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Abstract

Background: Next-generation sequencing (NGS) allows unbiased, in-depth interrogation of cancer genomes. Many
somatic variant callers have been developed yet accurate ascertainment of somatic variants remains a considerable
challenge as evidenced by the varying mutation call rates and low concordance among callers. Statistical model-based
algorithms that are currently available perform well under ideal scenarios, such as high sequencing depth, homogeneous
tumor samples, high somatic variant allele frequency (VAF), but show limited performance with sub-optimal data such as
low-pass whole-exome/genome sequencing data. While the goal of any cancer sequencing project is to identify a
relevant, and limited, set of somatic variants for further sequence/functional validation, the inherently complex nature of
cancer genomes combined with technical issues directly related to sequencing and alignment can affect either the
specificity and/or sensitivity of most callers.

Results: For these reasons, we developed SNooPer, a versatile machine learning approach that uses Random Forest
classification models to accurately call somatic variants in low-depth sequencing data. SNooPer uses a
subset of variant positions from the sequencing output for which the class, true variation or sequencing error, is
known to train the data-specific model. Here, using a real dataset of 40 childhood acute lymphoblastic leukemia
patients, we show how the SNooPer algorithm is not affected by low coverage or low VAFs, and can be used to
reduce overall sequencing costs while maintaining high specificity and sensitivity to somatic variant calling. When
compared to three benchmarked somatic callers, SNooPer demonstrated the best overall performance.

Conclusions: While the goal of any cancer sequencing project is to identify a relevant, and limited, set of somatic
variants for further sequence/functional validation, the inherently complex nature of cancer genomes combined with
technical issues directly related to sequencing and alignment can affect either the specificity and/or sensitivity of most
callers. The flexibility of SNooPer’s random forest protects against technical bias and systematic errors, and is appealing in
that it does not rely on user-defined parameters. The code and user guide can be downloaded at https://sourceforge.net/
projects/snooper/.
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Background
The advent of next-generation sequencing (NGS) has
allowed unbiased in-depth interrogation of cancer
genomes and has led to the identification of a number of
tumor-specific mutations responsible for driving onco-
genesis in multiple cancer types including skin carcin-
oma [1, 2], bladder cancer [3], prostate cancer [4, 5],
colorectal cancer [6], breast cancer [7–12], medulloblas-
toma [13] and leukemias/lymphomas [14–18]. Sequen-
cing of matched normal-tumor pairs is routine in cancer
research in order to identify a relevant, and limited, set
of somatic variants for further functional validation.
However, the inherently complex nature of cancer
genomes [19], the heterogeneity of tumor samples, as
well as random (or systematic) sequencing and align-
ment errors can affect the specificity and/or sensitivity
of most variant callers [20]. Of particular interest is the
identification of low-frequency tumor alleles that arise in
subclonal tumor cell populations, often contributing to
treatment failure and relapse [21–25]. While NGS
provides the opportunity to track specific mutations in
tumor subclones and potentially uncover mutations with
relapse driving potential [26], the identification of such
mutations within the primary tumor cell population is
often confounded and difficult to distinguish from back-
ground noise, as evidenced by the consistently low
concordance rates between algorithms [20].
A number of methods have been developed to over-

come these challenges in somatic mutation calling in
matched normal-tumor samples. These methods are
either heuristic, such as VarScan2 [27] that relies on in-
dependent analysis of tumor and normal genomes
followed by a statistical Fisher’s Exact Test of read
counts for variant detection, or probabilistic, such as
SomaticSniper [28], JointSNVMix [29], Strelka [30] and
MuTect [31] that use Bayesian modeling to estimate
likely joint normal-tumor genotype probabilities. Yet
most somatic variant callers still perform poorly at low
sequencing depths [32]. Indeed, large investments in
validation efforts are needed to compensate the high
false positive rates of most exploratory projects that are
aimed at investigating more than a small set of top
ranked high confidence somatic variants. And though
progressively larger cohorts of individuals are being
sequenced, the tendency towards shallow or low-coverage
data is still de rigueur, particularly for whole genome
sequencing initiatives, due to high sequencing costs.
To address these issues, we developed SNooPer, a

versatile data mining approach that uses Random Forest
(RF) classification [33] to accurately identify somatic var-
iants in complex, low-depth sequencing data. Unlike
available somatic variant callers, SNooPer does not rely
on user-defined parameters but builds upon the data
itself to construct powerful prediction models and

increase calling performances. Using both simulated and
real datasets, we evaluated SNooPer’s ability to detect
true somatic mutations in unbalanced, low-depth data-
sets while limiting false positive calls, and compared
its performance to three benchmarked algorithms -
Varscan2 [27], JointSNVmix [29], and MuTect [31].

Design and implementation
Design
The purpose of SNooPer is to distinguish sequencing
errors (false positives - FPs) from actual somatic variants
(true positives - TPs) in matched normal-tumor sequen-
cing data. SNooPer uses a Leo Breiman RF classifier [33]
which was chosen because of its limited tendency to
overfit training data [33], its efficient management of
very large datasets and its capability to cope with unbal-
anced datasets, in which one class (in this case sequen-
cing error) is overrepresented in comparison to the
other (somatic variation). RF applies bootstrap aggrega-
tion or “bagging” (subsets of the training data are
selected with replacement) on multiple decision trees
grown without pruning in which each node is split based
on the information provided by a subset of randomly
selected features. For each variant position, 15 features
expected to be informative for the identification of true
somatic mutations are extracted and/or calculated from
the mpileup files. The complete list of features and their
descriptions are presented in Additional file 1: Table S1).
These features are divided into five main groups: i) qual-
ity bias of alternative bases (related to base and mapping
phred quality values), ii) coverage and VAF, iii) location
along the read, iv) strand bias, and v) others. When
appropriate, features are evaluated with respect to refer-
ence bases at the same position (vs_ref ). To reduce
over-fitting on training data and when possible, instead
of absolute values, features are normalized using the
corresponding median value calculated from randomly
extracted subsets of variants from corresponding mpi-
leup files (vs_med). For each model, features are ranked
and selected by measuring information gain (IG) or
Kullback–Leibler divergence [34] with respect to the
class (InfoGainAttributeEval method, Weka suite [35],
Additional file 2). Given that the relative importance of
features for prediction may vary depending on the data-
set or the genomic region of interest, the flexibility of
SNooPer allows a new set of features to be selected in
the training of each new model. By default, during each
training phase and using the remaining bootstrap data-
sets (unused portion of the bootstrap as a test set), RF
estimates the generalization error using the out-of-bag
(oob) error as an internal control. Once trained, the
model is saved and applicable to any new dataset pre-
sented to SNooPer. In the event that validation subsets
are not readily available, we have also developed a series
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of pre-trained classification models that can be used to
call variants from most datasets, including those
obtained from other cancer types.

Code implementation
SNooPer is written in the Perl programming language
and has a few dependencies: Math::CDF, Text::NSP::-
Measures::2D::Fisher, Statistics::Test::WilcoxonRankSum
and Statistics::R. Furthermore, SNooPer uses a RF classi-
fier implemented in Weka suite (3.6.10 or greater) [35]
and requires the Java Runtime Environment (1.5 or
greater). Additional and optional filters (germline dataset
and blacklisted genomic regions) require a Bedtools
intersect function [36]. Receiver Operating Characteris-
tic (ROC) and Precision-Recall (PR) curves are drawn
using the R package ‘pracma’ (Practical Numerical Math
Functions). Detailed information about how to install
and run SNooPer, including all available options, are
described in the Additional file 2.

Workflow
The complete workflow of SNooPer's algorithm is shown
in Fig. 1 (common keywords between the figure and the
following description are indicated in italics).

Somatic testing and feature extraction
SNooPer expects both normal and tumor files in SAM-
tools mpileup format (Pileup T vs. Pileup N in Fig. 1).
To call variants as somatic, a Fisher's exact test is applied
to compare the distribution of reads supporting the
reference and the alternative allele between normal and
tumor samples. Optionally, SNooPer can integrate two
additional filters input as BED format files (Bedtools step
in Fig. 1) to exclude overlaps with any provided germline
dataset (e.g. common polymorphisms from 1000
Genomes dataset [37]) or blacklisted genomic regions
(e.g. poorly mappable regions from the RepeatMasker
sequence [38]). Using the default parameters of quality
filters, the algorithm only considers positions presenting
at least one read (mapping quality value - MQV ≥10) sup-
porting the alternative allele (base quality value - BQV
≥20), and requires a minimum coverage of 8X in both the
tumor sample and its normal counterpart. Features ex-
traction (S1 Table) is then make for each putative somatic
variants that passed these filters.

Training phase
During this phase, identified variants are divided into
two classes according to orthogonal validations: a false
positive class (errors) and a true positive class (validated
variations). This dataset is then used to train the RF clas-
sifier. To improve time-effectiveness, the default number
of trees used to build the model is limited to 300 (see
Results). At each node, Log2(total number of attributes)

+ 1 features are randomly selected. The oob error rate is
used as an unbiased estimate of the classification error
as trees are added to the forest during training. The clas-
sification error rate is also controlled by default using a
10-fold cross-validation estimator. Informative features
for the classification are selected by measuring informa-
tion gain or Kullback–Leibler divergence. ROC and PR
curves (Training curves) and the related Areas Under
the Curves (AUCs) are calculated for each training run
(Additional file 3). Furthermore, SNooPer was designed
to allow variable VAF intervals for targeted training as
well as cost-sensitive learning to compensate unbalanced
data and allow for high sequencing error rates. For
discovery, users can also vary the cost of false negatives
and false positives to reflect more liberal or conservative
modeling. The trained model can be saved and applied
to any subsequent dataset.

Calling phase
During the calling phase, the trained model as well as new
tumor and matched normal mpileup files are used as
input. A Fisher’s Exact Test is performed (Pileup T vs.
Pileup N) to identify putative somatic variants. Features
that have been used to train the model of interest are calcu-
lated from the mpileup files for each of the putative variants
and the model is applied for classification. The calling phase
outputs aVCF file, which includes the somatic p-value from
the Fisher’s exact test, a categorical annotation of prediction
(“PASS” or “REJ”) and associated class probability (from 0.5
to 1) for each somatic variant identified, allowing the user
to adjust numerical filters with more flexibility than that
allowed by categorical predictions.
SNooPer’s run-time efficiency is acceptable. For

example, to run an entire training phase using 250 TPs
and 30,000 FPs from 4 sets of whole-exome sequencing
(WES) data as input (12 matched normal-tumor pileup
pairs) and 300 trees and a 10-folds cross validation as
training parameters, the algorithm runs for about 8 h on
a standard 12-core computer workstation with 24
Gbytes of memory, each core running at 2.667 Ghz. The
time taken by the Random Forest increased linearly with
the number of trees built: 0.58, 8.43, 24.45, 50.45 and
83.22 min were needed to build 10, 100, 300, 600 and
1,000 trees, respectively (these periods of time excluded
the time taken for the calculation of features which relies
on the size of the training dataset, not on the the num-
ber of trees used). Finally, during a standard calling
phase, using a single-core (2.667 Ghz), SNooPer analyses
approximately 5,000 pileup lines per minute.

Results and discussion
Classifier performance assessment
For the development and assessment of SNooPer, we
used a series of real NGS datasets from 40 unrelated
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childhood acute lymphoblastic leukemia (cALL) patients
(Fig. 2). All study subjects were French-Canadians of
European descent from the established Quebec cALL
(QcALL) cohort [39]. For each patient, bone marrow

and blood samples were collected at diagnosis prior to
treatment (patient tumor) and at remission (matched
patient normal). DNA was extracted using standard pro-
tocols [40] and sequenced on the Life Technologies

Fig. 1 Workflow of SNooPer’s algorithm. SNooPer uses both normal and tumor files in a SAMtools mpileup format as input. It requires a training phase in
which an orthogonal validation (re-sequencing) dataset is used to train the RF classification model that is subsequently used to call somatic variations in
the test dataset. Light grey boxes represent the training steps while dark grey boxes represent calling steps. Dotted boxes represent optional steps in the
workflow. Circles represent the output following either the training or calling phases
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SOLiD 4 System to constitute Dataset 1 (mean coverage on
targeted region =30X). 12 cALL patient genomes (6 tumor-
normal), overlapping Dataset 1, were also sequenced by
Illumina, Inc. on the HiSeq 2000 (mean coverage =90X)
and considered as orthogonal validation for Dataset 1. Fi-
nally, 2 samples sequenced at higher depth on the Illumina
system (HiSeq 2500, mean coverage of 200X), overlapping
Datasets 1 and 2, were used as validation for Dataset 2
(Fig. 2 and Additional file 2 for details). To test our somatic
caller, we generated 4 model scenarios constructed using
these 3 datasets (Fig. 2 and Additional file 2 for details).
These scenarios were constructed to test the effect on train-
ing of the RF classifier of either a variation of the number
of trees (models 1A vs 1B), of the skewness of the (unbal-
anced) datasets (models 1B vs 1C), or of the sequencing
depth and technology (model 2 vs model 1A).

Classifier training
10-fold cross-validation was used to compare the per-
formance of SNooPer’s classification based on the train-
ing for each Model (Fig. 2, Additional file 2). ROC and
PR curves were generated and the related AUC was
measured on each training dataset (Figs. 3a, b and 4a, b).
Cohen’s kappa coefficient [41] was also used to assess
the performances of SNooPer’s RFs under each modeled
condition (Figs. 3c and 4c). To assess SNooPer’s ability
to classify an unbalanced test set while being trained

with a reduced and balanced training dataset, we
constructed Model 1C using 250 true and false positive
calls from the training set. To cope with the unbalanced
test set on which the model was applied, we weighted
training instances (stronger cost on false positives) using
SNooPer’s cost sensitive training option.
Evaluation of the oob error rates for Models 1A, 1B,

and 1C (0.003, 0.003 and 0.022, respectively), suggested
powerful classification performances for SNooPer’s RF.
ROC AUCs (0.9724, 0.9783 and 0.9815), PR AUCs
(0.7933, 0.8059 and 0.9817) and Kappa coefficients
(0.7824, 0.7882 and 0.8600) also showed good agreement
for SNooPer’s RF under Models 1A, 1B, and 1C, respect-
ively. Improved training statistics for Model 1C were
due to a strong reduction of the number of false
positives in the training dataset from 30,000 to 250.
We compared classification performances of

SNooPer’s RF to two other decision tree generators:
we trained Dataset 1 using the C4.5 algorithm [42]
(J48 in Weka suite) and SimpleCart [35]. For C4.5
classification, a confidence factor of 0.25 was used for
pruning and we set a minimum of two instances per
leaf. For SimpleCart, a minimum number of two
observations at the terminal nodes was used with
5-fold internal cross-validation. C4.5 and SimpleCart
trainings clearly underperformed RF with ROC AUCs
of 0.8834 and 0.8343 respectively (Fig. 3a).

Fig. 2 Datasets used to develop and assess SNooPer. All 3 datasets were generated from real childhood acute lymphoblastic leukemia samples.
Arrows indicate sequencing overlaps between datasets. Re-sequencing was used as orthogonal validation for the training phases of the algorithm.
RF Models (1A, 1B, 1C and 2) resulting from these training phases are shown below the corresponding arrows
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To investigate how coverage, sequencing technologies
and post-sequencing data processing (e.g. mapping
method) may influence SNooPer’s performance, we con-
structed Model 2 using Dataset 2. The training phase for
this Illumina whole-genome sequencing (WGS) dataset
(mean coverage of 90X) returned a oob of 0.001, a
Kappa coefficient of 0.9344 and ROC and PR AUCs of
0.9643 and 0.8662.
Firstly, to evaluate the influence of coverage on

SNooPer’s classification performances, we constructed
artificial test datasets. The coverage of Dataset 2 was
reduced by 10% (~81X) to 80% (~18X), through

subsampling using SAMtools [43]. We found no clear
decrease in performance except at sequencing depths
below 18X (80% reduction) as illustrated by a PR AUC
of 0.7982 and a Kappa coefficient of 0.8237 (Fig. 4).
Interestingly, the best overall performance was observed
at 45X (50% reduction) with ROC and PR AUCs of
0.9918 (2nd best) and 0.9297 (best) and a Kappa coeffi-
cient of 0.9423 (2nd best). At ~36X (40% reduction in
coverage), SNooPer performances were better than those
obtained for Dataset 1 (mean 30X depth coverage) with
ROC, PR AUCs and a Kappa coefficient of 0.9834,
0.8818 and 0.9130 compared to 0.9724, 0.7933 and

Fig. 4 Training assessment of Model 2. The data used to construct these curves were obtained from training phases using Dataset 3 as validation
set and either the original Dataset 2 (dark cyan) or an artificial version of Dataset 2 (shades of grey) in which the coverage was gradually subsampled
from 10% (ratio of 0.9 ~ 81X; darkest grey) to 80% (ratio of 0.2 ~ 18X; lightest grey) as training set. AUCs are shown for each model. a ROC curves. Solid,
dashed and dotted lines represent RF, C4.5 (J48) and SimpleCart algorithms respectively. TPR stands for True Positive Rate and FPR for False Positive
Rate. b PR curves. c Cohen’s Kappa coefficient

Fig. 3 Training assessment of Model 1A, 1B and 1C. Data used to construct these curves were obtained from SNooPer’s RF training phase using
Dataset 2 as a validation set and a subset of Dataset 1 as training set. Dark cyan, blue and light blue represent SNooPer's Model 1A, 1B and 1C, respectively
and AUCs are shown for each model. a ROC curves. Solid, dashed and dotted lines represent RF, C4.5 (J48) and SimpleCart algorithms respectively. TPR
stands for True Positive Rate and FPR for False Positive Rate. b PR curves. c Cohen's Kappa coefficient
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0.7824 obtained using Model 1A on Dataset 1. The
improved performance is likely due to differences in
sequencing and post-sequencing data processing
methods, suggesting that inherent sequencing plat-
form and/or mapping biases can influence SNooPer’s
classification. Overall, and despite slight variations
between Datasets 1 and 2, evaluation of the perform-
ance of the classification model yielded satisfying re-
sults across distinct datasets and sequencing
technologies, further highlighting the flexibility of
SNooPer’s classification model.

Comparison with other methods
To achieve an accurate and unbiased estimate of the
performance of SNooPer in predicting somatic variants,
and to compare SNooPer to other routinely used som-
atic single nucleotide variant (SNV) callers including
Varscan2 255 [27], JointSNVMix [29] and MuTect [31]
(Additional file 2), we randomly excluded whole exome
sequencing data from Dataset 1 before training and used
it as test set (Fig. 2, Additional file 2). This test set is a
particularly demanding dataset given its severely unbal-
anced class distribution, with approximately 1 true

somatic variation per million false positives presenting at
least one supporting read (TP/FP =9.3E-07).
To accurately compare the performances of different

algorithms, recall values were fixed for all callers and we
estimated the precision (fraction of real calls) of each
algorithm on the test dataset. Data were filtered on
numerical values for all callers instead of on categorical
variables only (Additional file 2). To evaluate the pre-
dictive performance of each somatic SNV calling algo-
rithm, we generated PR curves and assessed the related
AUCs (Fig. 5). Regardless of the trained model used,
SNooPer outperformed all other callers on this test data-
set. The lowest AUC obtained for SNooPer (0.5732) was
obtained using Model 1C while JointSNVMix, Varscan2
and MuTect reached AUCs of 0.3930, 0.1768, and
0.0491 respectively. SNooPer Models 1A and 1B, trained
using 300 and 1,000 trees respectively, showed very simi-
lar performances with AUCs of 0.6310 and 0.6517. For
Model 1C, reweighting of false positives correctly com-
pensated the bias that was generated from the use of a
balanced training set that was not representative of the
test set. Overall, the use of SNooPer’s RF classification
algorithm lead to efficient identification of clonal and

Fig. 5 Precision – Recall curves for method comparison. Data used to construct these curves were obtained from SNooPer’s calling phase using
Model 1A (dark cyan), Model 1B (blue), Model 1C (light blue), Varscan2 (black), JointSNVMix (dark grey) and MuTect (light grey) on the test set. The
test set was built using a subset of Dataset 1 that was kept completely separate during the training phase. AUCs are shown for each model
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subclonal somatic variations with VAFs ranging from
0.16 to 0.58, with low false discovery rates of 0.363,
0.342 and 0.367 for Models 1A, 1B and 1C, respectively
(mean false discovery rate - FDR over tested points).
Among the 3 models, only Model 1C missed a mutation
with low VAF (0.16). Limited performances and high
mean FDRs observed for other methods (FDRVarscan2 =
0.527, FDRJointSNVMix =0.822, FDRMuTect =0.945) were
probably due to the suboptimal quality of SOLiD se-
quencing data with high sequencing/mapping error rates
and low coverage (mean coverage of ~30X) for the cal-
lers’ standards. More specifically, given the limited power
of the strand bias feature to discriminate true positive
calls from errors in Dataset 1 (see Additional file 1 and
Feature Selection section in Additional file 2), methods
such as Varscan2 and MuTect that rely significantly on
this feature to call variations were expected to underper-
form on these data. Varscan2 filters out variants with
>90% of the supporting reads originating from the same
strand, and MuTect applies a restrictive strand bias filter
based on a separate calling step on each strand imple-
mented to avoid variants supported by a biased align-
ment. As expected, SNVs that were missed by these two
algorithms were all positions that were affected by
strand bias. Still, despite its strong strand bias filter,
Varscan2 showed the best overall performance of the
three benchmarked algorithms that were tested here. On
the other hand, MuTect is known to be a very sensitive
SNV caller that is powered to detect low VAF mutations.
However, as illustrated in Additional file 4: Figure S2,
the VAF distribution of somatic MuTect variations was
clearly skewed toward very low VAFs compared to the
distribution of true somatic SNVs present in the test set,
leading to a large number of false positives in the
MuTect output. A similar pattern with an increase in
low VAF calls (<0.2) was observed for JointSNVmix, also
resulting in increased false positive calls. Unlike other
callers, the SNooPer algorithm involves a training phase
where class assignment is directly learned from the data-
set at hand, and this translated into a VAF distribution
that matched the true positives distribution. Moreover,
under Models 1A and 1B, SNooPer identified less than
90 somatic SNVs that included all true somatic SNVs
present in the test dataset, while MuTect (power
≥0.16) identified 274 somatic variants, Varscan2 (som-
atic p-value ≤0.17) 397, and JointSNVMix (P(somatic)
≥0.29) identified 705 somatic SNVs, which included
92%, 83% and 100% of the true somatic variants, re-
spectively. SNooPer's somatic SNV calls under Model
1A and 1B were thus more precise and no true som-
atic variants were missed, further highlighting its su-
perior performance. With a higher sensitivity and
specificity for somatic SNV detection in our low qual-
ity test set (mean coverage <30X), SNooPer

outperformed commonly used somatic variant callers
such as Varscan2, JointSNVMix and MuTect. Import-
antly, this report was not meant to question the
performance of benchmarked callers that have proven
to be efficient and that classically show satisfactory
results with high coverage datasets.

Real data analysis
We then evaluated our trained Model 1A on the
remaining data from Dataset 1 that consisted of 34 B-
and T-cell cALL patients. To identify somatic variations
with high driver potential, only predicted deleterious
SNVs with Sift [44] p-values ≤0.05 were considered. 50
heterozygous candidate SNVs (VAF <0.6) presenting a
class probability over 0.9 and a coverage of at least 15X
in the normal sample were randomly selected for valid-
ation. These variations showed coverage values ranging
from 23 to 115X (mean coverage 51X) and VAFs ranging
from 0.10 to 0.57 (median 0.38). For orthogonal valid-
ation of this dataset, we used targeted ultra-deep
sequencing (Illumina) of the patient’s tumor material
(>1000X) and of the normal counterpart in order to con-
firm the somatic nature of each of the identified variants
(Fig. 6, Additional file 2).
A total of 90% (45/50) of the tested SNVs were con-

firmed real variants, that is found in the tumor material
of the patient following our filtering criteria (see
Methods). Among these 45 variations, 80% (36/45) were
validated somatic mutations (present in tumor only) and
20% (9/45) were identified as germline. Overall, if the
confirmed somatic variations are considered true posi-
tives and the errors (no calls in re-sequencing) combined
with germline variations are considered as false positives,
SNooPer’s somatic SNV identification reached a preci-
sion of 0.71 (see Methods). As expected, the identified
germline mutations had VAFs around the expected
clonal heterozygous allele frequency of 0.50 with a mean
VAF of 0.47 and a variance (σ2) of 0.004, while the con-
firmed somatic mutations had a lower mean VAF of 0.36
associated with a wider distribution (σ2 = 0.009) averaged
from the different subclones present in the sample. Im-
portantly, SNooPer showed no bias of performance in
calling subclonal SNVs with low VAF with 2 FPs under
and 3 FPs over the median VAF of 0.36, and reached a
precision of 0.90 for mutations located within the lower
50th percentile.

Conclusion
Most available somatic SNV calling methods offer user-
defined categorical filters or at best, numerical filters to
fine-tune or customize SNV calling, however these can
have a strong influence on the output. SNooPer does
not rely on user-defined parameters and in doing so, al-
lows versatility and flexibility to cope with complex
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datasets. Here, the model is directly built around the
data itself therefore limiting any bias or subjectivity in
somatic mutation calling. Firstly, although systematic
errors in the training dataset are likely to exist, the use
of an independently sequenced (different technology,
mapping) validation dataset will teach SNooPer to
recognize systematic errors from the original dataset and
to classify them as false positive. Therefore, this method
leads to a by-default elimination of systematic errors as-
sociated to each sequencing platform. Furthermore, ra-
ther than using standardized filters, the importance of
each feature for variant classification is directly mea-
sured from the data. While any RF algorithm includes by
default attribute selection, we also provided the possibil-
ity for users to perform a dimensionality reduction of
features based on information gain. In doing so we re-
duce the chance of false positive occurrence due to a
strong yet biased feature, which may, in part, explain
SNooPer’s superior performance compared to other
tested callers. Moreover, SNooPer can accommodate re-
duced training datasets, such as the one constituted of

250 false and true positives used here, compensate the
balance bias using cost sensitive training, and still out-
perform other commonly used somatic variant callers.
Although not reported here, SNooPer also offers an
Indel training algorithm and the corresponding calling
option that is available in the latest released version. Fi-
nally, given that sequencing errors have been linked to
homopolymers or G-rich sequence motifs, an updated
version of the software that considers the context of
genomic coordinates is under development.
As NGS moves toward the clinic and proves its useful-

ness as a powerful diagnostic tool, whole-genome
approaches remain limited to rapid low-pass whole-
genome sequencing as a cost-compatible compromise.
Sensitive calling algorithms such as SNooPer that is
tailored around the data, will thus be indispensable to
weed out true somatic variants and identify potential
driver mutations or actionable targets. SNooPer was
developed in response to this need and has already
proven its utility in identifying novel mutations in child-
hood leukemia [45–47].

Fig. 6 Validation plot. Distribution of 50 randomly selected SNVs called using SNooPer's Model 1A on the independent validation set constituted
of samples obtained from 34 childhood acute lymphoblastic leukemia patients (matched normal and tumor). All selected SNVs were heterozygous
with a VAF < 0.6, predicted as damaging (Sift [42 44] p-values ≤0.05) and presented a class probability >0.9. Each identified SNV was validated by
targeted ultra-deep re-sequencing (>1000X). The grey line indicates the expected VAF (50%) for germline or clonal somatic heterozygous variants. Dark
cyan squares, grey dots and white diamonds represent validated somatic, germline and non-validated variations respectively
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Availability and requirements
Project name: SNooPer
Project home page: http://www.somaticsnooper.com/,
https://sourceforge.net/projects/snooper/
Operating systems: any operating system supporting
Perl (v5.18.2 or greater) and Java Runtime Environment
(v1.5 or greater)
Programming language: Perl
Other requirements:
- Weka: the published version of SNooPer was tested
using the version weka-3-6-10
- R: the published version of SNooPer was tested using
the version R/3.2.1
- additional Perl modules: Math::CDF, Text::NSP::Mea-
sures::2D::Fisher, Statistics::Test::WilcoxonRankSum and
Statistics::R
- Bedtools (optional: if BlackList (-r) or germDB_track
(-g) options are applied): the published version of
SNooPer was tested with version bedtools-2.17.0
License: GNU GPL-3
Any restriction to use by non-academics: none

Additional files

Additional file 1: Table S1. List of SNooPer’s features and descriptions.
(PDF 118 kb)

Additional file 2: Supplementary information on datasets, models,
comparison with other methods, real data analysis, feature selection,
installation and usage. (DOCX 20 kb)

Additional file 3: Figure S1. Snapshot of a SNooPer output from the
training phase. (PDF 1143 kb)

Additional file 4: Figure S2. Distribution of VAFs called by SNooPer
(Model 1A), MuTect, JointSNVMix and Varscan2 on the test set.
(PDF 1469 kb)

Abbreviations
AUC: Areas under the curve; BQV: Base quality value; cALL: Childhood acute
lymphoblastic leukemia; FP: False positive; IG: Information gain;
Indel: Insertion and deletion; MQV: Mapping quality value; NGS: Next-
generation sequencing; Oob error: Out-of-bag error; PR: Precision-recall;
RF: Random forest; ROC: Receiver operating characteristic; SNV: Single
nucleotide variant; TP: True positive; VAF: Variant allele frequency;
WES: Whole-exome sequencing; WGS: Whole-genome sequencing.
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