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1 Introduction

In this paper we investigate ergodic properties for a class of infinite measure preserving
extensions of area-preserving flows on compact surfaces of higher genus. Let (S, )
be a compact connected oriented symplectic smooth surface of genus g > 2 and con-
sider a symplectic flow (¢;);cr on S given by the vector field X. Let f : § — R
be a ¢>*¢-function. Following [8] we will consider a system of coupled differential
equations on S x R of the form

& =X (),
Q= f),

for (x, y) € S x R. The flow given by these equations is a skew-product extension of
(¢¢):er Which we will denote by (cb,f),eR.

We consider locally Hamiltonian flows (¢;);cr, which are a natural class of sym-
plectic flows (in dimension 2 locally Hamiltonian and symplectic are both equivalent
to area preserving) introduced and studied by S.P. Novikov and his school (see for
example [29,50] and also [3] for the toral case) and are also known as flows given by
a multivalued Hamiltonian. We now recall their definition.
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Ergodic properties of infinite extensions of area-preserving flows 1291

Let n be a closed 1-form on S. Denote by 7 § — § the universal cover of §
and by 7 the pullback of n by 7 : S > s. Since . Si is simply connected and 7 is
also a closed form, there exists a smooth function H: S — R, called a multivalued
Hamiltonian, such that d H = 7. We will assume that H is a Morse function. Denote
by X : § — TS the smooth vector field determined by

n=ixw=ow(lX, ).

Let (¢:),er stand for the smooth flow on S associated to the vector field X. Since
dn = 0, the flow (¢;);er preserves the symplectic form w and hence it preserves the
associated measure v obtained by integrating the form w. Moreover, it is by construc-
tion locally Hamiltonian and it has finitely many fixed points, which coincide with
the image of the critical points set of the multivalued Hamiltonian H by the map 7.
Denote by X the set of fixed points. Since we assume that H is a Morse function, the
points in X are either centers or non-degenerate saddles. We will assume throughout
that the flow has no saddle connections, i.e. that there are no saddles which belong to
the closure of the same separatrix of the flow. This assumption implies that the flow
on S\ X is minimal (see [25]) and that all points in X are saddles.

Given a €% -function f : § — R, the extension (tp,f )rer of the locally Hamilto-
nian flow (¢;);cr has the following form

o/ (x,y) = | ¢rx, Y+/f(¢sx)d5 ,

ie. (<15tf ):eRr 1S a skew product flow over the base flow (¢;);cr on S. In particular, it
follows that (q§tf ):eR preserves the infinite product measure v x Leb, where v is the
invariant measure for (¢;);cr and Leb here is the Lebesgue measure on R.

A basic question in ergodic theory is the description of ergodic components. Let us
recall that a flow (@;),cr preserving a measure p (finite or infinite) is ergodic if for
any measurable set A which is invariant, i.e. such that u(AA®P;A) =0 forall 1 € R,
either w(A) = 0 or u(A°) = 0 where A€ denotes the complement. The problem of
ergodicity for locally Hamiltonian flows on compact surfaces is well understood.
A typical locally Hamiltonian flow (¢;);cr on S with no saddle connection is
(uniquely) ergodic, by a celebrated theorem by Masur and Veech [28,43]. More-
over, mixing properties of locally Hamiltonian flows have been investigated in
[22,23,34,38-40]. On the other hand, very little is understood in the case of non-
compact extensions with the exception of the special case of g = 1 (see [8,10]) and
the case where f vanishes on the set of fixed points of the flow (¢;);cRr (see [5,11,26]).

In the setting of extensions, a property completely opposite to ergodicity is reduc-
ibility. Let us note that if f = 0, the phase space S x R for the corresponding
trivial extension given by @?(x, y) = (¢x,y) is foliated in invariant sets of the
form S x {y}, y € R. In this sense, the dynamics is reduced to the dynamics of
the surface flow (¢;);cr. We say that (<D,f )teR 18 (topologically) reducible if it is
isomorphic to (<1>t0)te]R and the isomorphism G : § x R — S x R is of the form
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1292 K. Fraczek, C. Ulcigrai

G(x,y) = (x,y + G(x)), where G : § — R is continuous (and automatically its
inverse G~ (x, y) = (x, y — G(x)) is also continuous). In this case, the phase space is
again foliated into invariant sets for (@,f )ter of the form {(x, y+G(x)), x € S}, y €
RR. On each leaf the action of (@tf )reR 18 conjugated to (¢;),;cr on S.

We will consider extensions of a special class of ergodic flows (¢;);cr on surfaces
of genus g > 2. For these extensions, we will completely describe ergodic behavior
and prove a dichotomy between ergodicity and reducibility.

Let us define the special class of locally Hamiltonian flows (¢;);cr. Consider the
foliation .% determined by orbits of the locally Hamiltonian flow (¢;);cr on S. The
foliation .7 is a singular foliation with simple saddles at the set 3. It comes equipped
with a transverse measure v &, i.e. a measure on arcs y transverse to the flow, given
byvz(y) = f n. The pair (F, v.#) is a measured foliation in the sense of Thurston
(see [7,37]). We say that (¢;);cRr is of periodic type if there exists a diffeomorphism
¥ : § — S which fixes the foliation .% and rescales the transverse measure, i.e. there
exists p < lsuchthat ¥ (vg) = pvg (Vg (W oy) = pvz(y) for all transverse arcs
y). For example, ¥ could be a pseudo-Anosov diffeomorphism such that the stable
foliation for ¥ is the measured foliation (%, v.#). Remark that flows of periodic type
have no saddle connections. The diffeomorphism ¥ induces a linear action ¥, on the
homology H (S, R). We say that a locally Hamiltonian flow (¢;);cR is of hyperbolic
periodic type if it is of periodic type and additionally ¥, : Hi(S,R) — H;(S,R)
is hyperbolic, i.e. all eigenvalues have absolute value different from one. Explicit
examples of locally Hamiltonian flow of hyperbolic periodic type can be constructed
following §7 in [5].

We can now state our main result. For any 0 < ¢ < 1 denote by €>1€(S) the
Holder space of functions on S having continuous derivatives up to order 2 and such
that the second partial derivatives are Holder continuous with exponent €.

Theorem 1.1 Let (¢;);cRr be a locally Hamiltionian flow of hyperbolic periodic type
on a compact surface S of genus g > 2. There exists a closed (¢;);er-invariant sub-
space K C €*1€(S) with codimension g in €>¢(S), where g is the genus of S, such
that if f € K we have the following dichotomy:

- Ifzze): | f (2)] # O then the extension (<15,f)t€R is ergodic;
- Iszez | f (2)| = O then the extension (‘sz)zeR is reducible.

Moreover, for every f € €*€(S) we can write f = fx + fx where fx € K and
fx vanishes on T and belongs to a g dimensional subspace of €*7<(S, L) = {f €

CH(S), Dies 1 /()] = 0).

Thus, in the setting of flows of periodic type there is an infinite dimensional subspace
of functions f € €>7¢(S) on which we have a full understanding of ergodic behavior
of (cb,f )rer and no behavior other than ergodicity or reducibility can arise. We do not
have any results about ergodicity when f ¢ K. The space K will be defined as the
kernel of finitely many invariant €’>*€(S)-distributions. A similar space arises also
in the works of Forni [11,12], where it is shown that in the context of area-preserv-
ing flows on surfaces there are finitely many distributional obstructions to solve the
cohomological equation.
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Ergodic properties of infinite extensions of area-preserving flows 1293

1.1 Skew products over interval exchange transformations

A standard technique to study a flow on a surface is to choose a transversal arc y on the
surface and consider the Poincaré first return map on the transversal. When the flow
is area-preserving, this map, in suitably chosen coordinates, is an interval exchange
transformation. The original flow (¢;),cr can be represented as a special flow over
the interval exchange transformation (see Definition 1.2 below) and the study of the
ergodic properties of the surface flow are then reduced to the study of the ergodic
properties of the special flow. Similarly, choosing a transversal surface of the form
y x R one gets a two dimensional section of S x R. In this case the Poincaré map

of the extension (dﬁ,f )reR, in suitable coordinates, is a skew product automorphism
over an interval exchange transformation. The main Theorem 1.1 will follow from a
result about ergodicity for skew products with logarithmic singularities over interval
exchange transformations (Theorem 1.2). In this section we recall basic definitions
and formulate the main result in the setting of skew products. The relation with the
main Theorem 1.1 is explained in Sect. 1.2 (see Theorem 1.3).

Interval exchange transformations (IETs) are a generalization of rotations, well
studied both as simple examples of dynamical systems and in connection with flows
on surfaces and Teichmiiller dynamics (e.g. see for an overview [45,46,48,51]). To
define an IET we adopt the notation from [46] introduced in [26]. Let A be a d-element
alphabet and let 7 = (79, 7r1) be a pair of bijections 7, : A — {1, ...,d}fore =0, 1.
Let us consider A = (Ag)gea € Rf, where R = (0, +00). Set [A| = ZaeA Ao and
I =10, |x]) and

Iy = [ly, ry), Where Iy

Z Ag, Fg = 2 AB.

7o (B) <mo(a) 7o (B) <mo ()
L= 7)), wherell, = > g 1= > A
T1(B)<mi(@) 1 (B)<mi ()

The interval exchange transformation T = T ;) given by the data (s, A) is the ori-
entation preserving piecewise isometry T(; 3) : [0, |A]) — [0, |A]) which, for each
o € A, maps the interval I, isometrically onto the interval I,. Clearly T preserves
the Lebesgue measure on /. If d = 2, the IET is a rotation.

Each measurable function ¢ : I — R determines a cocycle ¢'*) for T by the
formula

P(xX) + @(Tx) + -+ o(T" 1x) ifn>0
p™Wx) =10 ifn=0 (LD
—(@(T"x) + (T"H'x) + -+ (T 'x)) ifn <0.

The function ¢ will be called a cocycle, as well. We also call 9™ the nth Birkhoff sum
of ¢ over T. The skew product associated to the cocycleisthemap Ty, : I xR — I xR

Ty(x,y) = (Tx,y + ¢(x)).
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1294 K. Fraczek, C. Ulcigrai

Clearly T, preserves the Lebesgue measure on / x R. We will denote by Leb the
Lebesgue measure on /.

While there is large literature about cocycles for rotations (see [2,4,9,24,30-32,
35]), very little is known in general about cocycles for IETs. Another motivation to
study skew products over IETs, in addition to extensions of locally Hamiltonian flows,
comes also from rational billiards on non-compact spaces (for example the Ehrenfest
wind-tree model) and Z?-covers of translation surfaces (see [13]). The cocycles that
arise in this setting are piecewise constant functions with values in Z¢. First results in
these geometric settings were only recently proved in [6,14,15,17,18].

The class of skew products over IETs which we consider in this paper appear as
Poincaré maps of extensions of locally Hamiltonian flows on surfaces of genus g > 1,
which typically yield cocycles which have logarithmic singularities. Ergodicity in a
particular case of extensions of locally Hamiltonian flows which yield cocycles with-
out logarithmic singularities was recently considered by the first author and Conze
in [5]. Cocycles with logarithmic singularities have been previously investigated only
over rotations of the circle (see [8,10]), which correspond to the case g = 1.

Let {-} denotes the fractional part, that is the periodic function of period 1 on R
defined by {x} = xif0 <x < 1.

Definition 1.1 We say that a cocycle ¢ : I — R for an IET T ;) has logarithmic
singularities if there exist constants C;, C, € R, o € A, and g, : I — R absolutely
continuous on each I, with derivative of bounded variation, such that

p(x) =— D CHlog (I11{(x — l)/I11})
acA

=D log (ITH{(re = x)/111}) + g (x). (1.2)
acA

We say that the logarithmic singularities are of geometric type if at least one among

C~, —and C~_, is zero and at least one among C* |, or C* | is zero. We
7y (d) 77 d) 7y (1) ()

denote by LG(Uye 41,y) the space of functions with logarithmic singularities of geo-
metric type.

Cocycles in LG(Uye 4 1y) appear naturally from extensions of locally Hamiltonian
flows,! see Sect. 6. Notice that the coefficients C¥ can have different signs (while if
¢ > 0 is the roof function of a special flow, all constants C ai are non negative).

If f € LG(Ugealy) has the form (1.2) we say that the logarithmic singularities are
symmetric if in addition the constants satisfy

> c,->.ch=o. (1.3)

acA acA

! The condition on constants which are zero, which seems rather technical, is automatically satisfied by
functions which have this geometric origin. This condition is used in the proof of ergodicity (see Lemma 3.1
and Lemma 5.5).
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We will denote by LSG (L ¢4 1) the subspace of elements of LG (Uy 4 1) which have
logarithmic symmetric singularities. The definition (1.3) of symmetry appears often
in the literature, for example in [22,34,40]. In this paper we need a more restrictive
notion of symmetry: we give in Sect. 2.3 the definition of strong symmetric logarithmic
singularities (see Definition 2.4 in Sect. 2.3.1) and we denote by LSSG(Lye 4 ly) C
LSG(Ugenly) the corresponding space of functions with strong symmetric logarith-
mic singularities of geometric type. Even if the notion of strong symmetric singularities
is more restrictive than (1.3), it is automatically satisfied for functions which arise from
extensions of locally Hamiltonian flows (see Sect. 6.2).

We will restrict our attention to interval exchange transformation of periodic type
(see [36]), which are analogous to rotation whose rotation number is a quadratic irratio-
nal (or equivalently, has periodic continued fraction expansion). The precise definition
(also of hyperbolic periodic type) will be given in Sect. 2.2 (Definitions 2.1 and 2.2).
The class of hyperbolic periodic type IETs arises as Poincaré maps of area-preserving
flows (¢;);cr of hyperbolic periodic type.

Our main result in the context of skew products over IETs is the following.

Theorem 1.2 Let T be an interval exchange transformation of hyperbolic periodic
type. For every cocycle ¢ for T with ¢ € LSSG(Uyely) suchthat £ (@) # 0(i.e. with
at least one logarithmic singularity) there exists a correction function y, piecewise
constant on each 1y, such that the skew product Ty is ergodic.

Let us remark that the correction x belongs to a finite dimensional space and cocycles
for which x = 0 are the natural counterpart, at the level of IETs, of the subspace K
in Theorem 1.1. A similar correction procedure was introduced in [26] to solve the
cohomological equation for IETs.

1.2 Methods and outline

Let us first recall the definition of special flow and explain how Theorem 1.1 is related
to Theorem 1.2.

Definition 1.2 The special flow 7T'* build over the base transformation 7' : (X, u) —
(X, n) and under theroof 7 : X — R is the quotient of the unit speed flow v; (x, y) =
(x, y+1) on X x R by the equivalence relation (x, y+ 7™ (x)) ~ (T"(x), y), n € Z.

Theorem 1.3 Let f : S — R be a € -function and (¢;),cr be a locally Hamil-
tonian flow with no saddle connections. The extension (<1’>,f )ieR Is measure-theoreti-
cally isomorphic to a special flow built over a skew product T, for an IET' T where
or = gojlp + w% and (p]lc € LSSG(Ugenly) and (p% is absolutely continuous on each
Iy with (¢7)" € LSSG(Uge Ala)-

If additionally we assume that (¢1);cRr is a locally Hamiltonian flow of hyperbolic
periodic type, then we can choose T to be an IET of hyperbolic periodic type and
¢r € LSSG(Ugeala).
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1296 K. Fraczek, C. Ulcigrai

Theorem 1.3 allows to reduce Theorem 1.1 to Theorem 1.2. While the fact that (cpt/ )teR
can be reduced to a skew product 7;,, where ¢ ¢ has logarithmic singularities is rather
known, we need to show that ¢ s has the precise form given in Theorem 1.3.2

In order to prove ergodicity of the skew product in Theorem 1.2, we use the tech-
nique of essential values, which was developed by Schmidt [35] and Conze [4]. We
recall all the definitions that we use in Sect. 2.1. To control essential values, we
investigate the behavior of Birkhoff sums go(”) (defined in (1.1)) of a function ¢ €
LG(Ugealy). As a standard tool to study Birkhoff sums over IETSs, we use Rauzy—
Veech induction, a renormalization operator on the space of IETs first developed by
Rauzy and Veech in [33,43] (see Sect. 2.2). In order to prove ergodicity, we need to
show that the Birkhoff sums are tight and at the same time have enough oscillation
(in a sense which will be made precise in Sect. 5) on a subsequence of partial rigidity
times (ny)ieN for the IET (defined in Sect. 5.1).

It is in order to achieve tightness (see Proposition 5.1) that we need to correct the
function ¢ by a piecewise constant function x (see the statement of Theorem 1.2). The
idea of correction was introduced by Marmi, Moussa and Yoccoz in order to solve
the cohomological equation for IETSs in the breakthrough paper [26]. The correction
operator that we use is closely related to the correction operator used by the first author
and Conze in [5]. The additional difficulty that we have to face to achieve tightness is
the presence of logarithmic singularities. Here the assumption that the singularities are
symmetric is crucial to exploit the cancellation mechanism introduced by the second
author in [40] in order to show that locally Hamiltonian flows are typically not mixing.

On the other hand the presence of logarithmic singularities helps in order to prove
that Birkhoff sums display enough oscillation (see Corollary 5.1 and Proposition 5.2).
Our mechanism to achieve oscillations is similar to the one used by the second author
in [39] to prove that locally Hamiltonian flows are typically weakly mixing, with the
novelty that in this context we cannot exploit, as in [39], that all constants Cojf are
non-negative.

Structure of the paper

Let us outline the structure of the paper. In Sect. 2.1 we summarize the tools from the
theory of essential values that we will use to prove ergodicity. In Sect. 2.2 we recall the
definition of Rauzy—Veech induction and give the definition of IETs of periodic type.
The definition of cocycles with strong symmetric logarithmic singularities appears in
Sect. 2.3, where we also prove basic properties of these cocycles. In Sect. 3 we exploit
Rauzy—Veech induction to define a renormalization operator on cocycles in LSSG. In
Sect. 3.2 we formulate results on the growth of Birkhoff sums based on the work of
the second author in [40]. The correction operator, which is crucial to define the cor-
rection x in Theorem 1.2, is constructed in Sect. 4. In Sect. 5 we formulate and prove
the tightness and oscillation properties needed for ergodicity and prove Theorem 1.2.

2 The reduction to @5 € LSSG(Uge A la) when (1), cR is of periodic type requires the proof that when
the IET is of periodic type, a cocycle as w% in Theorem 1.3, i.e. absolutely continuous on each / and with

derivative ((p%)/ € LSSG(Uye 4 1), is cohomologous to a piecewise linear function (see Proposition 4.1).
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The proof of Theorem 1.1 is given in Sect. 6 and, as already mentioned, exploits the
reduction via Theorem 1.3, which is also proved in Sect. 6 (see also Appendix A).

2 Preliminary material
2.1 Ergodicity of cocycles

We give here a brief overview of the tools needed to prove ergodicity. For further back-
ground material concerning skew products and infinite measure-preserving dynamical
systems we refer the reader to [1] and [35].

Two cocycles ¢, ¥ : X — Rfor T : (X, u) — (X, u) are called cohomologous if
there exists a measurable function g : X — R (called the transfer function) such that
¢ = Y +g—goT.If g and ¥ are cohomologous then the corresponding skew products
T, and T, are measure-theoretically isomorphic via the maps (x, y) = (x, y+g(x)),
where g is a transfer function. A cocycle ¢ : X — R is a coboundary if it is coho-
mologous to the zero cocycle.

Denote by R the one point compactification of the group R. An element r € R is
said to be an essential value of ¢, if for each open neighborhood V, of r in R and an
arbitrary set B € B, (B) > 0, there exists n € Z such that

wBNT"BN{xeX:p™(x) eV} >0. 2.1

The set of essential values of ¢ will be denoted by E (¢). Let E(¢) = D_R NE(¢). Then
E(p) is a closed subgroup of R. We recall below some properties of E(¢) (see [35]).

Proposition 2.1 (see [35]) Suppose that T : (X, n) — (X, n) is an ergodic auto-
morphism. The skew product T, is ergodic if and only if E(¢) = R. The cocycle ¢ is
a coboundary if and only if E(¢) = {0}.

Let (X, d) be a compact metric space. Let 3 stand for the o -algebra of all Borel sets
and let u be a probability Borel measure on X. Forevery B € B with u(B) > 0denote
by p the conditional probability measure, i.e. up(A) = w(A N B)/u(B). Suppose
that 7 : (X, B, u) — (X, B, ) is an ergodic measure-preserving automorphism and
there exist an increasing sequence of natural numbers (g;,) and a sequence of Borel
sets (&},) such that

u(&,) — 6 >0, M(EnAT_IEn) — 0 and sup d(x,T?x) —> 0. (2.2)
xe&,
Let ¢ : X — R be a Borel integrable cocycle for 7. Its mean value || x @ du we will
denote by w(¢). Suppose that ;(¢) = 0 and the sequence (fE'1 109 () |d e (X)) nen
is bounded. As the family of distributions {(¢9")),(11z,) : n € N} is uniformly tight,
by passing to a further subsequence if necessary we can assume that there exists a
probability Borel measure v on R such that
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1298 K. Fraczek, C. Ulcigrai

(@9 (g,) — v

weakly in the set of probability Borel measures on R.

Proposition 2.2 (see [5]) The topological support of the measure v is included in the
group E (@) of essential values of the cocycle .

The following result is a general version of Proposition 12 in [24].

Proposition 2.3 Let ¢ : X — R be a cocycle such that the sequence ( fEn @) (x)|
du()c))nEN is bounded, where (Ey), (gn) and 6 > 0 are as in (2.2). If there exists

0 < ¢ < § such that for all k large enough

lim sup /eznik‘p(%)(x) dux)| <c

n— 00
1>

n

then the skew product T, is ergodic.

Proof Let e : R — T stand for the character e(x) = ¢****. Suppose that ¢ is not
ergodic, so by Proposition 2.1, E(¢) # R. Thus, since E(¢) is a closed subgroup,
E(¢) = rZ for some r € R. By Proposition 2.2, the limit measure v of the sequence
(((p(‘f"))*(ugu)) is concentrated on rZ, and hence v is a discrete measure. It follows
that the measure e,v on T is as well a discrete measure and hence it is a Dirichlet
measure (see [16]). Therefore one has

lim sup /ehiktdv(t) = lim sup /zkd(e*v)(z) = lim sup |e;v (k)| = 1.
k— 00

k—o00 k— 00
2.3)
By assumption, there exists ko such that
lim sup /ez”ik“’(q")()‘) du(x)| < cfork > k.
n—o0 z
It follows that for all k > ko, since ¢ < § and u(=,) — 8, we have
/ezmkt dv(t)| = lim /ezmk‘p(qn)(x) dpg, (x)
n—oo
R Ep
— lim lﬂ /eQ”"k‘ﬂ("")(” du)| < < <1,
=% W(En) |J 5
contrary to (2.3). O
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2.2 1IET of periodic type

In this section we briefly summarize the Rauzy—Veech algorithm and the properties
that we need later and we give the definition of IETs of hyperbolic periodic type.
For further background material concerning interval exchange transformations and
Rauzy—Veech induction we refer the reader to the excellent lecture notes [46—48].

Let T be the IET given by (i, ). Denote by 894 the subset of irreducible pairs, i.e.
such that 7 o n()_l{l,...,k} #{l,...,k} for 1 <k < d. We will always assume
that 7 € 894. The IET T(y ;) is explicitly given by T (x) = x + wq for x € I, where
w = QA and Q is the matrix [Qq gle,ge.4 given by

+1 if 7 (o) > m1(B) and o (@) < 7o(B),
Qop =11 ifm(ax) <m(B) and mo(a) > mo(B),
0  in all other cases.

Note that for every o € A with mo(a) # 1 there exists 8 € A such that mo(8) # d
and [, = rg. It follows that

{ly;ae A mo(a) 1} ={rq : @ € A, mo(a) #d}. (2.4)

Let [ = (0, |{]] and by YA"(,T, 2 [ — 1 denote the exchange of the intervals Iy =
(o, ral, @ € Ajie. Tz pyx = x+wg forx € (ly, ro]. Let End(T) = {ly, 1o, ¢ € A}
stand for the set of end points of the intervals I, : o € A.

A pair (7, 1) satisfies the Keane condition (see [21]) if T(’j"r, ,\)la # lg forallm > 1
and for all o, B € A with mp(8) # 1.

2.2.1 Rauzy—Veech induction
Let T = Tz, (m,A) € 894 X Rf be an IET satisfying the Keane condition. Then

b @y 7 g @y Lt

I = [0, max (lno—l(d),lnl—l(d)))

and denote by R(T) = T : T — T the first return map of T to the interval I. Set

0 if )\,no—l

A_—1
_ @ = *arlay
elm 1) = [ 1if
0

2.5)
@ < )”zrrl(d)'

Let us consider a pair 7 = (79, 1) € 894, where
7o () = 7 () forall @ € A and
T—g(a) if m_e(a) <mi—g OjTg_l(d)7

Fle(@) = { Mm@+ 1 if m_com 1 (d) < mi_e(a) <d,
m—ew N d) 4+ 1 if m_e (@) =d.
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1300 K. Fraczek, C. Ulcigrai

As it was shown by Rauzy in [33], T is also an IET on d-intervals
T =Tz5 withk =0 (7, M)A,
where

OT) =0 ») =1+E, @ € SL(ZA4).

Ty
Moreover,
O'(m, 1) - Qr - O, M) = Q5. (2.6)

Therefore ker 2, = @ (rr, A) ker Q5. Thus taking H; = Qg (RA) = ker QJJT- we get
Hyz = O'(w, \)H,. Moreover, dim H, = 2g and dimker Q,; = « — 1, where g is
the genus of the translation surface associated to 7 and « the number of singularities
(for more details we refer the reader to [46]).

The IET T fulfills the Keane condition as well. Therefore we can iterate the ren-
ormalization procedure and generate a sequence of IETs (R"(T)),>0. Denote by
7" = (ng, 7)) € 894 and A" = (A],)qe4 respectively the pair and the vector which
determine R" (T"). Then R" (T') is the first return map of T to the interval I = [0, |A"])
and

A= O (TN with ®"(T) = O(T) - ®(R(T)) - -- O(R"1(T)).

We denote by 1] = [I]}, r}) the intervals exchanged by R"(T').

Let T : I — I be an arbitrary IET satisfying the Keane condition. Suppose that
(nk)k>0 1s an increasing sequence of natural numbers with np = 0 and set

Zk + 1) := OR™(T)) - OR™T(T))--- ©R™ '~ 1(T)) 2.7

Since A" = Z(k + 1)A"+1 if for each k < k' we let
O, k) =Z(k+1)- Z(k+2)--- Z(K') (2.8)
then we have A" = Q(k, k')A . We will write Q(k) for Q(0, k). By definition,
R (T) : I'" — I'¥ is the first return map of R"*(T) : I"* — [I"** to the interval

I"v C I"*. Moreover, Qqg(k, k') is the time spent by any point of Ig"/ in I;* until it
returns to 1", It follows that

Qpk, Ky =" Qap(k, k)
acA

is the first return time of points of Ig"’ to I,

In what follows, the norm of a vector is defined as the largest absolute value of the
coefficients and for any matrix B = [Bygly, ge 4 We set || Bl| = maxge 4 D e 4 | Bagl-
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2.2.2 IETs of periodic type

We can now define IETs of periodic type.

Definition 2.1 (see [36]) An IET T is of periodic type if there exists p > 0 (called a
period of T) such that ® (R"*P(T)) = @(R"(T)) foreveryn > 0and A = A(T) :=
OP)(T) (called a period matrix of T) has strictly positive entries.

Since the set 894 is finite, up to taking a multiple of the period p if necessary, we
can assume that 77 = ;. We will always assume that the period p is chosen so that
P = ;. Explicit examples of IETs of periodic type appear in [36]. The procedure
to construct them is based on choosing closed paths on Rauzy classes and using the
following Remark.

Remark 2.1 Suppose that T = T(,;) is of periodic type with period matrix A =
O (T). 1t follows that A = A"AP" € A”R;4 and hence A belongs to [, A”Rf
which is a one-dimensional convex cone (see [43]). Therefore A is a posifive right
Perron—Frobenius eigenvector of the matrix @ (?)(T). It follows that (7 ?, A? /|AP|) =
(r, A/|A]) and |1]/|AP] is the Perron—Frobenius eigenvector of the matrix A.

Remark 2.2 1ETs of periodic type automatically satisfy the Keane condition. Indeed,
T satisfies the Keane condition if and only if the orbit of 7' under R is infinite (see
[26]) and IETs of periodic type by definition have an infinite (periodic) orbit under
‘R. Moreover, using the methods in [42] (see also [46]) one can show that every IET
of periodic type is uniquely ergodic.

Suppose that T = T( ) is of periodic type and let A = ®P)(T). By (2.6),
A'Q, A = Q; and hence ker Q; = Aker 2, and H, = A"H,,.

Moreover, multiplying the period p if necessary, we can assume that Alxer, = Id
(see Remark 2.5 for details). Denote by Sp(A) the set of complex eigenvalues of A,
including multiplicities. Let us consider the set of Lyapunov exponents {log|p| : p €
Sp(A)}. It consists of the numbers

O >0>60> - >0,>0=-..=0>—0,>---> 63 > —6) > -0,

where 2g = dim H; and 0 occurs with the multiplicity x — 1 = dim ker 2 (see e.g.
[49]). Moreover, p; := exp 6 is the Perron—Frobenius eigenvalue of A.

Definition 2.2 An IET T ;) is of hyperbolic periodic type if it is of periodic type
and A’ : H; — Hy is a hyperbolic linear map, or equivalently 6, > 0.

Convention When T is of periodic type, we will always consider iterates of R cor-

responding to the sequence (pk)i>0, where p is a period of 7 and A the associated
periodic matrix, chosen so that 77 = 7 and Alxer @, = Id.
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1302 K. Fraczek, C. Ulcigrai

Definition 2.3 Suppose that T = Ty ;) is of periodic type with period p and period
matrix A = @P)(T) as above. In this case we will denote by T = (n(k), A(k))
the IET RPX(T), by I = [0, |AkP|) the interval on which T® is defined and by
1 = 1P, +®) the intervals exchanged by 7®).

Convention In the rest of the paper, when T is of periodic type, the matrices Z (k) and
Q (k) will denote by the matrices associated to the sequence (pk)i=>o by (2.7) and (2.8)
respectively. Clearly Z(k) = A and Q(k, k') = AK~* = Q(k' —k) forall 0 < k < k'.

In the spirit of [44], we set

vi(A) = max{Ay, /Agy 1 a, B,y € A},
12(A) = v (A7) = max{A,4 /Ay @, B,y € Al
v(A) = max{vi(A), v2(A)}.

Since A% = AA%+D and for any kK > 1 we have Q(k) = Q(k — 1)A, we have

15| W, 05k
s S =v@IERL A < Qo) < v Q) (29)

for all a, B € A. From the above relation, it also follows that Rohlin towers have
comparable areas, that is, since by Pigeon Hole principle there exists 8 such that

0p)1$"| = |11/d, one has

1
dv(A)?

< QuIP < 11O foralla € A. (2.10)

A basis of Hy

Letp:{0,1,....,d,d+1} - {0, 1,...,d,d + 1} stand for the permutation

1, - .
N _ |momy (j)if 1=<j=<d
p(])_[j if j=0,d+1.
Following [43,44], denote by 0 = o, the corresponding permutationon {0, 1, ..., d},

o()=p ' (p()+ 1) —1for0<j<d.

Then ﬁn’k)rnal(j) = T(,,,,\)rn(;l(gj) for all j # 0, p~!(d). Denote by (1) the set
of orbits for the permutation o. Let o (;r) stand for the subset of orbits that do not
contain zero.

Remark 2.3 If T is obtained from a minimal flow (¢;),cr on a surface S as Poincaré
first return map to a transversal, then the orbits O € X (i) are in one to one corre-
spondence with saddle points of (¢;);cr. Hence #X () = «, where « is the number
of saddle points of (¢;);cRr-
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For every O € X (;r) denote by b(O) € RA the vector given by
b(O)e = xo(mo(@)) — xo(mo(a) — 1) fora € A, (2.11)

where xo(j) = 1iff j € O and 0 otherwise. Moreover, for every O € X (), we
denote by

Apg={ae A m@) €0}, ALj={eeA m—1€0}. (.12

Ifa e AE (respectively € A, ) then the left (respectively right) endpoint of I,
belongs to a separatrix of the saddle represented by O.

Lemma 2.1 (see Remark 2.8 in [43] and Proposition 5.2 in [44]) For every irreduc-
ible pair & we have ZOEZ(N) b(O) = 0, the vectors b(O), O € Zy(m) are linearly
independent and the linear subspace generated by them is equal to ker Q5. Moreover,
h € Hy if and only if (h, b(O)) = 0 for every O € X (7). O

Remark 2.4 Let A : RA — R¥0™) gtand for the linear transformation given by
(A"h)o = (h, b(O)) for O € Xo(). By Lemma 2.1, H; = ker A" and if RA =
F @ Hy, is a direct sum decomposition then A” : F — R>0(™) establishes an isomor-
phism of linear spaces. It follows that there exists K > 0 such that

Al < Kp||ATh|| forall h e F.

Lemma 2.2 (see [44]) Suppose that Tz3) = R(T(x.n))- Then there exists a bijection
£ : X(w) — X(T) that depends only on (1, A) such that O (, 1) ~'b(0) = b(EO)
for O € X(). O

Moreover, analyzing the explicit correspondence given by & (we refer the reader
for example to the formulas in [46], §2.4) one can check that we have the following.
For v =0, 1, let , € A be such that 7, () = d. Define the orbits Oy, O € X ()
(where possibly Oy = Oq) as follows. Lete = ¢(rr, 1) isasin(2.5)and let O, € X ()
such that d € O,. Remark that «g, o] € A(TJF since mo(ag) = w1 (1) =d € O. Let

O1_¢ be such that o, € .Aa_g. Denote byl AL, O¢ () the corresponding sets
for the pair 7. ’

Lemma 2.3 For each O € X(w), ./T;rog = Aa. For each O ¢ {Og, O1} or if

(2 = Oy = Oy, then ‘As_(’) = Ap. If Oy # Oy, then ‘AS_(’)s = ./4(_95\{058} and
Sol—s = A0178 Y {O[S}.

An example of these correspondence of orbits is illustrated in Fig. 1.

Remark 2.5 1f T is of periodic type, let us remark that (7 ®) = S (x (k,)) = X(m)
for every kK’ > k > 0. Up to replacing the period p by a multiple, we can assume that
Ok, K Yb(O) = b(O) foreach © € (7®) and 0 < k < k.
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A B c D, E A B, C _ D E,
T Tay ' Ta T Ten ! Teo
® —_——
E D C B A E D C B A
- mO, Tap mO,
3 —
A B c___D E, |90 AEB, C _ D ® 9o
T = o . T Tay
E A D C B E D C B A
(a) Case Aoy > Aay or (A, ) =0. (b)Case Aap < Aay or €(A,m) = 1.

Fig. 1 Rauzy Veech induction

2.3 Cocycles with logarithmic singularities

Denote by BV (Ly ¢ Alogk)) the space of functions ¢ : 7®) — R such that the restriction

@ Iosk) — R is of bounded variation for every a € \A. Let us denote by Var(f)|; the
total variation of f on the interval J C I. Then set

Varg = D Var(@)| i - 2.13)
acA

The space BV(uaeAlo(ék)) is equipped with the norm [|¢||pv = [|@|lsup + Var ¢. Denote
by BVo(Uyea IO([k)) the subspace of all functions in the space BV (Uy¢ AIO(,k)) with zero
mean.

For every function ¢ € BV(Uyec4ly) and x € I we will denote by ¢4 (x) and ¢_ (x)
the right-handed and left-handed limit of ¢ at x respectively. Denote by AC(Uge 4 1ly)
the space of functions ¢ : I — R which are absolutely continuous on the interior of
each I, @ € A and by ACy(Uyely) its subspace of zero mean functions. For any
¢ € AC(Ugealy) let

s(p) = / ¢@dx =Y (p-(ra) — o1 (o).

7 acA

Denote by BV! (Uye Aly) the space of functions ¢ € AC(Ugealy) such that ¢ €
BV (Uyealy) and by BV}k(I_IaeAIa) its subspace of functions ¢ for which s(¢) = 0.

Theorem 2.1 (see [26] and [27]) If T : I — [ satisfies a Roth type condition then
each cocycle ¢ € BVi(I_Iae Aly) for T is cohomologous (via a continuous transfer
function) to a cocycle which is constant on each interval 1, o € A. Moreover, the
set of IETs satisfying this Roth type condition has full measure and contains all IETs

of periodic type.

The prove of the above result uses the following consequence of the classical Gotts-
chalk—Hedlund theorem (see §3.4 in [27]).
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Proposition 2.4 Let T be an IET satisfying the Keane condition. If ¢ € ACo(Ugealy)
is a function such that the sequence (fp(”))nzo is uniformly bounded then ¢ is a
coboundary with a continuous transfer function.

Denote by PL(Uye41y) the set of functions ¢ : I — R such that ¢(x) = sx + ¢4
for x € I. As a consequence of Theorem 2.1 we have the following.

Corollary 2.1 If the IET T : I — I is of periodic type then each cocycle ¢ €
BV (Uyealy) is cohomologous (via a continuous transfer function) to a cocycle
¢pi € PL(Uge ale) with s(@pi) = s(9).

2.3.1 Strong symmetric logarithmic singularities

In the Introduction Sect. 1 we defined the space LG(Uyegly) of functions with
logarithmic singularities of geometric type (see Definition 1.1) and the subspace
LSG(Ugealy) C LG(Uyealy) of functions satisfying the symmetry condition (1.3).
We denote by LGo(Ugealy) and LSGo(Uyealy) the corresponding spaces of func-
tions with zero mean.

Definition 2.4 A function ¢ € LG(Uyealy) of the form (1.2) has strong symmetric
logarithmic singularities if for every O € X () we have

> Co— > cf=o, (2.14)

- +
acAg, acAp,

where A, Azg are the sets defined in (2.12).

Denote by LSSG(Uyealy) the space of functions with strong symmetric loga-
rithmic singularities of geometric type and let LSSGo := LSSGNLGq. Clearly
LSSG(Ugealy) C LSG(Uyealy) since the condition (2.14) implies the weaker sym-
metry condition (1.3) by summing over O € X. Strong symmetric singularities of
geometric type appear naturally from extensions of locally Hamiltonian flows, see
Sect. 6. This stronger condition of symmetry is important in the proof of ergodicity.

We will also use the space E(UQEAIQ) = LGUgealy) +BV(Uyealy) (respec-
tively LSSG(Uyealy) = LSSG(Uyealy) + BV(Uyealy)), ie. the space of all
functions with logarithmic singularities (respectively strong symmetric logarithmic
singularities) of geometric type and zero mean of the form (1.2) for which we require
only that g, € BV (Uye4le). We will denote by LGy and LSSGy their subspaces of
zero mean functions.

Note that the space BV (BV! resp.) coincides with the subspace of functions ¢ € LG
(LG resp.) as in (1.2) such that C;t =0foralla € A.

Definition 2.5 For every ¢ € LG(Uyely) of the form (1.2) set

L) =D (CHI+IC;1) and LV (p) :=.L(p)+ Varg,.
ac A
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The quantity .Z ¥ (¢) will play throughout the paper an essential role to bound func-
tions LG, since it controls simultaneously the logarithmic singularities, through the
logarithmic constants .2 (¢), and the part of bounded variation.

The spaces LSSG(Uyealy) and LSSGo(Ugealy) equipped with the norm

lell.zy = Z(@) + gy lBv

become Banach spaces for which LSSG(Uye 41y) or LSSGo(Uyealy) respectively
are dense subspaces.

2.3.2 Properties of cocycles in LG

In this subsection we present a basic property of LG functions; see Proposition 2.5.
All proves are elementary and the reader might choose to skip it and continue to
Sect. 2.3.3.

For every integrable function f : I — R and a subinterval J C I letm(f, J) stand
for the mean value of f on J, i.e.

1
m(f. J) = m]/f(x)dx.

For alocally absolutely continuous function ¢ : I\ End(T) — R, this is absolutely
continuous on each compact subset of its domain, set

los(¢) = ess sup [kg;iﬂrll(n lo'(x)(x —%)| :x e I\ End(T)} .

Of course, every function ¢ € LG(Uye 41y ) is locally absolutely continuous and
los(p) < ZL(9) + |lig,llsep and  ZL(p) < 2dlos(g). (2.15)

Lemma 2.4 Let f : (xg, x1] = R be a locally absolutely continuous function such
that | f'(x)(x — xg)| < C for a.e. x € (xo, x1]. For every J = [a, b] C [xo, x1] we
have

) =~ f@| __C

b—a T a—xp

im(f, J) — f(b)| <2C and

Proof If a > x( then using integration by parts we get

b b
/(f(X) — fb))dx = (a —x0)(f(b) — f(a)) — /(x — x0) f'(x) dx.
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Moreover, by assumption,

J @ = xo) £/ @) dx| = 716 = x0) £/ @)l dx = €1,
Furthermore,

b

b
|f(b) = f@)] = /f/(x)dx 5/ € dx=Clog 2=

X — Xg a — xo
a

b—a b—a Cl|J|
=Clog|1+ <C =

a — X0 a — Xo a—xo'

It follows that

b b

1 1
b—/f(X)dx—f(b) =— /(f(x)—f(b))dx <2C.
—a 1]

a
Letting a — xo, we also have |m(f, J) — f(b)| < C if J = [xo, b]. O

Lemma 2.5 Let ¢ € LG(Ugealy) and J C 14 for some a € A. Then

Mm@, J) — m(g, I)] < los(@) (4+ %) 2.16)

%/ lp(x) —m(p, J)| dx < 8los(g). (2.17)
J

Proof Let I, = [xq, x2] and x; = (xo + x2)/2. Suppose that J = [a, b] C [x0, x1].
In view of Lemma 2.4,

Im(e, J) —oD)| = 2los(), |m(@, [xo, x1]) — (x| = 2los(p)  (2.18)

and

X1
b

— b _ l Ia
o) = o)l = los(@)— < los(py =0 _ [05(@) el

b—a 2 I
Applying Lemma 2.4 to ¢ : [x1, x2) — R we also have
Im (@, [x1, x2]) — @(x1)| < 2los(p).
Since m (¢, [xo, x21) = (m(p, [x0, x1]) + m (¢, [x1, x21))/2, it follows that
Im (g, Io) — ¢(x1)| < 2los(p).

Therefore

los(¢p) M

Im (g, J) = m(p, l)] < dlos(p) + — i

(2.19)
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Let us consider the function ¢ : (xg, x1] = R, ¢(x) = |¢(x)—m(¢, J)|. The function
@ is locally absolutely continuous with |¢'(x)| < |¢'(x)| almost everywhere, hence
los(p) < los(¢). Therefore, by Lemma 2.4,

1
m/ lp(x) —m(p, J)|dx =m(p, J) < |m(@, J) — @) + |@(b)]
J

= |m(@, J) — o) + 19() —m(p, J)| = 2los(p) + 2los(p),

hence

|]7|/ lp(x) —m(p, J)| dx < 4los(p). (2.20)
J

By symmetric arguments, (2.19), (2.20) and

Im(¢, J) — ¢(a)| < 2los(p) (2.21)

hold when J C [x1, x3]. If x; € (a, b) then we can split J into two intervals J; =
[a, x1] and J> = [x1, b] for which (2.19) and (2.20) hold. Since

[ /1] | /2]
m(p, J) = I_Jlm((p’ J) + |T|m(¢)’ J2), (2.22)

it follows that

(. e\ Bl
(g, 1) = mig, L] < Los(y) (ﬁ (4+ 2|Jl|) 7 (4 * 2|J2|))

— los(p) (4+ @)
[J]

By (2.18) and (2.21), |m(¢, J1) — ¢(x1)| < 2los(¢), Im(p, J2) — @(x1)| < 2los(p).
Moreover, by (2.22), |m (¢, J) — ¢(x1)| < 2los(¢), hence

Im(p, J1) —m(p, J)| < 4los(p) and |m(p, J2) —m(p, )| < 4os(p).

In view of (2.20) applied to J; and J3, it follows that

1
m/ lp(x) —m(p, J)|dx < 8los(yp),
Ji

1
—/ lp(x) —m(p, J)|dx < 8los(p),
| /2] J

and hence ﬁ fJ lp(x) —m(p, J)|dx < 8los(¢p). ]
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Proposition 2.5 If ¢ € LG(Uye 4ly) and J C 1 for some a € A, then

| 1|
Im(p, J) —m(p, Io)| < LV () (4 + ﬁ) (2.23)
and
1
m/ lp(x) —m(p, J)|dx < 8LV (p). (2.24)
J
Proof First note that if g € BV (Uyealy) then
|g(x) —m(g, J)| < Var g foreach x € I,. (2.25)

Let ¢ = @p + g, be the decomposition of the form (1.2). Since £ (gp) = £ (¢) and
8¢y = 0, by (2.16), (2.17) and (2.15), we have

Iy
[m(po, J) —m(po, )| < ZL(p) (4 + H) ,

1
m/ lpo(x) —m(po, J)|dx < 8.Z(¢p).
J

Moreover, in view of (2.25),

1
|m(g<pa J) — m(gq)a I)| < Varg(/,, m/ |g<p(x) - m(gg)a Dldx < Varg(ﬂ-
J

Combining these inequalities completes the proof. O
2.3.3 Properties of cocycles in LSSG
Definition 2.6 For every ¢ € LSSG(Uyecaly) and O € X () set
O)=tim | > ¢u=0- > ¢lat)
A aeA,mp(a)eO aeA,mp(a)—1€O

In order to prove that O(gp) is finite, we need the strong symmetry condition (2.14).

Lemma 2.6 Forevery ¢ € LSSG(Uyenly) and O € X (), O(p) is finite. Moreover,
if o € LSSG(Uyealy) then

1
10(@)] = 2dV(A)m/ lo(x)|dx +2d2Y (¢).
1
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Proof Leta := min{|l,| : @ € A}/2. Then for x € (0, a) we have
@(ra —x) = —C, log(x) + g5 (x) and ¢(ly + x) = —C, log(x) + g (x),

where gf : [0,a] — R is of bounded variation for « € A. Therefore, using the
symmetry condition (2.14)

A@) = D e —x)— D @l +x)

OlE.AO— 0!644_5
=— > Cilog)+ D g )+ D Ciloglx) — D gf(x)
acAg, acAg, aeAg aeAE
= > g @— > gr).
ac Ay, a€A+

It follows that O(¢) is finite and given by

O@) = A1) = > (€)+O) = > (¢)4(0). (2.26)

- +
acAg, acAp,

Suppose now that ¢ € LSSG(Uye41y) is of the form (1.2). Then ga are absolutely
continuous and |(g4)'(x)| = L(¢)/a + g, (e + x)| and [(g;) (¥)| < L (p)/a +
|gw (r¢ — x)|, and hence

Ay < 2L

+ D (g e + x)| + 18}, (ra — X)) for x € [0, a].
ac A

Therefore, for x, y € [0, a],

1A@) — A < 2L () + Z(/ 18} (la +r>|dr+/|g¢,<ra Dldr)

acA %
ly+a
<242+ > ( / 18, ()ld1 + / 1, ()ld1)
acA lo(
<2d.L () + / I8, (Oldt = 2d.L(g) + Var g, (2.27)
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Moreover, using the definition of a and (2.9), one has

m(A[0.aDl < D Im(g. [ra. ra — a)l
aeA,mp(@)eO

+ > Im(g, [l le +a))l
acA,mp(a)—1€O

< l/I(/J()C)Idx SZdV(A)%/Iw(X)IdX-
a
1 1

In view of the previous equation and (2.27), it follows that for all x € [0, a],

A = SEBP]IA(X)—A(y)I+m(A7[0,a])
yel0,a

§ 2dv(A)
||

/ 0 ()| dx +2d.L(¢) + Var g,.
1

which completes the proof. O

Remark that if ¢ € BV (Ugealy) and O € X ()

Ow= > o= D, o) (2.28)
acA,mg(a)eO acA,mo(a)—1€O

Hence, Definition 2.6 extends the definition of the operator O used by [5] for ¢ €
BV(Uyealy)- Moreover, if ¢ € AC(Uyealy) then

D 0@ =D 0 (r) = D pilla) =5(9). (2.29)
Oex(m) acA acA

Remark 2.6 1f we identify the piecewise constant function 1 = ", hq x1, (Where x;,
is the characteristic function of 1) with the vector & = (hy)qe 4, note also that

Ohy= D ha— D he

mo(a)eO mo(a)—1€O
= Z(XO(JTO(OO) — xo(mo(e) — 1)hg = (h, b(0)),
acA

where b(O), O € X are the vectors defined in (2.11). In particular, Lemma 2.1 can
be restated saying that the vector h € Hj if and only if for the corresponding function
h we have O(h) = 0 for every O € X(7).
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1312 K. Fraczek, C. Ulcigrai

3 Renormalization of cocycles

Assume that T is of periodic type and recall that we denote by T®) = RP(T) the
sequence or Rauzy iterates corresponding to multiples of the period p > 0.

Remark 3.1 The definitions and Lemmas in Sect. 3.1 hold more in general for any IET

satisfying the Keane condition and any subsequence (T(k))kzo which is of the form
(R™(T))k>0 for some subsequence (ny)r>0 of iterates of Rauzy—Veech induction.

3.1 Special Birkhoff sums

For every measurable cocycle ¢ : I®) — Rforthe IETT® : J® — J® and k&’ > k
denote by S(k, k)¢ : I*) — R the renormalized cocycle for T*) given by

. k/
Sk.Khp)= D o(T®)x) forx e 1§,
0<i<Qp(k,k)

We write S(k)¢ for S(0, k)¢ and we use the convention that S(k, k)¢ = ¢. Sums of
this form are usually called special Birkhoff sums. If ¢ is integrable then

ISk, k/)fﬂ||L1(,(k’)) < ll¢llgrwy and (3.1
/S(k, k’)(p(x)dx:/ga(x)dx. (3.2)
&) G

Note that the operator S(k, k') maps E(I_IO,GAIO(lk)) into E(I_IO,GAIO(/(/)). In view
of (3.2), S(k, k") maps Eo(uaeAlogk)) into E@(uaEAIOEk)). Moreover, we will
show below (Lemma 3.2) that it also maps LSSG(uaeAID(,k)) into LSSG(I_IG,EAIO(,k )).
If g € BV(Ugeal®) then

Var S(k, k')g < Var g. (3.3)

The following three Lemmas (Lemmas 3.1, 3.2 and 3.3) allow us to compare the
singularities of S(k, k") with the singularities of ¢.

Lemma 3.1 For each k' > k > 0 and for each ¢ € LG(I_IQEAIO(/{)) of the form

- 1o 101 1225 VY o oo pog (170 | 7=
go(x)-—Z}4 « log | 1191y =g )+ Calog\ 1191 =
[o4S]

there exists a permutation x : A — A such that
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Sk, KNp(x) = — Z C;’_ log(|1(k/)|{(x _ lék’))/”(k’)”)

acA
- Z Cr@ 1og (1T XN — ) /119y + g (),
acA

where g € BV! (I_IaeAIo([k/)). In particular, Z(S(k, ko) = £ (¢).

Proof We will prove the Lemma for special Birkhoff sums corresponding to one sin-
gle step of Rauzy induction. The proof then follows by induction on Rauzy steps. Let
op = no_l(d) and o := nl_l(d). Let write C~ = C¥) = (C, )ae for the vector in
RA whose components are the constants C, . For v =0, 1 let

Gy ={C7 =(Cy)aca € RA C,, =0}

Let us consider R : G?n’k) U G(ln,x) — G;éj(rn)";) be given by
C, if @ # o, o1,

R(CT)g =1 Cq, +Cp, fa=ai—¢), (3.4)
0 ifOl = (Xg(m)\).

Recall that for (!, A1) = R(r, 1) we have
7781(;-,,1) (O‘s(n,k)) = Te(m,1) (aa(n,k)) =d,

S0 R(C™) € G 1 ¢ € LG(Ugeals) is of the form

px) =— Z(CJL log(I11{(x —la)/I1}) + Cg log(II[{(re —x)/111}),
acA

then since the singularities are of geometric type, C~ = (Cy )qeA € G‘(’ﬂ’ » for some

v = 0, 1. Denote by S'¢ the special Birkhoff sum corresponding to one step of
Rauzy—Veech induction, given by

Sy = D (T'(x). forx el (3.5)
0<i<O(T)g

Analyzing the effect of one step of Rauzy induction, one can then verify that

S'e(x) = = D7 (Ca tog 1 HCr = 1)/11" 1))
acA

+ RC)alog(11'[{rd = x)/11'1D) + g1 (2), (3.6)
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cl | ct
.
@ % =0 ¢
Ial /\ H :Iao Ia1 :/\ t
Ca_l = E CZI =
¢t R(Gy)) C:)

52
S
3 |
= §
~ Q
g 8v
| =
el
A
= 2
1L I
e
[ 518

(a) Case Aoy > Aay or (A7) = 0. (b) Case Aoy < Aay or (A, m) = 1.

Fig. 2 The two top figures show an example of a function ¢ € LG in both cases (a) Aoy > Ay, and (b)
Aoy < Ay s the bottom figures show the corresponding special Birkoff sums § Ty

where g1 € BVl(I_IaeAIOE). See Fig. 2. For v = 0, 1, define the permutation X(lj, N
A — Aby

X(l;z,)\)(ae(n,a)) = Oy, X(I;Z,)\)(alfs(n,a)) = U]y, X&’A)(a) =

for @ ¢ {ap, @1}. Remark then that since C~(¢) € G, «, € {ap, a1} is such that
C;U = 0. Thus, one can verify that R(C ™)y = C;(a) forallo € A.For(0 < k < k" and
C~(p) € GV, if we denote by ¢; = e(wd, A)), wecanlet x := xV(k. k') : A —> A
stand for the permutation

o N o_ Epk Epk! =2
X = XU(k3 k ) = X&pk’kpk) © X(:pk+l’)tpk+l) ©---0 X(:Pk,—lykpk/—l)’

Then one can prove by induction on Rauzy steps that RPK =R (C™), = C;(a). This

together with p(k’ — k) iterations of (3.6) concludes the proof. O

Consider the operator O(¢) defined in Definition 2.6.
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Lemma 3.2 For each k' > k > 0 the operator S(k,k') maps the space
LSSG(Ugea 1Py into TSSG(Uyeal*") and maps LSSG(UgealF) into LSSG
(I_IO[EAIOEk/)). Moreover, for every ¢ € LSSG(I_I(XGAIOEk)) and O € X (), we have
O(S(k, k"g) = O(gp).

Proof Let T = Ty, ¢ € LSSG(Uyealy) and consider the special Birkhoff sum
@ = S'¢ given by one step of Rauzy—Veech induction (see (3.5)). Let & be the corre-
spondence between X (;7) and =h given by Lemma 2.2 and let Aé, O e X(n),

the sets defined in (2.12) and AL 0 «€ S, the corresponding sets for (77, » =
(', A1). We will show that

> = > ¢ (3.7)

acAf aeﬂgo
> Ci= D R(C ) (3.8)
acAg, aejgo

where R is the operator defined in (3.4) in the proof of Lemma 3.1. Since by (3.6)
the logarithmic constants for S'¢ are the ones which appear in the right hand side,
these two equations show that if the symmetry condition (2.14) holds for ¢ for all
O e X(m),sinceé : X(r) — X(w D is abijection, the symmetry condition holds also
for Slfp forall O € =(xl). By induction on Rauzy steps, this shows that S(k, k)¢ €
LSSG(UgealX") for each k' > k. Let us prove (3.7, 3.8). Since Afo = Ab by
Lemma 2.3, (3.7) holds trivially. From the definition (3.4) of R, one immediately sees
that if A” C A is a subset such that either {og, a1} C A’ or {ag, a1} N A = @,
then > o 4 Cq — D qea R(C7)q = 0. Since {ap, a1} C A(_/)e (recall that o (o) =
m1(a1) = d € O by definition of O¢) and thus {ap, a1} N A, = @ forall O # O,
it follows that

> Ci— D R(C)y=0 foreach O e X(m).

acAg, acA,

Thus, (3.8) holds also for O ¢ {Og, O1} (where Oy, O; were defined before
Lemma 2.3) or if O = Op = Oy, since in these cases by Lemma 2.3 we can have
Ap = AS_O' Thus, we are left to consider the case in which O € {Op, O} and at the

same time Oy # O;. In these cases, since by Lemma 2.3 we have "Zg_Og = A(_Qs \{ae}

and JZ(QOH = “4(_9175 U {a}, we can add or subtract R(C ™), , which by (3.4) is equal
to zero, to get respectively

S - S RCH= D (€5~ RCH) + RC ), =0,

aEAE)S O[EA’;OS aE‘AE)g
> Ci— D RCHa= D (Cy=R(C )= R(C )y, =0,
QEABI—S O‘E“‘Ygol,g ozeAél_S
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1316 K. Fraczek, C. Ulcigrai

which concludes the proof of (3.8). This, together with Lemma 3.1, is enough to
conclude that S(k, k') maps the space W(LIO,EAIO(/C)) into m(uaeAlo(lk/)) and
LSSG(UgealF) into LSSG(Lige 41X ™).

Assume now that ¢ € LSSG(Ugea Io(,k)). Let us now prove that foreach O € X (i),
we have (£0)(¢) = O(¢), where £ is the bijection given by Lemma 2.2. Let gojf, o€
A, be the absolutely continuous functions defined as in the proof of Lemma 2.6.
Similarly, define also for @ = S'¢ the absolutely continuous functions

8y () =0l —x) + R(CT)glog(x),  ZF(x):= UL +x) + CJ log(x).

In virtue of (2.26) and the analogous equality for the function @, to prove that
(EO0)(¢) = O(gp) itis enough to prove that

D O— D o= >z, O- > 2o, (3.9)

acA, aeAE aeﬂgo aeﬂ;o

where Aé are the sets defined in (2.12). The analysis of one step of Rauzy—Ve-
ech induction shows that for all @ # «g, o1, we have §§(x) = g;t(x), while for
o € {ag, ay},if e = e(, 1) (see (2.5)), we have

g =gl (), g () =poT *(A'|—x);

Zan ) =gd )+ o TN +x), 2y () =g ,(¥) + gy ().

€

Combining these expressions with the relations between Aé and leéto given by
Lemma 2.3 and recalling the definition of O and O3, one can verify case by case that
(3.9) holds and thus (£€O)(¢) = O(¢). By induction on Rauzy steps and in view of
Remark 2.5 and one gets O(S(k, k")p) = O(p). O

The last lemma allows us to keep track of how discontinuities of T®) are related
to discontinuities of 7®. Let a(()k) = (nék))’l(d) and afk) = (nl(k) )~ L(d).

Lemma 3.3 Foreach k' > k > 0, for each o € A, we have
11 e (r®I1$, 0 < j < Qulk, K} (3.10)
Moreover, if x : A — A is one of the permutations’ given by Lemma 3.1,

r& e (@), 02 j < Qulk, K0} if @ # o™ (3.11)

S(HPk/’l,)ka/’l)’

3 Letus point out that there are two permutations x = Xo(k, Y, x =x Lk, k), given by Lemma 3.1. In
Lemma 3.1 we are given ¢ € LG and if C™ (p) € GV (see Lemma 3.1) the function x for which the Lemma
hold is x V. On the other hand, both ¥ = Xo(k, K, x =x Lk, k') satisfy the conclusion of Lemma 3.3.
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while there exists a, € A\ {Ot } such that

g( ﬂpk’—l )ka/ l)

r(':;,r“:z) e (TM)r¥), 0 < j < Qulk, k). (3.12)

Moreover, if C @) # 0 then o # atk and (3.11) holds.

e(m pk’ I)J)k’ )

Proof Let us prove the Lemma for one step of Rauzy induction. We refer the reader
toFig. I.Let x = X(x,1),v : A = Aby the permutation for one step of Rauzy—Veech
induction defined in the proof of Lemma 3.1. Let ¢ = ¢(r, A). Then x (o) = .
By the definition of Rauzy—Veech induction, if ll}[ and ”(i denote the endpoints of

= R(T), we have Iy = I} fora # a1_; and Iy, , = Tslolll,, Moreover, ro = r}
for o # ag, oy, and ry = Tr), . 1o, =l . Since O(T)g = 1 fora # a1, and
O(T)q,_, = 2, it follows that for every a € A we have [, Tfl for some O < ] <
O (T) and for every o # o (equlvalently X(a) # oy) We have Ty = Tfr for
some 0 < j < ©(T),. Moreover, ro, = T/r forsome 0 < j < O(T)y, where
x (&) = a1_y,. The proof of the formulas in the Lemma then follows by induction on
Rauzy steps. We are left to prove the last remark.

— . k’*k — _ —
If Cougan@ # O then since RFC(CT)y = Clupinm

the proof of Lemma 3.1) also RPK =0 (C™), # 0. Since RPK=k) maps the space

’ ’
8(7Tpk 71’)"pk 71)

(see the end of

0 . . .
G rw Y G(H(M Ay O G(,,(m Ay o which is the space of vectors with
/
RPE =0 (C) ) = 0, this shows thata £ o) o
F(ﬂpk -1 )LpI\ -1 e(mp AP )

3.2 Cancellations for symmetric singularities

The following property of cocycles with symmetric logarithmic singularities was
proved by the second author in [40] (see Proposition 4.1) and will play a crucial
role to renormalize cocycles with symmetric logarithmic singularities and in the proof
of ergodicity.

Proposition 3.1 ([40]) Let 7w € 594. Fora.e. ) € R“_f_‘, L] = 1 there exist a constant
M and sequence of induction times (ny)reN for the corresponding IET Ty 3y such
that for each ¢ € LSG(Uyecaly) with g(’p = 0, whenever x € I/gnk)for some k > 0
and 0 <r < Qg(ng), we have*

C+ C
@) - > = o | =MZr, (3.13)
acA aeA

+
4 In the statement of Proposition 4.1 [40], only (¢’ Y (x) appears in the absolute value, while >, c 4 C—‘l"
Xa

and >, c 4 i—g appear as bounds. In the proof, though, the contribution of the closest points is subtracted

first and the statement here given is proved. The explicit dependence of the constant M in Proposition 4.1
[40] on ¢ (via £ (¢)) can also be easily extrapolated from the proof.
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1318 K. Fraczek, C. Ulcigrai

where x(lx and x|}, are the closest points respectively to l, and ry, which, denoting by
(x)T the positive part of x (i.e. (x)* = x if x > 0and (x)™ = 00 if x < 0, so that if
x < 0 then 1/(x)7 is zero) are given by

1 : i + r : i\t
x, = min (T'x —1,)", x''= min (ro, — T'x)™.
« 0§i<r( a) o O§i<r( ¢ )

Remark 3.2 One can check thatif T is of periodic type, the estimate in Proposition 3.1
holds and furthermore one can take as (ny)xen Simply the multiples of a period of
Rauzy—Veech induction,’ i.e. one can take n;y = pk where p is the period. Moreover,
the constant M depends only on the period matrix of Rauzy Veech induction.

In virtue of the Remark, applying the estimate (3.13) to each renormalized iterate of
Rauzy—Veech induction for a IET of periodic type, we get the following.

Corollary 3.1 IfT is of periodic type, there exist a constant M such that the following
hold. For all 0 < k < k' and for each ¢ € LSG(I_IO(EAIogk)) with g(/p = 0, whenever
x € Iék/), BeAand0 <r < Qg(k, k'), we have

, ; cr C, 1
2, $TYn =2 i Z L @ = e G

0<j<r acA
where (xé)(k) and (xg)(k) are given by

H® = min (T®)'x — 18T, (0H® = min (P — (TP x0T
0<i<r O<i<r

Proof Let us denote by T ® 1O — 1O (7O =0, 1)) the normalized IET asso-
ciated to 7™, i.e. T(k)x |1(k)|_1T(k)(|1(k)|x) As T is of periodic type, T( ) =T.
Let us consider ¢; : 19 — R given by ¢; (x) = ¢(|I®|x). Then one can check that
ok € LSG(Ugenld”) with Z (i) = Z(¢) and g}, = 0. By Proposition 3.1 and

Remark 3.2, whenever y € Iﬁ(,k/_k), BeAand0 <r < Qp(k — k'), we have

CAMOE Z Gy Z <ML (). (3.15)
acA

Fix x € 1/;"” and 0 < r < Qpk, k') = Qp(k — k). Since 1) = [ID|l, rs’

[TD|ry forallae € Aand j > 0, we have y := x/|I®| e If(;k/fk) and

(ON'

T®yix — 1% = 110 (T iy 1), r® — (TDO)x = 11Dy — TY)iy).

5 The interested reader can patiently go through the definitions of further accelerations of Rauzy-induction
in [40] which lead to the construction of sequence (ny);cN in Proposition 3.1 and check that if 7 is of
periodic type the period multiples satisfies all the assumptions without need of extracting subsequences.
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Therefore, [1®|yl, = (x[)® and [1P|yr = (x2)®. As

0 () = 1PN (1P]y) = 1P ¢ (x),

in view of (3.15), it follows that

S p@®yn -y Sy e
(xL)® = (xr)®

0<j<r acA
o (T y) ct C; | MZ@yr
2 - — 2 oyt 2wy | =
1®)] T T T
0<j<r acA *  aeA o
which completes the proof. O

Let us show that functions with logarithmic singularities of geometric type behave
well under the renormalization given by taking special Birkhoff sums.

Proposition 3.2 If T has periodic type then there exists ¢ > 0 such that if ¢ €
LSG(UgeaI®) and

*) (o
—1 —X
_ + (k) o (k)
px) = EA(C log(l |’ 7] ])+C 1og(|1 |[ 70 D)
ae

then for every k' > k we have S(k, k')o = @ + @, where

FOEEDY (CJ log(I1®1{(x — 18 /11971

aeA
+ Cp log 11 =011 1) (3.16)
1 4 = k' .
x : A — Ais a permutation and ¢ € BVI(I_IO,EAIO(, )) with @' |lsup < ll%k(/()ﬂl)

Proof Let x : A — A be the permutation given by Lemma 3.1. If ¢ is defined by
(3.16), Lemma 3.1 gives that S(k, k)¢ = @ + @ where & € BV (Upe4IX") (where
@ is the g in Lemma 3.1). Thus, we need to estimate [|¢||sup. By differentiating
¢ = S(k,k")p — @, we have

~ N Coz+ C):(Of)
@ (x) = Sk, k)" (x) — E —l(k/)—i— #. (3.17)
’ x—lgy 7
acA |I(k)|{ VG } acA |I(k)|{ [1%)] }

()

From Corollary 3.1, if x € Ig " then

3 Co | MI@DOKK) g

C+
Sk, ko' — —L )
(k, k)" (x) 0%14 L)® + . @ | = 0]
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where

GhH® = min (TP x 1T H®P = min ¢ — (@Dt
0<i<Qp(k,k) 0<i<Qp(k.k")

Recall that, by (2.9), |1/§"’>| > |1%)|/dv(A) for any symbol B € A and from (2.10)

119104k, k') < 110, (3.19)

Let us now show that for each « € A,

Ca Ca _ 2dv(A)Z () (3.20)
(xé)(k) (k") xflék/) N |I(k/)| ’ .
S i)
CGo S _ 2dv(A)Z(p) 321
(¥ )™ |1<kf>|{r;k’>7x| T uw)
&)

By (3.10) in Lemma 3.3, for every a € A there exists 0 < j, < Qq(k, k") such that

(T(k))jalék,) = 1&"). Assume that x € Iék,). Since the iterates (T(k))-/x for0 < j <
Op(k, k') each belong to a T/1 ék ), which, for the j considered are all disjoint, we

have that

@p® = min (@) x -1 = @®)irx — 1.
0<i<Qp(k.k')

Moreover, since (T *))J¢ is an isometry on / ék,)

. . k/ k/ 7 k/ ’
(xp)® = (@ ®)Ire — @OV = & =1 = 1191 = 111N,

which shows that in this case the left hand side of (3.20) is zero and (3.20) holds
trivially for « = B. Let « € A\ {B}. Since only (TR e Io([k,) contains l,gk) as left
endpoint and it is disjoint from (T®)i[ ék/) for0 < j < Qg(k, k'), we have that both
1T — 18 /119D ]} and (xL)® are greater than |17 > |1®)]/dv(A). This
concludes the proof of the upper bound in (3.20) for all @ € A.

To prove (3.21), recall that Lemma 3.3 gives that whenever C;( o) #0

Py €XT®Y &) 0 < j < Qulk, k). (3.22)

Thus, when C;( o) # 0, (3.21) can be proved using (3.22) in a completely analogous

way. On the other hand, if C;(a) = 0, there is nothing to prove, since the left hand
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side of (3.21) is identically zero. We now get [|¢’ [lsup < % by combining (3.17),

(3.18) and (3.19) with the sum over o € A of (3.20, 3.21). O

Proposition 3.3 If T has periodic type then there exists C > 0 such that, for all
0<k <Kk, ifp e LSC(Uyeal®) then

LY Sk, k) < CLY (). (3.23)

Proof Let ¢ = ¢ + g be the decomposition with g € BV (L, AI(,([k)) and

= CHiogf 1% 122 I’ C, log| 11 e —x
wo(X)——ZA a log| 1% =g 1)+ Cotog | 111y Sy :
ac

By Proposition 3.2, S(k, k")gpo = ¢ + @, where

P0) = crog 111 E= N e o o[22 =
w(ﬂ——% e log\ 1) =y [ ) Cxlo8\ 71 =7,
[04S]

for a permutation x : A — A, and a function § € BV! (I_IQEAIG({]‘/)) with [|§||lsup <
c.Z(@)/|11%)|. Thus,

Varg =’ / 7' ()| dx < c Z(p).
OlE.A[o((k/)

Since Var(S(k, k')g) < Var g and .Z(¢) = £ (), it follows that

LYV Sk, k) = L @) + Var(@ + S(k, k')g)
<(c+ 1)L+ Varg < (c+ D)LY ().

4 Correction operators

In this section we define two correction operators. The correction operator in Sect. 4.1
allows us to correct a cocycle with symmetric logarithmic singularities by a piece-
wise constant function, so that the special Birkhoff sums of the corrected cocycle
have controlled growth in L; norm. In Sect. 4.2, we define a similar correction oper-
ator for piecewise absolutely continuous functions whose derivative has logarithmic
singularities. The correction operator in Sect. 4.1 is used in the proof of ergodicity
in Sect. 5, while in Sect. 4.2 we use the other correction operator to prove a result
(Proposition 4.1) needed for the proof of Theorem 1.3.

We remark that a similar operator appears in [27], based on the correction procedure
introduced in [26]. In our setting, we need to use the L| norm, since the Ly, norm is
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1322 K. Fraczek, C. Ulcigrai

unbounded due to the presence of singularities. We control the contribution coming
from the singularities through the results in Sect. 3.2.

4.1 Correction operator for cocycles with logarithmic singularities

Recall that LSSGo(Ugealy) = LSSGo(Ugealy) + BVo(Ugealy) (see Sect. 2.3).
The proof of the following crucial result is given later at the end of the section.
Theorem 4.1 Assume that T is of periodic type. There exists a bounded linear opera-
tor ) : LSSGo(Uge Alo(lo)) — I', where I' is the space of functions which are constant
on each ly, whose image is a g — 1 dimensional space and such that:

(1) There exist C1, Co > 0 such that, if ¢ € LSSGo(UgeaI ") and h(¢) = 0, then
for each k > 1 we have

M
|I(k)| ”S(k)(go)”Ll(l(/\)) < C1$7/(‘P)k + CZ |I(0)| ||§0||LI(1(O))k

where M is the maximal size of Jordan blocks in the Jordan decomposition of
the period matrix of T.

(2) If additionally T is of hyperbolic periodic type and the function ¢ €
LSSGO(I_JO,EAIO(CO)) satisfies H(¢) = 0, then for each k > 0 we have

1 1
W”S(k)(‘P)HL'(I(k)) <C1ZL7(p) + szﬂfﬂ”Ll(](O))-

Part (2) will be used to prove ergodicity of T, in Sect. 5, while part (1) will be used in
the cohomological reduction in Sect. 4.2. We prove them in parallel since the proofs
have similar structure.

Let I"® be the space of real valued functions on /*) which are constant on each

1y @ ,a € Aand I ® s the subspace of functions with zero mean. Then
St kKH’T® =r® and Sk, kyr* = .

Let us identify every function 3", . 4 ha Xt in I'®) with the vector h = (hg)aca €
RA. Clearly I"® is isomorphic to R4 (~ RY). Under the identification,

Y = ann(®) = {h = (hg)gea € RA: (h, 1) = 0}

and the operator S(k, k') is the linear automorphism of RA whose matrix in the canon-
ical basis is Q(k, k')’ (see for example [26]). Thus S(k, k)~ : I'*) — 7 ® js well
defined.

Suppose now that T is of periodic type, with period matrix A. Then the L'-norm
on I'® is equivalent to the vector norm and, by (2.9),

1Pk < min [IV|||k] < |k < 11®n). 4.1
dv(A)| [l ||_a€A|a WAl < allprgwy < (V1A 4.1
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Let us consider the linear subspaces

log ||S(k, j)h 1 AN =kp
F(k) {h = F(k) llmS M — hm sup M S O}’
/—>+oo J j— oo J
log ||S(k, j)h log [|(A")/~%h
Fs‘(k) — {h c F(k) - lim sup M = lim sup M < 0}’
j——4oo J j—>+oo J
log [|(AH =7 h
F(k) {h e r' :limsu M < 0}.
j—>+oo J

Let M be the maximal size of Jordan blocks in the Jordan decomposition of the period
matrix A. Note that for every natural k the subspace Fc(sk ) (respectively I}(k), I, u(k)) C
RA is the direct sum of invariant subspaces associated to Jordan blocks of A’ with
non-positive (respectively negative, positive) Lyapunov exponents. It follows that there
exist C, 64, 0_ > 0 such that

IAY h| < CnM~Yn) forall h € TP and n > 0. 4.2)
I(AY'h|| < C exp(—nO_) ||| forall h € I'™ and n > 0. 4.3)
[(AD)™"h|| < Cexp(—nby)||h|| forall h € I and n > 0. (4.4)

It is easy to show that FC(Sk) C Fo(k). Denote by
U® : LSSG(Ugea ) — LSSG(Ugea X))/ P
the projection on the quotient space. Let us consider two linear operators C%) :

LSSGoUgeald?) — 1Y and P : TSSGo(Upeald”) — LSSGo(Upeald)
given by

k
COo =7 m, I)xm and Po =9 —CWe.
acA

Then m(Pék)go, Io(,k)) = 0 for each o € A. Moreover,

1C® el 1wy < Nl (4.5)
and, by equation (2.24) in Proposition 2.5,

1Pl 1wy < 8HR1LLY (p). (4.6)

Since Sk, X)L = 1% and Sk, &) : I® — 1® is invertible (see [26]), the
quotient linear transformation

Sk, k') : TSSG(Ugea 1)/ T % — LSSG(Ugeal !y 1)

is well defined and S, (k, k') : I'®)/ Fc(f) — r® / Fc(f/) is invertible. Moreover,
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Sutk, kK)o UR g = UX) o Sk, k') for ¢ € LSSG(Ugeal ). .7

Since RA = I'® = 'Y @ ', the linear operators A’ : 'Y — ¥ and
Al - 1Oy FC(B) — I (O) / FC(S) are isomorphic. In view of (4.4), it follows that there
exists C’ > 0 such that

1A (h + LY < C exp(—nby)||h + T
forall h + T, C(SO) eror, C(SO) and n > 0. Consequently,
1(Su ke, KN (h + LY < Cexp(—(K — ko) |1h + TP (4.8)
forh + I e r®/r* o<k <k

Lemma 4.1 For every function ¢ € LSSGo(uaEAID(,k)), the following limit exists in
k) ) k),
Iy /Ty

AP0 = Jim U® oSk, k)~ o (S(k, Kyo PO — p) o sk, k/)) 0. (49)
Moreover, there exists K > 0 such that
IAP® | < KLYV (@) for every ¢ € LSSGo(UgeaI X)) and k > 0. (4.10)
Proof Let us first show that given ¢ € LSSGo(Lye Alék)), one has
(Stk. k' o PF — P&V o Sk, kg = C*) 0 Sk, k) 0 PPp e 1K) (@11
As g = Pék)ga + C® g, we have
P& o Sk, kg = P 0 Sk, Ky 0 PP+ PF) 0 Sk, k) 0 g,
Since S(k, k') o CH g € Fo(k/), we obtain Po(k,) o S(k, k") o C®¢p = 0, and hence

Sk, kK)o PVg — PE) o Sk, Ky
=Stk k) o PP — P o Sk, k) 0 PPy
=¥ oSk, K)o PPy er®.
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In view of (4.11), for 0 < k < k/, using the telescopic nature of the expression below,
we have

Sk, Ky o PO — P*) o S(k, k')
= > (S(r, K)o P\ o Stk,r) — S+ 1,k)0 P{V o Sk, r + 1))

k<r<k'

= > (se+1K)(ser+ 1o R = BT o s6r 4 1) Sk 1)
k<r<k'

= > Sr+1LK)oC" VoS r+1)0 Py o Stk.r)
k<r<k’

and the operator takes values in the subspace Fo(k/) which is included in the domain
of the operator S(k, k")~!. Thus, in view of (4.7),

U® o Sk, k') o (S, k) o PP — P& o Sk, K'))
= > URoSkor+D"oC" VoSt r+1)0 P 0 Sk, 1)

k<r<k’

= > Suk.r+ DT oU oo S r + 1) 0 P 0 Sk, 7).

k<r<k’
Moreover, using (4.5), (3.1), (4.6) and (3.23) consecutively we obtain for k < r < k/,

||C(r+1) oS(r,r+1)o PO(V) o S(k, I’)(p||L1(,(r+|))
< ISt r+1) 0 Py 0 Sty Mell 1oy < 1Py 0 SU, @l 1)
<8O - LV (Stk,r)p) < 8CIIV 1LY ().

By (4.1),

ICT* D o Sr,r + 1) 0 P 0 Sk, g
110

< 8dv(A)Cm$7/(§0) < 8dv(A)|A|CLY (¢).

Next let consider the series in Fo(k) / I“L(f ) given by

S (Sulk.r + 1) o UV 0 €D 0 S+ 1) 0 PV 0 Stk ). (4.12)

r>k

Since [UD ] = 1and U+ oCOHDoS(r, r4+1)0 P oSk, r)g € IV ri+Y,
by (4.8), the norm of the r-th element of the series (4.12) is bounded from above by
8dC'Cv(A)|| Al exp(—(r — k)0L).LYV (¢). As
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K :=)"8dC'Cv(A)||Allexp(—(r — k)6;) < +o0,

r>k

the series (4.12) converges in I“O(k) / I“éf ). Since, as shown above, the limit in (4.9) is
the limit of the sequence of partial sums of the series (4.12), this gives that AP® g is
well defined. Moreover, since the constant K is independent on k, we get (4.10). The
proof is complete. O

Definition 4.1 Let P® : LSSGo(Uyea ) — LSSGo(Uyeal®)/ I be the
operator given by P® = U® o p¥ — Ap®).

Remark 4.1 Note that if ¢ € Fo(k) then Po(k,)(S(k, k")) = 0 for all k¥’ > k, hence
AP® gy =0and PPy = 0.

The correction AP® is defined so that P® has the crucial property of commuting
with the special Birkhoff sums operators, as shown by the next Lemma.

Lemma 4.2 Forall0 <k <k’ and ¢ € mo(uaeﬂoﬁ")) we have
Su(k, kK)o P®p = P& 6 Sk, k)g. (4.13)
Moreover,
POl 1 gy 0 < B+ KOLLY (p). (4.14)
Proof Fork <k’ < r, one can verify that
St Ky o (PP =Sk, o (Stkoryo PP = B 0 Sk, 1))
= (R = st o (K. o BY = P 0 S 1)) ) 0 S, K.
In view of (4.7), it follows that
Sutk K)o U o (P = Sk, )™ (St 0 P = P 0 5K, 1)) )
= U o Sk, k') o (Po(k) — Sk, )" (S(k, o p® — P o sk, r)))
= U™ (P = s (S o Y = B 0 S 1)) Sk K.
Taking the limit as r — oo, since for j = k and j = k’ one has
lim U9 o (R = $G.n ™ o (SG.r o B = PV 0 5(.n)) ¢ = PP

we get S, (k, k') o PR g = P®) o S(k, kg, i.e. (4.13).
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Moreover, from Definition 4.1, [|[U®|| = 1, (4.6) and (4.10), we get
k
IPOI 1wy < 1B @iy + 11P114PPg)|
<B+KIP LY (),

which proves (4.14) and completes the proof. O

Assume additionally that T is of hyperbolic periodic type, i.e. 6, > 0. By
Lemma 2.2, there exists a bijection £ : £(r) — X (i) such that A™'b(0) = b(£O)
for O € X (). Moreover, by Remark 2.5, we can assume that Ab(O) = b(O)
for each O € X(w), and hence Alxerq, = Id. It follows that the Jordan canon-
ical form of A’ has x — 1 simple eigenvalues 1 as A, hence the dimension of

I}(O) ={h e RA: A'h = h}is greater or equal than x — 1. Since 6, > 0 and
2¢ +x — 1 =d, it follows that &im I'\") = dim I'”’ = g, dim '’ =« — 1 and

RA=r® = r©®grogro
is an A’-invariant decompositions. As F(O) @ F(O) FC(? ) C F(O) we also have
]—.(0) F(O) e I—v(O) ® (F(O) n F(O))

Recall that FS(O) @ Fu(o) C Hy. Thus, when T is of hyperbolic periodic type these
subspace have the same dimension, so they are equal. It follows that

re — F(k) ® F(k) D F(k) H; = r® g r®
s u

(4.15)
I—v(k) F(k) D I"(k) e (Ft(k) N F()(k))

for k > 0 is a family of decomposition invariant with respect to the renormalization
operators S(k, k') for0 < k < k.

Proof of Theorem 4.1 The proof is split into two parts.

Part I: Estimates of Birkhoff sums for corrected cocycles

We first prove that there exist C1, C, > 0 such that for every ¢ € LSSGo(Uge AIO(,()))
ifg+ FL(AO) POyptheng — ¢ € F( ) and for any k > 1 we have

1 - Cy _
T ISO@ g, < CI.LYV (k™ + anny(,(m)w L @.16)

If additionally T is of hyperbolic periodic type and ¢ € LSSGo(Lye 4 10(50)) then for
any k >0

! _ C,
Gl ISEY @ 1wy < CLLY (@) + 5 |1(0)| ||(p||L1(1(0>) (4.17)
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Let us first show that g — ¢ € FO(O) and (4.16). Since U0¢ = g+ 'Y = p©Oy,
U0 = U 6 PO — AP0y = UOy _ y© o Oy _ ApOy,
wehave p — 9 € U 0 CO¢ + APOg c IV In view of (4.7) and (4.13),
UP o Sk)g = S,(k) o UV = S, (k) o PPy = PP 5 S(k)p.
Therefore, from (4.14) and (3.23), we have

10 0 SWPN L1y = 1P SOOI L1y
< 8+ K)ClIP 1LY (p).

It follows from the definition of || - (100, On the quotient space that for every

”Ll
k > 0 there exists ¢ € LSSGo(Uge Alo(tk)) and hy € Fc(sk) such that

S(K)G = ¢ + he and [l gkl 100y < B+ K)CII® L7 (g). (4.18)
Next note that
Gk +hip1 =Sk + 1)@ = Sk, k+ 1)SK)@ = Sk, k + Do + A'hg,  (4.19)

so setting Ahgy1 = hiy1 — A'hy (Ahg = hg) we have Ahgy = —@py1 + Sk, k +
1)¢r. Moreover, by (3.1) and (4.18), for k > 1,

| Ahkllprray = llok + Stk — 1, K)@r—1ll L1 w0
(%) %)
< ||€0k||L1(1(k)) + IStk — 1, k)gr—1 ||L1([(k))
< llekllprray + l@e—1llprpa—n,y
1147 K
< (1+ W)(8 + K)CIDLLY (9)

< (A +IIADB+ K)CIPLLY (p).
It follows from (4.1) that || Ahg || < dv(A)(1 + ||Al)@ + K)C LY (p) for k > 1 and

dv(A) dv(A)
| Aholl < WH}!OHLI(/(O)) = WH(P —@oll 10

< dv(A) (||a||m<o>>/|1<°>| + @+ K)czv(w) :
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Since ik = 3oy (A Ahy—y and Ay € TE) by (4.2),

il < D0 AN Ayl <= D MM Ak |
0<I<k 0<i<k

< 1.2V (@, + C21Bll 1 0, /11O KM

for some Cj, C2 > 0. Setting C; := C| + (8 + k)C, in view of (4.18), it follows that
fork > 1,

ISEPN L1 gy < Newll iy + 1T® Al
< 1O (27 @K + ColIgl 1oy /11O KM ).

This concludes the proof of (4.16).

Let us now prove (4.17), assuming that 7 is of hyperbolic periodic type and ¢ €
LSSGo(Uye Alo(lo)). Then, as shown just before the proof, Fc(f) = Fc(k) &) ﬂ(k) and
H, = Fs(k) ® Fu(k) are invariant direct sum decompositions. Let iy = hy, + hy, where
hi Fc(k) and hy € Fs(k) C Hy.ByRemark 2.4, A™ (hy) = 0. In view of Lemma 3.2,
(4.18) and Remark 2.6, it follows that O(hy) = 0 and

O@) = O(S(k)p) = O(pk) + O(hy) for every O € ().

Suppose that

px) =— Z(C; log(I1[{(x —la)/I11}) + Cy log([I|{(re — x)/I}) + g(x),
acA

where g € BV! (Uyc4ly). Then @ = ¢ + h for some h € 1“0(0). Thus .Z (@) = Z(p)
and since Var(g + h) = Var(g) we have 7 (¢) = £V (¢). Thus, by Proposi-
tion 3.3, L7 (Sk)p) < CLV () = CLY (p). Similarly, since ¢ = S(k)@ — hg,
it follows that £ ¥ (1) = LV (S(k)@) < C.L Y (p). Thus, by Lemma 2.6, for every
O € X () we can estimate O(¢py) and O(p) respectively by

1
00! = 2v(A) / loe () dx + 242 (1)

1K)
1
< 24v(A) 17y Ikl g, + 24CL7 (@),
1

0@)] < 2dV(A)m||¢||L1(1<O)) +2d L7 (g).
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Hence, by (4.18), |O(¢r)| < 2dC(wv(A)@B + K) + 1).Z ¥ (). It follows that there
exist K1, K> > 0 such that, for every O € X (),

. IR
O] < 10(gi)| + 10@)| = K1L7 (9) + szllfﬂﬂuuw),

so, by Remark 2.6,

IA™ () = Jmax O < K1 LV (@) + K2 l1Bll 1oy /1T D).

Since, by Remark 2.4, A™ : I’c(k) — R¥0(™) jgan isomorphism of linear spaces, there
exists K’ > 1 such that ||z|| < K'||A™h| for every h € Fc(k). It follows that

1
Al < K’ (Klf”f/(qi) + K2|1(0)| 121 1(0))) (4.20)

Let Ahy, = th ’hi for k > 0 and Ahy = hg. Then from (4.19), we have

Ahi-H = —@rr1+ Sk, k+ Dop — hjp + A’hi
= —@kt1 + Sk, k + Dogp — hj g + hy.

Therefore, by (3.1), (4.1), (4.18) and (4.20), for all k > 1,

||Ahk||L1(1(k>) llox + hk”Ll([(k)) + 1Stk — 1, k) (-1 + hk 1)||L1(1(1<))
< llerll gy + gl Loy + lok—1llprga—ny + gyl g ga-—ny

/

K'Ky _
<11+ 14D ((8+ K)C+ KKDLY (@) + T Il

It follows from (4.1) that there exist constants K|, K > 0 such that for k > 1
IAR} | < K1.LY (9) + K39l 110y /1T,
while for k = 0 we have

ARGl = gl = 119 — wo — gl
dv(A) ,
= ||h |+ —=— |I<O)| (”QO”LI([(O)) + ||‘P0||L1(1(0)))

< Ki.LV(p)+ Ké||$||L1(1(0>)/|I(0)|.
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Since hj = 30 (AN Ak}, and Ah§ € I, it follows from (4.3) that

Ihgl < D0 AN Ary Il < D7 Cexp(=10-)[| ARyl

0<i<k 0<i<k
K/ LV (p) + K59 1O
c (0) 2@l Loy /1 I' @21)
1 —exp(—60-)

Combining (4.18), (4.20) and (4.21), we find that for some Cq, C» > 0

1 . 1
W”S(k)QDHLl(](k)) = W“‘Pk”Ll(l(k)) + gl + Nl gl

IA

CL.LY (@) + C2l@ll 11 0y /1T ).
Part II: Correction operator

Let us first show that for every ¢ € LSSGo(Lyealy) there exists a unique & €
I M(O) NI 0(0) such that ¢ — h € P©¢, where P is the operator in Definition 4.1.
Sincep—¢ € FO(O) = (Fu(o) N FO(O)) ® FC(A? ), there exist 1 € Fu(o) N FO(O) andh’ € FC(SO )
suchthatp —h =@+ h'. As € PO, it follows that

p—heg+ O =p0y
Suppose that i1, ho € Fu(o) N FO(O) are vectors such that

0=+ ==+ T = POy,

Then [[S(k) (@ = k)l 1oy /11 ®] and 1S (K) (9 = h2) | 11w, /11| grow polynomi-
ally in k by (4.16). Thus,

1A, (hy — ho) |l < 1SG) (hy — h)ll 1wy /1T P
lynomiall 11, s0 hy — h O s - o O
grows polynomially as well, so i1 2 € Iy Since hy —hy € I, and Iy N
FMO) = {0}, it follows that h; = h,. Thus, there exists a unique linear operator
b : LSSGo(Uyealy) — Fu(o) NI 0(0), called the correction operator, such that
9 — b+ Y =PO).

Note that, by Remark 4.1, PO (h) =0foreach h € FO(O), SO

by =h it he LONTY and k) =0 if he LY. (4.22)

In particular, the image of b is Fu(o) N FO(O) which has dimension g — 1.
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In view of (4.14) the operator
P© : L85Gy (Ugeale) — LSSGo(Ugel) /T

is bounded with respect to the norm || - || Lm0 Therefore, by the closed graph

theorem, the operator l is also bounded. Indeed, if ¢, — ¢ in LSSGq and h(¢,) — &
in Fu(o) NI 0(0) then have both
POp, — P09 =g i) + I,

PO, =@, — b))+ TP - o —h+10,

so from one hand h(p) — h € FM(O) N FO(O) and at the same time h(p) — h € FC(SO ), SO
h = h(g). Since the vector norm and the L'-norm are equivalent on I"? by (4.1), we
get that the operator is bounded. Suppose now that h(¢) = 0. Then

p=9—hip)ep—hip)+ I =PO0).

Now parts (1) and (2) of the Theorem follows directly from (4.16) and (4.17). This
concludes the proof. O

The following Lemma will be used several times in Sect. 6.3.

Lemma 4.3 If the cocycle ¢ € BVo(Uyealy) is a measurable coboundary then
b(p) = 0.

Proof Suppose that ¢ € BVo(Uyealy) and ¢ = & — & o T for a measurable function
£:1 — R.Seth = h(p). Since ¢ —h € POy and the operator P is an exten-
sion of the operator PO defined in [5], by Theorem C.6 in [5], there exists constants
C, M > Osuch that o™ — h™||g, < ClogM n. Moreover, as shown in Lemma 4.1
in [5], there exists § > O such that for each &« € A and k > O there exists a mea-
surable set CX) I such that Leb(CP) > § > 0 and h(Qe®) (x) = ((A')*h), for
all x € Cék). Since ¢ is a coboundary, by Lusin’s theorem, there exist K > 0 and a
sequence (By)k>o of measurable sets with Leb(By) > 1 — § such that |<p(k) x| <K

for all x € By and k > 0. Then taking x € Cék) N Bg, k) # ¥, forall « € A we get

I((AD )| = |7 Ca®) (1))
< |9 Q@) (x)| 4+ ClogM Qu(k) < K 4+ CkM logM || A].

Therefore ||(A")*h| < K + CkM log" ||A| fork > 1,s0h e O N, ={0}). O

4.2 Cohomological reduction

In this section we construct a correction operator for piecewise absolutely continuous
functions with derivative with logarithmic singularities and use it to prove the follow-
ing Proposition 4.1, which is both needed to complete the proof of Theorem 1.3 and
will be used also in the proof of Theorem 1.1.
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Proposition 4.1 Assume that T is of periodic type. Then every ¢ € ACo(Uyealy)
with ¢’ € LSSG(Ugealy) is cohomologous (via a continuous transfer function) to a
cocycle ¥ € PLo(Uyealy) with s(W) = s(¢). In particular, if additionally s(¢) = 0
then ¢ is cohomologous (via a continuous transfer function) to h € I O(O). Moreover,

ifh e FS(O) then h is a coboundary with continuous transfer function.

The rest of this section is devoted to the proof of Proposition 4.1. Denote by
AC} (Ugpea1sY) the subspace of ¢ € AC)(Uyeals”) with ¢ € LSSGo(Uyeald”)
and h(¢’) = 0. In view of Theorem 4.1, for every ¢ € AC‘(Y)(UO[EAIO({O)) and k > 1,

Var(S(k)g) = (1M (€127 (¢') + C2 Var /1)) (4.23)
Denote by
0% : ACo(Ugeald) — AC)Ugeald)/ 1P
the projection on the quotient space. Since S(k, k’)I}(k) = Fs(k/) we can define the

quotient linear transformation of S(k, k'),
S5k, k') : ACo(Lae al)/ TP — AC)MLigeald)/ I,
Then
Sk, k) o UR g = T*) o Sk, k') for ¢ € ACo(Ugeal®). (4.24)

Moreover, S,(k, k') : T® /& — P& r*) is invertible. Since A’ on I"© /9
is isomorphic to A’ on FC(O) @ Fu(o), we get

IS,k KN~ + TEN ) < Ck' =M h+ TP it K >k (4.25)
Lemma 4.4 The operator AP® ACB(uaeAIOSO)) — r®;r®,

Aﬁ(k) — Z(Sb(k’ r 4 1))—1 ° l7(r+1) ° C(r+1) o S(I", r 4+ 1) ° Pér) ° S(k, }’)

r>k
is well defined and || AP®g| < K (C1|I(k)|,$”//(¢)’) + Cy Varg).

Proof In view of (4.23), for r > k we have

1Py o Sk, r)(@)llsup < Var(Sk, r)(¢))

§AQ)
<r—k+DM (|1(r)|C1$”I/(¢/) + ||I(k)||C2 Vargo).
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Since [T+D|| < 1, |CU+D| < 1, IS, r + Dl = Al and [I7] = [1®]/ 077,
by (4.25),

1Sy e r 4+ 1) o T 0 €OV 6 5 7 + 1) 0 P 0 Sk, 1) (@)
r+1—kM-!
S -

r—k

LAl — k + DM (cl IR |29 (@) + Cs Var(p) .
P

It follows that A P® is well defined and

14PPg) < k (Cl1IYV1LY (¢) + C2 Varg),
where K =3 ._,(j + 1)* p- /|| A||. This concludes the proof. o
Jj=0 1
Let P®) : ACS (UgedI8”) — ACS (UpeaI”)/ T be given by
P = G0 o p® _ AP®),

Var(S(k)(¢)) < Varg for ¢ € BV(Ugeald?), by

A

Since | P{" o SG) (@) llsup
Lemma 4.4, we get

1PPg] KC|I®129 (¢)) + (KCy + 1) Var ¢. (4.26)

A

sup/I}(k) =

Following the arguments in the proof of Lemma 4.2 for all 0 < k < k' and ¢ €
AC‘(‘)(I_IaeAlo(tk)) we get

Sy(k, kK)o PPy = P®) 6o Sk, K)o, (4.27)

Lemma 4.5 Assume that T is of periodic type. If ¢ € ACy(Uqe AIO((O)) and 9+ r® =
POy thenp — ¢ FO(O) and there exist C{", Cy', C§' > 0

IS)@llsup < exp(=kO_)(C{" LV (@) + C5' Var ¢ 4+ C5'|@llsup)-
Proof For simplicity, assume that |[7(?| = 1. Since
0% = POy = TO 6 POy — APy = §Oy — TO 6Oy — APOp,
wehave p — 9 € U 0 CO¢ + APO¢ c 1" In view of (4.24) and (4.27),
UP oSk =S,(k)oUPP = S,(k)o PPy = PP 6 Sk)p.
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Therefore, by (4.26), (3.23) and (4.23), we have

1T%® o Sk)Pl = 1PO S

SUP/F;(”
< KCIIP127 (S (@) + (K Ca + 1) Var(S(k)p)
< max(1, K" IP|(Cl.L Y (¢') + C, Var(p)).

sup /1

It follows that for every k > 0 there exists gx € ACj(Uqe AID(tk)) and hy € Fs(k) such
that

SG=ox + hes @k llsup <max(1, KM 1P| (C1 L7 (¢)) + Ch Varg) . (4.28)

AS @it + a1 = Stk + D@ = Sk, k+ D(SK)P) = Sk, k + Dy + A hy, setting
Ahjy1 = hgyr — Ahg (Ahg = hg) we have Ahyy = —@rq1 + Sk, k + Doy
Moreover, by (4.28),

ARk 1]l = k1 — Sk, k + 1)(Pk||sup = ||‘Pk+1||sup + ISk, k + 1)(ﬂk”sup
< L+ JADG + DMIED] (.2 (¢f) + C) Var g)

and || Aholl = 19 — @ollsup =< I@llsup + (C1L Y (¢) + C; Var ).
Since i = X0 (ADF ARy and ARy € I, by (4.3),

il <= D7 IAY Aml < D7 Ce D an|
0<i<k 0<i<k

< Ce " * (1@llsup + (C1L Y (¢)) + C) Var )
+ D CeEDTL 4 AN (CLL Y (¢) + C) Var )
1<i<k
< e KN Pllswp + CTLY (¢) + CY Var ).
In view of (4.28), it follows that

ISK)@llsup < NIk llsup + Il
< e ke 2y (¢ + €4 Var g + CY 1l sup)-

The following Proposition was proved in [26].

Proposition 4.2 For each bounded function ¢ : I — R, x € I andn > 0 we have

™) 2> 1ZA + DIHISO@lsup- (4.29)
1eN
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Proof of Proposition 4.1 Since ¢’ — Leb(¢') € LSSGo(Ugealy), setting h := h(¢' —
Leb(¢")) € Iy, we have h(¢' — Leb(¢') —h) = 0. Choose ¢ € ACy(Lyely) so that
¢} = ¢' — Leb(¢') — h. Then ¢ € AC(UyeAly)- In view of Lemma 4.5, there exist
hy € I'y and C > 0 such that the function ¢, := @1 + h1 € ACy(Uyealy) satisfying

”S(k)(WZ)”sup <C eXp(—é’—k)(f"f/((Pé) + Var ¢ + [l@2lsup)-

Therefore, by Proposition 4.2, for every x € [ andn > 0,

03" ()] = 2D 1ZA + DIISD@2llsup
>0

2||AlC

/
= 1 —exp(—6_) (LY (p2) + Var g2 + 92l sup)-

In view of Proposition 2.4, it follows that ¢, is a coboundary with a continuous transfer
function. Let ¥ := ¢ — ¢ € ACo(Ugealy)-

V=¢ —¢+ (@1 —@) =¢ — (¢ —Leb(¢') —h) = Leb(¢') + h € I.

It follows that ¥ € PLo(Ugealy). Since h € Iy and v' = Leb(¢’) + h, we also get
s(Y) = Leb(y') = Leb(¢') = s(¢).

Suppose that & € I}(O). In view of Proposition 4.2 and (4.4), for every x € I and
n >0,

KD )] < 2D NANSDhllsup =2 IAIIAY A
>0 =0
< 2C|A[ D e < oo.
>0

By Proposition 2.4, h is a coboundary with a continuous transfer function, which
completes the proof. O

5 Ergodicity
In this section we prove ergodicity for the corrected cocycle over IETs (Theorem 1.2).

Let b be the correction operator defined in Sect. 4.1.

Theorem 5.1 Let T : I — [ be an IET of hyperbolic periodic type and ¢ €
LSSGo(Ugealy) such that h(p) = 0. If ZL(¢) # 0 (i.e. not all constants Cai are
zero) then the skew product T, is ergodic.

The proof is given at the end of Sect. 5.2. Theorem 5.1 implies Theorem 1.2:

Proof of Theorem 1.2 Given ¢ € LSSGq(Ugealy) such that Z(p) # 0, let x =
h(¢p). By Theorem 4.1, x is constant on each I, belongs to a g — 1 dimensional
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subspace of I'® and since h(¢ — x) = 0, the skew product Ty is ergodic by
Theorem 5.1. O

For the rest of this section, assume that 7 : I — [ is an IET of hyperbolic peri-
odic type, |[I| = 1 and ¢ is a cocycle in LSSGo(Ugealy) such that Z(¢) # O.
To prove Theorem 5.1, we will use the ergodicity criterion given by Proposition 2.3
in Sect. 2.1. In Sect. 5.1 we will construct the rigidity sets for Proposition 2.3 and
prove some preliminary Lemmas, while in Sect. 5.2 we will verify that they satisfy
the assumptions of Proposition 2.3.

5.1 Rigidity sets with large oscillations of Birkhoff sums

Katok proved in [20] that for any interval exchange transformation there exists a
sequence of Borel sets (=) and an increasing sequence of numbers (g,) and § > 0
such that

Leb(E)) > 6, Leb(EnAT_lEn) — 0 and sup d(x,T?x) - 0. (5.1)

xe&,

We call sequences (=,) and (g,) with the above property rigidity sets and rigidity
times respectively. We present here below a particular variation on the construction
of Katok, using Rauzy—Veech induction (Definition 5.1), which allows us to obtain
further properties (in particular Lemma 5.3) needed in the following sections.®

Notation Let @ € A be such that mo(o) = 1, i.e. Iz is the first of the intervals
exchanged by T'. Notice that for each n > 0 we have né")(ﬁ) = 1.

Lemma 5.1 For every ¢ € LSG(Ugealy) with £ (@) # O there exists By € A such
that for every integer n > 2 there exists 8, € A and j, € N so that at least one of the
following two cases holds:

— Case (R): CEO #0andrg, = fj”r(g;),
— Case (L): C;O #0andlg, = Trly",

where in both cases, one has

Oa(n —2) < ju < Qp,(n). (5.2)
Moreover, in both cases the closures of the intervals Tilt(}:) for Qg,(n) < i <
0p, (n) + Qz(n — 2) do not contain any point of End(T) = {ry, ls, o € A}.

Proof Since Z(¢) # 0, not all constants C;t are zero. If there exists at least one j
such that Cﬂ_ # 0, pick as Sy one of these S. In this case let x be the permutation

given by Lemma 3.1 applied to k = 0 and K’ = n and let 8, := x ' (Bo). Then by

6 A different variant of Katok’s construction was also used by the second author in [39,40]. We remark
that the second property in (5.1) is not always required in the definition of rigidity sets (for example, it is
not assumed in [34,39,40]), but it is important for us for the proof of ergodicity.
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Lemma 3.3 there exists 0 < j, < Qg,(n) such that (f)j" ré:') = rg,, 1.e. we have
Case (R). Consider now the case in which C; = 0 for all « € A. Since ¢ has singu-

larities of geometric type, at least one among C e (1) and CT m is zero. Thus, since
Ty

@ € LSG satisfy the symmetry condition (1.3), there must exists By such that C;O #0
and By ¢ {no_l(l), nl_l(l)}. In this case set 8, = Bo for all n. By Lemma 3.3 there
exists 0 < j, < Qg, (n) such that (T)j"lgi) = lg,, i.e. we have Case (L).

Remark that 1D Iain_z), because, since Z(n —2,n — 1) = A is a positive
matrix, each x € 1™ has to visit Iainfz) before its first return time to 7?1,
Repeating the argument one more time, we see that /" is strictly contained in Iai"_z)
(since 1™ and Iain_z) share 0 as left endpoint, this means that the right endpoint of
I™ is in the interior of Iain_z)). Remark that the interiors of the intervals T/ Iain_z)
for 0 < j < Qx(n — 2) do not contain any point of End(T). This remark implies
that, since in Case (L) we have 8, # (né")) LD Gee. l (n) # 0), in both Cases one
has j, > Qg,(n — 2) and concludes the proof that (5. 2) holds in all Cases. Since
TQf‘n(")Ié':) c I™ C 1a£” ? and, in Case (L), we also have f, # (nl(")) L)
(i.e. T (")lgi) # 0), this remark also shows that the last part of the lemma holds.

O

Definition 5.1 (Class of rigidity sets) For each n € N, let fo, B, and j, be given by
Lemma 5.1, so that we have CEO # 0and T/'rg, = rg, where Qz(n —2) < j, <
Qp, (n) (Case (R), or Cf # 0 and lg, = Tl where Qg(n —2) < ju < Qp,(n)
(Case (L)). Set g, :== Qp,(n) and p, := Qx(n — 2).

Let Jén) cI g:') be any subinterval such that |J(§") | > c|l g:')l for some ¢ independent
onn. Foreach 0 < k < p, set Jk(") = TkJ(g") and let

o

g, = U ™, (5.3)

Lemma 5.2 For any choice of Jk(") as in Definition 5.1, the sets (=) defined by (5.3)
are rigidity sets with rigidity times (q,).

Proof From (2.9), (2.10) and from Qgx(n) < ||A||? Qz(n — 2) it follows that

pn—1 C|I(O)|

— (n) (n)
Eul = J, > a(n —2)|1 —_—
N k§:0| iz e Qatn DI = e

(5.4)

Itis easy to check that forall x € &, d(T%x, x) < |I1™| (we refer to [39] for details)
and that since &), is a tower over a subset of Ié ”) |E, AT E,| < |I™|, which tends
to zero by minimality of 7. Thus the conditions in (5.1) hold. O
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We will now choose J, O é’” so that if we set J, w _ k Jé”) then for each

X e J(") TkJ(") 0 < k < p,, the Birkhoff sums (¢(@))” (x) are large, in the pre-
cise sense of Lemma 5.5 below. The rigidity sets (&),) used in the proof of ergodicity
(in Sect. 5.2) will be the ones obtained by Definition 5.1 from these submtervals A ),

We will also show that for each 0 < k < p, we can choose a subinterval Jk Jk(")

so that (¢9))/(x) is also large for x € JNk(") in the sense of Corollary 5.1 below. Since
the construction is basically symmetric in Case (R) and Case (L), we will give all the
details in Case (R) and only the definitions in Case (L).

Definition 5.2 Set [ar., by) := T*I{" for0 < k < py, where f,. p, are as in Defini-
tion 5.1. Recall that A(") |I(")| Fix 0 < ¢ < 1/2 and set

CcA )
I = (bk - EA(”), by — Tﬂ) in Case (R) ,

(5.5)
I = (ak 4 2’3 Cap + agjf) in Case (L).
Notice that since 0 < ¢ < 1/2 we have the inclusions
)\((")
(n) ,Bn :
J,' C (ak + — bk) in Case (R),
(5.6)

Ba\ :
> )m Case (L).

Jk(n) C (ak,

Lemma 5.3 In Case (R), if x € Jk(n),for each 0 < j < g, we have

() (Tix —lo} = 25 /2 foralla € A;
(i) {ra — T7x} = A5 /v(A) for all @ such that C # 0 and a # fo;
(iii) {rg, — Tix} > )»g;)/l)(A) with the only exception of j = j, — k, for which
ey’ /2 < frp, — Th*x} <@,
Moreover, for all x € J(")
(iv) the minimum spacing of points in {zj 0<j<qp}iemin{|T'x — T/x|,
for0 <i # j < qn}, is greater than Aﬂ

Remark 5.1 In Case (L), one can state and prove a Lemma analogous7 to Lemma 5.3,
in which the role of {r, — T/x} and {T/x — l,} is reversed.

Proof Recall that J,) ") s contained in I gz) which is a continuity interval for 79 and

T é") C I'™ is contained in I; =2) \which is a continuity interval for each T with

7 In the version for Case (L) the statement and the proof is actually simpler, since there is not need to
assume anything as o such that C; 7 0 in Part (ii).
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0 <k < Qg(n—2). This implies that, foreach0 < k < p,, = Qx(n —2), the images
T/TkI ;g:) for j =0, ..., g, — 1 donot contain any /, or r, in their interiors.

Thus, since Jk(") C Tklﬁ(;:), for each x € Jk(”), j=0,...,9, —land ¢ € A we
have that {T/x — I} is at least the distance of x from the left endpoint of Tk] /g::) By
(5.6) this gives that {T/x — I} > A" /2. i.e. proves (i).

For any 0 < k < p,, by Definition 5.1, since by = ré:), we have f~/"_kbk =
Tinby = rg,and ju—k > 0.1fx € J", by (5.6),A5 /2 < by —x < €A and since
T/n—* is an isometry on the interval [x, by ], this gives Ekg:)/2 <rg—Tihkx < ckl(gn),
which gives af;:) /2 < f{rgy — T *x} < ag:) in (iii).

Let us complete the proof of (iii) and prove (ii). Let x € J, k(") and let us first consider
thecase0 < j < g, —k. Remarkthfl\t the images flfg") for0 </ < Qg(n)andp € A
are disjoint and give a partition of /, denoted by P,. By Lemma 3.3, {r,, @ € A} are
contained in the orbits of the right endpoints of the intervals I ) , B € A. Moreover,
there exists a unique 8’ such that the tower TZA( , 0 <1 < Qp/(n) contains both ry,
and ry, = Tral.

By the Keane condition, since the T -orbit of by = rg’) contains rg, (recall that

by definition x (8,) = Bo), it does not contain any other r, but rg,, unless either ry,
(which belongs to the orbit) or rg, are equal to |/]. In the latter case, the T-orbit of
by = ré ") contains Fa, (recall that o, € {my (d) T (d)}) and, again by Keane’s
condition, no other r,. Indeed, one either has «, = 7, (d) and T(rau) = |I| =rg,
or o, = n(;l(d) and fr,go =1y, = |I] with By = nfl(d). Notice that in this case,
though, CO(_U = 0. Thus, if x € Jk("), forall 0 < j < g, — k with the exception of
J = Jjun — k and all @ for which C, # 0, we have that {r, — T/x} is at least the
minimum length of an element of the partition P,, which, by balance (2.9) of the

Ié’”, B € A, is at least A/(g':l)/v(A).
Letusnow consider g, —k < j < g,.By the definition of return time ¢,,, Tn
™ ¢ j}n_z)- Thus, forall g, —k < j < qu, Tka(") is contained in the Rohlin tower

?l}}"_z), 0 <1 < py, = Qg(n — 2), which does not contain any ry, ¢ € A (see
(n)
J

k

)
e

Lemma 5.1). Therefore if x € then 7'/ x belongs to an interval of the partition P,
whose right endpoint is not of the form r, a € A. It follows that {re — T/ x} is at least
the minimum length of an element of the partition P,,, which is at least Al(g'z)/ V(A).
This concludes the proof of (ii) and (iii).

Property (iv) follows from the fact already remarked that for each 0 < k < p,, the
intervals T? Tk If(}':) for 0 < i < g, are disjoint and 7' is an isometry on Tklgl’). O

Lemma 5.4 Let ¢ € LSSGo(Uyealy). Then for each x € Jé") and ) <m < p, we
have

9@ (x) — U9 (T™x)| < Ca := dv(A)(4d max(1/¢, v(A)) + M).ZL(p),

where M > 0 is the constant in Corollary 3.1 and ¢ the one in Definition 5.2.
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Proof Assume without loss of generality that |/| = 1. Consider the Case (R). First
note that, if [x, 79" x] denotes the interval with endpoints x and 79" x, we have

|91 (x) — 9 (T"0)] = 9" (x) — ™ (T920)|

< / ™Y ()] dy.

[x,T4n x]

A

Fix y € [x, T9x] C I™. As we mentioned before, the images 771 for0 < j < p,
do not contain any [, or ry in their interiors. Therefore, for every 0 < j < m

(T7y —lg} > min({T/x — Io}, {T/ T x — 1)),
{re — T7y} > min({ry — T/x}, {ry — T/Tx}))

foreacha € A. Since T/ T x = T Y (TI*!x) with0 < j+1 <m < p,, in view

of Lemma 5.3, applied to x € Jén) and T/*1x € J;'fl, we have {T/y —I,} > )»/%?/2

foralle € Aand {ry — T7y} > ¢’ /2 if C; # 0, where ¢ = min(Z, 1/v(A)).
Therefore,
yL= min (T7y —1,)" > )»/(3';)/2 foralla € A,

0<j<m

Yy = min (g — T7y)" > caff) /2 if C; #0.

0<j<m

In view of Corollary 3.1 applied to k = 0 and kX’ = m and since ¢ < 1, it follows that

(™) ICq | Cal | 4d P
e M= D=+ D e+ MLm= —5 + Man ) L ().
acA ¢ aeA 7% g)‘ﬁ,,

Therefore

4d
'™ (x) — @/ (T"x)| < |x — Tx| (—Aw + qu)g(@
C
- ﬂn

4d
<P —55 + Man ) Z(9)
che,

n 4d
< dv(A)|1g”| (T + qu).z(w)
g,
< dv(A)@d/c+ M)ZL(p),

since 1§ = |1§” | and |1{"” |gn = 15" |Qp, () < 1. The proof of Case (L) is similar.
O

For the next Lemma 5.5 and its Corollary 5.1, we will consider cocycles €
LSSGo(Ugealy), with an additional assumption. We will consider i of the usual
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form, that, for |I| = 1, is

Y(x)=— D Ciloglx —lo} — > C; loglrg —x} +gy(x),  (5.7)
acA acA

but in addition we will assume that gy, is a ¢ 2_function on each Int I, « € A and
g:/j € BV!. This allows us to consider "

Lemma 5.5 Let v € LSSGo(Uyealy) be such that gy is a €>-function on each
Intl,, « € Aand g:p € BV!. Consider the intervals J(n) defined in (5.5) with

1/2
¢ 1= (IC3 /(2 2(0) + gy Isup)) 5:8)

Then for each x € Jk(") we have |(¥")@) (x)| > cl/()»g;))z where the constant ¢y > 0
is explicitly given by ¢ = w2v(A)2 L W)/3.

Proof Since gl’p € BV, we can differentiate (5.7) twice and get

Viw=-3 G Z S Lo,
=2 v i
S P Al aP

Assume that Case (R) holds and take x € Jk("). By Lemma 5.3, the minimum of

(T/x —ly) fora € Aand 0 < j < g, is larger than A(n)/Z and the points {T7/x, 0 <

J < gn} are at least A5 "-spaced, so we have the following upper bound:

4n
z—-c&* S S TR 1
057 TIX — P | 75 20 22 T 6 o2

Reasoning in the same way, from (ii) in Lemma 5.3, for each r, such that C; # 0
and o # Bo we get an analogous estimate for

Z C, - n2v(A)? |C, |
0z e = Tix?| 7 6 )2

Clearly, the estimate holds trivially also if C; = 0, so it holds for all o # (. Again
by (iii) in Lemma 5.3, we have that {rg, — T/»~¥x} < E)»g;) , so that

Cp 1|
frgo = THtx2 |~ 20002
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If we exclude 7/» K x, for the other points in the orbit {T/x, 0 < j < gn, j # ju —k}
We can reason as e_lbove using the lower bound of (iii) in Lemma 5.3 on the minimal
value of {rg, — T/ x} and the lower bound on the spacing in (iv) to get

> A h
0% dn {rg, — Tix)? {rg, — Tin—kx}2
n—1 _
<qz 1Cp, | - 72v(A)? |Cgl _
= R0 v 6 g

Remark that, since g{b e BV,

1)) ] = gulg) lsup < 1) lsup/ (R4 foreach y e 1

m g (n) (n)\2 ..
because Ag dn = |I/3}1 |Qp,(n) < 1and 1/)‘/3" < UO‘ﬂn ) . Combining all the above
estimates and recalling that £ () = > (ICS| + |C, |), we get

_ ICgol _2n2v(A)2.,§f(w)_llg§;||sup
el s ()

Recalling the definition (5.8) of ¢, this gives

2
()M ()] = 72(A L W) /3
and concludes the proof of the Lemma for the Case (R). The Case (L) is similar. O

Corollary 5.1 If gy isa €>-function onInt I, a € A and g:p € BV then for every
0 < k < p, there exists a subinterval J~k(n) - Jk(") such that |J~k(n)| > |Jk(")|/3 and for

each x € .}Zn) we have
(P ()] = ¢'qn, where ¢ = 1?v(A)’CL () /36.

Proof By Lemma 5.5, the sign of ((4"))” is constant on Jk("), so assume without
loss of generality that (y(9"))” > 0, so that (@)’ is increasing on Jk("). Assume
we are in Case (R). Consider the value of (w(q"))’ at the middle point by — 35)\.(51) /4
of J{" . If (Y)Y (b — 3en) /4) = 0, let J{" be the right third subinterval of
Jk(”), ie. J~k(") = [bk - 251;2)/3, bi —EA/(S';)/Z]. Since ¥’ o T' is continuous on
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Jk(”) for 0 < i < gy, by mean value theorem and by monotonicity, there exists
& € (b — 321y /4. by — 261" /3) such that for each x € J;"

26"
(W) (@) = (ww)/(bk - —Csﬂ" )

362" WT e
= )| b= = )+ Y O L =
4 12 122!

where the latter inequality follows from the positivity of (v @)’ (by — 35)»;;:) /4) and
the lower bound (@) (&) > ¢ /(,\f;"))z given by Lemma 5.5.

Similarly, if (@) (by — 322" /4) < 0, we can let "' be the left third subinter-
val of fk(”), ie. 7,((”) = [bk - Ek(ﬁ'z), by — SEkg”l) /6] and reasoning as above we get
Yy (x) < — 1;(23 for all x € J;". Recalling that A}, < 1 and the definition
of ¢, this concludes the proof in Case (R). Case (L) is completely symmetric. O

5.2 Tightness and ergodicity

In this subsection we conclude the proof of Theorem 5.1. We will verify that the
assumption of the ergodicity criterion in Proposition 2.3 hold for the rigidity sets (Z),)
and rigidity times (g,,) constructed in the previous Sect. 5.1. The two following Prop-
ositions 5.1 and 5.2 each provide the proof of one of the assumptions of the ergodicity
criterium.

Proposition 5.1 Let T : I — I be an IET of periodic type. For every cocycle ¢ €
LSSGo(Ugealy) with h(p) = 0 and £ (¢) # 0 and for any rigidity sets (E,) and
rigidity times (q,) as in Definition 5.1 there exists C > 0 such that

/|(p(q”)(x)|dx <C forall n=>1. (5.9)

8]

n

Proof Let (E),) and (g,) by any rigidity sets and times as in Definition 5.1. Let us
first prove that there exists a constant C; > 0 such that for any » € N and for any

subinterval J C I é:

/I(p(q”)(x)ldx < CiI™). (5.10)
J

Recall that for x € Ié:) we have S(n)(¢)(x) = @2 ™) (x) = @) (x). Hence

J1ewwidx = [ 15w dx < 15m@li gy
J J
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Thus, (5.10) follows from Theorem 4.1.
Let us now fix any 0 < k < p,. Given x € Jk("), let x = T*y for some y € Jé").
By Lemma 5.4, |¢(9") (y) — @) (T*y)| < C3, so

9\ (x)| < 19 (T~*x)| + C, foreach x € J".

Thus, by (5.10), it follows that

/ o) (x)]dx < / o9 (T~ x)|dx + Ca| I

(n) (n)
‘]k ‘Ik

- / |9 ) (x)|dx + C21J"| < (C1 + C)IT ™).

7"
Consequently,
pn—1

J1owiax =3 [0 1ax < €+ Copal®)

g k=00

~n ‘,](

-2
< (C1+ OIS ™10a(n =2) = C1 + Ca,

which concludes the proof. O

Proposition 5.2 Let T : I — I be an IET of periodic type. For each ¢ €
LSSGo(Ugealy) such that L (p) # O there exists rigidity sets (Z,) and rigidity
times (qn) withlim, o Leb(E,) = § > 0 and ¢ > 0 such that for all s large enough
we have

limsup | [ 275" @ gx| < ¢ < 6. (5.11)

n—oo

B

Proof Since g, € BV!(Uyeualy), by Corollary 2.1, 8¢ 18 cohomologous via a contin-
uous transfer function to a piecewise linear function. Thus, there exists a continuous
h:I — Rsuchthatp = ¢ +hoT — h and gy is piecewise linear. In particular,
g:p € BV, sowe can apply Corollary 5.1 to . Let (&,,) and let (g, be the sequences
of rigidity sets and times as in Definitions 5.1 and 5.2, where the constant ¢ is given
by (5.8). In view of (5.4), passing to a subsequence if necessary, we can assume that
lim, . Leb(&,) =6 > 0.
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Since h is continuous and by the properties of rigidity sets d(T%x,x) — 0, we
have

lim /eZnis(w(q")(x)+h(T‘1”x)—h(x)) dx — lerisw(q”)(x) dx| =0. (5.12)

n—o0

B

)

n

In view of (5.12), since @) = @) 4 h o T9 — h, it is enough to prove (5.11)
for . Since =, is the union of the intervals Jk(") fork =0,...,p, — 1, we will
estimate the integral over each Jk(") = [ag, by]. Let .7;((") = [ag, I;k] C Jk(n), for
k=0,..., p, — 1, be the subintervals given by Corollary 5.1. We will first control
the integral over each fk("). Since a.e. %(w(q")) = ¢/ and |9 | > ¢'g, > O on

each .7;6(") (Corollary 5.1), using integration by parts we get

by, ,
d_(pisyln) (x)
/eis1/f<qn>(x) dx| = /—d)f(e )dx
J lSI///(q”)(x)

F(n) a
Jy k

1 isyran (x) by d 1
— e— / ”W’”(x) dx|.  (5.13)
|s| w/(‘h)(x) w/(‘h)(x)
ar 7

Let us estimate each of the two terms in (5.13) separately. By Corollary 5.1,

zw//(‘”’)(x) 2 2
- < < —. 5.14
w’(%)(x) _ ~ min F(n) hh/(q")(z)' - C/qn ( )
Tk z€Jy

Recall that for every ¢’ !-function f : J — R we have Var(f)|, = fJ | f'| dx and

that if | f| > O then Var(1/f)|; < Var(f)|; /(min; f2). Since ¥ is €' on 7,§”>,
using again Corollary 5.1 we estimate the second term by

by
,“/,(qn)(x) d ( 1 ) <V 1
J dx w/(qn)(x) - w/(%l

Ak

“Tn)

1 /(Qn)
< —y Var(v )’J;@ .

C/2qn

We can write

qn—1 qn—
Var(w’(q” )‘m —Var [ >y’ T - Z Var(y) | o -
j=0
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Assume without loss of generality that |/| = 1. Thus

Yy =->" Co > S 4o
== — T T&W,
wed {x — 1) wed {ra —x}

where g/, is of bounded variation. By Lemma 5.3, if we are in the Case (R) of
Definition 5.2 or by Remark 5.1, if we are in the Case (L), the minimum distance
of each Tff(") from each Iy, @ € A and rg, for all @ € A such that C; # 0, is
at least ck(")/Z where ¢ := min(c, v(A)~ 1y and A(") |1(")| Since the intervals

T/ Jk("), 0 < j < gn are pairwise disjoint, it follows that

] c c 2/CH|
ZVar & < Var < (“),
iz Nl gy W hagn = af
qn—1 — _ _
I (= S
& )l = = o = o
Moreover,
qn—1
i
Z Var(gw) rigm = Var(gw)‘
j=0
Therefore

qn—1
var (/4 )‘m ZVar g < %er(gm[. (5.15)
chg,

Using the estimates (5.14) and (5.15) in (5.13), foreach k =0, ..., p, — 1 we get

/e"w("")(X) dl < L i.,. I (22w +Var(g’)‘ < C ,
AR AR V)] = palsl

F(n) Bn
‘]k

where C :=2/¢' + 1/ (2dv(A)2|I(0)|$(w)/g+ Var(g:l/))l), since p, < g, and

W0 q0 = 115105, () = 110]/dv*(A), by (2.10).
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As [T = 17173 for all 0 < k < p,, we have Leb(5, \ Uy I™) <
%Leb(En), and hence

/\

pn_l
/eislll(qn)(x)dx < —Leb(un)+ Z /eim//(qn)(x) dx
€=0 |

m

n

2Lb( )+C
_e‘—l —
3T

IA

Consequently, whenever |s| > 12C/$,

oy an 2 c 3
lim sup /e“‘”(q 'Wax| < 254+ — < Zs.

]

n

O

Corollary 5.2 Let T : I — I be an IET of periodic type. If ¢ € LSSGy is a cocycle
with £ (p) # 0 then ¢ is not a coboundary.

Proof Assume by contradiction that ¢ = h — h o T for some measurable i : [ — R,
so for any n € N we have ¢@) = h o T9 — h. Since by Lusin’s theorem we can
approximate £ by a uniformly continuous function on a set of measure tending to one
and by the properties of rigidity sets d(7'9"x, x) — 0, for every real s we have

lim sup /eznis‘/’(q”)(x) dx| = lim sup /ezms(h(Tq”x)’h(x)) dx

n—0o0 n—o0

&3]
]

n n

= lim Leb(8,) =6,

n—oQ
which contradicts Proposition 5.2. Thus, ¢ cannot be a coboundary. O

Proof of Theorem 5.1 Consider the rigidity sets and times (&),), (g,), given by Prop-
osition 5.2. Since they belong to the class in Definition 5.1, they also satisfy Propo-
sition 5.1. Ergodicity of the skew product T, : I/ x R — I x R now follows from
Proposition 5.1 and Proposition 5.2 by the criterion in Proposition 2.3. O

6 Reduction of locally Hamiltonian flows to skew products

In this section we prove Theorem 1.3 (all details are put in Appendix A) and Theo-
rem 1.1 (see Sect. 6.3). Let us first recall how to represent a locally Hamiltonian flow
(¢1):cr as a special flow over an IET and set up the notation that we use in the rest of
this section.
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6.1 Special flow representation of locally Hamiltonian flows

Let (¢;);cr be a locally Hamiltonian flow determined by a closed 1-form 7 on a sym-
plectic surface (S, w). Recall that we assume that there are no saddle connections and
that the local Hamiltonian is a Morse function, so all zeros (elements of X) are simple
saddles. Let (%, v#) be the measured foliation given by (¢;),cr (see the Introduc-
tion). By a theorem of Katok (Proposition 9 in [19], see also § 3.9 in [46]), there
exists an Abelian differential  on S such that the vertical measured foliation of «
coincides with the measured foliation (%, v.#). Moreover, at each point z € ¥ the
Abelian differential o has zero with multiplicity 1. Denote by Xy : S\ ¥ — TS
the vertical vector field, i.e. (X,) = i, and let (F}’);cRr stand for the corresponding
vertical flow on S\ X. The vertical flow (F}"),;cg preserves the 2-form w, = %oz AU
on § which vanishes on Z. It follows that there exists a non-negative smooth function
W : S — R with zeros at X, and such that w, = Ww. Therefore, X = WX, on
S\ 2. It follows that there exists a smooth time change function 22 : R x § — R such
that ¢,x = F;j(tyx)x, or equivalently W (¢;x) = %(r, x) with 4(0, x) = x.

We will consider so called regular adapted coordinates on S \ X, this is coordinates
¢ relatively to which oy = d¢. If p € ¥ is a singular point then we consider singular

adapted coordinates around p, this is coordinates ¢ relatively to which oy = id % =
i¢ d¢. Then all changes of regular coordinates are given by translations. If ¢’ is a reg-
ular adapted coordinate and ¢ is a singular adapted coordinate, then ¢’ = iz%/2 + c.
Then for a regular adapted coordinate { we have w, = dR¢ A dI¢, Xy () = i
and F'¢ = ¢ + it. Moreover, for a singular adapted coordinate { we have w, =

IC12dNe AdSc, £Xo(¢) =1, and hence X4 (¢) = # It follows that for a singular
adapted coordinate ¢ = x + iy we have W(¢) = |¢|?V(¢), where V is a smooth
positive function. Hence, X (¢) = V(()E =Vx,y)(x, —y).

Let J C S\ X be a transversal smooth curve for (¢;);cr such that the boundary of
J consists of two points situated on an incoming and an outgoing separatrix respec-
tively, and the segment of each separatrix between the corresponding saddle point and
the corresponding boundary point of J contains no intersection with the interior of J.
Let y : [0, a] — J stand for the induced parametrization, i.e. v (¥ |[0,;]) = ¢ for any
t € [0, a], such that y (0) lies on an incoming separatrix and y (a) lies on an outgoing
separatrix. From now on we will identify the curve J C S with the interval [0, @) and,
by abuse the notation, we will denote by I both the interval [0, a) C R and the curve
JonsS.

Denote by T : I — [ the first-return map induced on /. In the induced param-
etrization, T : I — [ is an interval exchange transformation and it preserves the
measure induced by the restriction of v to I, which coincides with the Lebesgue
measure Leb on I. Moreover, T = T(z ), where w € 894 for some finite set A and

(, X)) € 894 X Rf satisfies the Keane condition, because by assumption (¢;);cr
has no saddle connections. Recall that /,, @ € A stand for the left end points of the
exchanged intervals.

Lemma 6.1 If (¢;),cr is of hyperbolic periodic type then the IET T can be chosen to
be of hyperbolic periodic type.
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Proof Let W : § — S be the diffeomorphism that fixes the flow foliation .# and
rescales by p < 1 the transversal measure v . Since ¥ fixes ¥ (as a set) and sends
leaves to leaves, replacing ¥ by one of its powers, we can assume that there exists a
point zop € ¥ such that ¥ (z9) = zo and all separatrixes emanating from zg are fixed.
Consider a transversal y : [0,a] — S such that y(0) = z¢ and the endpoint y (a)
is on an outgoing separatrix. Up to modification of ¥ by an isotopy which leaves
(Z, vg) invariant, one can also assume that ¥ (y) C y (see for example §9 in [7]).
The first return map on y in the induced parametrization, as seen above, gives an
IETT = T(z,» : I — I with I = [0, a). Moreover, as ¥ (vz) = p vz, we have
¥ (y(x)) = y(px) for every x € [0, a]. Since ¥ (%) = % and ¥ (y) C y, v(pa)
still belongs to an outgoing separatrix and [0, pa) is admissible in the sense defined
by Veech in §3 in [41]. This, as shown by Rauzy and Veech (see Theorem 23 in [33]
and Remark 8.1 in [43]), implies that [0, pa) = I¥ for some k > 1 (recall that I* is
the k' inducing interval of Rauzy—Veech induction) and that the first return map on
I =0, pa) is R¥(T).

Every discontinuity /, of T is such that y (/) is the first backward intersection of
one of the incoming separatrix with the interior of y. Since y(ply) = ¥ (v (ly)) and
Y(y) C y, also y(ply) is the first backward intersection of an incoming separatrix
with the interior of ¥ (). This shows that the IET induced by T on / k=10, p a) has
data (7, p 1), hence R¥(T) = T(x,pa)- This shows that O (RKT) = ©(T) and thus
OR"KTY = O(R"T) forn > 0. Let A = O(RFT) be the period matrix. Since
the orbit of 7" under R is obviously infinite, A” is a positive matrix for some m > 1,
by Lemma in §1.2.4 in [26]. It follows that replacing ¥ by its mth iteration, we can
assume A is a positive matrix. Therefore 7 is of period type.

Moreover, the action induced by ¥ on H{ (S, R) is isomorphic to the action of A on
RA/ ker Q,, and hence to the action of (A’)’1 on Hy (see §2 and §7 in [46]). Thus,
the assumption that (¢, ),cR is of hyperbolic periodic type is equivalent to 7 being of
hyperbolic periodic type.

Finally we want to choose a transversal y as in the construction before Lemma 6.1,
i.e. such that y([0,a]) C S\ ¥ and y(0) lies on an incoming separatrix and y (a)
lies on an outgoing separatrix. One can obtain such a transversal by homotoping y
slightly along the leaves of .% to a new y’ so that y’(0) now belongs to an incoming
separatrix for zg. If the homotopy is small enough so that X is not hit, the first return
on y’ is still given by the same IET 7. O

Seta = m (1) € A. Denote by t : I — R, the first-return time map of the
flow (¢;);cRr to 1. This map is well defined and smooth on the interior of each inter-
val I, @ € A, and t has a singularity of logarithmic type at each point l,, o« € A
(see [22]) except for the right-side of /y; here the one-sided limit of T from the left
exists.® The precise nature of these singularities is analyzed in Theorem 6.1 below. The
considerations so far show that the measure-preserving flow (¢;);er on (S, v) is mea-

8 We remark that this is due to our convention of choosing y(0) on an incoming separatrix and y (a) on
an outgoing one. If we had chosen y (0) on an outgoing separatrix and y (a) on an incoming one, the finite
one-sided limit from the right would be at [z where @ = 7y ! (1) e A.

@ Springer



Ergodic properties of infinite extensions of area-preserving flows 1351

sure-theoretically isomorphic to the special flow 7T7. An isomorphism is established
bythemap I : I" — S, I'(x,s) = ¢y (x).

Remark 6.1 Conversely, given an IET T : I — I of hyperbolic periodic type, it is
possible to construct functions T : I — RT (which belong to LSSG) so that the
special flow T'" is measure-theoretically isomorphic to a locally Hamiltonian flow of
periodic type (we refer to [5], § 7.1). This construction hence gives explicit examples
of such flows.

6.2 Extensions as special flows

Let us now consider an extension (q),f )ieR given by a €>*<-function f : § — R.
Let us consider its transversal submanifold / x R C S x R. Note that every point
(y(x),y) € y(ntl,) x R returns to I x R and the return time is T(x, y) = t(x).
Denote by ¢ : [Jyc4 Int o — R the *T¢-function

T(x)

pr(x) = F(x), yx)) = / S (psy(x))ds, forx € U Int 1. (6.1)
0 acA

Notice that

Lebiop) = [osmar= [ fav=vip. 6.2)

1 S

Let us consider the skew product 7y, : (I x R, Leb; x Lebr) — (I xR, Leby x
Lebr), Ty, (x,y) = (Tx,y + ¢y(x)) and the special flow (T, )? built over 7, , and
under the roof function 7 : I/ x R — R, given by T(x, y) = t(x). Thus, by standard
arguments, this show the following.

Lemma 6.2 The special flow (T, )T is measure-theoretically isomorphic to the flow
(@) on (S x R, v x Lebp). O

Recall that ¢ 1 is %€ in the interior of each interval I, € A. The following Propo-
sition provides further properties of the singularities of ¢ ¢ at the endpoints of I, a €

A and their symmetry properties. Recall that o = 7| '(1) and set@ = Ty Ya).

+
a’

Theorem 6.1 For every €*+¢-function f : S — R there exist CT, o € A, with

Ch =Cg =0, and g € AC(Uyeuly) such that

orn=-> (c; log (m [x L ]) +C; log (|1| [ - ])) + (0.
= ] ]

Moreover, ¢y € LSSG(Uyec Aly) and g = g1 + g2 with g1, g2 € AC(Uye aly) sat-
isfying g1 € LSSG(UyeAly) and g, € AC(Uyealy). There exists a constant C > 0
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such that

C' @I = Lep <C D If@land Igley < Cllfllgz (63)

Z€X Z€X
for every f € €*(S). In particular, the linear operator
C*(S) > f > ¢f € LSSG(Ugealy)

is bounded.

The proof of this Theorem is presented in Appendix A. In Appendix A we also prove
the following Proposition:

Proposition 6.1 If f(z) = 0foreachz € ¥ then oy € AC(UyeAly) and O(pr) =0
for every O € X ().

Collecting together all these statements and Proposition 4.1 (proved in Sect. 4.2)
we get the proof of Theorem 1.3.

Proof of Theorem 1.3 The first part of the Theorem 1.3 follows by combining
Lemma 6.2 and Theorem 6.1 and the second part using also Lemma 6.1 and Prop-
osition 4.1 and recalling that special flows with cohomologous roof functions are
measure-theoretically isomorphic. O

6.3 The dichotomy for extensions

In this section we prove Theorem 1.1. We will use the following Lemma which exploits
the special flow representation in Sect. 6.2.

Lemma 6.3 The flow ((btf )ieR is ergodic if and only if the skew product T, is ergo-
dic. For every’ f € €°¢(S, X) the flow (thf)teR is reducible if and only if ¢y is a
coboundary with a continuous transfer function.

The proof is standard apart from the continuity of the transfer function. We include it
for completeness in Appendix B.

Proof of Theorem 1.1 Let (¢¢);cr be a locally Hamiltonian flow of hyperbolic peri-
odic type on S. Let us split the proof in several steps.

Step 1: Definition of the space K

Let us first define a bounded linear operator on €21€(S), and then use it to define K
asits kernel. Let v(f) := fs fdvand fo := f—v(f). By Theorem 6.1 the extension

(cb,f )rer is measure-theoretically isomorphic to a special flow built over the skew

9 This Lemma holds more generally for any f € €1(S, ), even if we need it only for f € €2te(s, D).
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product 7y, . with ¢y € LSSG(Ugeale). In view of (6.2), Leb(¢g) = v(fo) =0, so
¢f, € LSSGo(UyeAly). Consider the operator b : LSSGo(Uye 4le) — ' given by
Theorem 4.1. Let k = #X = 2(g — 1) and let

H:67(S) > Rx T and £:677(S) —> R
stand for the operators

HH =), bleg)), L) = (fo(@)zes.

Since the operators f + v(f), f + @y (by Theorem 6.1) and b (by Theorem 4.1)
are linear and bounded, §) is a bounded linear operator as well. This shows that the
kernel K of ) is a closed space. Moreover, the image of $) has dimension g since by
Theorem 4.1 the image of ) has dimension g — 1. Thus, K has codimension g.

Step 2: Invariance of K

Let us show that the operator §) is (¢;),;cr-invariant, i.e. H(f o ¢;) = H(f) for every
t € R. Since ¢, preserves v, we get v(f o ¢;) = v(f), so it suffices to prove that
h(@rop,) = h(py) foreacht € Rand f € €21 (S). Note that

T(x) t+7(x)
@fog, (X) = / f(@i4sy(x))ds = / S (@sy (x))ds
0 t

T(x) t t+T(x)

- / F(@sy(x))ds — / F@sy(0)ds + / F(@sy(0))ds.
0 0 T(x)

Let us consider the €2-function & : [ — R, &(x) = fé f(¢sy (x))ds and observe
that
t+7(x)

t
f(psy(x))ds = / S (@s 0 pr(xyy (x))ds
T(x) 0

t
:/f(q&sy(Tx))ds = £(Tx),
0

S0 @fop, = ¢y +E0T —Eand gr_op, = & —E0T. As (fody — [)() =0
for each z € X, by Proposition 6.1, ¢ s rog, € ACo(Uge4lw). Since we showed that
® fog,— 18 a coboundary, Lemma 4.3 implies that h(¢ rog,— ) = 0. Thus, by linearity,
b(@rop,) = b(@r), which completes the proof of invariance of . In particular, it
follows that the kernel K is (¢;);cr-invariant.

@ Springer



1354 K. Fraczek, C. Ulcigrai

Step 3: Ergodicity

We need to prove that if f belongs to K C €2%¢ and 2 ex [fo(2)| # 0, then the

flow (cb,f),eR on S x R is ergodic. Since f € K, we know that H(f) = 0. In
particular we have Leb(py) = v(f) =0, b(¢y) = 0 and since f = fo, |£(f)I =
ZZGE | fo(z)| # 0. By Lemma 6.3, it suffices to show the skew product Ty, 1 I% R —
I x R is ergodic.

In view of Theorem 6.1, the function ¢ € LSSGo(Uye 4ly) can be decomposed
as (py — g1) + g1 where we can choose g1 € ACo(Uycaly) and ¢r — g1 €
LSSGo(Uyealy), while gﬂ € LSSG(Ugenly). By Proposition 4.1, g1 is cohomol-
ogous via a continuous transfer function to a function in PLy(Uye 41y), which is in
particular BV !. Thus, ¢y can be decomposed as ¢ s + g with ¢ € LSSGo(Uye A1)
and g € ACo(Uyealy) is a coboundary. Next, by Lemma 4.3, h(g) = 0, so
b(@r) = blgs) = 0. Since by (6.3) we have Z(@y) = L(¢5) = [L(H)I/C > 0,
the skew product 7, is ergodic by Theorem 5.1. Since @ and @ ¢ are cohomologous,
15, and T, are metrically isomorphic, so also T, is ergodic. This completes the
proof of the first case of the dichotomy.

Step 4: Reducibility

Let us now prove that if f € K and > .5 |fo(z)| = O then the flow (cD,f)teR on
S x R is reducible. Since f € K, v(f) = 0 and f = fp, so from (6.2) we have
Leb(¢r) = 0 and from (6.3) we have .Z(¢r) = 0. It follows from Theorem 6.1 that
¢r € ACq and gp} € LSSG. Moreover, Proposition 6.1 also gives that O(¢ ) = 0 for
each O € X (). Summing over O € X(m), by (2.29), this shows that s(¢r) = 0.
Moreover, since by assumption f € K, h(¢s) = 0. Let us show that this implies that
@ is a coboundary with a continuous transfer function.

By Proposition 4.1, there exist i € I such that ¢  — h is a coboundary with a con-
tinuous transfer function, thatis s —h = g—goT and g : I — Ris continuous. Let
us show that then O(¢ s — h) = O forevery O € X (7). Itis proved in [5] that for each
¢ € AC(Ugealy) and k > 1 we have O(S(k)g) = O(p) and [O(p)| =< 2d[l¢|sup-
Thus,

Oy — )| = 10(SK) (@ —h)| < 2d [|SCK)(@r — ) llsup
<2d sup sup |g(x) —g(T%®x) <2d sup |g(x)— g

acA e ® x,x'el®

and the latter supremum tends to zero as k — oo, hence O(¢ s — h) = 0. It follows
that O(h) = O(py) = 0 for every O € X (), and hence & € H; by Remark 2.6.
Moreover, since ¢ — h is a coboundary, by Lemma 4.3, h(¢ s — h) = 0 and since
h(gs) = 0 (because f € K), this gives by linearity that also h(h) = 0. In view of
(4.22), it follows that h € I'.; N\ H; = I;. Thus, by Proposition 4.1, & is a coboundary
with a continuous transfer function as well. Therefore ¢ r = (¢y — h) + h is a sum
of coboundaries with continuous transfer functions. By Lemma 6.3, this implies that

the reducibility of (®]),cg.
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Step 5: Decomposition

It is proved in [5] (see Lemma 7.4), for every h € H, there exists a function f €
Ere(S, T) with @ =h.Since h(h) = hforeachh € I, NIy C Hy, it follows that
forevery v € Rand h € I, NIy there exists f € €>1€(S, ) such that v(f) = v and
b(¢s,) = b(h) = h,hence H(f) = (v(f), h(¢s)) = (v, h). Therefore, there exists a
g-dimensional subspace # C €2 (S, ¥) suchthat §) : # — RS is alinear isomor-
phism. Given f € €>*¢(S, X), let fs € ¢ be the preimage of $(f) by this isomor-

phism. Then if we set fx := f — fx then H(fx) = H(f) — H(fx) =0,1ie. f € K.
This gives the claimed decomposition f = fx + fx and concludes the proof. O

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A
In this Appendix we prove Theorem 6.1 and Proposition 6.1. The following Lemma
will be used in the proof.

Lemma A.1 Let g : [—1, 1] x [—1, 1] = R be a €**¢-function. Then the function
£:=£5:(0,1] >R,

1

e e o

N

is of the form
£(s) = —g(0,0) logs + &(s) with €(s) = —gxy(0, 0)s logs + &(s),

where & : [0, 1] > R is an absolutely continuous function whose derivative is abso-
lutely continuous and || ||gpv < C||g|lx2. If additionally g(0, 0) = 0, then

1
1
lim &(s) =/(g (u,0)+ g (0,u)) —du. (A.1)
s—0t u
0

Proof First note that

1

1
E(s):/g(u,%) édu-i—/
J5

J5

2 (5, u) Lo, (A2)

Thus
1

£(s) =/ g (5o u) + v (u, ;)du B g(\/ES, V)

u?

J5
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1356 K. Fraczek, C. Ulcigrai

and

1
§"(s) =/ o () e i),

u3

J5
gx(\/Ev\/E)+g)7(\/E’\/E) g(\/Ev\/E)
_ + .
SA/s 52

First suppose that g(0,0) = 0, g’(0,0) = 0 and g”(0, 0) = 0. Then

10 1 = min (Hgllga (e + [y ), Ngllagase (175 + [¥12F9)
Ig'Ge, )| < min (||g||<g2(|x| + 19D, Igligare (x| + |y|1+€)) ’
lig” (e, I < gllgare (X1 + 1¥]).
It follows that

8182+
£ < 3ligllgz. 1E'()] < lIgllg2(3 — 2logs) and [E(s)] < sl_—‘iz

Since & and &” are integrable on [0, 1], & and &’ are absolutely continuous. Moreover,

1
I§lIBY = 11§ llsup + / &' () ds < 8liglie.
0

For an arbitrary g we use the following decomposition

g(x,y) =g(0,0) + gx(0,0)x + g,(0,0)y

1 1
+ 580 (0, 0027 + 26y (0, 00xy + 5850, 00 + go(x, ).
Then go is a €>"¢-function such that go, g/, and g/ vanish at (0, 0) and [|gollz2> <
5|lgll#2. As we have already proved, the function £8° and its derivative are absolutely
continuous and [|£8°||gy < 8]|goll42. By straightforward computation, we also have

£1(s) = —logs, £°(s)=&Y(s)=1-s,
1—s2

2 )

() = £ (s) = £ (s) = —s logs.

Hence

£(s) =—g(0,0)logs + (£:(0,0) + g4(0,0)) (1 —5) — gy (0, 0)s log s

1 —s2

+ (gxx 0,0) + gyy((), O)) + £80(s).
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Ergodic properties of infinite extensions of area-preserving flows 1357

It follows that &y and its derivative are absolutely continuous and

IEllBY < 2ligllgz + 1€ Iy < 42lIglle.

Assume additionally that g(0, 0) = 0. Since g is Lipschitz continuous with Lips-
chitz constant || g||1, we have

1 1
/g(u,O)ldu—/g(u,s/u)ldu
u u
0 7
v 1 / 1
s/|g(u,0)—g<o, 0>|;du+/|g(u,0)—g<u,s/u>|;du
0 NG

Vs 1
N
< llgle /du+/u—2du = ligllgr (2v/5 —s) = 0
0 Vs

as s — 0. The symmetric reasoning together with (A.2) finally gives (A.1). O

Proof of Theorem 6.1 Foreveryé > 0and z € ¥ denote by B(z, §) the closed ball of
radius § and centered at z in singular adapted coordinates. Next choose § > 0 so that
intervals [ly — 82, Iy + 8%], @ € A are pairwise disjoint and B(z,8) N I = ¢ for all
z € ¥. Forevery z € ¥ denote by O, the corresponding orbit in X (7). For simplicity
assume that || = 1.

We split the proof into several cases. In each of them we will assume that f is
supported on a part of the surface S. Then we will collect together all cases to prove
the theorem in full generality.

Non-triviality of f on a neighborhood of a singularity

First fix z € ¥ and assume that f : S — R is a %€ function which vanishes on
S\ B(z, §). Recall that each point Iy, o # o = 7, ! (1) corresponds to the first back-
ward intersection with / of an incoming separatrix of a fixed point, this fixed point
will be denoted by z;, € Z.

Regular case

Now suppose that z # z; 1y Then there exist two distinct elements «g, @) € A
T,
0

such that z = Uyy = g, and O, = {mo(ap) — 1, mo(ax;) — 1}. Let ¢ = x + iy be
the singular adapted coordinate around z. Then there exists a positive 4" *°-function
V : [=8,8] x [-8,8] — R such that X(¢) = V(x, y)(x,—y) and v = ‘f,x(;\[g on
[=48, 8] x [—6, &]. Moreover,

YLyl [=8%,8%1 = S, yi(s) = (£s5/8,£8), yi(s) = (£8, £5/0)
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1358 K. Fraczek, C. Ulcigrai

establishes an induced parameterization of the boundary of the square [, §] x
[—6, 8]. Let us consider the functions rai 1 [=82,0) U (0, 8%] — R4 such that rjt(s)
is the exit time of the point (s/§, =8) for the flow (¢;) from the set [—3§, §] x [—4, §].
Since the positive orbit of /,. , € = 0,1, hits the square [—8, ] x [—4,d] at
((=1)€6,0) and f vanishes on S \ ([—8, 8] x [=8, 8]), the function ¢, vanishes
on I\ ([lag — 8%, lay + 6*1U [l — 82, Iy, + 6%]) and

—1)€
o ()

@r(s +lo) = / @ (=1D)s/8, (=1)°8)) dt
0

for all s € [—6% 6% and e = 0,1. Fix € € {0,1} and then let (x,,y) =
¢ ((—1)s/8, (—1)€5). Then

d d
(Ext’ EYI‘) = X0, y0) =V, o) (X, — 1),

and hence

Loxw =nda 4 x0Ly =0
di Xt = Yt —)’tdtxt xidtyt_.

Therefore
Xt Yt = X0Y0 = S.

Since s # 0, it follows that x; # 0 for all # € R. By using the substitution u = x;, we
obtain du = 4x,dt = V (x;, s/x,)x;dt and

_1)€ _1)€
w ) e ()

07 (s +1a) = / F s yoydi = / f(xf,%)dr

0 0
(=D sgn(s)é 1
f(u.3) du f Is1/62 \du
= W T8 L ((=)F Su, 12 )22,
/ V(u,2) u / V<( )" sgn(s)du (—1)63u) "
(=1)es/s 151/82

In view of Lemma A.1,
@7(s) = —Cq 10g|s — Ly, | +Ec(5), Ee(s) = —Kg, (s — o) log|s — lg, | + & (s)

where & : [ly, — 82, lo, + 821 \{la.} = Ris afunction which is absolutely continuous
with absolutely continuous derivative,

Var ey, 521, ) T Varéelq,, 1, +52 < Cvlilfllg2
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and

o . 0.0

_ _ P/
< TYTTV(0,0)]

Ca Ka = Kei= =50

0, 0).
Therefore

pr(x) =—C; Z (log{x — o } +loglly, — x}) + g(x), where
€e=0,1

g) =—K; D ({x — Ly }(og{x — Ly} — 1)
e=0,1
— {la, — x}(oglly, — x} — 1)) + go(x)

and go : I — R is absolutely continuous with absolutely continuous derivative on
I'\{lay, oy}, 50 80, g(/) € AC(Uyenly). Moreover, g € AC(Uyealy) and g(x) is equal
to

C. > (log{x — Iy} + log{ly, — x})
e=0,1

ifx € I\ Ue_g i lla, — 8% lo. + 821,

C, (logfly, — x} + log{x — Iy, .} + loglla, . — x}) + E(x)
if x € [ly,, ly, + 8% and

C, (loglx — ly.} +loglx — Iy, .} + loglle, . — x}) + & (x)

if x € [ly, — 8%, 14,]. For € = 0, 1. It follows that

Varg §4|CZ| Var(log)I[(;z’]] + Z (Var§6|[la€ _82’10[6) + Varg€|(la€’la€+32])
e=0,1

£ llz0 -
54%1@%5 2120y (£l < Co.vll fllga.

Finally note that ¢y and g can be represented as follows

pr)=— > ClHloglx—l— D C;loglry —x}+g(x).
7o(a)—1€0; 7o(@)eO;
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where

g)=go(x) = D Kj{x—l)(oglx — I} — 1)
mo(a)—1€0;
+ D K f{ra —x}(log{ra —x} — 1)
wo(a)eO;

withC} = C,, K} = K, ifmo(a)—1 € O,andC, = C,, K, = K ifmp(a) € O.

o

It follows that (2.14) is valid for O = O,. For O # O, the condition (2.14) holds
trivially.

Exceptional case

Now assume that z = z; s . Denote by ag # 7, (1) an element of the alphabet for
which z = zq4,. Then O, = {0, mo(ap) — 1, mo(a) — 1}. Since [ 5 (1)

the same incoming separatrix of z, similar arguments to those used in the regular case
show that there exists go € AC(Uye Aly) With g(, € AC(Uye 4ly) such that

and /4 lie on

97 (x) = —C; (log{x} +log{ly — x} +log{x — lo,} +log(le, — x}) + g(x)

=— > Chloglx—l— D Cyloglra —x}+g(x).
o (a)—1€0; 7o(a)eO;

where

g(x) = go(x) — K- ({x}(oglx} — 1) — {ly — x}(log(ly — x} — 1)
+ {x = Loy} (log{x — Iy} — 1) — {lay — x}(l0g{re, — x} — 1))
=g0(0)— D Kj{x—l}(oglx — I} — 1)

70(a)—1€0,

+ D K f{ra —x}(log{ra —x} — 1),
mo(a)eO;

with Cf = C;, Kf = K, ifa # aand mo(@) — 1 € O3 Cf = K = 0;

o

C, =C;, K, =K ifmp(ax) € O;;and Var g < Cs v | fll 2.

o

Vanishing around singularities

We will now deal with the case where f vanishes on each ball B(z, §/2), z € X. For
every a € A denote by hy > 0 the first return time of points in I, to I for the Vertical
flow (F}");cr and set h = (hg)geAq. Since ¢x = (t e and W(¢rx) = az bt x),
we have h(t(x),x) = hy for each x € I. Then using the substitution s = h(t, x),
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Ergodic properties of infinite extensions of area-preserving flows 1361

for each x € I, we get

T(x)

hot
FY
prx) = / fi(x)dt = SE®)
0

W(F7 (x))
0

The function W : § — R is positive 4 with zeros only at X. Therefore ¢5 :=
min{W(x) ix € S\ Usex B(z, 8/2)} > 0. Moreover, f/W : § — Risa%*>-func-
tion with

£/ Wllgo < 5 I Fligo and | f/ Wl < ¢ 2 1IW g1 £ llogr-

It follows that ¢ ¢ can be extended to a ¢"°°-function on each Iy, o€ A,

losllgo < maxthe : e € A F/Wlgo < Ry I fllgo

and

he

0
Var gy = / o/ () du = > / / 5(f/W)<F:(x>>ds du
1 O‘EAIE, 0
< (B2 IW g | fllogn.

Hence ¢y, (p} € AC(Uyealy) and there exists a positive constant C, such that
lorllBy < Cillfllg1 for each f : S — R vanishing on J, .5, B(z,8/2). Since ¢
has no logarithmic singularities, the condition (2.14) holds trivially.

General case

Let us consider a ¢°°-partition of unity {p, : z € ¥ U {x}} of S such that p, vanishes
on S\ B(z,$) for all z € ¥ and p, vanishes on |J, 5 B(z,8/2). Since the balls
B(z,6), z € X are pairwise disjoint, p, = 1 on B(z,§/2) for each z € X. Let us
decompose ¢y as follows ¢ = > 5 ¢p..r + @p,. . In view of all facts that have
been proved until now for all z € ¥ we get

Qo)== D Clloglx —lu)
7o(a)—1€0;,
— > Cyloglry — x} +g:(x). (A3)
7o(a)eO;
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where

g:(0) =g.00) — D KF{x—ly}(loglx — Iy} — 1)
wo(a)—1€0;

+ D> Ky lra —x}(oglre — x} — 1), (A.4)
o (a)eO;

with g2 0, g o € AC(Uge aly) and

lg:llBv < Cs,vllp: - fllgz < Csvllpzllgzll fllge.

Moreover, ¢p,. f, (p;*_f € AC(Uyenly) and

lop.-rlIBV < Cillox - fllg2 = Cillpsllg2 |l fll2-

Let

8 = Zgz + Qp.fr 82 1= 282,0 +@p,.f, & =g — g and C; =K; =0.

z€X Z€X

Then g1, &2, g5 € AC(Ugealy) and

lgllsy < (Z Cs.vlp:lle + c*np*n%z) 1f llg2-

€D

Since

|_|{a cmo(a) —1€O0,}=A and |_|{a cmo(a) € O, = A\ {a},

ZEX ZEX

summing up (A.3) and (A.4) over z € X, we get

p(x) == D> (CHloglx —lo} + C; log{ry — x}) + g(x)
acA

gx) =— Z (K loglx — Iy} + K log{re — x}).
acA

Since the condition (2.14) holds for each function ¢, . s and @,,. s has no logarithmic
singularities, (2.14) is valid also for ¢ . The same applies to gj. Moreover, C; =

C- =0and

o

Co=(f/IV@ifa#a m@—1€0; and C; = (f/V)@ ifm@) € O..

S]
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Therefore,
_ |f @I
L =D (C1+ICin=4>" Ve
acA z€X <
Since V takes only positive values, it follows that
: S F@l = L)) < : >l
z . 2)|-
max{V(z) :z € X} = - er) = min{V(z) : z € ¥} =

O

Proof of Proposition 6.1 By Theorem 6.1, ¢y € AC(Uyc Aly). For every two points
X1, X2 € S such that x; = ¢, x9 and x» = ¢,xg for some —co < u < v < 400 and
xo € S\ X let I(x1,x2) = va f(¢sx0) ds. In view of (A.1), analysis similar to that
in the proof of Theorem 6.1 shows that

[ Ila ) + Iy, Tly) i (@) # 1
Jm or(s) = [ [ Tly)  if m(@) =1
, [ (ras 2r) + 1 (2, Tre) if mo(@) #d
l — o R a .

pane b1 ) [ I(ra, Tra) if 70(c) = d.

Therefore, for every o € A with 7 («) # 1 and 7o(«) # 1, d we have

lim gp(s) = lim ¢7(s) = Iz, Tla) = 1 (2, Tly).

s—>ly s—>1g

Take O = O, which does not contain 0 and d. Let «g, o] be distinct elements of
the alphabet for which Uyy = Uy = 2 Then O = {mo(og) — 1, mp(e;) — 1} and
Tly, = Tlal,e for e = 0, 1. In view of (2.28), it follows that

O(py) = Z ( lim @ (s) —XEIIII+ (Pf(S))

€=0.1 s—>lge

= > (1 Th) ~ 1. Tly) =0.

e=0,1

Similar arguments to those above show also that O(¢s) =0if0 € Oord € O. O

Appendix B

In this Appendix we include for completeness the proof of Lemma 6.3.

Proof of Lemma 6.3 The first part of the lemma is an obvious consequence of
Lemma 6.2, since ergodicity is preserved by a measurable isomorphism and a special
flow is ergodic if and only if the base transformation is ergodic.
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Recall that the flow (qﬁtf )reRr is reducible if it is measure-theoretically isomorphic
to the flow ((D?),ER viathemap S x R > (x,y) — (x,y 4+ G(x)) € S x R, where
G : S — Ris a continuous function. Reducibility is equivalent to the existence of a
continuous function G : S — R such that

t
F(t, x) = / f(psx)ds = G(x) — G(¢yx) forallt e Randx € S. (B.1)
0

Then for each x € I we have

pr(x) =F(x),y®) =Gy ®) = Gdry(x)) =Goyx) —Goy(Tx).

It follows that g : I - R, g = G oy is continuousand 9 = g —go T.

Suppose that g : I — R is a continuous function such that 9y = g — g o T'. Recall
that for every x € S\ X the (¢;),cr orbit of x is dense and intersects the cross section
1.1f ¢;x € I for some ¢ € R then set

t
Gx) = (o) + Ft, %) = glhx) + / F (@) ds.
0

Notice that the function G : §\ ¥ — Ris well defined. Indeed, if ¢;, x, ¢,,x € I with
t) < tythenty —t; = 1" (¢, x) and T" ¢y, x = ¢y, x. Therefore,

F(t2,x) — F(t1,x) = F(ta — t1, ¢y, x) = F (@™ (¢, %), 1, %)
= ¢ (@) = g6, X) — (T 1, %) = gy ) — 81y ).

Thus g(¢r x) + F (11, x) = g(¢nx) + F(2, x).

Note that by the definition of G for every x € S\ £ and ¢ € R we have G(x) —
G(pix) = F(t, x).

In order to prove that G : S\ ¥ — R is continuous and can be extended to a
continuous G : S — R, let us consider the oscillation function w : § — R defined
ateach x € S by

w(x) = lim sup{|G(y) — GGl :y,y € B(x, &)\ T}.

Since G(¢sx) = G(x) — F (s, x), F is continuous and ¢; is a diffeomorphism on S,
we have w(¢sx) = w(x) forevery x € Sand s € R. Let x € S\ Z. Since the orbit
of x is dense and w is upper semi-continuous, it follows that w(y) > w(x) for every
y € S. By the definition of G, each interior point y of / is a continuity point of G.
Therefore, w(x) < w(y) =0, so G is continuous at each x € S\ X.

To show that G can be continuously extended to S, let us prove that w(z) = 0 for
all z € . Since f(z) = Oforall z € ¥, (B.1) will be trivially valid for all z € X.
Fix zo € X and let ¢ = x + iy be the singular adapted coordinate around zg. Let
6 >0and V : [-6, 8] x [-8,8] — R4 be as in the proof of Theorem 6.1 and set
K = sup{ll(f/V) @I : z € [-8,8] x [-8, 8]}. Since G is continuous on S \ X,
for every &’ > 0 there exists 0 < ¢ < § such that |G (s, 8) — G(s’, £8)| < &’ and
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Ergodic properties of infinite extensions of area-preserving flows 1365

|G(£8,5) — G(£8,5")| < & foralls, s’ € [—&2/8, e2/8]. We will prove that
|G(z1) — G(z0)| <3¢ + 18Ke (B.2)

for all z1, 22 € ([—¢, €] X [—¢, €]) \ {(0, 0)}, which yields w(zg) = 0.
By the proof of Theorem 6.1, if (x1, y1), (x2, y2) € ([—¢, €] x [—¢&, €]) \ {(0, 0)}
and (x2, y2) = ¢:(x1, y1) for some ¢t € R then x;y; = x2y2 = s and

t y2
d
G(xl,yl)—G(xz,m=/f<¢v(x1,y1>>dv=/<f/V>(5,u)7“. (B.3)
0 Y1

It follows that for every |s| < & we have

s
G(s,e) = G(se/s,d) +/(f/V)(se/u, u)d—u.
u

Hence if s, s’ € [—¢, ¢] then

1G(s, &) = G(s', e
8
<o) - o) 14 G - )

8
/ |S_S/|8 / / /
<&+ [ K 5 du <eg +Kl|s —s'| <& +2Ks. (B.4)
&

u

LetDj_Lr ={(xy):0<|x|] <xy<eland Dy ={(x,y) : 0 < |y|] < £x < ¢&}.
If (x, y) € DT then, by (B.3) and (f/V)(0,0) =0,

xon-6(2.0) = [ |52
y

&

du [yl
— =<K (—+1)du§2Ks.

u u?
y

In view of (B.4), for all (x, y), (x, y) € DI we have

IG(x,y) — G, y)| < ‘G(x,y) e (%a) ‘ n ‘G (’%e) ~G (x;y/,a) )

!5,/
Hew —G(”
&

,8)‘58/—}—6[(6‘.

The same applies to D, D7 and D_. This proves (B.2) and the proof is complete.
O
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