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As a fully Lagrangian, particle-based numerical method, the traditional smoothed particle hydrodynamics (SPH) generally suffers 
from the accuracy problem. To investigate the physical origins of this numerical error, the elastic effect between SPH particles is 
specifically identified by analogy with physical entities, and a unique non-dimensional number is proposed to evaluate the relative 
dominance of viscous to elastic effect. Through the simulation of two-dimensional Couette flow, the velocity profile and ar-
rangement of particles are examined for various ratios of viscous to elastic effect. The effective viscosity of SPH particles de-
creases as this non-dimensional number increases, while the increase of particle number significantly reduces the effective viscos-
ity only at lower ratio of viscous to elastic effect. The disparity among nominal viscous dissipation, total dissipation, and theoreti-
cal dissipation further confirms the presence of unphysical dissipation resulting from the elastic effect. In summary, due to the 
constraints from the Mach number and the ratio of viscous to elastic effect, there exists a critical Reynolds number below which 
the Newtonian behavior could be approximately obtained through suitable choice of model parameters. 
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A better understanding of the flow mechanisms is usually of 
fundamental importance to various problems in science and 
engineering, where numerical simulation plays an increas-
ingly significant role. As a fully meshless particle method, 
smoothed particle hydrodynamics (SPH) is particularly ad-
vantageous for flows with complex and deforming bounda-
ries. Resembling other particle methods, the continuous 
media in SPH are represented by a collection of numerical 
particles with associated physical properties. And the SPH 
discretization scheme reduces the general conservation laws 
of continuum fluid dynamics into a set of ordinary differen-
tial equations reminiscent of conventional molecular dy-
namics (MD). Those particles interact with their neighbor-
ing particles based on these equations, and their locations 
are further updated at each time step. In contrast to varieties 
of complicated interface tracking and/or capturing tech-
niques in the grid-based methods, such as level set method, 
marker and cell (MAC), and volume of fluid (VOF), the 

interfaces in SPH are naturally identified according to the 
distribution of particles in a straightforward manner, re-
gardless of the number of phases involved. Originally de-
veloped for astrophysical applications [1,2], SPH has been 
extended to a wide range of problems in fluid dynamics and 
even solid mechanics, including free surface flows [3,4], 
multi-phase flows [5,6], non-Newtonian flows [7,8], turbu-
lent flows [9,10], and fluid-structure interaction [11]. 

Nevertheless, the traditional SPH generally suffers from 
several drawbacks, including low accuracy, tensile instabil-
ity, and difficulty in enforcing essential boundary condition 
[12]. In regard to the analysis of numerical accuracy, the 
consistency (or completeness) problem in SPH has been 
widely investigated [13,14]. In nature, due to the adaptive 
character of SPH method, the disordered arrangement of 
particles leads to the inconsistency in the approximation of 
function and its derivative operators [13,15]. To remedy 
these drawbacks of the conventional SPH, various methods 
have been developed accordingly. In the so-called repro-
ducing kernel particle method [16], the consistency of SPH 
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is improved through the construction of correction function. 
Based on Taylor series expansion, corrective smoothed par-
ticle hydrodynamics method (CSPM) [17] and finite particle 
method (FPM) [18] are developed for non-linear dynamic 
problems and viscous flows, respectively. Jiang et al. [19] 
further proposed the mixed corrected symmetric SPH (MC- 
SSPH), which show higher accuracy and better stability in 
various problems. Moreover, the moving-least-squares-particle 
hydrodynamics (MLSPH) [20] was derived by means of 
Galerkin approximation and new particle volume which 
ensures thermodynamic compatibility. To enhance the ac-
curacy of density and pressure fields, Chaniotis et al. [21] 
further employed the remeshing procedure through the pe-
riodic reinitialization of particle locations, and thus artifi-
cially restores the regularity of particle distribution.  

Generally, most modifications of classical SPH are nu-
merically complicated, and also demand quite large compu-
tational effort. Besides, some revised versions of SPH even 
lose the attractive meshless character of particle methods, 
resulting from the introduction of background meshes. Due 
to its conceptual simplicity and ease of implementation, the 
traditional SPH is the most extensively applied method. On 
the other hand, Monaghan [22] have mentioned that the 
particle methods are inherently linked to the underlying 
physics of fluid at micro-scale and/or meso-scale in some 
sense. Actually, concerning the SPH formulations of invis-
cid flow of adiabatic ideal gas, their similarities to MD 
method have been intensively explored in many aspects 
[23,24]. The SPH approach even has been extended to the 
so-called smoothed dissipative particle dynamics (SDPD) 
[25] for mesoscopic problems, where thermal fluctuations 
are incorporated in a physically consistent way. Besides, 
based on the physical origins of surface tension, surface 
tension of immiscible fluids has been successfully repro-
duced in SPH simulations simply by introducing attractive 
forces among all particles [26,27] or suitable repulsive 
forces only between particles of different phases [5,28,29]. 
These complicated phenomena all indicate certain isomor-
phism between SPH and the underlying physical particles 
on the micro-scale, and thus the simple form of SPH for-
mulations is far beyond a mathematical description of the 
macroscopic flow. 

Besides, although there exist certain guides for the accu-
rate simulation of incompressible flow, the selection of 
model parameter is somewhat arbitrary in theory. Note that 
the non-dimensional numbers generally play an important 
role in the identification of different flow patterns under 
various circumstances, such as the Reynolds number, Froude 
number, and Weber number. Therefore, it is of great signif-
icance to understand the physical mechanism and applica-
bility of traditional SPH from the viewpoint of its inherent 
non-dimensional number. Based on the previous work [30], 
a unique non-dimensional number is further proposed to 
characterize the relative dominance of viscous to elastic 
effect in this study. The influence of this non-dimensional 

number on the physical behavior of SPH particles is inten-
sively investigated, while the findings indicate that this non- 
dimensional number could serve as a criterion to evaluate 
the deviation of SPH simulations from Newtonian fluid. 

1  Numerical model  

1.1  Basic SPH formulations 

The SPH method is essentially based on the interpolation 
theory. Specifically, an arbitrary function f (r) at position r 
could be evaluated as sums over its neighboring positions 
with the following discrete form    

    ( ) ,j
j j

j j

m
f f W h


 r r r r , (1) 

where mj and j are the mass and density of particle j locat-
ed at position rj, while W(rrj,h) is the weighting function 
with smoothing length h. Similarly, the gradient ( )f r  

could be calculated by 
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The weighting function should tend to Dirac delta function 
as the smoothing length approaches zero, and also satisfy 
the normalization condition 

  , d 1W h   r r r . (3) 

Since the second derivative of weighting function is critical 
to the stability of SPH [31], the two-dimensional version of 
quintic spline is adopted in this work, due to its continuous 
second derivative. 

Following eq. (1), the SPH formulation of local density is 
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j
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which exactly satisfies the mass conservation in theory. 
Based on the symmetric form of pressure gradient which 
preserves variational consistency and the viscous diffusion 
term evaluated by means of integral approximation, a popu-
lar SPH formulation of Navier-Stokes equation [26,31] is 
written as  
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where Pi, i, and vi are the pressure, dynamic viscosity, and 
velocity of particle i, respectively. Also, rij is the scale dis-
tance between particles i and j, ( , )ij i jW W h r r , and i  



2972 Zhou G Z, et al.   Chin Sci Bull   August (2013) Vol.58 No.24 

denotes the gradient with respect to the coordinates of parti-
cle i. The index i of eq. (5) runs over all fluid particles, 
while the index j runs over all adjacent particles of particle i, 
which include both fluid particles and boundary particles. 

In regard to the incompressibility constraint, the em-
ployment of actual equation of state requires a prohibitively 
small time step. Instead, the incompressible flow is gener-
ally approximated through artificial equation of state. A 
simple and typical state equation [27,31,32] has the form  

 2P c K   , (6) 

where c is the numerical sound speed, and K is termed as 
“stiffness parameter”. In practice, large numerical sound 
speed is usually required to guarantee sufficiently small 
density fluctuation. According to Monaghan [3], the relation 
between density fluctuation  and Mach number Ma would 
be  
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2 max max

0
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V V

c K
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
      

 
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where Vmax is the maximum velocity. As argued by Morris 
et al. [31], the largest density fluctuation should be no more 
than 3% (typically set to be 1%) to ensure relatively high 
accuracy in the pressure field.  

1.2  Boundary conditions 

Compared with grid-based numerical methods, the treatment 
of rigid boundary in SPH is much more complex. Generally, 
there exist three major strategies, using repulsive force, 
mirror particles, and boundary particles, respectively. The 
repulsive force method proposed by Monaghan [3,22] in-
troduces a layer of particles directly deployed on the surface 
of boundary, which exerts strong repulsive force on fluid 
particles approaching the boundary. Although this technique 
effectively prevents the unphysical penetration of fluid into 
the rigid boundary, the fluid particles adjacent to the boundary 
would have incomplete support of neighboring particles. 
Another typical approach utilizes mirror particles [33,34] 
through reflecting the inner fluid particles across the rigid 
boundary, but this technique suffers from the difficulty in 
handling complex geometries. As for the third method of 
boundary treatment, several layers of fixed boundary parti-
cles are directly extended from the initial regular distribu-
tion of inner fluid particles [31,35,36]. These boundary par-
ticles contribute to the relevant evaluations of surrounding 
fluid particles, and are computationally more efficient 
compared with mirror particles.  

In regard to the implementation of non-slip boundary 
condition in SPH, fictitious velocities are generally associ-
ated with boundary particles based on the reasonable assump-
tion of a linear velocity distribution near the boundary 
[31,35]. More specifically, as sketched in Figure 1, when a 
fluid particle i of velocity vi interacts with a boundary particle  

 

Figure 1  Schematic of no-slip boundary condition. 

j, the fictitious velocity of particle j would be  

  j
j i

i

d

d
  v V V v , (8) 

where di and dj are the normal distances from particles i and 
j to the boundary, respectively, while V is the driving veloc-
ity of the rigid boundary. If the boundary is stationary, eq. 
(8) further simplifies to 

 j

j i
i

d

d
 v v . (9) 

Moreover, an artificial Neumann pressure condition is com-
monly enforced on rigid boundary [10,34]. 

1.3  Ratio of viscous to elastic effect 

When the pressure and dynamic viscosity of particles in eq. 
(5) is replaced by the state equation (eq. (6)) and fluid vis-
cosity (0), respectively, and the gravity term is neglected, 
eq. (5) further reduces to 
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As for the first term of the right-hand side of eq. (10) (the 
pressure term), the local densities of particles i and j are 
solely determined by their neighboring particle distribution, 
while the gradient of the weighting function depends on the 
relative locations of these two particles. Therefore, with a 
given particle distribution, the stiffness parameter K com-
pletely determines the value of pressure term. In fact, the 
interparticle force corresponding to the pressure term phys-
ically resembles the normal force of elastic spheres in some 
aspects. When SPH particles partially overlap with each 
other, their densities rapidly increase, resulting in large re-
pulsive force between them in the normal direction. In re-
gard to the physical entities of elastic sphere, the increment 
of elastic force is indeed proportional to the local strain of 
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particles in certain way, such as the physically reasonable 
Hertz model and the simplified linear spring model widely 
applied in the discrete element method (DEM) of granular 
materials [37,38]. The stiffness parameter of SPH, the 
Young module of Hertz model, and the interparticle stiff-
ness of DEM essentially characterize the strength of repul-
sive force between particles in similar manners. Therefore, 
the influence of stiffness parameter on flow behavior is par-
ticularly termed as “elastic effect”.  

On the other hand, it is revealed by the last term of eq. 
(10) that the viscous effect of SPH particles is directly pro-
portional to the fluid viscosity. The viscous (dissipative) and 
elastic (approximately conservative) effects strongly couple 
with each other among SPH particles in our system. Actu-
ally, the dissipative (irreversible) and conservative (reversi-
ble) processes are quite common in various non-equilibrium 
systems, for which a general equation of the non-equilib-     
rium reversible-irreversible coupling has be proposed [39]. 
Recalling the formulation of viscous stress of incompressi-
ble fluid, the relative dominance of viscous to elastic effect 
in SPH could be described by the following non-dimen-     
sional number   

 0 0 0 Viscous effect

Elatic effectK K K

     
 


  


  

,  (11) 

where v0 is the nominal kinematic viscosity, and   is the 

shear rate. This non-dimensional number would be referred 
to as “ratio of viscous to elastic effect” hereafter, while its 
implications on the physical behavior of SPH particles are 
explored as follows. 

2  Results and discussion 

The simulation of two-dimensional plane Couette flow (in 
the vertical direction) is carried out with identical computa-
tional domain of our previous work [30]. In this benchmark 
problem, viscous fluid is sheared between two parallel and 
infinite plates, one of which is moving relative to the other. 
As illustrated in Figure 2, the boundaries are constructed 
through the extension of fluid domain for a cut-off distance 
of the weighting function (3h for quintic spline). The overall 
computational domain is initially established by uniform 
distribution of particles (with equal constant masses) in a 
densely packed array of hexagonal lattice, while those ones 
located in the interior of boundaries are specified as bound-
ary particles. The horizontal and vertical directions are 
specified as the x and y directions, respectively. Periodic 
boundary conditions are applied in the y direction, so that 
the particles adjacent to the two involved boundaries inter-
act with each other due to the periodical replication of the 
simulated region. In order to study a uniform shear flow, 
gravity is neglected in the present work. 

In our cases, the distance between the two boundaries is 
1.0×103 m, the density of the fluid is 1.0×103 kg m3, and  

 

Figure 2  Schematic of SPH simulation of Couette flow. Fluid particles 
and boundary particles are represented by solid and hollow circles, respec-
tively. The right boundary moves upwards with a constant velocity V0. 
Adapted from Ref. [30]. 

the nominal kinematic viscosity is 2.0×106 m2 s1. For 
convenience, reduced units are employed in the simulations 
hereafter, where the cut-off distance of the weighting function 
(1.0×104 m), the mass of each particle (7.826×1011 kg), 
and the kinematic viscosity are all equal to unity, resulting 
in a time unit of 5.0×103 s. Hence, both density 0 and 
nominal dynamic viscosity 0 of the fluid are 12.78, while 
the distance between the two boundaries is L=10.0, and 
their lengths are H=6.0. The initial particle spacing is 0.3, 
and the explicit Euler scheme is employed to perform the 
time integration with a time step of 0.02.  

2.1  Velocity deviation 

With the driving velocity of right boundary V0=0.2 and K= 
1.625 (corresponding to 0 K  =1.231×102), Figure 3 pre-

sents the comparison of tangential velocity (vy) profiles at 
several instants between SPH simulation and the series so-
lution of its Newtonian fluid counterpart [31]. Note that the 
velocity fields of series solution and SPH results display 
nearly identical evolution process, both of which eventually 
become linear at the steady state. The numerical error of 
SPH simulation is only 0.035% in terms of the velocity of 
the rightmost particle, confirming the accurate prediction of 
the Newtonian behavior in this case. Additionally, the tan-
gential force (along the y direction) felt by a rightmost fluid 
particle from the boundary quickly decreases from initial 
3.4725 to 0.0604 almost within a time of 50, and the fluctu-
ation amplitude in the steady state is only 1.455×103. 
Meanwhile, the perpendicular force (along the x direction) 
from the boundary displays periodic oscillations around 
4.905 with an amplitude of 1.969×103, accounting for only 
about 3% of the tangential force. In summary, the no-slip 
boundary condition yields much more reliable results as 
compared with the method of boundary force [3] which 
tends to result in large perturbations of pressure field. To 
avoid dramatic acceleration of SPH particles, the driving 
velocity would linearly increase from zero to the final value 
within a time of 1.0×104 hereafter.  

To investigate the influence of the ratio of viscous to  
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Figure 3  Comparison of tangential velocity profiles between SPH simu-
lation and series solution at several instants. 

elastic effect on the dynamics of SPH particles, several cas-
es with different driving velocities are examined under the 
stiffness parameter K=6.5. It is found that the steady-state 
velocity profile oscillates around the linear distribution. The 
amplitude of oscillation gradually decreases as 0 K   

increases, and closely approximates zero when 0 K   is 

sufficiently large. Based on our previous work [30], Figure 4 
further presents the typical snapshots of simulation results 
with V0=0.0, 2.5×102, and 0.4, corresponding to 0 K  =  

0.0 (a), 3.846×104 (b), and 6.154×103 (c), respectively. 
Notice that the velocity profile and arrangement of particles 
gradually vary with the increase of 0 K  , ranging from 

the state completely dominated by elastic effect where all 
particles move at the same rate (stationary in limit) with 
uniform arrangement (Figure 4(a)), to the other state domi-
nated by viscous effect where there is purely linear velocity 
profile accompanied by almost disordered structure of par-
ticle distribution (Figure 4(c)). As for the intermediate state, 
Figure 4(d) displays a closer view of the boxed region in 
Figure 4(b), where the velocity profile considerably deviates 
from its theoretical counterpart. Besides, particles arrange in 
form of hexagonal lattice in the plateau sections of velocity 
profile, whereas they arrange in form of square lattice in the 
slope sections. Actually, since the incompressibility is ap-
proximately ensured in SPH, the viscous term of momen-
tum equation (eq. (10)) is basically determined by the ve-
locity profile. Meanwhile, as elucidated in Section 1.3, the 
elastic effect completely depends on the particle arrange-
ment under a given stiffness parameter. Therefore, the bal-
ance between elastic and viscous effects accounts for the 
particular correspondence between velocity profile and par-
ticle arrangement at the steady state.  

In view of the different flow patterns of SPH simulation, 
the physical behavior of classical SPH is basically parameter-  

 

Figure 4  Dependence of velocity profile and particle arrangement on the non-dimensional number. (a) 0 K  =0; (b) 3.846×104; (c) 6.154×103; (d) a 

closer view of the boxed region in (b). The vertical lines in (b) separate different layers, while the slope and plateau sections of solid lines denote local parti-
cle arrangement in hexagonal and square patterns, respectively. Adapted from Ref. [30]. 
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dependent. The purely Newtonian fluid could be well ap-
proximated only under sufficiently large 0 K  , and thus 

this non-dimensional number could serve as a criterion to 
evaluate the deviation of SPH simulation from Newtonian 
fluid. Besides, the ratio of viscous to elastic effect can be 
directly linked to the Mach number with the following form 

  0.50 0 max 0 0
0.5

Ma Ma
V

K
K K L LK LK

        
 


. (12) 

As indicated by eq. (12), the available values of 0 K   

with a given stiffness parameter is restricted to a certain 
range due to the incompressibility constraint on Mach 
number.  

2.2  Effective viscosity 

In regard to the effective viscosity of SPH particles, the 
influence of the ratio of viscous to elastic effect is also in-
vestigated under a wide range of stiffness parameter and 
shear rate. With the measurement of tangential stress τ be-
tween fluid particles and the right moving boundary, the 
effective viscosity  can be simply calculated by   . Ac-

tually, the tangential stress at the steady state also oscillates 
around a certain value, so reliable time-averaged values are 
obtained with sufficiently long time. Figure 5 presents the 
relationship between effective viscosity and the ratio of 
viscous to elastic effect. It is found that those curves of dif-
ferent stiffness parameters closely match each other, indi-
cating the dependence of effective viscosity on the non- 
dimensional number 0 K  , rather than stiffness parame-

ter or shear rate. Notice also that the effective viscosity 
quickly decreases as the ratio of viscous to elastic effect 
increases, and it closely approximates the nominal viscosity 
when 0 K  is sufficiently large. Accordingly, to accu-

rately predict the flow behavior of Newtonian fluid, it is 
quite important to ensure sufficiently large ratio of viscous  

 

Figure 5  Variations of effective viscosity with the ratio of viscous to 
elastic effect under different stiffness parameters. 

to elastic effect in SPH simulations.  
On the other hand, it is generally believed that the SPH 

method would have reasonable accuracy, when sufficiently 
large number of fluid particles is involved in the simulation. 
Thus, the influence of particle number on effective viscosity 
is further investigated for various ratios of viscous to elastic 
effect (changing shear rate with K=6.5). It should be men-
tioned that, the initial particle spacing, smoothing length, 
and mass of each particle all decrease with the increase of 
particle number, but the computational results herein have 
been transformed with the same reduced units as that of 
previous cases with particle number n=760. As illustrated in 
Figure 6, the effective viscosity of several particle numbers 
(including 760, 1710, 3080, and 4800) all decreases with 
increasing 0 K  , and closely approximates the nominal 

viscosity when 0 K   is sufficiently large. It is also noted 

that as particle number increases, the effective viscosity 
significantly decreases at relatively lower 0 K  . Never-

theless, the disparity among the effective viscosity of these 
particles is not remarkable when 0 K   is larger than 

certain value (such as 7.692×104). In summary, when 

0 K   is sufficiently large, the result with relatively few 

particles (n=760) would be quite acceptable, while further 
increase of particle number cannot significantly improve the 
accuracy. Actually, as revealed in Figure 6, the effective 
viscosity of sufficiently large 0 K   even somewhat de-

viates from nominal viscosity for the particle numbers 3080 
and 4800, due to certain numerical errors.  

To guarantee sufficiently large ratio of viscous to elastic 
effect, the corresponding stiffness parameter should be 
small enough for a given shear rate. However, the stiffness 
parameter should also be large enough to satisfy incom-
pressibility constraint. Consequently, suitable choice of stiff-
ness parameter would be a compromise of these two com-
peting factors. In view of the maximum density fluctuations 
=0.03 [31], the selection of stiffness parameter around  

 

Figure 6  Variations of effective viscosity with the ratio of viscous to 
elastic effect under various numbers of fluid particle. 
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2
max30 V  would be reasonable to some extent. On the other 

hand, when K and   are substituted with eq. (7) and 

Vmax/L, respectively, the ratio of viscous to elastic ratio can 
be further rewritten as 
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  


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As indicated by eq. (13), with a given Mach number, the 
value of 0 K   is inversely proportional to the Reynolds 

number. Therefore, the traditional SPH method is actually 
more suitable for the simulations of low Reynolds number 
flows, which correspond to comparatively larger 0 K  , 

and thus would have relatively higher accuracy. Besides, 
according to the variations of velocity profile (Figure 4) and 
effective viscosity (Figures 5 and 6), the Newtonian behavior 
can be approximately obtained when the non-dimensional 
number 0 K   is larger than 3×103. Accordingly, there 

exists a critical Reynolds number, which could be evaluated 
by 
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3 3
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Re 10
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2.3  Energy dissipation 

The energy dissipation in the system of SPH particles is 
further examined. As for incompressible Newtonian fluid 
with nominal dynamic viscosity 0, the corresponding vis-
cous dissipation (particularly referred to as “nominal vis-
cous dissipation” hereafter) per unit volume, , is defined 
by (in two dimensions) 

 
2 2 2

0 02
x y y xv v v v

x y x y
  

                            
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where vx and vy are the x-component and y-component of 
the local velocity, respectively. Within the framework of 
SPH descriptions, the formulation of local viscous dissipa-
tion i (based on particle i) would be 
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 

   (16)

 

where 
i j

xv  and 
i j

yv  are the relative velocities of particles i 

and j in the x and y directions, respectively. Also, x
i ijW  

and y
i ijW  denote the respective gradients of weighting 

function with respect to the location ri in these two     

directions. 
The nominal viscous dissipation of the whole system, 

vis , could be further obtained by the sum of local viscous 

dissipation as follows 

 vis
i

i
i i

m
 


  . (17) 

Moreover, the steady-state total dissipation total  could be 

readily evaluated by means of energy balance:  

 total 0FV  ,  (18) 

where F is the tangential force exerted on the moving 
boundary.  

Figure 7 presents the variations of nominal viscous dis-
sipation (of the whole system) and total dissipation with the 
ratio of viscous to elastic effect, which is obtained by 
changing the stiffness parameter with a constant driving 
velocity V0=2.5×102. Note that the theoretical viscous dis-
sipation (4.793×103) of Newtonian fluid with nominal vis-
cosity is also displayed in Figure 7 for comparison. It 
should be pointed that those data in Figure 7 are all based 
on time-averaged values due to the oscillation of velocity 
profile. When 0 K   is relatively small, the disparity 

between nominal viscous dissipation and total dissipation is 
quite remarkable, while both of them considerably deviate 
from the theoretical dissipation. As 0 K   further in-

creases, nominal viscous dissipation and total dissipation 
seem decrease in a power-law fashion with strong nonlinear 
effect. Eventually, when 0 K   is sufficiently large, both 

of them become almost identical to the theoretical viscous 
dissipation. In nature, extremely large value of 0 K   

indicates the exclusive dominance of viscous effect in the 
system, where the behavior of Newtonian fluid is well ap-
proximated with the minimum viscous dissipation in theory. 
On the other hand, the elastic effect would play an im-
portant role under comparatively small 0 K  , resulting in  

 
Figure 7  Variations of nominal viscous dissipation and total dissipation 
with the ratio of viscous to elastic effect. 
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pronounced deviation from Newtonian fluid with much 
larger viscous dissipation. Nevertheless, the numerical sim-
ulation would become unstable for extremely large stiffness 
parameter, so that exclusive dominance of elastic effect is 
actually unattainable.  

In fact, the inherent dissipation in the SPH simulation of 
inviscid Euler equation has been noted previously [40]. The 
disparity between nominal viscous dissipation and total dis-
sipation in this study further demonstrates the presence of 
inherent dissipation in the SPH formulation of Navier- 
Stokes equation. To account for this disparity of energy 
dissipation, there should exist certain artificial viscosity in 
addition to the nominal viscosity, which has been revealed 
in the deviation of effective viscosity from nominal viscos-
ity (Figure 5). Besides, the “velocity Verlet” integration 
algorithm is also performed, giving almost identical results. 
In summary, all these unphysical phenomena could be at-
tributed to the discretization effect of SPH approach. More 
specifically, the fluid is only represented by quite finite 
number of particles, while the severe disorder of particle 
arrangement results in the low numerical accuracy. For a 
given particle number, this unavoidable numerical error is 
basically determined by the ratio of viscous to elastic effect.  

3  Conclusions 

By analyzing the physical behavior of SPH particles, a non- 
dimensional number with the formulation 0 K  is pro-

posed to characterize the relative dominance of viscous to 
elastic effect in the traditional SPH method. Through the 
simulation of two-dimensional Couette flow, it is found that 
the deviations of velocity profile, effective viscosity, and 
total dissipation from their theoretical counterparts all de-
crease as 0 K  increases. Therefore, this non-dimensional 

number could serve as a practical guide to evaluate the dis-
parity between SPH simulation and corresponding Newto-
nian fluid. Due to the constraints from the Mach number 
and the ratio of viscous to elastic effect, there exists a criti-
cal Reynolds number below which the Newtonian behavior 
could be approximately obtained through suitable choice of 
model parameters.  

Besides, as for the simulation of relatively high Reynolds 
number flows, extra corrections are needed to remedy the 
negative influence of elastic effect. Apart from those com-
plicated and artificial modifications discussed previously, 
the improvement of SPH method from the angle of non- 
dimensional number would be quite significant. Actually, 
when the non-dimensional number 0 K   is relatively 

small, the SPH particles essentially correspond to certain 
non-Newtonian fluid [30]. Of course, the underlying mech-
anism of this non-dimensional number is only preliminarily 
elucidated in this study, and our findings should also be 
further explored in various complex flows, which all call for 

future work.  
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