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1 Introduction

The inflationary paradigm is well accepted as a successful theory of the early universe

with its interpretation of several shortcomings of the Bigbang cosmology in an economic

way. This hypothesis is further strengthened by its prediction on the primordial pertur-

bations that leads to the striking agreement with the observation of the cosmic microwave

background (CMB) spectrum. Among the various models of inflation, large field inflation

models receive a lot of attention these days, particularly after the claim of BICEP2 [1],

due to their ability to produce a large tensor to scalar ratio (r). Although this particular

claim is shadowed by the recent release of PLANCK 2015 [2, 3] data which provides an

upper bound on r as r ' 0.11, large field inflation remains as an interesting possibility to

explore in view of future search for observing tensor perturbations in CMB by PLANCK

2015 and other experiments with a greater accuracy.

The chaotic inflation in supergravity (SUGRA) as proposed in [4, 5] having a scalar

potential of the form V = 1
2m

2χ2 is possibly the simplest scenario of this sort of inflation
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model [6] with its prediction of r as 0.13. The mass scale m turns out to be of order

1013 GeV. Within this large-field inflationary scenario, the inclusion of supergravity induces

a particular problem (known as the η problem). This is caused by the field value of the

inflaton (χ) during inflation, which exceeds the reduced Planck scale MP ' 2.4×1018 GeV,

and thereby spoiling the required degree of flatness of the inflationary potential through

the Planck-suppressed operators. In [4], a shift symmetric Kähler potential associated with

the inflaton field was considered to cure this problem. However the PLANCK 2015 [2, 3]

suggests a modification of the standard chaotic inflation as it barely enters into the 2σ

range of ns − r (spectral index vs. tensor to scalar ratio) plot. Analyses [7, 8] with

PLANCK 2013 [9] data followed by the BICEP2 [1] suggest modification of the Kähler

potential by introducing a shift-symmetry breaking term. A general deformation of the

chaotic superpotential by including higher order terms with very small coefficients has been

exercised in [10, 11]. All these analyses would be further restricted by the recent release of

PLANCK 2015 [2, 3] data.

It has long been exercised how an inflationary scenario can be linked with the particle

physics framework. In this regard, neutrino physics can provide an interesting possibility.

It is well known that the smallness of the light neutrino mass (mν) can be explained

by type-I seesaw mechanism which enforces the inclusion of heavy right handed (RH)

neutrinos (N). In a supersymmetric theory, the close proximity of the mass scale of these

heavy RH fields and their superpartners (sneutrinos) with the mass parameter m involved

in the chaotic inflationary potential as mentioned before, suggests that the sneutrino can

actually play the role for the inflaton. Indeed, it was shown [12–16] that the standard

chaotic inflation can actually be realized including them. Another interesting aspect of

a supersymmetric model of inflation is its relation with supersymmetry breaking. From

the completeness point of view, a supersymmetric structure of an inflationary scenario

demands a realization of supersymmetry breaking at the end of inflation. Though during

inflation, the vacuum energy responsible for inflation breaks supersymmetry (at a large

scale of order of energy scale of inflation), as the inflaton field finally rolls down to a

global supersymmetric minimum, it reduces to zero vacuum energy, and thereby no residual

supersymmetry breaking remains.

In this work, our purpose is two fold; one is to modify the standard sneutrino chaotic

inflation so as to satisfy the PLANCK 2015 [2, 3] results and other is to accommodate

supersymmetry breaking at the end of inflation. We consider two sectors namely (i) the

inflation sector and (ii) the supersymmetry breaking sector. The inflation sector is part of

the neutrino sector consisting of three RH neutrino superfields. There will be a role for

another sneutrino during inflation, which will be unfolded as we proceed. We identify the

scalar field responsible for inflation to be associated with one of these three fields. The scalar

potential resembles the standard chaotic inflation in the supergravity framework assisted

with the shift symmetric Kähler potential. The superpotential involving the RH neutrino

responsible for inflation breaks this shift symmetry softly. We have argued the smallness

associated with this shift symmetry breaking parameter by introducing a spurion field. In

this excercise, we also consider discrete symmetries to forbid unwanted terms. For the

supersymmetry breaking sector, we consider the Intriligator-Seiberg-Shih (ISS) model [17]
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of breaking supersymmetry dynamically in a metastable vacuum. This sector is described

by a supersymmetric gauge theory and henceforth called the SQCD sector. These two

sectors can have a gravitational coupling which in turn provides a dynamical deformation

of the standard chaotic inflation. Again the coupling strength between these two sectors

can be naturally obtained through another spurion. As the inflaton field approaches its

minimum once the inflation is over, this interaction term becomes insignificant and finally

the two sectors are effectively decoupled. However the hidden SQCD sector fields stabilize

in metastable vacuum, hence supersymmetry breaking is achieved as a remnant of inflation.

Earlier attempts in connecting the inflation and ISS type supersymmetry breaking can be

found in [18–21]. A global U(1)R symmetry plays a pivotal role in shaping the ISS model

of dynamic supersymmetry breaking. Once the supersymmetry is broken in the hidden

SQCD sector, the effective supersymmetry breaking scale in the Standard Model sector

is assumed here to be developed by the gauge mediation mechanism. To materialize this,

the ISS model requires a modification for breaking U(1)R. In this context we follow the

proposal in [22] and show that this can easily be adopted in our set-up. Furthermore, as

the RH neutrino superfields are part of the inflation sector, which obeys the same U(1)R
symmetry, their U(1)R charges are already fixed. The same RH neutrinos also contribute to

the light neutrino mass matrix through type-I seesaw mechanism. We find that the U(1)R
charges of various fields involved along with their charges under the discrete symmetries

imposed can actually predict an inverted hierarchy of neutrino masses. We provide an

estimate of reheating temperature in this context and also comment on leptogenesis.

Below in section 2, we briefly discuss the standard chaotic inflation in the supergravity

framework. Then we will discuss about the ISS model of dynamic supersymmetry breaking

in section 3 followed by the role of interaction term between the two sectors in section 4.

The dynamics of the fields during and after inflation are discussed in section 5 and 7

respectively. The prediction for this modified chaotic inflation are presented in section 6.

In section 8, we have shown that a deformation to the SQCD sector can be achieved which

is related to the U(1)R symmetry breaking. In section 9, we discuss the implication of

neutrino masses and mixing that comes out of the present set-up. We comment on the

reheating temperature and leptogenesis in section 10 . Finally we conclude in section 11.

2 Standard sneutrino chaotic inflation in supergravity

We start this section by reviewing some of the features of the standard chaotic inflation

in supergravity where the scalar partner of a RH neutrino (say N1 among the three RH

superfields Ni=1,2,3 involved in type-I seesaw for generating light neutrino mass) serves the

role of inflaton. Sneutrino chaotic inflation [12, 13, 15, 16] gains much attention from the

perspective of particle physics involvement. Mass of the inflaton and in turn mass of that

particular RH neutrino (in the supersymmetric limit) can be fixed by the magnitude of

curvature perturbation spectrum in this theory. In N = 1 SUGRA, the superpotential is

considered to be

WN = mN1N2, (2.1)
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along with the Kähler Potential1

KN = |N2|2 −
(N1 −N †1)2

2
. (2.2)

Note that a shift symmetry, N1 → N1 + C, where C is real having mass dimension unity, is

imposed on the Kähler potential, whereas the superpotential breaks it. Thus the parameter

m can be regarded as a shift-symmetry breaking parameter.

The parameter m being much smaller than MP , the term in the superpotential WN

would be natural in ,t Hooft’s sense [23] of increased symmetry in the limit m → 0. The

smallness associated with m can be explained with the introduction of a spurion field z1

as shown in [5]. Also the higher order shift symmetry breaking terms involving N1 can be

controlled in an elegant way through the introduction of z1. Suppose the spurion field z1

transforms under the shift symmetry as,

z1 →
N1

N1 + C
z1, (2.3)

hence N1z1 combination remains shift symmetric. At this stage, a discussion on U(1)R
symmetry is pertinent. There exists a global U(1)R symmetry under which the superpo-

tential W has 2 units of R-charges. However note that with the presence of shift symmetric

Kähler potential involving N1, N1 can not possess a global U(1)R charge. Therefore N2

should carry R-charge 2, while R-charges of N1 and z1 are zero. Furthermore, we consider a

Z2 symmetry under which only N1 and N2 are odd. Combining the shift symmetry, U(1)R
and the Z2 (charges are specified in table 4), we can write the general superpotential for

WN as

W g
N = [z1N1 + a3(z1N1)3 + . . .]N2. (2.4)

As the z1 gets a vacuum expectation value (vev) ∼ m which is small compared to MP , we

can argue that the shift symmetry is softly broken. Simultaneously the higher order terms

(with coefficient ai ∼ O(1)) are negligibly small and hence we are essentially left with our

working superpotential WN in eq. (2.1).

The importance of having this shift symmetry can be understood as discussed below.

F-term scalar potential is calculated using the following standard expression,

VF = e
K

M2
P

[
DiWK−1

ij∗Dj∗W
∗ − 3

|W |2

M2
P

]
, (2.5)

where DiW = ∂W
∂fi

+Ki/M
2
P and the subscript i labels a superfield fi. Due to the imposed

shift symmetry on N1, the Kähler potential (or eK/M
2
P ) depends only on the imaginary

component of N1. The real component of N1 therefore can be considered to be the inflaton

(hereafter denoted by χ). Its absence in the Kähler potential allows it to acquire super-

Planckian value during inflation, which is a characteristic of large field inflation models.

Assuming that during inflation, all other fields (including N2 as well) except the inflaton

1KN also involves |N3|2, which we do not put here for simplifying our discussion.
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are stabilized at origin,2 the inflationary potential becomes Vχ = 1
2m

2χ2. The standard

slow roll parameters are defined as

ε =
M2
P

2

(
V ′

V

)2

; η =
M2
PV
′′

V
, (2.6)

where ′ denotes the derivative of the potential with respect to inflaton field. Number of

e-foldings can be calculated by the following,

Ne =
1

M2
P

∫ χ∗

χend

V

V ′
dχ. (2.7)

Other cosmological observables like spectral index (ns), tensor to scalar ratio (r), curvature

perturbation spectrum(Pζ) are given by

ns = 1− 6ε+ 2η; r = 16ε; Pζ =
V

24M4
Pπ

2ε
, (2.8)

respectively. Chaotic inflation with Vχ then predicts

ns ' 0.967 and r ' 0.13, (2.9)

where Ne = 60 is considered. Inflation starts at χ∗ = 15.5MP and ends at χend =
√

2MP .

The value of m turns out to be ∼ 1013 GeV so as to produce the correct order of curvature

perturbation spectrum Pζ = 2.2 × 10−9. Note that this m falls in the right ballpark

for generating light neutrino mass through type-I seesaw. However in view of the recent

PLANCK update [2, 3], this minimal model is almost outside the 2σ region of ns − r plot.

So a modification of the minimal model is of utmost importance. As we have mentioned

before, there has been some suggestions toward this [24–28]. In this work, our approach to

accommodate chaotic inflation within the present experimental limit is to couple it with

the supersymmetry breaking sector. This coupling serves as a dynamic modification to the

minimal chaotic inflation. To discuss it in detail, in the following section we present a brief

summary of the ISS model of dynamical supersymmetry breaking.

3 SQCD sector and supersymmetry breaking in a metastable vacuum

It is evident from the F-terms (in particular FN2 = mN1) of WN in eq. (2.1) that during

inflation, supersymmetry is broken at a very high scale since the inflaton (χ field ≡ real

part of N1) takes a non-zero super-Planckian value. However once the inflation is over,

the χ field finally acquires a field-value zero (χ = 0 is the global minimum) as evident

from the minimization of the potential Vχ = m2χ2/2. Hence there is no supersymmetry

breaking associated with this minimum. It is expected that there should be a small amount

of supersymmetry breaking left at the end of inflation so that an effective supersymmetry

breaking in the supersymmetric version of the Standard model or its extension can be

2Particularly for N2, this can be ensured by adding a non-canonical term in the Kähler as ξ|N2|4/
[
2M2

P

]
with ξ ∼ 1 [4].
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introduced. In this work, we consider the inflation sector to be assisted by a separate hidden

sector responsible for supersymmetry breaking.3 We consider the hidden sector to be

described by a supersymmetric gauge theory similar to the one considered in the ISS model

of dynamic supersymmetry breaking [30]. Recently a proposal [31, 32] of generating chaotic

potential for a strongly interacting supersymmetry gauge theory is analysed which leads

to a fractional chaotic inflation. However in our approach we consider the SQCD sector to

provide a deformation to the sneutrino contribution to the minimal chaotic inflation, and

at the end of inflation, this serves as the hidden sector of the supersymmetry breaking.

The effective supersymmetric breaking in the standard supersymmetric gauge and matter

sector (MSSM or its extension) requires a mediation mechanism from this hidden sector.

Here it is considered to be the gauge mediation.

The ISS model is described by the N = 1 supersymmetric SU(NC) gauge theory

(called the electric theory) with Nf flavors of quarks (Q) and antiquarks (Q̃). Λ is the

strong coupling scale of this theory. Below this scale Λ, the theory is described by its

magnetic dual SU(N = Nf −NC) gauge theory with Nf flavors of magnetic quarks qci , q̃
c
i

(with i = 1 . . . .Nf and c = 1 . . . .N). It is interesting to note that this theory is IR free,

provided NC + 1 ≤ Nf <
3
2NC . The elegance of the ISS model lies in its UV completion of

the theory. There also exists a Nf × Nf gauge singlet meson field Φ = QQ̃/Λ. With the

introduction of quark mass term in the electric theory (SU(Nc) gauge theory),

We = mQTrQQ̃, (3.1)

with mQ < Λ, the IR free magnetic theory becomes

WISS = hTr(qΦq̃)− hµ2Tr(Φ), (3.2)

along with the dynamical superpotential

Wdyn = N

(
hNf

detΦ

ΛNf−3N

) 1
N

. (3.3)

where h ∼ O(1) and µ � Λ and by duality µ2 = mQΛ. Note that there exists a U(1)R
symmetry under which WISS and hence Φ carry R-charge of 2-units. R charge of QQ̃

combination turns out to be two as well from the relation Φ = QQ̃/Λ. However the R

symmetry is explicitly broken by the Wdyn term. All the fields in this sector are considered

to be even under the Z2 symmetry considered. The Kähler potential is considered to be

canonical in both electric and magnetic theories. It is shown in [17] that there exists a

local minimum given by

〈q〉 = 〈q̃T 〉 = µ

(
1N

0Nf−N

)
, 〈Φ〉 = 0, (3.4)

with vacuum energy VISS = Nc|h2µ4|. Supersymmetry is broken in this minimum by the

rank condition. Note that Wdyn is almost negligible around Φ = 0. The interplay between

3Another approach to accommodate supersymmetry breaking after chaotic inflation is exercised in [29]

with an introduction of a Polonyi field.
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second term in eq. (3.2) and the Wdyn suggests an existence of a SUSY preserving vacuum at

〈q〉 = 〈q̃T 〉 = 0, 〈Φ〉 =
µ

h

(
ε
Nf−3N

Nc

)−1
1Nf , (3.5)

where ε = µ
Λ and the corresponding vacuum energy V0 = 0. With ε � 1, it was shown

in [17] that the local minima in eq. (3.4) is a metastable one.

4 Interaction between neutrino and SQCD sectors

We consider WN as the superpotential describing the inflation with N1 playing the role of

inflaton. In this section our endeavor is to couple the inflaton with the SQCD sector. We

assume that the two sectors can communicate with each other only through gravity. The

lowest dimensional operator consistent with the set-up is therefore given by,

WInt = β
N2

1 Tr(QQ̃)

MP
, (4.1)

where β is a coupling constant. We consider β to be much less than unity. Similar to

WISS, WInt also respects the U(1)R and hence linear in Tr(QQ̃) having R-charge 2. Among

N1 and N2, it is therefore the N1 field only which can couple (N2 carries 2 units of R-

charge) with the ISS sector. Since the interaction between the two sectors are assumed

to be mediated by gravity only, the interaction term is expected to be MP suppressed.

Hence WInt in eq. (4.1) serves as the minimal description of the interaction between the

two sectors. Being a shift-symmetry breaking parameter, the origin of β can be explained

with the introduction of another spurion field z2 which transforms as z2 →
N2

1
(N1+C)2 z2 under

shift symmetry. We consider z2 to be even under the Z2 symmetry and it does not carry

any R charge. On the other hand, QQ̃ combination is even under Z2. We introduce another

discrete symmetry Z4 under which z2 carries a charge i as well as QQ̃ carrying charge −i.
Hence mQ also carries a Z4 charge i as seen from eq. (3.1). Application of this symmetry

forbids dangerous term like
(z2N2

1 )z1N1N2

M3
P

. Hence a general superpotential involving z2N
2
1

can be obtained as

W g
Int =

Tr(QQ̃)

MP

[
z2N

2
1

MP
+ b5

(z2N
2
1 )5

M13
P

+ . . . . . .

]
, (4.2)

where b5 corresponds to respective coupling. Terms involving quadratic, cubic, and quartic

powers of (z2N
2
1 ) are not allowed from the Z4 charge assignment as considered.4 Therefore

β is obtained through β = 〈z2〉/MP . Note that with β ∼ 10−3 (as we will see), terms with

b5 and higher orders are negligibly small.

Note that this interaction term in addition to the quark mass term mQ present in

We (see eq. (3.1)), generates an effective mass for the electric quarks, m′Q = β
N2

1
MP

+ mQ.

Here we are particularly interested in the case when the effective mass of the quarks, m′Q,

becomes larger than the cut-off scale Λ, i.e. when m′Q � Λ. Since mQ is considered to

4With this new Z4 symmetry, term like
(z2N

2
1 )z1N1N2

M3
P

will be allowed in WInt. However contribution of

this term will be negligibly small.
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be less than Λ in the ISS set-up, this situation can be achieved when the inflaton field N1

satisfies, N1 � [ΛMP /β]1/2.

These heavy quarks can then be integrated out [30] to form an effective theory with

a field dependent dynamical scale, Λeff(N1). As all the quarks are getting large masses,

the effective theory becomes a pure gauge theory with no flavors. Λeff , can be determined

by the standard scale matching of the gauge couplings of two theories at an energy scale

E = m′Q. With gNc,Nf and gNc,0 are the gauge couplings of the SU(Nc) gauge theory with

Nf flavors of quarks (Q, Q̃) (E > m′Q) and pure gauge theory with Nf = 0 (E < m′Q)

respectively, the condition gNc,Nf (m′Q) = gNc,0(m′Q) gives(
m′Q
Λ

)b
=

(
m′Q
Λeff

)beff

, (4.3)

where b = 3Nc−Nf and beff = 3Nc are the respective beta functions of gauge couplings of

the two theories. Λeff in our set up turns out to be

Λeff '
(
βN2

1

MP

)(1−p)
Λp, (4.4)

where p = b
beff

and m′Q is mostly dominated by
βN2

1
MP

term (i.e. when N1 � [ΛMP /β]1/2 and

mQ being much smaller than Λ can be neglected). As all the flavors are integrated out, the

superpotential describing the effective theory is generated via gaugino condensation and is

given by [30]

W eff
Int = NcΛ

3
eff = Nc

(
β
N2

1

MP

)3(1−p)
Λ3p. (4.5)

Below we study the impact of this term on inflation governed by WN .

5 Modified chaotic potential and its implications to inflationary dynam-

ics

Here we will study the inflationary dynamics based on the superpotential,

WInf = WN +W eff
Int = mN1N2 +Nc

(
βN2

1

MP

)3(1−p)
Λ3p, (5.1)

when N1 � [ΛMP /β]1/2. Note that it indicates a modification of the chaotic inflationary

potential Vχ obtained from WN only. In this section, we will study the outcome of this mod-

ified superpotential in terms of prediction of parameters involved in inflation. Depending

upon p, the superpotential may contain fractional powers of N1. In ref. [33], superpotential

with non-integer power of superfields has been studied. It is shown there that the form of

Kähler potential remains same irrespective of integer or non-integer power of superfields

involved in the superpotential.

The Kähler potential is considered to be the same as KN in eq. (2.2). We can write

N1 =
χ+ iη√

2
and N2 =

σ + iδ√
2
. (5.2)
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As discussed in section 2, we choose χ, the real component of N1, as inflaton. Using

eq. (2.2), (2.5) and eq. (5.1), the scalar potential involving χ and σ is given by

VInf(χ̃, σ̃) = M4
P e

σ̃2/2

[
m̃2σ̃2

2
+
m̃2χ̃2

2

(
1− σ̃2

2
+
σ̃4

4

)
+ 3(1− p)Aχ̃5−6pσ̃ +Aχ̃7−6p

(
− σ̃

2
+
σ̃3

8

)
+

9

2m̃2
(1− p)2A2χ̃10−12p +

A2

2m̃2
χ̃12−12p

(
− 3

8
+
σ̃2

16

)]
, (5.3)

where A = β3(1−p)m̃NcΛ̃3p

21−3p and tilde indicates that the corresponding variable or parameter is

scaled in terms of MP , e.g. σ̃ = σ
MP

. We follow this notation throughout this section only.

As the electric quarks degrees of freedom (Q, Q̃) are integrated out we will not consider

quarks anymore, as long as N1 �
√

ΛMP
β . Now one can wonder what happened to other

two fields η and δ. Due to the presence of eK factor in the scalar potential VF the effective

mass of η during inflation will be large compared to inflaton mass(m2
η ∼ 6H2

Inf +m2) and

hence it will quickly settle down to origin. We have checked numerically that the other

field δ also settles at origin during inflation, having mass more than the Hubble.

In this case, dynamics of inflation belongs to χ̃− σ̃ plane. Note that in case of standard

chaotic inflation as discussed in section 2, the σ̃ field is considered to be at origin during

inflation. Contrary to that, the dynamic modification of the scalar potential governed by

W eff
Int forces the σ̃ field to have a nonzero vacuum expectation value in our case. Similar

type of scenarios are discussed in [16, 24]. In order to get 〈σ̃〉 in terms of χ̃, derivative of

the scalar potential with respect to σ̃ and yields

∂VInf

∂σ̃
= e

σ̃2

2

[
− Aχ̃5−6p

2
(χ̃2 − 6 + 6p) + σ̃

{
m̃2 + χ̃10−12p A

2

2m̃2

(
9− 18p+ 9p2 − χ̃2

4

)}
+ σ̃2

{
Aχ̃5−6p

(
3− 3p− χ̃2

8

)}
+ σ̃3

{
m̃2

2

(
1 +

χ̃2

2

)
+
χ̃12−12p

32

A2

m̃2

}
+ σ̃4

{
χ̃7−6pA

8

}
+ σ̃5

{
χ̃2m̃2

8

}]
. (5.4)

In order to minimize the scalar potential, we equate the above expression to zero (i.e.
∂VInf (χ̃,σ̃)

∂σ̃ =0). It reduces to a fifth order polynomial equation in σ̃. At this point we consider

a specific value of p (= 1 − Nf
3Nc

), the choice of which is guided by the construction of the

ISS framework and a possible realization of U(1)R breaking through baryon deformation

as we will discuss in section 8. Comparing the relative magnitudes of the terms involved in

the fifth order polynomial and considering σ̃ to be sub-Planckian, we solve the equation for

σ̃ in a perturbative way, the details of which is given in appendix A. Once 〈σ̃〉 is obtained

in terms of χ̃, we replace σ̃ by its VEV in eq. (5.3) and potential responsible for inflation

now becomes function of χ̃ only. Due to its very complicated functional dependence on χ̃,

we have not presented VInf here. Instead in figure 1 we have depicted the potential V (χ̃) in

terms of χ̃ for p = 4/7 (indicated by dashed line). Note that this potential is indeed flatter

compared to the standard sneutrino chaotic inflation potential [15], indicated in figure 1

by the solid line.
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VInf

Figure 1. Examples of inflation potential (VInf) against χ̃ are presented. The solid, large-dashed

and small-dashed curves represent (I) minimal chaotic potential with VInf(χ̃) = 1
2m̃

2χ̃2, (II) mod-

ified VInf(χ̃) obtained from our set-up with α = 0 and (III) modified VInf(χ̃) with α = 7 × 10−4

respectively.

For completeness a shift symmetry breaking parameter (α) in the Kähler potential can

also be introduced. The modified Kähler potential will look like as

K = KN − α
(N1 +N †1)2

2
, (5.5)

with α� 1. The scalar potential in eq. (5.3) will be modified and takes a further compli-

cated form. In this case we obtain the scalar potential as a function of χ̃ in a similar way.

In figure (1) we also plot VInf(χ̃) including the nonzero value of α{∼ 7× 10−4} represented

by dashed line. It is to be noted that introduction of α makes the shape of VInf(χ̃) even

flatter.

6 Results

End of inflation occurs when slow roll parameters become unity i.e. ε, η ' 1. Solving the

equalities we find inflaton field value at the end of inflation χend '
√

2MP . Now it is

visible from VInf(χ, σ) and eq. (5.4) that we are left with two free parameters m and Λ

once p is fixed. The value of β is taken to be O(10−3) so that it satisfies Λ < m′Q < MP .

We have performed a scan over these parameters and few of our findings are tabulated in

table 1. We find m is mostly restricted by the value of curvature perturbation, while Λ

helps decreasing r. We consider m to be below Λ. Also, we consider effects of non-zero α

which is provided in table 2.

We find from table 1 that corresponding to Λ = 1.05 × 10−3MP , values of r ∼ 0.079

and ns ∼ 0.96 can be achieved with m ∼ 5.5× 10−6MP . To compare, with the same Λ, a

somewhat lower value of r ∼ 0.069 and ns ∼ 0.96 are obtained with m = 5.5 × 10−6MP

and α = 0.0003. In obtaining table 2, we have kept αχ2

M2
P
� 1. In figure 2, we indicate

the respective points of table 1 by black dots and note that those points fall within the 2σ

allowed range of ns − r plot from PLANCK 2015 [2, 3] safely. The solid line for Ne = 60

indicates the possible set of points (including the ones from table 1) that describe ns and

r for different values of Λ. Similarly the other solid line corresponds to the set of points
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Λ m χ∗ r ns

8.90× 10−4 5.75× 10−6 14.95 0.099 0.965

1.05× 10−3 5.47× 10−6 14.55 0.079 0.961

1.18× 10−3 4.91× 10−6 13.92 0.052 0.954

Table 1. Predictions for r, ns and χ∗ are provided for sets of values of parameters m, Λ involved

in VInf . The dataset corresponds to Ne = 60, α = 0, p = 4/7, β = 1.5× 10−3 and values of (m, Λ,

χ∗) are in MP unit.

α m χ∗ r ns

0.0003 5.390× 10−6 14.271 0.069 0.960

0.0005 5.300× 10−6 14.067 0.063 0.959

0.0007 5.156× 10−6 13.841 0.055 0.957

Table 2. Predictions for r, ns and χ∗ are provided for sets of values of parameters m and Λ involved

in VInf . The dataset corresponds to Ne = 60, Λ = 1.05 × 10−3MP , p = 4/7, β = 1.5 × 10−3 and

values of (m, χ∗) are in MP unit.

0.95 0.96 0.97 0.98 0.99 1

n
s

0.00

0.05

0.10

0.15

0.20

0.25

r
 0

.0
0

2

Planck TT + low P

N
e
 = 55

N
e
 = 60

Figure 2. Predictions for ns and r as obtained including dataset from the modified chaotic inflation

model (from table 1) indicated by dark dots for Ne = 60. A solid line joining them represents the

prediction of ns and r while Λ is varied. Similar predictions for Ne = 55 are also included. The

dashed lines correspond to the predictions by varying α while value of Λ is fixed at 1.1× 10−3MP

(for Ne = 55) and 1.05× 10−3MP (for Ne = 60).

for Ne = 55. The dashed lines describe the effect of introducing α. Now we can have

an estimate of the mass of the δ field (mδ) during inflation. For Λ = 1.05 × 10−3MP ,

m = 5.5×10−6MP we found numerically mδ
HInf

=∼ 1.2 during inflation. This ensures δ field

to be stabilized at origin. On the other hand, mσ
HInf

is found to be ∼ 2.5 which indicates

that the fluctuation of σ-field about 〈σ〉 (in terms of χ) is almost negligible.
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7 Dynamics after inflation

Once the inflation is over, the field χ rolls down along the path as shown in figure 1 and

〈σ〉 also follows its VEV which is χ dependent. Note that at the end of inflation, N1 still

satisfies N1 �
√

ΛMP
β condition. However once N1 < Λ is realized, we need to relook into

the term responsible for dynamic modification of chaotic inflation. As in this situation

m′Q � Λ, the electric quarks (Q, Q̃) can not be integrated out anymore and we can use

the magnetic dual description of the ISS sector similar to eq. (3.2) and (3.3). Therefore

the superpotential for the ISS, describing the magnetic dual theory and the RH neutrino

becomes

Wm = hTr(qΦq̃)− hµ2TrΦ− βN2
1 Tr(Φ)Λ

MP
+mN1N2. (7.1)

To discuss what happens to the N1 and the fields involved in SUSY breaking sector, let us

calculate the F-terms as follows

FΦij = hq̃icq
c
j −

(
hµ2 +

βΛN2
1

MP

)
δij , (7.2)

Fqi = hΦi
j q̃
j ; Fq̃j = hqiΦ

i
j , (7.3)

FN1 = −2βΛ

MP
N1Tr(Φ) +mN2, (7.4)

FN2 = mN1. (7.5)

Similar to the original ISS model, here also all the F -terms can not be set to zero

simultaneously and hence the supersymmetry breaking is realized. The scalar potential

becomes

V = (Nf −Nc)

∣∣∣∣hqq̃ − hµ2 − βN2
1 Λ

MP

∣∣∣∣2 +Nc

∣∣∣∣hµ2 +
βN2

1 Λ

MP

∣∣∣∣2
+|hqΦ|2 + |hΦq̃|2 +

∣∣∣∣mN2 −
2βN1Tr(Φ)Λ

MP

∣∣∣∣2 +m2|N1|2. (7.6)

Supergravity corrections are not included in this potential as below the scale Λ, the SUGRA

corrections become negligible. As long as N1 remains nonzero, the minimum of q, q̃, Φ and

N2 are given by

〈q〉 = 〈q̃〉 =

√
µ2 +

βΛN2
1

hMP

(
1Nf−Nc
0Nc

)
, 〈Φ〉 = 0, 〈N2〉 = 0. (7.7)

A point related to 〈Φ〉 is pertinent here. In the ISS set-up, a classical flat direction is

present in a smaller subspace of Φ which is essentially lifted by the Coleman-Weinberg

(CW) [17] correction and 〈Φ〉 = 0 is achieved. In our set-up there exists a supergravity

influenced mass ∼ m2N2
1

M2
P

for all the components of Φ once a canonical Kähler potential is

assumed. This helps Φ to settle at origin. However once N1 moves to its own minimum

which is at N1 = 0, this induced mass term vanishes and at that stage, CW correction
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becomes important to lift the flatness. For our purpose, we consider 〈Φ〉 to be at zero

which serves as the local minimum of the theory.

We will now concentrate on the potential involving N1. Assuming all other fields

are stabilized at their VEV (with 〈N2〉 = 0 as 〈Φ〉 = 0) the scalar potential involving

N1 becomes

VN1 = Nc

∣∣∣∣hµ2 +
βN2

1 Λ

MP

∣∣∣∣2 +m2|N1|2. (7.8)

Splitting N1 into real and imaginary components we get

VN1(χ, η) = Nch
2|µ|4 + (χ4 + η4 + 2χ2η2)

NcΛ
2β2

4M2
P

+ η2

(
m2

2
− hNcβµ

2Λ

MP

)
+ χ2

(
m2

2
+
hNcβµ

2Λ

MP

)
. (7.9)

By equating ∂V (χ,η)
∂η with zero, we find 〈η〉 = 0 provided m2 > 2hNcβµ2Λ

MP
. This condition is

easily satisfied in our analysis for the allowed range of m, Λ and Nc with the observation

that µ can be at most ∼ 1012 GeV for gravity mediated supersymmetry breaking and

h ∼ O(1). In case of gauge mediatioin µ can be even smaller. Therefore setting η = 0

eq. (7.9) becomes

Vχ = Nch
2|µ|4 + χ4Ncβ

2Λ2

4M2
P

+ χ2

(
m2

2
+
hNcβµ

2Λ

MP

)
. (7.10)

It clearly shows that χ = 0 is the minimum of the potential with the vacuum energy

V0 = Nch
2|µ|4. So when N1 settles to zero and reheats, the SQCD sector is essentially

decoupled as WInt vanishes with N1 = 0. At this stage the ISS sector stands for the

supersymmetry breaking in the metastable minima described by eq. (3.4) and 〈χ〉 = 0.

Reheat will depend on the coupling of N1 with other SM fields.

8 Dynamical breaking of U(1)R

In the construction of the ISS picture of realizing supersymmetry breaking dynamically,

U(1)R symmetry plays an important role. The superpotential W carries R-charge of two

units. The Φ field being linear in the superpotential must also carry the R-charge 2

and it is not broken as 〈Φ〉 = 0. A lot of exercises have been performed to achieve R-

symmetry breaking in order to give mass to the gauginos. One such interesting approach

is through the baryon deformation of Wm suggested by [22]. In [22] the authors considered

the superpotential (for the magnetic theory)

W = Φijqiq̃j − µ2Φij +mqε
r
aε
s
bq
a
r q
b
s, (8.1)

with Nf = 7 and Nc = 5, where r, s = 1, 2 and i, j = 1, . . . , 7 and µ2 = mQΛ. R-charges of

q, q̃ and Φ are provided in table 3 and reason behind this choice is elaborated in appendix B.

With the specific choice of Nf and Nc, the last term is a singlet under the gauge group

in the magnetic theory. It represents the baryon deformation, introduction of which shifts
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Fields q q̃ Φ mQ

U(1)R 1 -1 2 0

Z2 1 1 1 1

Z4 1 i −i i

Z′4 1 1 1 1

Table 3. U(1)R, Z2, Z4 and Z′4 charges of various fields involved in the modified ISS model.

the 〈Φ〉 to a nonzero value ∼ mq and thereby breaking R-symmetry spontaneously. In

realizing this set-up it was assumed the associated global symmetry SU(Nf = 7) is broken

down to SU(5) × SU(2) and the SU(5) after gauging can therefore be identified with the

parent of the Standard Model gauge group. We follow this suggestion for breaking the

U(1)R and argue that this approach and the conclusion of [22] are effectively unaltered

by the additional interaction between the SQCD-sector and the inflation sector. In view

of eq. (8.1), the charges of q, q̃ and Φ under the discrete symmetries introduced in our

framework are provided in table 3.

With the introduction of the additional interaction term (WInt), we can define an

effective µeff in the superpotential with µ2
eff = µ2 + Λ

N2
1

MP
. We find the minimal choice as

in [22] Nf = 7 and Nc = 5, does not provide enough modification (or flatness) in terms

of the inflaton potential. So we have chosen Nf = 9 and Nc = 7 so that the gauge group

in the magnetic theory remains SU(2) as in [22]. The global symmetry SU(9) is expected

to be broken into SU(2)× SU(7) explicitly. Taking both these modifications into account,

we expect the conclusions of [22] are essentially remain unchanged, i.e. 〈Φ〉 is shifted by

an amount ∼ mq ∼ O(µ) and hence gauginos become massive. The detailed discussion of

the U(1)R breaking is beyond the scope of this paper. Note that this sort of mechanism

for breaking U(1)R holds for µ ≥ 105 TeV as found in [22]. The upper limit on µ can

be ∼ 1012 GeV, where gravity mediation dominates over gauge mediation. This range of

µ is consistent in satisfying m2 > 2Ncβµ2Λ
MP

relation also which keeps the 〈η〉 at origin as

discussed in section 7.

9 Neutrino masses and mixing

We will discuss reheating and generation of light neutrino masses through the

superpotential

W = Wm +m3N
2
3 + hiαNiLαHu. (9.1)

Wm is as described in eq. (7.1). The second and third terms represent the mass term for the

third RH neutrino and the neutrino Yukawa couplings with all three RH neutrinos respec-

tively. Note that the superpotential respects the U(1)R symmetry and therefore the choice

of R-charges of the SU(2)L lepton doublets further restricts the Yukawa interaction terms.
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Fields N1 N2 N3 L1 L2 L3 Hu,d z1 z2 z3

U(1)R 0 2 1 2 0 0 0 0 0 0

Z2 -1 -1 1 1 -1 -1 1 1 1 -1

Z4 1 1 1 1 1 1 1 1 i 1

Z′4 1 1 1 −i 1 1 1 1 1 i

Table 4. U(1)R, Z2, Z4 and Z′4 charges of the RH neutrinos, Higgs and Lepton doublets.

With one such typical choice of R-charges (only) specified in table-4, the allowed

Yukawa terms are given by,

WY ⊃ h11N1L1Hu + h22N2L2Hu + h23N2L3Hu. (9.2)

The coefficient h11 can be explained through the vev of another spurion z3 which trans-

forms similar to z1 under shift symmetry while odd under the Z2 symmetry considered. A

term in the superpotential (y1z3N1L1Hu)/MP then generates h11 = y1〈z3〉/MP . Here we

incorporate another discrete symmetry Z′4 under which z3 has charge i and L1 carries −i.
All the other fields transform trivially under Z′4 as seen from table 4. The new Z′4 helps

disallow the unwanted terms5 like (z3N1)z1N1N2

M2
P

and z3N1TrQQ̃
MP

.

The superpotential in eq. (7.1) and eq. (9.1) andWY in eq. (9.2) determine the structure

of the RH neutrino mass matrix and the Dirac neutrino mass matrix as

MR =

εm m 0

m 0 0

0 0 m3

 ; mD = 〈Hu〉

h11 0 0

0 h22 h23

0 0 0

 , (9.3)

with εm = β〈Φ〉Λ
MP

� m. Here we have incorporated the 〈Φ〉 related to the deformation

as discussed in section 8. Light neutrino mass-matrix can therefore be obtained from the

type-I seesaw [34] contribution mν = mT
D

1
MR

mD and is given by

mν =
〈Hu〉2

m

 0 h11h22 h11h23

h11h22 − εmh2
22

m − εmh22h23
m

h11h23 − εmh22h23
m − εmh2

22
m

 . (9.4)

Note that all the terms involving εm/m are much smaller compared to the 12(21) and

13(31) entries of mν . Once the terms proportional to εm/m are set to zero, mν coincides

with the neutrino mass matrix proposed in [35] leading to an inverted hierarchical spectrum

of light neutrinos. The above texture of mν in eq. (9.4) then predicts

mν1 ' mν2 '
√

2
κh11v

2
u

m
; mν3 '

κ2v2
u

2m

(
εm
m

)
, (9.5)

∆m2
12 '

κ3h11v
4
u

m2

(
εm
m

)
and ∆m2

23 '
2κ2h2

11v
4
u

m2
, (9.6)

5Even with the new Z′4, (z3N1)4z1N1N2

M8
P

term will be allowed, however this term turns out to be very

small.
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where h22 ' h23 = κ is assumed for simplicity and 〈Hu〉 = vu. It also indicates a bi-maximal

mixing pattern in solar and atmospheric sectors along with θ13 ' εm
m

κ
h11

.

Now as m is essentially determined from the inflation part in our scenario, we find h11 of

order∼ O(10−2) to get correct magnitude of ∆m2
23 ' 2.5×10−3 eV2 [36] with vu = 174 GeV

and κ = 1 . At first sight it is tantalizing to note that with εm
m � 1 and we could also

accommodate ∆m2
12 (' 7× 10−5 eV2 [36]). However εm

m '
βΛ
m

Tr〈Φ〉
MP

∼ µ
MP
≤ O(10−6) and

it turns out to be too small (a value of εm
m ∼ 10−2 could fulfill the requirement) to explain

the solar splitting correctly. Therefore small but relatively larger entries are required in

place of
(
εm
m

)
terms in mν [37]. A possible source of these terms could arise in our case

from higher order R-symmetry breaking terms. The mixing angles θ12, θ13 can be corrected

from the contribution in the charged lepton sector. We do not explore this possibility in

detail here. It could as well be the effect of renormalization group evolutions as pointed

out by [37], or even other sources (e.g. type-II contribution as in [38]) of neutrino mass.

10 Reheating

As soon as Hubble parameter becomes less than the mass of the inflaton, N1 starts to

oscillate around its minimum and universe reheats. The estimate of h helps us determining

the reheat temperature. The decay of N1 is governed through the W in eq. (9.1). The

decay width therefore is estimated to be

ΓN1 =
(2κ2 + h2

11)

8π
m, (10.1)

neglecting the effect of εm term. The corresponding reheat temperature is obtained as

TRH =

(
45

2π2g∗

)1/4√
ΓN1MP ' 4× 1014 GeV, (10.2)

where m ∼ 10−6MP is considered and κ ∼ O(1), as obtained from the discussion of

the previous section. Such a high reheating temperature poses a threat in terms of over

abundance of thermally produced gravitinos.6 Their abundance is mostly proportional to

the reheat temperature [41],

Y3/2 ' 2× 10−9

(
TRH

1013 GeV

)
, (10.3)

where Y3/2 =
n3/2

s with n3/2 as the number density of gravitinos and s is the entropy

density. These gravitinos, if massive, then decays into the lightest supersymmetric particles

(LSP) and can destroy the predictions of primordial abundance of light elements. On the

other hand, if gravitino is the LSP, the reheating temperature can not be as high as

mentioned in our work. This problem can be circumvented if the gravitinos are superlight,

e.g. m3/2 ∼ 16 eV [42]. Such a gravitino can be accommodated in the gauge mediated

supersymmetry breaking. In our set-up, µ is the scale which in turn predicts the gravitino

6Note that the chaotic inflation is free from gravitino problem indeed for the non-thermal decay of

inflaton [39, 40].
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mass through m3/2 ' µ2
√

3MP
. Therefore with µ ∼ 105 GeV, such a light gravitino mass can

be obtained. Another way to circumvent this gravitino problem is through the late time

entropy production [43]. Apart from these possibilities one interesting observation by [44]

could be of help in this regard. The author in [44] have shown that once the messenger

mass scale (in case of gauge mediation of supersymmetry breaking) falls below the reheat

temperature, the relic abundance of thermally produced gravitinos becomes insensitive to

TRH and a large TRH ∼ 1013−14 GeV can be realized.

Finally we make brief comments on leptogenesis in the present scenario. Considering

m3 � m, N3 would contribute mostly for the lepton asymmetry production. The CP

asymmetry generated can be estimated as [45]

ε3 =
3

8πv2
u

1

(m̂†Dm̂D)33

∑
i=1,2

Im[(m̂†Dm̂D)2
i3]
m3

m
. (10.4)

Here m̂D represents the rotated Dirac mass matrix in the basis where MR is diagonal. It is

found that CP-asymmetry exactly vanishes in this case. We expect this can be cured with

the introduction of higher order U(1)R symmetry breaking terms which could be introduced

into mD and MR.7 Then similar to [46], a non-zero lepton asymmetry through the decay

of N3 can be realized.

11 Conclusion

We have considered the superpartner of a right-handed neutrino as playing the role of

inflaton. Although a minimal chaotic inflation scenario out of this consideration is a well

studied subject, its simplest form is almost outside the 2σ region of recent ns − r plot

by PLANCK 2015. We have shown in this work, that a mere coupling with the SQCD

sector responsible for supersymmetry breaking can be considered as a deformation to the

minimal version of the chaotic inflation. Such a deformation results in a successful entry

of the chaotic inflation into the latest ns − r plot. Apart from this, the construction also

ensures that a remnant supersymmetry breaking is realized at the end of inflation. The

global U(1)R symmetry plays important role in constructing the superpotential for both

the RH neutrino as well as SQCD sector. We have shown that the shift-symmetry breaking

terms in the set up can be accommodated in an elegant way by introducing spurions. Their

introduction, although ad hoc, can not only explain the size of the symmetry breaking but

also provide a prescription for operators involving the RH neutrino superfields (responsible

for inflation) in the superpotential. With the help of the R-symmetry and the discrete

symmetries introduced, we are able to show that light neutrino masses and mixing resulted

from the set-up can accommodate the recent available data nicely, predicting an inverted

hierarchy for light neutrinos. However there still exists a scope for further study in terms

of leptogenesis through the R-symmetry breaking terms.

7We have already mentioned about this possibility of inclusion of such (small) term in the previous

section, that can correct the ∆m2
12 and the lepton mixing angles.
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A Finding the root of σ

Setting ∂VInf (χ̃,σ̃)
∂σ̃ = 0, we get a fifth order polynomial equation in σ̃ of the form,

σ̃5

2
+ σ̃3 + k1

[
1− 6(1− p)

χ̃2
+ σ̃2

{
1

4
− 6(1− p)

χ̃2

}
− σ̃4

4

]
+ k2σ̃ = 0, (A.1)

where k1 = − 2A
m̃2 χ̃

5−6p and k2 = 4
χ̃2

[
1 + χ̃10−12p A2

2m̃4

{
9(1 − p)2 − χ̃2

4

}]
. Here we disregard

the first and third terms from the coefficient of σ̃3 in eq. (5.4) as χ̃ being greater than one

during inflation, m̃2χ̃2

4 is the dominant contribution. We now try to solve the eq. (A.1)

to express 〈σ̃〉 in terms of χ̃. In doing so, note that χ̃ being inflaton is super-Planckian

while σ̃ remains sub-Planckian (σ̃ < 1) during inflation. Also the parameters involved, Λ̃

and m̃, are considered to be much less than one (in MP unit), Λ̃, m̃ � 1 with Λ̃χ̃ � 1.

We have also taken Λ̃ ≥ m̃. Since the added contribution via WInt is expected to provide

modification only on the minimal chaotic inflation, it is natural that m should be close to

1013 GeV (also χ̃ is expected of order O(10)). These consideration keeps k1 to be less than

one (k1 < 1) although k2 can be somewhat larger.

With p = 4/7, we find σ̃4 can be neglected and the eq. (A.1) then reduces to the form

σ̃5

2
+
(
σ̃3 + c1σ̃

2 + k2σ̃ + c3

)
= 0, (A.2)

where c1 = k1

(
1
4 −

18
7χ̃2

)
and c3 = k1

(
1− 18

7χ̃2

)
. The coefficient of σ̃5 being 1/2, the σ̃5 term

can be considered as a perturbation over the cubic equation in σ̃, as indicated by the first

brackets in eq. (A.2). Let σ̃0 be the solution of this cubic part of eq. (A.2) and the analytic

form of it can easily be obtained (for real root). Then we consider the solution of eq. (A.2)

as

σ̃ = σ̃0 + εσ̃1 + ε2σ̃2 + ε3σ̃3, (A.3)

with ε = 1/2 (coefficient of σ̃5 term) as a perturbation parameter. Finally we get

σ̃1 =
−σ̃5

0

k2 + 2c1σ̃0 + 3σ̃2
0

, (A.4)

σ̃2 =
−5σ̃4

0σ̃1 − 3σ̃0σ̃
2
1 − c1σ̃

2
1

k2 + 2c1σ̃0 + 3σ̃2
0

, (A.5)

σ̃3 =
−5σ̃4

0σ̃2 − 10σ̃3
0σ̃

2
1 − 6σ̃0σ̃1σ̃2 − σ̃3

1 − 2c1σ̃1σ̃2

k2 + 2c1σ̃0 + 3σ̃2
0

. (A.6)

We have checked numerically (using mathematica) that this perturbation method for solv-

ing the fifth order polynomial equation as in eq. (A.1) works reasonably well. For compari-

son, we have included figure 3 where 〈σ̃〉 is depicted against the variation of χ̃ (particularly

during inflation when χ acquires super-Planckian value). The solid line represents the

VEV of σ̃ as obtained from our perturbation method and the dashed line gives the exact

numerical estimate of 〈σ̃〉 from eq. (A.1). In order to get VInf in terms of χ̃, we have used

the analytic form of 〈σ̃〉 obtained through this perturbation method.
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Figure 3. Comparison of 〈σ̃〉 with χ̃ using perturbation (solid line) and exact numerical result

(dashed line).

Fields U(1)B U(1)A U(1)R′

Q 1 1 2
9

Q̃ -1 1 2
9

Λ 0 3
2 0

W 0 0 2

q 7
2 -1

4
7
9

q̃ -7
2 -1

4
7
9

Φ 0 1
2

4
9

Table 5. Global charges of various fields in a massless SQCD theory [30].

B R charges of various fields

Here we discuss the R-charge assignments for the various fields involved in our construction.

Firstly in table 5, we include various U(1) global charges associated with massless SQCD

theory (Nf = 9, Nc = 7) following [30]. However once the term mQTrQQ̃ is included in the

UV description and a baryonic deformation (through mqqq term in eq. (8.1)) is considered

as well in the magnetic description, there exists a residual U(1)R symmetry only. The

charges of the fields in the magnetic description can be obtained [47] from

R =
2

7
B +

28

9
A+R′. (B.1)

This redefined R-charges are mentioned in table 3. The superpotential in eq. (9.1) re-

spects this U(1)R symmetry. From Φ = Tr(QQ̃)/Λ, the QQ̃ combination has two units of

R charges.

Open Access. This article is distributed under the terms of the Creative Commons
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