the
law is satisfied when the scale factor is larger than a minimum
value.

1 Introduction

Recent studies on the current acceleration of the universe
using type Ia supernovae data [1–3] have shown that about
72 % of the energy density of the universe is in the form of an
exotic component, capable of producing a negative pressure,
called dark energy. Cosmological data from a wide range of
other sources—the cosmic microwave background radiation
[4,5], baryon acoustic oscillations [6], cluster gas fractions
[7], and gamma ray bursts [8,9] have all confirmed this con-
clusion. Concerning the remaining part of the energy density,
it was concluded even before the discovery of dark energy
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that 23 % of it consists of weakly interacting matter called
dark matter. The evidence for this comes from a variety of
observational tests including weak [10] and strong [11] lens-
ing, large scale structure [12], as well as from supernovae
and cosmic microwave background [13–15] studies. In spite
of the fact that all these observational data establish the exis-
tence of the components like dark matter and dark energy, the
existence of other exotic fluid components has not been ruled
out. For example several models predict the existence of an
exotic component called dark radiation in the universe [16].
Another exotic fluid which is predicted by several models is
a stiff fluid, a fluid with an equation of state ps = ρs, where
ps and ρs are the normal pressure and density of the stiff
fluid, respectively. The equation of state parameter of this
fluid assumes the largest value (equal to 1) consistent with
causality because the speed of sound in this fluid is equal to
the speed of light.

The model with a stiff fluid was first studied by Zeldovich
[17]. In recent years a large number of models have been pro-
posed for studying various cosmological properties of stiff
fluids. In certain models with self-interacting dark matter
components, the self-interaction between the dark matter par-
ticles is characterized by the exchange of vector mesons via
minimal coupling. In such models the self-interaction energy
is shown to behave like a stiff fluid [18]. A stiff fluid has also
been considered in certain cosmological models based on
Horava–Lifshitz gravity. In Horava–Lifshitz gravity theories
a “detailed balancing” condition was imposed as a conve-
nient simplification and the usefulness of this detailed bal-
ancing condition was discussed in Refs. [19–21]. The stiff
fluid appears in such models when this detailed balancing
condition is relaxed [22–25]. Cosmological models with a
stiff fluid, based on Horava–Lifshitz gravity, have been stud-
ied in Refs. [26,27]. The existence of a stiff fluid have also
been found as exact non-singular solutions in certain inho-
mogeneous cosmological models [28–31]. The relevance of
the stiff fluid equation of state to the matter content of the
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universe in the early stage of the universe was investigated in
Ref. [32]. In Ref. [33], the authors deal with some symme-
try related properties of a bulk viscous stiff fluid where they
argue that global conformal symmetry is incompatible with
a non-vanishing entropy production, but conformal symme-
tries related to a specific internal interaction that macroscop-
ically corresponds to negative pressure may be compatible
with the production of entropy. In such cases one can sepa-
rate the total pressure into a normal pressure and an effective
negative pressure which satisfies the equation of state of the
stiff fluid.

The decrease in the density of stiff fluid in the universe is
found to be faster than that of radiation and matter; hence its
effect on the expansion would be larger in the initial stage
of the universe. Primordial nucleosynthesis is an event that
took place in the early phase of the universe and a limit on
the density of the stiff fluid can be obtained from big bang
nucleosynthesis constraints as in Ref. [34].

In a homogeneous and isotropic universe, bulk viscosity
is the unique viscous effect capable of modifying the back-
ground dynamics. From a theoretical point of view, bulk vis-
cosity arises in a system due to its deviations from local ther-
modynamic equilibrium [35]. In cosmology, bulk viscosity
arises as an effective pressure, restoring the system to its ther-
mal equilibrium, which was broken when universe expanded
too fast so that the system did not get enough time to restore
the local thermal equilibrium [36–39]. Several years ago,
before the discovery of the present acceleration of the uni-
verse, it has been proposed, in the context of the inflationary
scenario of the early universe that a bulk viscous fluid can
produce acceleration in the expansion of the universe [40–
46]. Recently investigations were made of the possibility of
bulk viscous matter causing the recent acceleration of the
universe [47–50].

In the present work we study a stiff fluid dominated cos-
mological model with bulk viscosity. We consider a universe
with effectively one component, the stiff fluid. Such a one
component description may not comply with the most gen-
eral realistic situation. However, this will help us in under-
standing the essential features of a universe which is dom-
inated by a bulk viscous stiff fluid. We assume a stiff fluid
with the equation of state ps = ρs and the bulk viscosity
characterized by a constant viscosity coefficient which is the
simplest parametrization for the bulk viscosity. We derive the
Hubble parameter, density, equation of state, and decelera-
tion parameter, and we analyze their behavior with regard
to further possibilities including the recent acceleration of
the universe. The paper is organized as follows. In Sect. 2 we
give the basic equations of the FLRW (Friedmann–Lemaitre–
Robertson–Walker) universe and derive the general equation
for the Hubble parameter in a bulk viscous stiff fluid domi-
nated universe. We classify the different cases depending on
the value of the bulk viscous parameter and analyze the evolu-

tion of various cosmological parameters. Section 3 contains
the statefinder diagnosis of the model. In Sect. 4 we present
the status of the generalized second law of thermodynamics.
This is followed by the presentation of our conclusions in
Sect. 5.

2 Stiff fluid with bulk viscosity

Stiff fluid cosmological models have generated interest
because in these fluids the speed of light is equal to the speed
of sound and the governing equations have the same charac-
teristics as that of the gravitational field [51]. The equation
of state of the stiff fluid is given as [17]

ps = ρs. (1)

This equation of state corresponds to a special case of the
models investigated by Masso and others [52].

In cosmological models the effect of bulk viscosity can be
shown to be an added correction to the net pressure p

′
s as

p
′
s = ps − 3ζ H, (2)

where ζ is the constant coefficient of viscosity and H is
the Hubble parameter. The form of the above equation was
originally proposed by Eckart [53] in the context of rel-
ativistic dissipative processes occurring in thermodynamic
systems which have gone out of local thermal equilibrium.
Later Landau and Lifshitz [54] proposed an equivalent for-
mulation. However, Eckart’s theory has got the shortcom-
ing that it describes all the equilibria as unstable [55] and
signals can propagate through the fluid with superluminal
velocities [56]. Later Israel and Stewart [57,58] proposed a
more general theory which avoids these problems and from
which Eckart theory appears as the first order limit. How-
ever, because of the simple form of Eckart theory, it has
been used by several authors to characterize the bulk vis-
cous fluid. For example the Eckart approach has been used
in models explaining the recent acceleration of the universe
with a bulk viscous fluid [59–63]. Moreover, Hiscock et al.
[64] have shown that Eckart theory is to be favored over the
Israel–Stewart model in explaining the inflationary accel-
eration of FLRW universe with bulk viscous fluid. These
motivate the use of Eckart’s results, especially when one
tries to look at the phenomenon of the recent acceleration
of the universe. At this point one may also take note of the
more general formulation than the Israel–Stewart by Pavon
et al. dealing with the thermodynamic equilibrium as in Ref.
[65]

We consider the flat FLRW universe favored by the recent
WMAP observation [66] with the scale factor

ds2 = −dt2 + a2(t)(dr2 + r2dθ2 + r2 sin θdφ2), (3)
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where a(t) is the scale factor, t is the cosmic time, and
(r, θ, φ) are the comoving coordinates. The corresponding
dynamical equations are

H2 = ρ

3
(4)

2
ä

a
+

(
ȧ

a

)2

= p
′

(5)

and the conservation equation is

ρ̇ + 3H(ρ + p
′
) = 0, (6)

where we have adopted the standard units convention,
8πG = 1; an over-dot represents a derivative with respect
to cosmic time. From the dynamical equations (4) and (5),
we can formulate a first order differential equation for the
Hubble parameter by using Eqs. (1), (2), and (6) as

Ḣ = 3H

2
(ζ − 2H). (7)

The above equation can be expressed in terms of the variable
x = log a, suitably integrated and the final result can be
written in terms of the scale factor as

H = H0

6
[ζ̄ + (6 − ζ̄ )a−3], (8)

where ζ̄ = 3ζ/H0 is the dimensionless bulk viscous coeffi-
cient, H0 is the present value of the Hubble parameter, and
we have made the assumption that the present value of the
density parameter of the stiff fluid �s0 = 1 for a stiff fluid
dominated universe.

2.1 Classification and evolution of the bulk viscous stiff
fluid dominated model

The equation for the Hubble parameter shows that for dif-
ferent values of the viscosity coefficient ζ̄ we get different
models. In this section we classify different models of the
universe which arise due to the different values of the dimen-
sionless viscosity coefficient. We analyze the behavior of the
scale factor, the density, and other parameters in these differ-
ent cases.

2.1.1 Case 1: ζ̄ = 0

This corresponds to the universe dominated by a stiff fluid
without bulk viscosity. From Eq. (8) the Hubble parameter
becomes H = H0a−3. From the dynamical equation (4) the
corresponding density of the stiff fluid follows the relation

ρs ∝ a−6. (9)

This shows that the density of the non-viscous stiff fluid
decays more rapidly than the non-relativistic matter or radia-
tion in a FLRW universe, which implies that the effect of the
stiff fluid on the expansion of the universe would be larger

at early times. So the limit on the density of the stiff fluid
can be obtained by considering its effect on the big bang
nucleosynthesis. Dutta et al. [34] made an investigation in
this regard and found that the change in the primordial abun-
dance of helium-4 is proportional to the ratio ρs/ρR, where
ρR is the radiation density. Consequently they found a limit
on the non-viscous stiff fluid density as ρs/ρR < 30 when
the temperature of the universe was around 10 MeV.

The evolution of the scale factor can be obtained by inte-
grating the Hubble parameter as

a(t) = (3H0(t − t0) + 1)1/3. (10)

The second order derivative of the scale factor with time is

d2a

dt2 = − 2H2
0

(3Ho(t − t0) + 1)5/3
. (11)

This shows that the universe will undergo an eternal decel-
eration in this case.

The behavior of the density following from Eq. (9) reveals
that as the scale factor a(t) → 0, the density ρs → ∞.

This implies the existence of a singularity at the beginning of
the universe. This fact can be further verified by calculating
the curvature scalar for the flat FLRW universe using the
equation [67]

R =
(

ä

a
+ H2

)
. (12)

Using the equation for the Hubble parameter and its time
derivative it can easily be shown that R ∼ H2, which accord-
ing to the equation H = H0a−3 implies that the curvature
scalar R → ∞ as a → 0 at the origin, confirming the pres-
ence of the initial singularity. So it can be concluded that in
this case the universe had a big bang. The time elapsed since
the big bang, tB, is found to be

tB = t0 − 1

3H0
. (13)

Also it is evident from the behavior of the density that, as
a(t) → ∞ the density ρs → 0. In this respect apart from the
difference in the dependence on the scale factor, the general
behavior of the non-viscous stiff fluid is the same as that of
non-relativistic matter or relativistic radiation.

2.1.2 Case 2: 0 < ζ̄ < 6

The Hubble parameter is given by Eq. (8). Following the
dynamical equations the density of the bulk viscous stiff fluid
in this case is given by

ρs = 3

(
H0

6
(ζ̄ + (6 − ζ̄ )a−3)

)2

. (14)

The evolution of the density with scale factor is given in
Fig. 1. This equation shows that as the scale factor a(t) → 0
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Fig. 1 Evolution of the density ρs with scale factor a(t)

the density ρs → ∞, indicating that there is a singularity
at the origin. The presence of the singularity is further con-
firmed by calculating the curvature scale using Eq. (12) and
it is

R = 3H ζ̄

2
− H2, (15)

which shows that R → ∞ as a(t) → 0, confirming the pres-
ence of the initial singularity. So the model of the universe
in this case does have a big bang.

For finding the scale factor, Eq. (8) can be put in the form

da3

dt
− H0ζ̄

2
a3 = H0(6 − ζ̄ )

2
, (16)

which can be integrated to obtain the scale factor as

a(t) =
(

ζ̄ − 6 + 6 exp(ζ̄ Ho[t − t0]/2)

ζ̄

)1/3

. (17)

This equation for the scale factor reveals that the time elapsed
since the big bang is

tB = t0 + 2

H0ζ̄
ln

(
6 − ζ̄

6

)
, (18)

and hence the age of the universe since the big bang is

t0 − tB = − 2

H0ζ̄
ln

(
6 − ζ̄

6

)
. (19)

Taking H0 = 100 h km/s/Mpc, with h = 0.74, the age of
the universe evaluated as per the above equation is around
13.8 Gyr for η̄ = 5.7, a value which is very close to that
predicted by the CMB anisotropy data [69].

A plot of the evolution of the scale factor is given in Fig. 2.
The scale factor Eq. (17) shows that as t → ∞ the scale factor
approaches a form like that of the de Sitter universe,

a(t) → exp(ζ̄ H0[t − t0]/2). (20)

Fig. 2 Evolution of the scale factor a(t) with H0(t − t0) for different
values of dimensionless bulk viscous parameter ζ̄

In the early stages of the evolution of the universe, when
ζ̄ H0[t − t0]/2 < 1, the scale factor can be approximated as

a(t) ∼ (1 + 3H0[t − t0])1/3. (21)

These equations of the scale factor at the respective limits
show that the universe had an earlier deceleration phase fol-
lowed by an acceleration phase in the later stage of the evo-
lution. This means that the bulk viscous stiff fluid behaves
almost like cold dark matter in the past and behaves like dark
energy in the later phase of the accelerating universe, indi-
cating that this model can naturally unify the dark matter and
dark energy at least at the background level. The value of the
scale factor or the red shift at which the transition from the
decelerated to the accelerated expansion occurs depends on
the viscosity coefficient ζ̄ as shown below. From the Hubble
parameter we can calculate the derivative of ȧ with respect
a(t) as

dȧ

da
= ζ̄ − 2(6 − ζ̄ )a−3. (22)

Equating this to zero, we obtain the transition scale factor as
[49]

aT =
(

2(6 − ζ̄ )

ζ̄

)1/3

, (23)

and the corresponding transition redshift is

zT =
(

ζ̄

2(6 − ζ̄ )

)1/3

− 1. (24)

From Eqs. (23) and (24) it is clear that for ζ̄ = 4 the transition
from the decelerated phase to the accelerated phase occurs at
zT = 0, aT = 1, which corresponds to the present stage of
the universe. In the range 0 < ζ̄ < 4 the transition between
the decelerated and the accelerated phase takes place in the
future corresponds to zT < 0, aT > 1. The transition takes
place in the past of the universe (zT > 0, aT < 1) when
4 < ζ̄ < 6. When ζ̄ = 0 the value of zT becomes −1
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Fig. 3 Evolution of the deceleration parameter q with redshift z

and the value of the scale factor aT becomes infinity in the
future, this implies that there is no transition to accelerated
expansion within a finite time, and the universe is always
decelerating. For ζ̄ = 6 the transition takes place at a time
corresponding to aT → 0, closer to the big bang.

As a further clarification of the conclusions in the
above paragraph we evaluate the deceleration parameter
and the equation of state parameter of the bulk viscous
stiff fluid in this case. A positive value of the decelera-
tion parameter characterizes a decelerating universe, while
a negative value characterizes an accelerating universe.
The deceleration parameter q can be evaluated using the
equation

q = −1 − Ḣ

H2 . (25)

Using the Hubble parameter from Eq. (8), the deceleration
parameter in terms of the redshift z is

q = −1 − 3(ζ̄ − 6)(1 + z)3

ζ̄ + (6 − ζ̄ )(1 + z)3
(26)

where we took a = (1 + z)−1. The evolution of the deceler-
ation parameter is shown in Fig. 3. It is clear from the figure
that the deceleration parameter q → −1 in the far future of
the evolution of the universe as z → −1 for any positive
value of the dimensionless bulk viscous parameter ζ̄ .

The transition redshift zT can be obtained by equating q
to zero, and it leads to Eq. (24). For ζ̄ = 0 the decelera-
tion parameter will be 2, corresponding to a universe dom-
inated by a non-viscous stiff fluid. For ζ̄ = 6 the param-
eter q = −1 corresponds to the de Sitter phase. So for
0 < ζ̄ < 6 the deceleration parameter is always decreasing
from q(a = 0) = 2 to q(a = ∞) = −1, with a transition
from positive to negative values corresponding to the transi-
tion from deceleration to acceleration in the expansion of the
universe. The deceleration parameter today, i.e. for z = 0, is
found to be

Fig. 4 Evolution of the equation of state parameter ω with redshift z

q(a = 1) = 2 − ζ̄

2
. (27)

This agrees with our earlier results in Eqs. (23) and (24)
that for ζ̄ = 4 the universe would enter the accelerating
phase from the decelerated expansion at the present time.
For ζ̄ < 4, corresponding to q > 0, we have a decelerating
universe today and for ζ̄ > 4 corresponding to q < 0, we
have an accelerating universe today. From the current obser-
vational results [66,69], the present value of the deceleration
parameter is around −0.64 ± 0.03, from which the bulk vis-
cous coefficient is seen to be ζ̄ > 4 for a universe dominated
by a bulk viscous stiff fluid. This analysis shows that if uni-
verse is dominated by a bulk viscous stiff fluid, it can take
the role of the conventional dark energy, causing the recent
acceleration of the universe for a bulk viscous coefficient in
the range 4 < ζ̄ < 6.

The evolution of the equation of state ωs of the stiff fluid
with bulk viscosity can be studied by calculating it using the
relation [70]

ωs = −1 − 1

3

d ln h2

dx
, (28)

where h = H/H0, the weighted Hubble parameter. Evaluat-
ing ωs in terms of the redshift z gives

ωs = −1 −
(

2(ζ̄ − 6)(1 + z)3

ζ̄ + (6 − ζ̄ )(1 + z)3

)
. (29)

The evolution of the equation of state is as shown in Fig. 4.
As z → −1, (a → ∞) the equation of state parameter

ωs → −1 in the future, which corresponds to the de Sitter
universe, irrespective of the value of the viscosity coefficient.
For ζ̄ = 0 the equation of state parameter becomes ωs = 1,

implying the equation of state for the non-viscous stiff fluid,
ps = ρs. For ζ̄ = 6 the ωs becomes equal to −1. In the
range 0 < ζ̄ < 6 the equation of state varies from +1 to
−1, making possible a transition from positive to negative
values. Even though a negative value of ωs leads to a negative
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pressure, for the universe to be in the accelerating phase we
must have ωs < −1/3.

The present value of ωs is found to be

ωs(a = 1) = 1 − ζ̄

3
. (30)

This equation reveals that ωs makes a transition from posi-
tive values to negative values at the present time if ζ̄ = 3.

While considering the evolution of the q(a = 1) param-
eter, we have shown that q makes a transition to negative
values, giving a universe with an accelerated expansion for
ζ̄ = 4. The negativity of the parameter q implies that the
universe is accelerating and at the same time the equation
of state parameter must be less than −1/3 for the uni-
verse to be accelerated [68]. From Eq. (30) it is clear that
ωs(a = 1) < −1/3 only for ζ̄ ≥ 4. The current observa-
tional value of the equation of state parameter of the fluid
responsible for the recent acceleration is around −0.94±0.1
[69] and from Eq. (30) we can infer that in a universe dom-
inated by bulk viscous stiff fluid, the corresponding value
of the bulk viscous coefficient is ζ̄ > 4 causing the recent
acceleration. Thus the analysis of the evolution of ωs also
shows that the bulk viscous stiff fluid can replace the con-
ventional dark energy in causing the recent acceleration, for
4 < ζ̄ < 6.

2.1.3 Case 3: ζ̄ > 6

Equations (8) and (17) can be used in this case too for assess-
ing the behaviors of the Hubble parameter and scale factor.
For ζ̄ > 6 these equations show that the resulting universe
will always be accelerating. That is, there is no decelerating
epoch at all. When t → ∞ the universe tends to the de Sitter
phase. But when t − t0 → −∞ the scale factor tends to a
finite minimum value (see Fig. 2) instead of zero and it is
given as

lim
t−t0→−∞ a(t) ≡ amin =

(
1 − 6

ζ̄

)1/3

. (31)

The corresponding derivatives ȧ and ä are zero and hence in
this limit the universe becomes an Einstein static universe.
As the universe evolves, the scale factor increases monoton-
ically. So there is no big bang in this case and the age of the
universe is not properly defined.

The curvature scalar can be obtained using Eq. (15). At
a = amin, both ä and H are zero, hence the curvature scalar
is also zero and it increases as the universe expands, attain-
ing the maximum value R = 5

9 (H0ζ̄ )2 when a → ∞. The
density of the bulk viscous stiff fluid follows the same behav-
ior as the curvature scalar (see Fig. 1); the density is zero
when a = amin and attains the maximum value (H0ζ̄ )2/12
as a → ∞.

3 Statefinder analysis for 4 < ζ̄ < 6

In the analysis in Sect. 2.1.2 we have concluded that there
is a transition from decelerated to accelerated expansion in
the recent past when 4 < ζ̄ < 6. This gives us hope for
the discovery of the recent acceleration of the universe in the
context of a universe dominated by a bulk viscous stiff fluid.
The behaviors of the scale factor, the q parameter, and the
equation of state all show that the bulk viscous stiff fluid is
playing the role of dark energy. So we analyze the model
using statefinder parameters to compare it with the standard
dark energy models. Statefinder parameters [71] are sensitive
tools to discriminate various dark energy models, and they
are defined as

r = Ḧ

H3 − 3q − 2 (32)

and

s = r − 1

3(q − 1/2)
. (33)

Using the equations for the Hubble parameter (8) and the
deceleration parameter (26), the r–s parameter equations can
be expressed as

r = 9(6 − ζ̄ )2a−6

(ζ̄ + (6 − ζ̄ )a−3)2
+ 1 (34)

and

s = 2(6 − ζ̄ )2a−6

(6 − ζ̄ )2a−6 − ζ̄ 2
. (35)

The equations show that in the limit a → ∞ the statefinder
parameters (r, s) → (1, 0), a value similar to the �CDM
model of the universe, which shows that the model resembles
the �CDM model in the far future of the evolution of the
universe. A plot of the present model in the r − s plane is
shown in Fig. 5, for the bulk viscous coefficient η̄ = 5, and
we also found that the plot for other values of ζ̄ show the
same behavior. The plot reveals that the (r, s) trajectory is
lying in the region corresponding to r > 1 s < 0, a feature
similar to that of the generalized Chaplygin gas model of
dark energy [72]. On the other hand in comparison with the
holographic dark energy model with event horizon as the
IR-cut-off [73,74] whose r–s evolution starts in the region
s ∼ 2/3, r ∼ 1, and ends on the �CDM point, the present
model starts in the region r > 1, s < 0, and ends on the
�CDM point in the r–s plane. Equations (34) and (35) show
that for ζ̄ = 0, (r, s) = (10, 2) and for higher values of ζ̄ the
(r, s) parameter values decrease. The values of the statefinder
parameters for the present stage of the universe dominated
by a bulk viscous stiff fluid, corresponding to a = 1 (z = 0),
is
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Fig. 5 The r–s plane evolution of the model. The present position of
the universe in the plane corresponds to values (r0, s0) = (1.25,−0.08)

is noted. The future evolution of the universe is along the direction as
shown by the arrow in the line

r(a = 1) = 2

(
1 − ζ̄

6

)2

s(a = 1) = (1 − ζ̄ /6)

3(1 − ζ̄ /3)
. (36)

This shows that as ζ̄ increases the present values of (r, s)
decrease. In Fig. 5 the present position of the universe is
marked and it corresponds to (r, s) = (1.25,−0.08), which
is different from the �CDM model. This means the model
presented here is distinguishably different from the �CDM
model of the universe.

4 Entropy and generalized second law
of thermodynamics

Bulk viscosity may be the only dissipative effect occurring
in a homogeneous and isotropic universe. Any covariant
description of dissipative fluids, where no matter creation
takes place, must satisfy the conservation equation,

T μν

;μ = 0, (37)

where T μν is the energy momentum tensor of the fluid in the
universe and the semicolon denotes the covariant derivative.
The energy momentum tensor in covariant form is given as
[75,76],

Tμν = ρuμuν + (gμν + uμuν)p
′
, (38)

where uμ is the velocity of the observer who measures the
pressure p

′
, the form of which is given in Eq. (2). The conser-

vation equation with the above form of the energy momentum

tensor will lead to Eq. (6). The bulk viscosity causes the gen-
eration of local entropy in the FLRW universe [75,76]. The
viscous entropy generation in the early universe was studied
in Ref. [77]. It has been established that during the evolution
of the universe the sum of the entropies of the fluid within
the universe and that of the horizon must always be greater
than or equal to zero. This important result is known as the
generalized second law (GSL) of thermodynamics. The sta-
tus of the GSL for the flat FLRW universe with matter and a
cosmological vacuum was discussed in Ref. [78]. The status
of the GSL in a flat universe with viscous dark energy was
discussed in Ref. [79], where the authors have shown that the
GSL is valid in the FLRW universe with the apparent horizon
as the boundary.

In this section we analyze the validity of GSL in the present
model of the universe dominated by a bulk viscous stiff fluid
with the apparent horizon taken as the boundary of the uni-
verse. The GSL can be formally stated as

Ṡs + Ṡh ≥ 0, (39)

where Ss is the entropy of the stiff fluid and Sh is that of
the apparent horizon of the universe. The entropy of the stiff
fluid within the horizon of the universe is related to its energy
density and pressure through the Gibb’s relation [80],

T dSs = d(ρsV ) + p
′
dV, (40)

where V = 4π/3H3 is the volume of the universe within the
apparent horizon with radius r = H−1 and T is the tempera-
ture of the fluid within the horizon. We take the temperature
T = H/2π equal to the Hawking temperature of the hori-
zon with the assumption that the fluid within the horizon is
in equilibrium with the horizon, so there is no effective flow
of the fluid toward the horizon. Using the dynamical equa-
tion and the net pressure in Eq. (2), the time evolution of
the entropy of the bulk viscous stiff fluid within the horizon
becomes

Ṡs = 16π2 Ḣ

H3 − 24π2 Ḣ

H4 (2H − ζ̄ ). (41)

The entropy of the apparent horizon is given by the
Bakenstein–Hawking formula [81–83],

Sh = 2π A (42)

where A = 4π H2 is the area of the apparent horizon. Hence
the time rate of the horizon entropy is

Ṡh = −16π2 Ḣ

H3 . (43)

From Eqs. (41) and (43) the GSL condition given by Eq. (39)
is satisfied if

Ḣ(ζ̄ − 2H) ≥ 0. (44)
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Fig. 6 Evolution of the Hubble parameter with scale factor

Using Eq. (7) the above condition becomes

H(ζ̄ − 2H)2 ≥ 0. (45)

As far as H is positive in an expanding the universe, it is
evident that the GSL is satisfied in a bulk viscous stiff fluid
dominated universe with the apparent horizon as boundary.
From Eq. (8), the required condition for the validity of GSL
is

(ζ̄ + (6 − ζ̄ )a3) ≥ 0. (46)

For 0 < ζ̄ ≤ 6 the above condition is fulfilled and conse-
quently the GSL is well satisfied. But when ζ̄ > 6, the above
condition is satisfied only when a ≥ amin as given by Eq.
(31) and it is clear from the plot given in Fig. 6 of the Hubble
parameter with the scale factor.

5 Conclusions

In this paper we present a study of the bulk viscous stiff
fluid dominated universe model with a constant bulk viscous
coefficient ζ̄ . A stiff fluid is an exotic fluid with the equa-
tion of state parameter ωs = 1, first studied by Zeldovich
[17]. We have analyzed the different possible phases of the
model according to the value of the dimensionless bulk vis-
cous parameter ζ̄ taking ζ̄ ≥ 0. For ζ̄ ≥ 0 the model pre-
dicts an expanding universe in general. For ζ̄ = 0 the model
reduces to a non-viscous stiff fluid dominated universe begin-
ning with a big bang, which is always decelerating with the
density varying as ρ ∼ a−6.

For 0 < ζ̄ < 6 the model corresponds to a universe start-
ing with a big bang and undergoing an initial decelerated
expansion followed by a transition to an accelerated phase
of expansion at later time. For ζ̄ = 4 the transition from
decelerated to accelerated expansion epoch takes place at
the present time. For 0 < ζ̄ < 4 the transition to the accel-
erated expansion phase will take place in the future, but for
4 < ζ̄ < 6 this transition would have occurred in the past.
This shows that the bulk viscous stiff fluid can cause the
recent acceleration of the universe. From the behavior of
the scale factor we have obtained the age of the universe as
t0 − tB = −(2/H0ζ̄ ) ln(1 − ζ̄ /6).

We have also studied the evolution of the deceleration
parameter q and the equation of state parameter ωs for
0 < ζ̄ < 6. For ζ̄ = 4 the deceleration parameter enters the
negative region at the present time resulting in a currently
accelerated universe. For ζ̄ < 4 the value of q will enter the
negative region in the future. For 4 < ζ̄ < 6 it would have
entered the negative region in past, implying that the universe
made a transition from the decelerated to its accelerated phase
in the past. In general q → −1 as a → ∞, corresponding
to the de Sitter model of the universe. However, for ζ̄ > 6,

q is always negative, implying eternal acceleration without
any transition from decelerated to accelerated epoch.

The behavior of ωs shows that its value changes from pos-
itive to negative when 0 < ζ̄ < 6, which implies a transition
from decelerated to accelerated epoch. It is always negative
when ζ̄ > 6, which results in an eternally accelerated uni-
verse. But irrespective of the value of the viscous coefficient,
ωs → −1 as z → −1 (a → ∞). The equation giving the
present value of ωs indicates that it would be negative today
if ζ̄ > 3, which, however, does not correspond to an accel-
erating universe. For an accelerating universe ωs < − 1

3 , for
which ζ̄ > 4 according to the equation of the present value
of ωs.

Statefinder analysis of the model for the range 4 < ζ̄ < 6
predicts the recent acceleration of the universe. The current
position of the model in the r–s plane is found to be (r0, s0) =
(1.25,−0.08) which is different from the �CDM model.
However, as a → ∞ the statefinder parameters (r, s) →
(1, 0), which corresponds to the �CDM point.

When ζ̄ > 6 we have found that as (t0 − t) → −∞ the
scale factor tends to a minimum as given by Eq. (31). In this
case the model does not have a big bang. The density and the
curvature scalar increase as the universe expands and attain
their maxima as a → ∞.

We have analyzed the status the GSL in the present model
and found that the GSL of thermodynamics is generally valid
with the apparent horizon as the boundary when 0 < ζ̄ < 6.

But when ζ̄ > 6 the GSL is satisfied only if the scale factor
a > amin where amin is given by Eq. (31).

Finally, the question whether the models presented here
can successfully replace the conventional dark energy
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models and thus could lead to a unification of the dark sectors
can be answered only after a full length analysis of the growth
of a linear perturbation and structure formation within these
models has been carried out. It is clear that the bulk viscous
stiff fluid will behave differently from the cold dark matter
regarding linear perturbation growth. The bulk viscous pres-
sure can effectively lead to decay of the density perturbation
initially and in the later stages it will effectively damp out the
density perturbations [47]. Thus, it may be doubtful whether
this model can effectively explain structure formation. How-
ever, an exact opinion regarding this can only be obtained
by checking whether this model can effectively predict the
CMBR temperature fluctuations.
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