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Abstract The date palm (Phoenix dactylifera L.), famed for

its sugar-rich fruits (dates) and cultivated by humans since

4,000 B.C., is an economically important crop in the Middle

East, Northern Africa, and increasingly other places where

climates are suitable. Despite a long history of human culti-

vation, the understanding of P. dactylifera genetics and

molecular biology are rather limited, hindered by lack of basic

data in high quality from genomics and transcriptomics. Here

we report a large-scale effort in generating gene models

(assembled expressed sequence tags or ESTs and mapped to a

genome assembly) for P. dactylifera, using the long-read py-

rosequencing platform (Roche/454 GS FLX Titanium) in high

coverage. We built fourteen cDNA libraries from different

P. dactylifera tissues (cultivar Khalas) and acquired 15,778,

993 raw sequencing reads—about one million sequencing

reads per library—and the pooled sequences were assembled

into 67,651 non-redundant contigs and 301,978 singletons. We

annotated 52,725 contigs based on the plant databases and 45

contigs based on functional domains referencing to the Pfam

database. From the annotated contigs, we assigned GO (Gene

Ontology) terms to 36,086 contigs and KEGG pathways to

7,032 contigs. Our comparative analysis showed that 70.6 %

(47,930), 69.4 % (47,089), 68.4 % (46,441), and 69.3 %

(47,048) of the P. dactylifera gene models are shared with rice,

sorghum, Arabidopsis, and grapevine, respectively. We also

assigned our gene models into house-keeping and tissue-spe-

cific genes based on their tissue specificity.
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Background

Date palm, Phoenix dactylifera L., gains a considerable

fame for its fruits (dates), which have an excellent capa-

bility to enrich sugar in mesocarp up to 50 % of the total

weight (Bourgis et al. 2011). P. dactylifera used to play
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important roles in human civilization: its fruits were

taken as staple food, its trunks were used as architectural

materials, and palm trees themselves were and still are used

as ornamental plants. P. dactylifera grows mostly in arid

climates and deserts. It may evolve to have a unique set of

genes and regulatory mechanisms to cope with climates

and develop resistance to abiotic and biotic stresses.

The advancement of the next-generation (next-gen)

sequencing technologies allows us to generate cDNA or

ESTs (expressed sequence tags) in large-scale and a cost-

effective way. Among the three major next-gen sequencing

platforms, the Roche/454 pyrosequencing platform (GS

FLX Titanium) produces long reads (*400 bp) that are

readily assembled into large contigs albeit limited in num-

bers due to higher cost than other platforms. Illumina

HiSeq2000 and Life Technologies SOLiD systems are able

to generate huge numbers of reads per machine run but

shorter read lengths. Both platforms, however, are powerful

for detecting low-abundant transcripts and validating ho-

moploymeric nucleotide tracts that are less abundant but

remain ambiguous in the Roche/454 data. Therefore, a

combined dataset, one part from the longer reads and the

other part from coverage, is of importance for better char-

acterization of transcriptomes; examples are numerous, such

as datasets from Medicago (Benedito et al. 2008), olive

(Alagna et al. 2009), mangroves (Dassanayake et al. 2009),

and chickpea (Hiremath et al. 2011), as well as those from

animals and humans (Hubbard et al. 2005; He et al. 2008).

Armed with the next-gen sequencing tools, we are in a

unique position to significantly improve our understanding of

P. dactylifera genomics and biology. There have been only two

significant reports on P. dactylifera genomic data based on the

next-gen sequencing technologies; one concerns a draft gen-

ome sequence assembly (Al-Dous et al. 2011) and the other is a

comparative analysis between the fruits of oil palm and

P. dactylifera, where mechanisms of carbon partition were

explored in depth (Bourgis et al. 2011). Here we report an in-

depth transcriptomic sequencing effort to build P. dactylifera

gene models based on data from different tissues and at several

developmental stages. We generated 30,854 of annotated gene

models that are treated as putative full-length cDNAs and

compared them to the latest data from other plant species,

including rice (49,066; RGAP7, October 31, 2011) and Ara-

bidopsis thaliana (37,761; TAIR9); the amount of gene models

is comparable for an initial annotation of plant genomes.

Results and discussions

Sequence acquisition and assembly

We used RNA samples from eight tissues (young leaf,

mature leaf, root, fruit, flowers and offshoots from both

male and female trees) for a thorough gene discovery

effort. Since we already made a series of cDNA libraries

from the developing fruits and sequenced them previously

(seven fruiting-stage-specific cDNA libraries; Yin et al.

2012), we made seven additional cDNA libraries from

the seven non-fruit tissues. We generated 7,955,347 raw

sequence reads from the seven libraries, which are equal to

over one million reads per library. Adding these raw reads

from the seven fruit-specific libraries and 7,823,646 reads

from them, we now have data from 14 libraries that contain

15,778,993 raw sequence reads (Table 1). All sequence

data were deposited in SRA (Sequence Read Archive) of

GenBank and the accession numbers for the two groups of

datasets are SRA049307 and SRX096040. The quality of

the data is rather satisfactory, where more than 92 % of the

raw reads are in a range of 300–650 bp in length (Sup-

plementary Fig. S1). Even after the removal of low-quality

data (including reads shorter than 100 bp and adaptor tag

sequences), we still have 14,435,855 (91.4 %) reads for

subsequent sequence assembly procedures.

We designed a specific pipeline for contig assembly

(Supplementary Fig. S2A), which has two components:

read assembly and quality filters. In the first step, we

pooled all reads together and assembled them using the

Roche/454 de novo assembler (Version 2.6) after the

removal of mitochondrial and chloroplast sequences (Yang

et al. 2010). This step yielded 83,240 contigs and 755,503

singletons with an average size of 1,585 and 213 bp,

respectively (Table 1). Although the number of singletons

appear quite larger but they are still a small fraction of the

total reads, merely 5 %.

In the second step, we processed contigs and singletons.

First, we eliminated sequences that are shorter than 150 bp,

which are composed of 545 contigs and 333,128 singletons.

Second, we used BLASTn search against the microbial

databases, and the search identified 1,650 contigs and

18,359 singletons, which are either viral or bacterial ori-

gins. Third, we identified 13,178 contigs as redundant

sequences because they are covered by other larger ones

with high identity (95 %) and significant coverage (90 %),

based on Blast results. Fourth, we further annotated ribo-

somal RNA sequences based on BLASTx search against a

ribosomal RNA database (Pruesse et al. 2007), and 216

contigs and 5,805 singletons have significant hits. Fifth,

all non-redundant and contamination-free singletons are

compared with 67,651 contigs using BLASTn. This

revealed that 96,234 singletons were also completely

covered by our contig collections. Finally, we still have

301,978 singletons left for further annotations. Neverthe-

less, we took the high-coverage contigs as gene models,

which have a length range of 150 to 16,000 bp. The

average and N50 lengths of the gene models are 1,510 and

1,911 bp, respectively (Supplementary Fig. S3).
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Analysis of the non-redundant sequences and gene

models

We predicted ORFs for all gene models using ‘‘getorf’’

(EMBOSS 6.2.0). A total of 67,648 (99.9 %) putative gene

models were predicted to have ORFs, and of the total, we

have 49,284 (72.8 %) gene models with ORFs longer than

100aa (amino acids). Comparing the predicted ORFs for

all gene models to protein-coding data collected from the

Plant UniProt database, we identified 30,854 and 3,047

gene models to have complete and partial CDSs, respec-

tively. We regard the full-length CDSs as full-length gene

models since we also validated them in sillico by mapping

to the P. dactylifera genome assembly (data not shown).

The gene models with complete CDSs showed average GC

contents for 50 untranslated regions (50-UTRs), ORFs, and

30-UTR as 43.4, 48.7, and 42.3 %, respectively (Fig. 1).

We calculated the GC content using a 500-bp window,

because this smaller window is more informative. When

the window size is larger than a typical gene size, differ-

ences between intergenic sequences and genes became

obscure (oryza et al. 2002). We also calculated the codon

usage based on the gene models in comparison with those

of rice and Arabidopsis (Supplementary Table S1).

We also analyzed the repeat contents of the full-length

gene models and found 2,043 simple sequence repeats

(SSR) (repeat length C20 bp) using a perl script MISA

(MIcroSAtellite identification tool; http://pgrc.ipk-gatersle

ben.de/misa/). The most abundant SSRs are di-nucleotides

(47.8 %), followed by tri- (42.1 %), tetra- (6.5 %), penta-

(1.8 %), and hexa- (1.5 %) nucleotide repeats (Supple-

mentary Table S2). We also noticed a strong bias between

Table 1 Summary of sequence

assembling, data processing and

annotation

Raw data Number

Raw reads 15,778,993

Average read length (bp) 352

Assembled reads 14,435,855

Average read length (bp) 345

Assembling results

Before processing/after processing

Contigs 83,240/67,651

Total contig length (bp) 131,955,922/102,128,874

Average contig length (bp) 1,585/1,510

The largest contig length (bp) 16,000/16,000

Contig N50 (bp) 2,042/1,911

GC content of contigs 44,17 %/44.27 %

Singletons 755,503/301,978

Average singleton length (bp) 213/348

Total singleton length (bp) 161,174,728/104,941,945

Annotation

Contigs annotated based on the plant UniProt database 52,090

Contigs annotated based on the NR database 635

Gene models 30,854

Contigs annotated with GO terms 36,086

Contigs annotated with KO identifiers 7,032

Contigs assigned with EC numbers 5,727

Fig. 1 The distribution of GC contents in genomes and CDS (coding

sequences) of date palm, rice, and Arabidopsis. The genomic GC

content was calculated in a 500-bp window in a step size of 500 bp

over concatenated sequences. The GC content of cDNAs was

calculated in a similar way
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coding regions and UTRs; 55.5 % of the tri-nucleotide

repeats occurred in coding regions and 87–98.6 % of di-,

tetra-, and penta-nucleotide repeats were found in 50 and 30

UTRs. Among the non-redundant 67,651 gene models, we

detected a total of 4,178 known transposable elements

(TEs) using tBLASTx search (E value B 10-10) against a

transposable elements database (http://www.girinst.org),

and most of the TEs (62.6 %) are DNA transposons and the

rest are either LTR (long terminal repeat)-retrotransposons

(32 %) or non-LTR-retrotransposons (5 %; Supplementary

Table S3).

Functional annotation of the P. dactylifera gene models

We custom-designed an annotation pipeline for our data

(Supplementary Fig. S2B). First, we aligned all gene

models against the plant UniProt and NR database

using BLASTx (E value B 1 9 10-5) and 52,725 of the

P. dactylifera gene models (77.93 % of the total gene

models) have matches. The fraction of annotated sequences

is higher than those (20 % to 40 %) previously reported for

other de novo eukaryotic transcriptomes (Vera et al. 2008;

Meyer et al. 2009; Haegeman et al. 2011). We provide two

reasonable explanations for the higher annotation rates.

First, the large amount of raw data we acquired allowed us

to assemble longer cDNA sequences than the previous

studies. Second, more plant genome sequencing projects

have been completed so that we can take advantage of

much more and better references. The best-hit species

distribution of Blast matches is shown in Fig. 2. Approx-

imately 27.6 % of the sequences have significant matches

with grape (Vitis vinifera) sequences, followed by those of

rice (Oryza sativa) and ricinus (Ricinus communis). The

latter two species contributed to 23.28 and 9.77 % of the

gene model annotations, respectively.

We searched all unannotated gene models against the

Pfam database (Finn et al. 2010) and found 45 gene models

containing functional domains. Next, we further annotated

the gene models based on Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases

(Moriya et al. 2007), and found that 36,086 (69 %) of the

gene models can be assigned with GO terms and that 7,032

of them can be assigned with KEGG numbers (Supple-

mentary Table S1). The distribution of the ten most

abundant GO terms for the three GO root nodes—biolog-

ical process, molecular functions, and cellular compo-

nents—are listed in Table S4. In biological process,

‘‘primary metabolic process’’ and ‘‘cellular metabolic

process’’ are the two largest subcategories, accounted for

41.2 and 39.9 % of the total, respectively. In molecular

function, ‘‘nucleic acid binding’’ (22.4 %) and ‘‘nucleotide

binding’’ (21.7 %) are the two most abundant subcatego-

ries, whereas ‘‘cell part’’ (39.6 %) and ‘‘intracellular’’

(27.8 %) are the most abundant subcategories in cellular

component.

We also annotated 7,032 gene models with KO number

to BRITE functional hierarchies, and 5,727 of them

were assigned with EC number (Supplementary Table S1).

The BRITE functional mapping revealed the most common

classifications and categorized the gene models into 279

KEGG pathways, including pathways with essential func-

tions for plant development, such as glycolysis/gluconeo-

genesis, citrate cycle (TCA cycle), photosynthesis, starch

and sucrose metabolism, and cell cycle. Since our samples

used in this study include a broad collection of tissues at

multiple developmental stages, we were able to have an

overview on gene expression profiles for basic metabolic

processes during P. dactylifera development. There are

3,721 (52.9 %) gene models categorized into ‘‘metabo-

lism’’, as well as its subcategories, including ‘‘carbohydrate

metabolism’’, ‘‘amino acid metabolism’’, ‘‘energy metab-

olism’’, ‘‘lipid metabolism’’, ‘‘nucleotide metabolism’’ and

‘‘glycan biosynthesis and metabolism’’. In details, we fur-

ther investigated the mapping result of our gene models

against the ‘‘glycolysis/gluconeogenesis’’ pathway (using

the Arabidopsis genome map as a reference) as an example

Fig. 2 A species-based

distribution of blast hits. The

results are sorted according to

the hits in an increasing way
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Fig. 3 The distribution of P. dactylifera gene models (pink) in the glycolysis/gluconeogenesis pathway based on Arabidopsis genes
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(Fig. 3). Our data confirmed every single gene that par-

ticipates in this pathway. The glycolysis/gluconeogenesis

pathway has been recently identified as the most activated

biochemical pathway during cassava storage root devel-

opment, and plays a key role in starch accumulation (Yang

et al. 2011). In another important pathway ‘‘starch and

sucrose metabolism’’ (Fig. 4), our gene models cover

almost all related genes with only three exceptions. In

addition, all the key enzymes for starch and sucrose

metabolism were detected, such as sucrose synthase

(E2.4.1.13) (Winter and Huber 2000; Coleman et al. 2006),

sucrose-phosphate synthase (Winter and Huber 2000),

a-amylase (E3.2.1.1), b-amylase(E3.2.1.2) and starch syn-

thase (E2.4.1.21) (Tetlow et al. 2004; Smith et al. 2005).

Therefore, our gene models provide an excellent presen-

tation of genes related to basic metabolic processes during

date palm development. Other than ‘‘metabolism’’, 2,318,

511, and 997 gene models fall into the categories including

‘‘genetic information processing’’, ‘‘environmental infor-

mation processing’’, and ‘‘cellular processes’’ categories,

respectively. The coverage of pathways by the annotated

genes is satisfactory with only sporadic exceptions.

Our effort for the identification of transcription factors

(TFs) resulted in 1,368 putative TF genes from 67,651 gene

models. Although there are more TFs found in other plant

species than P. dactylifera, 2,438 in rice and 2,023 in

Arabidopsis, our result is acceptable for three reasons. The

first reason is that we annotated our gene models based on

homology to other data and certain fraction of the genes

may not have been identified (such as with identities lower

than the threshold). The second reason may be the

incompleteness of our collection since both rice and Ara-

bidopsis are well studied and for much longer periods. The

third reason is the limitation of sampling depth with the

particular sequencing platform we used here. We are of

course in the process to generate much deeper coverage of

the transcriptomes for the following accurate quantitative

analysis.

Among the P. dactylifera TFs, we identified the bHLH

(9.36 %), MYB (6.21 %), C2H2 (5.99 %) families as more

Fig. 4 The distribution of P. dactylifera gene models in starch and

sucrose metabolism pathways of Arabidopsis. The genes involved in

the pathways are color-coded: pink, genes identified in our data; and

green, genes involved in the pathway present in Arabidopsis but

undetectable in our data
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abundant. The top ten P. dactylifera TF families are similar

to those of rice and Arabidopsis (Supplementary Table S5).

We noticed that the C3H family has slightly higher per-

centage in P. dactylifera (5.26 %) as compared to both

Arabidopsis (2.77 %) and japonica rice (3.36 %), whereas

the representation of the NAC family is relatively lower

(4.75 %) than in Arabidopsis (6.67 %) and japonica rice

(7.63 %). Among the less frequently found TF families, the

CO-like, Trihelix, ARR-B, and Dof families showed rela-

tively higher abundance in P. dactylifera when compared

to the other two well-studied plants. Moreover, we further

investigated tissue-specificity of the expressed TF families

(Supplementary Table S6) and noticed that there is an

obvious representation bias between male and female

flowers. A total of 91 specifically expressed TF genes in

male flower appear clustered into 13 TF families with very

high coverage. Of the 91 TFs, the WRKY group (21.9 %)

is most abundant, followed by the FAR1 (10.9 %) and ERF

(10.9 %) families. Meanwhile, there are only 18 TF genes

found in female flowers, which are clustered into 13 TF

families with very low coverage (Supplementary Table

S6). According to the new data on the WRKY family, often

acting as repressors as well as activators, members of this

gene family play significant roles in both repression and

de-repression of important plant processes (Rushton et al.

2010). We assume that the specifically high-level expres-

sion of WRKY genes in male flower may also repress or

activate certain biological processes in P. dactylifera.

The distribution of TFs in fruits is different. There are

267, 107, and 116 TFs found at different fruiting stages,

fruit-I, fruit-II, and fruit-III, respectively, which are clus-

tered into 38, 35, and 32 TFs families. Only 27 TF families

are shared among the three developmental stages. Although

the amount of TF families present in the three develop-

mental stages are not large, more highly-expressed TF

genes were found in the stage of fruit-I. In addition, some

TF genes were only found in fruit-I and fruit-II; for

example, HD-ZIP family genes are highly expressed in

fruit-I and fruit-II, but not in fruit-III. And HD-ZIP is one

of the TF family unique to plants and is classified into four

subfamilies, according to a set of distinctive features (Ariel

et al. 2007). The exact functions of these HD-ZIP TFs

remain to be revealed in P. dactylifera.

Because the sequencing depth for male and female

offshoots is different, the distribution of the identified TFs

in the two offshoots appeared differently at two levels.

First, among 210 TF genes identified in the female off-

shoot, only 42 of them were found in the male counterpart.

These 210 TF genes are cluster into 38 TF families and the

most abundant groups are WRKY (10.4 %) and ERF

(10.4 %), followed by FAR1 (8 %) and C3H (6 %). Sec-

ond, the distribution of TF families in female offshoot is

similar to what in male flower, except the percentage of the

WRKY group in female offshoot is less than that in male

flower. Although offshoot planting is a traditional method

for data palm propagation and the offshoots developed

from the trunk of the mother plant produced fruits with the

same quality as the mother palm (FAO), seed-based

propagation is still viable if plant sex is identified at an

early stage. Our dataset, coupled with high-coverage

expression studies, is valuable for future research

to understand P. dactylifera flower development and sex

determination.

Homology analysis

Base on the best-hit definition (the best-hits sequence is

orthologous), we compared the P. dactylifera sequences

with the annotated genes from two monocot plants,

O. sativa (japonica) (Hsing 2005; Ouyang et al. 2007) and

S. bicolor (Paterson et al. 2009), and two dicot plants,

A. thaliana (Arabidopsis and Initiative 2000) and

V. vinifera (Jaillon et al. 2007). Using BLASTx (E value B

1 9 0-10), we matched 70.6 % (47,930) and 69.4 %

(47,089) P. dactylifera gene models to their orthologs in

the monocots, rice and sorghum, respectively, as well as

68.4 % (46,441) and 69.3 % (47,048) to the dicots. A total

of 49,554 gene models (73.0 %) showed orthology with at

least one in all four datasets, 44,234 (65.2 %) in all four

datasets, and 18,313 (27.0 %) with no homology to the

annotated genes (Fig. 5). We further evaluated the

no-match genes by mapping them to our P. dactylifera

genome assembly (unpublished data) and found that almost

Fig. 5 Homology analysis of P. dactylifera gene models in compar-

ison with those of rice, sorghum, Arabidopsis, and grapevine. The

49,554 date palm gene models were aligned against annotated genes

or gene models of each species based on BlastX, and the overlapping

matches between species were displayed in Venn diagram. Two

overlaps (108 overlapping hits between grape and sorghum, 121

overlapping hits between rice and Arabidopsis) are not represented in

the diagram
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all gene models (62,549) were aligned to the genome, using

BLAT (identity C95 % and coverage C90 %) (Kent 2002).

Among the gene models matched to the reference genome,

14,880 do not match to any other selected plant genes, and

these gene models may represent unique genes to date

palm, given the concern that homology-based analysis is

always limited by parameters chosen for the analysis.

We also downloaded three publicly available related

datasets for our comparative analysis. The first one is the

P. dactylifera genes (the latest version from Weill Cornell

Medical Collage in Qatar; http://qatar-weill.cornell.edu/

research/datepalmGenome/index.html) that were predicted

based on gene prediction software from genome sequences.

The second one is cDNA contigs from oil palm (Elaeis

guineensis) fruits and leaves, and the third cDNA contigs

are from P. dactylifera fruits. The last two datasets were

produced by an international team from France, the US,

Tunisia, and Cameroon (Bourgis et al. 2011). We com-

pared our P. dactylifera gene models to these datasets

using BLASTn (E value B 1 9 10-10; Supplementary

Table S12), and 49,622, 50,834, 48,329, and 26,440 gene

models matched with the predicted P. dactylifera genes

from the Qatar team, as well as the P. dactylifera fruit,

E. guineensis fruit and leaf cDNAs from the French-led

team, respectively. These datasets are of importance for us

to confirm our gene models although the matching rates are

variable depending upon their sampling coverage. Fur-

thermore, our data appear to have more genes than the

other datasets. We not only have samples taken from var-

ious tissues and developmental stages but also collected a

much larger amount of raw reads for the assembly. Com-

pared with the predicted genes by the Qatar team, we have

18,029 more gene models, and 11,379 (63.1 %) of them are

not yet annotated based on the known plant gene sets,

which may represent novel or diversified genes in

P. dactylifera. We summarized the detailed results from

our comparative analysis at gene level in Table S13.

Identification of ubiquitously expressed genes

For gene expression analysis, we used all the 67,651 gene

models as the reference and mapped all raw reads from

each library (454 Newbler GS Reference Mapper Version

2.6) with default parameters (Supplementary Table S7).

We calculated the mean coverage to represent the expres-

sion level for each gene model and this method corrects

biases in gene size and normalizes for the sequencing depth

of each library (see Materials and Methods for details).

Transcriptionally active cDNAs are identified as those

having a mean coverage value greater than zero in at least

one tissue or developmental stage. Using this criterion, we

identified 56,112 (83 % of the total gene models) trans-

criptionally activated genes (Supplementary Table S8).

From these transcriptionally-active gene models, we

identified 3,316 genes that are ubiquitously expressed in all

tissues and at all developmental stages examined. When we

ranked the shared gene models according to their expres-

sion levels, the top 100 genes from each tissue or devel-

opmental stage are pooled together to yield 382 genes as

highly-expressed (Supplementary Table S9). Among them,

we have ubiquitin and glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH), the most frequently used genes as

references for signal normalization in the literature (Ceol

et al. 2004). This dataset is useful for transcriptional studies

as controls or benchmarks. We understand that such an

analysis may not allow thorough characterization of lowly-

expressed transcripts so that the dataset most likely repre-

sents a lower bound of the ubiquitously expressed genes of

date palm.

Identification and comparative analysis of tissue-

specific genes

Based on the expression value of each gene, we conducted

a Z-score analysis to obtain insight into gene expression

patterns (Severin et al. 2010; Schmid et al. 2005). The

numerical value of Z-score stands for the standard devia-

tion of expression levels of a given gene in a specific tissue

based on the average expression level in all tissues. The

Z-score analysis indicated that fruits are distinguished from

other tissues by a three-peak expression pattern (Fig. 6).

Transcriptions in the non-fruit tissues are less similar than

those in the of fruit developmental stages, resulting in a

smaller distribution of Z-scores and a small fraction of the

gene models with Z-score values close to the positive

extreme between 2.4 and 2.8 suggests a low specificity for

the tissue. Setting 2.4 as a cut off value for the Z-score, we

identified tissue-specific genes for each tissue or develop-

mental stage. The number of tissue-specific genes in each

tissue ranges from 58 in mature leaf to 2,099 in fruit-I.

Further investigation of the tissue-specific genes revealed

that most of them are uniquely-expressed in the corre-

sponding tissues but are undetectable in others (Fig. 6).

Furthermore, when analyzing the tissue-specific genes

identified in each tissue based on their GO distribution

(Supplementary Fig. S4), we found that similar tissues

share a similar GO function distribution. In addition, many

of these tissue-specific genes were annotated as function-

ally unknown; they are either newly evolved or fast-

evolving paralogs. Comparing with other tissues, the fruit-I

stage yielded the greatest number of tissue-specific genes,

partly attributable to the high diversity of genes needed for

fast cell division and morphological changes during this

special phase of fruit development (Al-Farsi and Lee

2008; Al-Shahib and Marshall 2003). Overall, these tissue-

specific genes provide important clues for future in-depth
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Fig. 6 Relative gene

expression levels (Z score) in

different tissues. a Relative

expression levels in mature leaf,

young leaf, and root; b female

and male offshoot; c female and

male flowers, and d fruit at

different developmental stages

(I, II, and III)

Fig. 7 Regulatory changes in the pathway of flavonoid biosynthesis

between female and male flowers. Colored rectangles correspond to

genes involved in the pathway. Genes up-regulated in female flowers

are highlighted in red over genes (in jade-green) detected in the

pathway present in Arabidopsis but undetectable in our data due to

lower sampling depth in our data
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research on date palm flowering, fruiting, and devel-

opment.

We estimated transcriptomic similarity between differ-

ent tissues and developmental stages using Pearson

correlation, taking all genes identified as transcriptionally

activated into account. The resulted heatmap suggests three

basic grouping of transcriptomes (Supplementary Fig. S5).

The first group is comprised of leaf, offshoot, and root, and

all of which are vegetative growing organs and rather

limited in morphological development. The second group

contains flowers only but both female and male flowers,

which represents the development of reproductive organs

and processes. Fruits formed a group by itself with an

expression profile. In the fruit groups, fruit-II and fruit-III

forms a clade together, which suggests that fruits in these

two stages share a similar gene expression profile as

compared to fruit-I. This clustering result is consistent with

the developmental characteristics of fruits in a three-stage

fashion. In the first stage, the fruit undergoes a rapid

increase in size and weight (Al-Shahib and Marshall 2003);

however, during the later stages (fruit-II and fruit-III),

fruits mainly accumulate sugar and other components but

have little increase in size and weight. Obviously, the

expression profiles at genome level agree with the devel-

opmental relationship of the tissues. Similar results are also

obtained in similar research of other plant species

(Benedito et al. 2008; Wang et al. 2010).

A detailed gene expression analysis between male

and female flowers

Aside from tissue specific analysis, we sought to explore

gene expression profiles between male and female flowers.

Based on expression values, using DEGseq (Wang et al.

2010), we identified differentially expressed genes (DEGs)

Fig. 9 Up-regulated genes (green) in mature leaves present in the pathway of photosynthesis, and genes participated in the pathway present in

Arabidopsis but undetected in our data (jade-green) are indicated

Fig. 8 Regulatory changes in the pathway of plant hormone signal

transduction between female and male flowers. Colored rectangles

correspond to genes involved in the pathway. Up-regulated genes (red)

in female flowers and those participated in the pathway present in

Arabidopsis but undetected in our data (jade-green) are indicated

b
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between each group of tissues (P B 0.001 as cut-off):

6,720 genes between male and female flowers. We defined

4,494 genes that are up-regulated in female flowers as

compared to male flowers and 2,226 genes that are down-

regulated in female flowers. Furthermore, we investigated

the distribution of these DEGs according to KEGG path-

ways and found 1,038 genes associated with KO identifiers

to have changed their expression level significantly

between female and male flowers. Upon looking into all

up-regulated DEG-related pathways in the female flower,

we highlight here the flavonoid biosynthesis pathway

(Fig. 7) since all key enzymes of this pathway were dis-

covered in our data. Flavonoids are functionally related to

the protection of UV irradiation (Schmelzer et al. 1988;

van Tunen et al. 1988), and up-regulation is consistent with

the biology of P. dactylifera that stands in the desert sun,

enduring the strongest attacks from UV light. In addition,

flavonoids play a crucial role in sexual reproduction in

plants (Koes et al. 1990; van Tunen et al. 1990). The plant

hormone signal transduction pathway is another one that

changes significantly between female and male flowers

(Fig. 8). Similar to the flavonoid biosynthesis pathway,

most up-regulated DEGs in female flowers participated in

this pathway. Transcription factor gene families are also

interesting; there are many up-regulated DEGs in female

flowers but not in male flowers, suggesting further devel-

opmental activities in the female flower such as fruiting.

A highly-expressed TF gene, WRKY, is suspected to serve

as a repressor in the male flower metabolic pathways.

We have also looked into the three early auxin-responsive

genes that exhibit three distinct expression patterns in female

and male flowers. The GH3 and SAUR genes are up-regu-

lated in female and male flowers, respectively, whereas the

expression level of AUX genes are up-regulated in female

flowers. The phytohormone auxin exerts a pleiotropic effect

on various aspects of plant growth and development,

including cell elongation, cell division, differentiation, root

initiation, apical dominance, and tropic responses. Auxin

mediates these effects at the molecular level by altering the

expression of numerous genes. The early auxin-responsive

genes, which are specifically induced within minutes of

auxin application, have been broadly grouped into three

major classes: auxin/indoleacetic acid (Aux/IAA), GH3, and

small auxin-up RNA (SAUR) gene families.

Fig. 10 Up-regulated genes (yellow) in young leaves present in pathway of protein processing in endoplasmic reticulum, and genes participated

in the pathway present in Arabidopsis but undetected in our data (jade-green) are indicated
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Gene expression profiles of root, young and mature

leaves

In mature leaves, we identified 3,963 DEGs; 1,050 of them

are up-regulated in mature leaves and 2,913 are down-regu-

lated as compared to young leaves. A total of 473 genes

associated with KO identifiers were found to change their

expression level significantly between young and mature

leaves. In the photosynthesis pathway (Fig. 9), all genes of

the four multi-subunit membrane-protein complexes were

found in our gene models: photosystem I, photosystem II, the

cytochrome b6/f complex, and F-ATPase (Nelson and

Yocum 2006), and as expected, in mature leaves the key

metabolic pathway is photosynthesis. Another highlighted

pathway is protein processing in endoplasmic reticulum. The

endoplasmic reticulum is a subcellular organelle where pro-

teins are folded with the help of luminal chaperones, and in

this pathway, a series of genes were identified as up-regulated

genes in young leaves (Fig. 10). The DEGs present in protein

processing in endoplasmic reticulum are involved in earlier

developmental stages of leaves and related to metabolic

actions focusing on molecular synthesis instead of photo-

synthesis. According to the heatmap (Supplementary

Fig. S5), young and mature leaves and root are clustered into

one group, and we further investigated the DEGs between root

and the leaves, the result showed that 3,589 are up-regulated

in root as compared with leaves among 6,932 DEGs.

Conclusions

Our study provides both P. dactylifera gene models in a large

scale and expression profiles that cover a wide range of tissues

and their developmental stages. This effort paves a way for

future molecular and genetic studies of P. dactylifera, such as

flower development, sex determination, and fruiting. The first

glance of gene expression profiles allowed us to identify TF

families that are specifically expressed at higher levels in male

flower than in female flower. The dataset offers a valuable

resource for future experimental work aiming at unraveling

genetic regulatory networks that govern organ development

and differentiation in P. dactylifera. Our future work includes

generating a high-coverage transcriptomic dataset for all tis-

sues and developmental stages and in-depth functional analysis

and validation of genes in each P. dactylifera transcriptome.

Materials and methods

Plant materials

We collect eight tissues from male and female trees in

different developmental stages of cultivar Khalas: root,

offshoots from male and female trees, male and female

flowers, young leaf (yellow), mature leaf (green), and fruit.

The offshoots from male and female trees are the vegetative

tissues arisen from the base of the mother palm. We col-

lected the offshoots that are 13-month old and have a base

diameter around 15 cm from healthy and pest-free mother

palms. We subsequently dissected the offshoots to reveal the

internal tissue. We collected fruit samples at seven devel-

opmental stages (Yin et al. 2012), constructed libraries, and

acquired sequences to a high coverage. We subsequently

combined the data into three basic groups for annotation and

following-up analysis. We combined the data for the fol-

lowing three reasons. First, the young dates at F3 are also

under-developed and shows an apple-green color; it is

identical to kimri-II stage as described in the FAO descrip-

tion for date palm fruiting. Therefore, we clustered data from

F3 with F1 and F2 as a new group fruitI. The larger dates in

F4 are similar looking to those of F5 that are starch-accu-

mulating and start to develop ripening color so that we

pooled the sequences to become fruitII. At F6 and F7, the

date colors become yellow and brown, respectively, but their

sizes remain the same. The dates of both stages are actively

accumulating monosaccharides so we merged the data into

fruitIII. Second, our previous study identified a set of DEG

genes which are characteristic of the fruiting stages and

supports our new grouping scheme. Third, our current

analysis is not to define DGEs for each tissues or develop-

mental stages but to characterize gene models for future in-

depth study of date palm gene expression. All samples were

harvested from Al-Kharj, Saudi Arabia (24�0805400N,

47�1801800E). After thorough washing with distilled water,

the samples were immediately frozen in liquid nitrogen and

transported to the laboratory. The samples were stored at

-80 �C until use.

RNA extraction

Total RNA was extracted from 5-g tissue sample that was

ground in liquid N2 according to a reported method

(Bourgis et al. 2011). 20-ml preheated extraction buffer

(65 �C) was quickly added to suspend the RNA and the

mix was extracted twice with an equal volume of chloro-

form: isoamyl alcohol (24:1) and precipitated with 1/4

volume of 10 M LiCl and two volumes of ethanol over-

night at 4 �C. The RNA was harvested by using centrifu-

gation (13,000 rpm for 20 min) and dissolved in 500ul of

SSTE buffer (10 mM Tris–HCl, pH 8.0, 1 mM EDTA, 1 M

NaCl, 0.5 % (w/v) SDS). Another extract was performed

with equal volume of chloroform: isoamyl alcohol (24:1)

and the RNA was finally precipitated with two volumes of

ethanol after treated with DNase I to digest DNA. The

quality and purity of RNA were checked by using an

Agilent 2100 Bioanalyzer (Agilent).
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Construction of near full-length cDNA library

Messenger RNA was extracted from total RNA based on a

Qiagen Oligotex kit. We used at least 200-ng high-quality

mRNA for each library construction. The RNA was frac-

tioned by incubating at 70 �C in fragmentation buffer to

yield a size range of 450 to 1,200 bp, and the resultant

RNA was checked on an Agilent RNA 6000 Pico Chip

(Agilent). We used a Rapid cDNA Library kits (Roche) for

library construction. The library was heated at 95 �C for

2 min and chilled on ice immediately before emPCR.

Sequencing was performed on a Roche/454 Genome

Sequencer FLX Titanium Instrument by following its

standard protocols.

Sequence assembly and processing

After basic trimming for short or low quality reads, we

pooled sequencing reads together for assembly, using 454

GS de novo Assembler (version 2.6) and parameters

‘‘-cdna -large -force -info -tr -ud -m -cpu -vt -vs’’. Mito-

chondrial and chloroplast sequences from date palm were

used as reference sequences to ‘‘-vt’’.

Contamination removal and redundancy trimming

involved five steps and all sequence output from the

assembly was treated as input for the processing pipeline

(Supplementary Fig. S2A). First, a perl script ‘‘seqclean’’

removes the sequences shorter than 150 bp. Second, con-

taminated sequences from microbes were identified by

using BlastN against databases of microbial genomes

downloaded from NCBI (ftp://ftp.ncbi.nih.gov/refseq/release/

microbial/). The cutoff is set to E value B 1 9 10-10,

identity C80, and alignment length C90 %. Third, redun-

dant contigs were trimmed by using a self-cross BlastN

searching with a different cutoff (E value B 1 9 10-10,

identity C95 %, covered length C90 %). Fourth, compared

with ribosomal RNA (rRNA) databases (http://www.

girinst.org), any contigs and singletons meeting a specific

cutoff (E value B 1 9 10-10, identity C80 and covered

length of query C80 %) were removed. Last, the remaining

singletons were compared to unique contigs and those

matching with contigs but smaller than their matched

contigs were eliminated from further analysis.

Analysis of non-redundant sequences

To select CDS from cDNA contigs, we first aligned all

predicted CDS to the best Blast-hit proteins that were col-

lected based on the blastX result of cDNA contigs versus

UniProt proteins. We identify CDS according to following

criteria: (1) homology with a known protein, (2) E value less

than or equal to 1 9 10-5, (3) identity equal or larger than

30 %, (4) sequence length equal or larger than 30 amino

acids, and (5) scoring as the highest among predicted CDS

from all contigs. All putative transcription factor genes were

examined through a BlastX search (E value B 1 9 10-5)

against Arabidopsis and rice transcription factor genes

annotated in PlantTFDB (Zhang et al. 2011).

Functional annotation

All date palm gene models were annotated according to the

BlastX results against Plant UniProt and NR databases with

an E value cutoff of 1 9 10-5. The unmatched gene

models were further searched against Pfam database by

using a local iprscan package. For a sequence with multiple

Blast hits, we chose the one with the highest score as the

best hit and annotated based on the gene. Gene ontology

terms were retrieved for all protein identifiers from anno-

tated sequences (ftp.geneontology.org/go/gene-associa-

tions/gene_association.goa_uniprot.gz). Furthermore, for

all date palm sequences we used the KEGG Automatic

Annotation Server (http://www.genome.jp/kaas-bin/kaas_

main?modeest_b) to identify KEGG orthologs with default

parameters. We compared our gene models with annotated

genes from two monocot plants (O. sativa japonica and

S. bicolor) and two dicot plants (A. thaliana and

V. vinifera) using BlastX (1 9 10-10). We also compared

our data to those released by Weill Cornell Medical Col-

lege in Qatar (http://qatar-weill.cornell.edu/research/date

palmGenome/index.html).

Gene expression analysis

We first mapped raw reads from each tissue (or stage) back

to our gene models using 454 Newbler GS Reference

Mapper (Version 2.6) with default parameters. Second, we

calculated the mean coverage of a single gene models in

each tissue (or stage) following the formula: Cm ¼ 109�n

N �L,

where Cm is the mean coverage of the gene models, n is the

mapped bases of the gene models in a single library, N is

the total mapped bases of the corresponding library, and L

is the length of the gene models. This method corrects

biases in gene size and normalizes for sequencing depth of

each library. Third, setting Cm[0 as the cut-off value, we

identified transcriptionally activated genes in each tissue or

stage and obtained gene expression profiles for each tissue

or developmental stage.

Tissue-specificity analysis for each tissue

Based on gene expression profile for each tissue, we

quantitated transcriptional activities for each gene and each

tissue. We set 0.001 as the cut-off P value and Benjamini

correction as the control of false discovery rate. To identify
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tissue-specific genes, we calculated Z score for each gene

in every single tissue based on expression value calculated

above Cm (value). The Cm value was log2-transformed and

a Z score value was calculated according to Z ¼ x�l
r . In the

formulax , is the log2-transformed Cm value of a gene in a

special tissue, l is the mean of log2-transformed Cm values

in all tissues, and r is the standard deviation of log2 –

transformed Cm values in all tissues.
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