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Abstract
Bradford Hill's considerations published in 1965 had an enormous influence on attempts to
separate causal from non-causal explanations of observed associations. These considerations were
often applied as a checklist of criteria, although they were by no means intended to be used in this
way by Hill himself. Hill, however, avoided defining explicitly what he meant by "causal effect".

This paper provides a fresh point of view on Hill's considerations from the perspective of
counterfactual causality. I argue that counterfactual arguments strongly contribute to the question
of when to apply the Hill considerations. Some of the considerations, however, involve many
counterfactuals in a broader causal system, and their heuristic value decreases as the complexity of
a system increases; the danger of misapplying them can be high. The impacts of these insights for
study design and data analysis are discussed. The key analysis tool to assess the applicability of Hill's
considerations is multiple bias modelling (Bayesian methods and Monte Carlo sensitivity analysis);
these methods should be used much more frequently.

Introduction
Sir Austin Bradford Hill (1897 – 1991) was an outstand-
ing pioneer in medical statistics and epidemiology [1-4].
His summary of a lecture entitled "The environment and
disease: Association or causation" [5] had an enormous
impact on epidemiologists and medical researchers. Iron-
ically, this paper became famous for something it was by
no means intended to be [6,7]: a checklist for causal crite-
ria (e.g. [8-10]).

Hill [5] provided nine considerations for assessing
whether an observed association involved a causal com-
ponent or not. These considerations were influenced by
others before him [11,12]. He avoided defining explicitly
what he meant by a causal effect, although seemingly he
had the counterfactual conceptualisation mind. My core

thesis in this paper is that counterfactual arguments con-
tribute much to the question of when to apply Hill's con-
siderations to a specific causal question. This is not to say
that other conceptualisations of causality would not con-
tribute to clarifying Hill's considerations, but the counter-
factual model is the one that directly relates to many
statistical methods [13,14], and it links the "metaphysi-
cal" side of causality to epidemiological practice. Moreo-
ver, I shall argue that some of Hill's considerations involve
many counterfactuals in a broader causal system, and that
the heuristic value of these considerations can be low.

Analysis
Counterfactual causality
Hill [5] avoided defining exactly what he meant with a
causal effect:
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"I have no wish, nor the skill to embark upon a philosophical
discussion of the meaning of 'causation'."

However, it seems that he applied the counterfactual
model because he then writes:

"... the decisive question is whether the frequency of the unde-
sirable event B would be influenced by a change in the environ-
mental feature A."

Counterfactual causality dates back at least to the 18th cen-
tury Scottish philosopher David Hume [15] but only
became standard in epidemiology from the 1980s. Being
the inventor of randomised clinical trials [3,4], Hill was
strongly influenced by the idea of randomised group
assignment, which precludes confounding. The idea of
randomisation, invented by R.A. Fisher's in the 1920s and
1930s was, in turn, stimulated by Hume [3]. As Fisher and
Hill were friends for at least some years [3], it seems likely
that Hill was strongly influenced by counterfactual think-
ing. Today, the counterfactual, or potential outcome,
model of causality has become more or less standard in
epidemiology, and it has been argued that counterfactual
causality captures most aspects of causality in health sci-
ences [13,14].

To define a counterfactual effect, imagine an individual i
at a fixed time. Principally we assume that

(a) this individual could be assigned to both exposure lev-
els we aim to compare (X = 0 and X = 1 respectively) and

(b) that the outcome Yi exists under both exposure levels
(denoted by Yi0 and Yi1 respectively) [[14] and references
therein].

The causal effect of X = 1 versus X = 0 within an individual
i at the time of treatment or exposure assignment can be
defined as [13-20]:

Yi1 - Yi0.

Note that the use of the difference measure is not exclusive
– for strictly positive outcomes one can also use the ratio
measure Yi1/Yi0. For a binary outcome, this definition
means that the outcome event occurs under one exposure
level but not under the other. Therefore, a causal effect of
a binary event is a necessary condition without which the
event would not have occurred; it is not necessarily a suf-
ficient condition. Clearly, the outcome is not observable
under at least one of the two exposure levels of interest.
Thus, the outcome has to be estimated under the unob-
served or counterfactual condition, known as the counter-
factual or potential outcome.

According to Rothman [21], a comprehensive causal
mechanism is defined as a set of factors that are jointly
sufficient to induce a binary outcome event, and that are
minimally sufficient; that is, under the omission of just
one factor the outcome would change. Rothman [21]
called this the sufficient -component cause model. A similar
idea can be found in an earlier paper by Lewis [22]. Since
several causal mechanisms are in line with the same spe-
cific counterfactual difference for a fixed individual at a
fixed time, the sufficient-component cause model can be
regarded as a finer version of the counterfactual model
[[14], and references therein].

As there are often no objective criteria to determine indi-
vidual counterfactual outcomes, the best option is usually
to estimate population average effects. The population
average effect is defined as the average of individual causal
effects over all individuals in the target population on
whom inference is to be made. The estimation of average
causal effects in epidemiology is subject to various biases
[23]. These biases are determined both by the study design
and the mechanism that generates the data. In a ran-
domised controlled trial (RCT), bias due to confounding
cannot occur, but confounders might be distributed une-
qually across treatment levels by chance, especially in
small samples. If compliance is perfect, there is no meas-
urement error in the treatment. Other biases might still
occur, however, such as bias due to measurement error in
the outcome and selection bias (because individuals in
the RCT might not represent all individuals in the target
population). Observational studies are prone to all kinds
of biases, and these depend on the causal mechanism
underlying the data. For instance, bias due to confound-
ing is determined by the factors that affect both exposure
and outcome, and the distribution of these factors.

I shall demonstrate that most of Hill's considerations
involve more than the X – Y association and biases in that
association; their application depends on assumptions
about a comprehensive causal system, of which the X – Y
effect is just one component. I argue that the heuristic
value of Hill's considerations converges to zero as the
complexity of a causal system and the uncertainty about
the true causal system increase.

The Bradford Hill considerations
The discussion of Hill's considerations is organised as fol-
lows: first, I use my own wording (in italics) to summarise
the respective consideration. Hill's own argumentation is
then briefly reviewed, followed by arguments of other
authors (a subjective selection from the vast literature). I
will then show which counterfactuals are involved in the
application of a given consideration and what novel
insights can be derived for the interpretation of study
design and data analysis. To simplify the discussions, I
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will sometimes disregard random variation. Some of my
arguments apply to several of Hill's considerations and I
will occasionally not repeat them to avoid redundancy.

1. Strength of association
A strong association is more likely to have a causal component than 
is a modest association
Hill [5] illustrated this point with the high risk ratios for
the association between exposure levels of smoking and
incidence of lung cancer. However, he demonstrated with
two counter-examples that the absence of a strong associ-
ation does not rule out a causal effect. Hill acknowledged
that the impression of strength of association depended
on the index used for the magnitude of association [5].

Rothman and Greenland [[18], p.24] provided counter-
examples for strong but non-causal relationships. Note
that, unlike ratio measures, difference measures tend to be
small unless there is nearly a one-to-one association
between exposure and outcome [24]. The fundamental
problem with the choice of an effect measure is that "nei-
ther relative risk nor any other measure of association is a
biologically consistent feature of an association... it is a
characteristic of a study population that depends on the
relative prevalence of other causes" [[18], p.24]. Rothman
and Poole [25] described how studies should be designed
to detect weak effects. For Rothman and Greenland [[18],
p. 25] the benefit of the consideration on strength was
that strong associations could not be solely due to small
biases, whether through modest confounding or other
sources of bias.

The consideration on strength involves two main counter-
factual questions about biases that have presumably pro-
duced the observed association (in terms of a pre-
specified index): how strong would the association be
expected to be as compared to the observed association if
the data were free of bias? Would the interval estimate that
properly accounts for not only random, but also system-
atic error (uncertainty about bias parameters such as mis-
classification probabilities) allow for the desired
conclusion or not? (A desired conclusion might be the
simple existence of a causal effect or a causal effect of at
least a certain magnitude, for instance a two-fold increase
in risk.)

Bias can be addressed with multiple bias modelling. Con-
temporary methods for multiple bias modelling include
Bayesian methods and Monte Carlo sensitivity analysis
(MCSA, which can be modified to be approximatively
interpretable in a Bayesian manner under certain condi-
tions [27]). These methods address the uncertainties
about bias parameters by assigning prior distributions to
them. Although Hill pointed out that non-random error
was often under-estimated, these methods were hardly

available in his time. With Bayesian and MCSA methods
one can assess whether the observed magnitude of associ-
ation is sufficiently high to allow for a certain conclusion.
This requires a bias model including assumptions on
which kinds of biases exist, how biases act together and
which priors should be used for them. However, if one
uses a bias model that addresses understood bias, the
inference could still be distorted by misunderstood or
unknown bias. Moreover, one can calculate which X – Y
association and random error values would have allowed
for the desired conclusion. One may also ask which priors
on bias parameters would, if applied, have allowed for the
desired conclusion ("reverse Bayesian analysis") and
assess the probability that these priors are not counterfac-
tual.

Clearly, high uncertainty about bias parameters requires
larger associations than modest uncertainty does. In stud-
ies that control for several sources of bias, modest associ-
ations might still be indicative of a causal effect, whereas
in more error-prone designs more bias and higher non-
random error has to be taken into account. However,
specifying a bias model can be a difficult task if the knowl-
edge about biases is also limited. This uncertainty then
carries over to the uncertainty on applying the considera-
tion on strength. Despite this, there seems to be no alter-
native to multiple bias modelling when assessing which
magnitude of association is necessary for the desired con-
clusion.

2. Consistency
A relationship is observed repeatedly
For Hill [5], the repeated observation of an association
included "different persons, places, circumstances and
time". The benefit of this rule was that consistently find-
ing an association with different study designs (e.g. in
both retrospective and prospective studies) reduced the
probability that an association would be due to a "con-
stant error or fallacy" in the same study design. On the
other hand, he pointed out that shared flaws in different
studies would tend to replicate the same wrong conclu-
sion. Likewise, differing results in different investigations
might indicate that some studies correctly showed a causal
relationship, whereas others failed to identify it.

This point is explained by Rothman and Greenland [[18],
p. 25]: causal agents might require that another condition
was present; for instance, transfusion could lead to infec-
tion with the human immunodeficiency virus only if the
virus was present. Now, according to the sufficient-com-
ponent cause model [20,21], and as stated by Rothman
and Greenland [[18], p. 25], whether and to what extent
there is a causal effect on average depends on the preva-
lences of complementary causal factors.
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Cox and Wermuth [[28], pp. 225] have added the consid-
eration that an association that does not vary strongly
across the values of intrinsic variables would be more
likely to be causal. If an association were similar across
individuals with different immutable properties, such as
sex and birth date, the association would be more likely to
have a stable substantive interpretation. Variables other
than X and Y might change as a consequence of interven-
tions among other factors in a comprehensive causal sys-
tem. One should be careful when applying this guideline;
effect heterogeneity depends on the choice of the effect
measure. This choice should be based on a relevant sub-
stantive theory and on correspondence with the counter-
factual and sufficient-component cause model (the latter
two indicating that differences rather than ratios should
be used); both may, however, contradict [29].

From the counterfactual perspective, the following ques-
tions arise when asking whether to apply the considera-
tion on consistency:

a) If the causal effect was truly the same in all studies,
would one expect to observe different associations in dif-
ferent studies (possibly involving different persons,
places, circumstances and time)? To what degree would
the associations be expected to differ?

b) If the causal effect varied across the studies, would one
expect to observe equal or different associations? What
magnitude of differences would one expect?

Note that in the presence of effect modifiers there exists
no such thing as "the causal effect", the effect modifiers
need to be fixed at suitable values. Also note that only a)
or b) is actually counterfactual depending on whether the
effect truly varies across the different studies or not.
Answering these questions requires a comprehensive
causal theory that indicates how different entities (indi-
vidual factors, setting, time, etc.) act together in causing Y.
Within such a causal system one can predict how the X –
Y association should change if one used different persons,
places, circumstances and times in different studies. As
one can only observe associations this also involves bias,
and bias might operate differently in different studies.

An observed pattern of association across the different
studies that is in line with the expected pattern would pro-
vide evidence for an effect of X on Y if the underlying
causal theory applies. Another pattern would indicate that
there is either no effect of X on Y or that the supposed the-
ory is false. In complex situations and bias-prone designs,
the probability might be substantial that a causal theory
does not include important features that change the
expected X – Y association. Here, the uncertainty regard-
ing whether or not to demand an association (or which

magnitude of association) could be high, and so the con-
sistency consideration might bring more harm than bene-
fit.

3. Specificity
A factor influences specifically a particular outcome or population
For Hill [5], if one observed an association that was spe-
cific for an outcome or group of individuals, this was a
strong argument for a causal effect. In the absence of spe-
cificity, Hill alludes to fallacies in applying this rule to
conclude the absence of a causal effect: Diseases may have
more than one cause (which Hill considered to be the pre-
dominant case). In turn, a factor might cause several dis-
eases. According to Hill, the value of this rule lay in its
combination with the strength of an association: For
instance, among smokers, the risk of death from lung can-
cer should be elevated to a higher degree as compared to
the risk of other causes of death. Hill's consideration on
specificity for persons apparently contradicts his consider-
ation on consistency, where repeatedly observing an asso-
ciation in different populations would increase the
evidence for a causal effect.

Rothman and Greenland [[18], p. 25] have argued that
when applying this rule one assumes that a cause had one
single effect. This assumption is often meaningless; for
instance, smoking has effects on several diseases. They
considered the demanding of specificity "useless and mis-
leading". Cox and Wermuth [[28], p. 226f.] pointed out
that this rule applies to systems where quite specific proc-
esses act, rather than to systems where the variables
involved represent aggregates of many characteristics.
Weiss [30] has mentioned a situation in which it can be
meaningful to require specificity with respect to an out-
come: a theory could predict that an exposure affects a cer-
tain outcome, but does not affect other particular
outcomes. He illustrated this with the example that wear-
ing helmets should be protective specifically against head
injury, not against injury of other parts of the body. If
wearing helmets also protected against other injuries, so
he argues, this could be indicative that the association is
confounded by more careful riders tending to use hel-
mets. He provided similar arguments for specificity of
exposure and specificity with regard to individuals in
whom a theory predicts an effect.

Counterfactual causality, and the logically equivalent
causal graphs [19,30], generalise the argument of Weiss
[30] and solve the problem of specificity with respect to
other exposures and outcomes: outcomes other than the
one under consideration (Y) must be related with the
exposure (X) if they are either part of the causal chain
between X and Y or a causal consequence of Y. Otherwise,
they must not be associated with X. In the example above,
other injuries are neither part of the causal chain between
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wearing helmets and head injury, nor the causal conse-
quence of head injury; the association between wearing
helmets and head injury might share the common cause
of carefulness if wearing helmets were related to both
head and other injury. Likewise, exposures other than X
must be associated with Y if they belong to the causal
chain between X and Y. Whether exposures that occur
before X are associated with Y or not is not informative
about causality between X and Y.

When applying this consideration, a bias model is
required for each association in the entire causal system,
involving the assessment of as many counterfactual differ-
ences as there are associations. A single wrong conclusion
about the existence of a particular effect might still yield a
graph that contradicts the theory and, thus, a wrong con-
clusion about the existence of the X – Y effect. RCTs only
allow a small number of factors to be simultaneously ran-
domised, and whether they are associated with one
another is just a question of how the randomisation is
done. The assessment of specificity with respect to other
factors in RCTs is therefore limited. Cohort studies are
more useful here, but confounding and measurement
error in the exposure are of higher importance. To con-
clude, the consideration of specificity appears to be useful
only when a causal system is simple and the knowledge
about it is largely certain.

4. Temporality
The factor must precede the outcome it is assumed to affect
Hill [5] introduced this reflection with the proverb
"Which is the cart and which is the horse?" For instance,
he asked whether a particular diet triggered a certain dis-
ease or whether the disease led to subsequently altered
dietary habits. According to Hill, temporal direction
might be difficult to establish if a disease developed
slowly and initial forms of disease were difficult to meas-
ure.

Considering individuals in whom X has occurred before
Y, it is logically not possible that X would have changed if
Y had changed, because X is fixed at the time when Y
occurs (or not). Thus, Y cannot have caused X in these
individuals. This is, indeed, the only sine qua non crite-
rion for a counterfactual effect in a single individual [[7],
p. 27, 11] – a point missed by Hill. Note that there is no
logical link to individuals in whom Y has occurred before
X. Among those, Y might or might not have caused X [[7],
p. 25].

Even more confusion in applying this criterion arises
when one aggregates information across several individu-
als. Some researchers believe that an association that is
only observed in one direction is more likely to be causal
than an association that is observed in both directions. If

the presence of a certain disease (X) is associated with a
higher subsequent incidence rate of another disease (Y),
and if prior Y also predicts an elevated probability of sub-
sequent onset of X, it is sometimes assumed that a shared
vulnerability was the common cause of both associations.
This possibility has, for instance, been discussed for the
role of anxiety in the development of depression [31].

Applying this argument, however, requires a causal system
that produces no Y – X association. This requires sufficient
knowledge about shared risk factors of X and Y. To assess
temporal order between X and Y, a longitudinal design is
preferable to a design in which the temporal direction
between X and Y has to be assessed retrospectively. In
RCTs, temporal direction can be established without
error.

5. Biological gradient
The outcome increases monotonically with increasing dose of 
exposure or according to a function predicted by a substantive theory
Hill [5] favoured linear relationships between exposure
level and outcome, for instance, between the number of
cigarettes smoked per day and the death rate from cancer.
If the shape of the dose-response relationship were a more
complex, especially a non-monotonic, function, this
would require a more complex substantive explanation.

Others have been less demanding and more specific in
their definition of a dose-response relation, requiring only
a particular shape of relationship (not necessarily linear or
monotonic), which is predicted from a substantive theory
[[28], p. 225]. Rothman and Greenland [[18], p. 26] have
argued that parts of J-shaped dose-response curves might
be caused by the respective exposure levels while others
might be due to confounding only. They also provided a
counter-example for a non-causal dose-response associa-
tion. To demand a dose-response relationship could be
misleading if such an assumption contradicted substan-
tive knowledge. No dose-response relationship in pre-
sumably causal effects has been found, for example,
between the intake of inhaled corticosteroids and lung
function among asthma patients [33] or in the pharmaco-
therapy of mental disorders [34]. Further examples and
similar arguments as above had been provided previously
by Lanes and Poole [35].

Counterfactual causality defines the difference between
each pair of exposure levels as a distinct causal effect. The
consideration on biological gradient is therefore again not
a consideration on a specific causal difference but a con-
sideration on a broader causal system involving several
exposure levels. It requires a substantive theory that pre-
dicts how the outcome should change when the exposure
varies over several levels. If there are k exposure levels,
then this theory has to predict k-1 counterfactual differ-
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ences. Some theories demand a gradient over the levels
and others do not, while different theories might demand
different gradients.

When applying this consideration, bias has to be properly
corrected for each of the k-1 observed associations. If the
observed sequence of associations over the exposure levels
is in line with a theory and bias is properly addressed for
each comparison, this provides evidence for the theory;
otherwise, the theory, or at least one bias model, is false.
Here, causal differences between specific exposure levels
might in any case exist.

Several exposure levels are required to establish a dose-
reponse relationship. On the other hand, the more expo-
sure levels there are, the higher is the danger of mis-apply-
ing this consideration, because a single wrong conclusion
(among k-1 possible wrong conclusions) about the exist-
ence of a specific causal difference might be sufficient for
a wrong conclusion on the overall theory. RCTs are partic-
ularly useful for assessing dose-response relationships,
because they avoid some biases that are sometimes diffi-
cult to correct for using other study designs.

6. Plausibility
The observed association can be plausibly explained by substantive 
matter (e.g. biological) explanations
For Hill [5], the presence of a biological explanation sup-
ported the drawing of a causal conclusion. On the other
hand, in the absence of such a theory "the association we
observe may be one new to science or medicine and we
must not dismiss it too light-heartedly as just too odd"
[5].

Cox and Wermuth [[28], p. 226] have added the
extremely important point that a relationship that is pre-
dicted prospectively is much more convincing than one
that is provided retrospectively; after observing an associ-
ation, it is often easy to give a plausible explanation.
According to Rothman and Greenland [[18], p. 26], the
assessment of plausibility is subject to the prior beliefs of
individual researchers. The weight of these prior beliefs
could be balanced against the weight of the observed asso-
ciation in Bayesian inference. However, Bayesian analysis
is not able to "transform plausibility into a causal crite-
rion".

Based on the arguments of these authors there are two rel-
evant counterfactual questions that researchers should ask
themselves; they are related to plausibility, although they
are not sufficient to clarify this consideration on their
own:

a) If the observed association is in line with substantive
knowledge, would you have assigned it a lower weight

(relatively to the weight of substantive knowledge) if your
observations had not been in line with substantive knowl-
edge?

b) If the observed association is not in line with substan-
tive knowledge, would you have assigned it a higher
weight (relatively to the weight of substantive knowledge)
if your observations had been in line with substantive
knowledge?

Only if researchers are able to answer a) or b) (respec-
tively) honestly with "yes" can one assume that the appli-
cation of this consideration did not depend on the study
results. Clearly, one cannot even be 100% confident that
an answer is really honest for someone's own thoughts.
The danger in applying this consideration is twofold:
researchers might assign a higher weight to substantive
knowledge if it agrees with their own prior opinion and
might assign a lower weight otherwise. Substantive
knowledge might be inconsistent and conflicting infor-
mation could be weighted according to someone's assess-
ment of the accuracy of the information. Likewise,
scientists might choose the substantive knowledge they
apply according to whether it fits to their prior opinions.
The question remains how to weight prior opinions rela-
tively to the observed results. This involves many design
issues, such as the sample sizes in the present data and in
other data, and the questions of how bias acted and was
addressed in different studies.

7. Coherence
A causal conclusion should not fundamentally contradict present 
substantive knowledge
Hill [5] used the term "generally known facts" to indicate
that the knowledge against which an association is evalu-
ated has to be undisputable. Laboratory evidence that is in
line with an association would underline a causal conclu-
sion and help to identify the causal agent. Again, the
absence of such knowledge would not be indicative of a
non-causal explanation.

The difference in Hill's definitions of plausibility and
coherence appears to be subtle [[7], p. 25]. Whereas plau-
sibility is worded positively (an association that should be
in line with substantive knowledge), coherence is verbal-
ised negatively (an association that should not conflict
with substantive knowledge). Rothman and Greenland
[[7], p. 25] have drawn attention to the possibility that
such conflicting knowledge might itself be wrong. Susser
[11] has tried to retain this consideration by defining dif-
ferent subclasses of coherence depending on where
knowledge comes from.

A subtle difference between coherence and plausibility is
that plausibility asks: "Could you imagine a mechanism
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that, if it had truly operated (which could be counterfac-
tual), would have produced results such as those observed
in the data?" By contrast, coherence asks: "If you assume
that the established theory is correct (i.e. not counterfac-
tual), would the observed results fit into that theory?"
Whereas the consideration of coherence would reject the
observed result to be non-causal if it contradicted a pre-
dominant theory, plausibility leaves the researcher more
room regarding which particular piece of substantive
knowledge to evaluate the results against.

8. Experiment
Causation is more likely if evidence is based on randomised 
experiments
Hill [5] argued that a causal interpretation of an associa-
tion from a non-experimental study was supported if a
randomised prevention derived from the association con-
firmed the finding. For instance, after finding that certain
events were related to the number of people smoking, one
might forbid smoking to see whether the frequency of the
events decrease consecutively.

To Rothman and Greenland [[7], p. 27], it has not been
clear whether Hill meant evidence from animal or human
experiments. Human experiments were hardly available
in epidemiology, and results from animal experiments
could not easily be applied to human beings. To Susser
[11], Hill's examples suggested that he meant intervention
and active change rather than research design. Both Susser
[11] and Rothman and Greenland [[7], p. 27] stated that
results from randomised experiments provided stronger
evidence than results based on other study designs, but
always had several possible explanations. Cox and Wer-
muth [[28], p. 225f.] relaxed that criterion by replacing
the qualitative difference between experimental and non-
experimental studies with the rather quantitative concep-
tion of "strength of intervention": an observed difference
would be more likely to be causal if it followed a massive
intervention. This is motivated by the possibility that a
change following a modest intervention could result from
the circumstances of a treatment rather than from the
treatment itself. One might add that the Cox and Wer-
muth consideration requires a modest intervention to be
precluded from having a strong influence – an assump-
tion that is certainly context-dependent to a high degree.

In terms of counterfactual causality, the distinction
between massive and modest interventions is irrelevant,
because a causal effect is only defined for a fixed index and
a fixed reference condition. Hence, if interpreted in terms
of strength of intervention, this is again not a considera-
tion on a specific causal difference, but rather a consider-
ation on a comprehensive causal theory (as the one on
biological gradient). Such a theory is required in order to
decide what is a modest and what is a strong intervention.

If the consideration on experiment is interpreted in terms
of avoiding some biases in estimating a specific causal
effect by conducting an RCT, it should be generalised as
follows: observed associations should equal the true
counterfactual difference as closely as possible (despite
random error). Bias is reduced either by using a study
design that avoids major biases or by properly correcting
for bias. Clearly, avoiding bias is preferable to correcting
for it, but it is often impossible to avoid some biases. As
already mentioned, in RCTs with perfect compliance, con-
founding cannot occur (although confounders might be
distributed unequally by chance) and there is no measure-
ment error in the exposure. However, bias due to meas-
urement error could still occur in the outcome, and there
may be bias due to selection, missing data, etc. [22]. Thus,
Hill's original formulation [5] covered only one or two
among a variety of possible biases.

Instead, two more general question arise: which study
design is likely to validly identify a presumed causal
effect? And, if the optimal study design is not possible,
how can bias be accurately corrected for? As in the consid-
eration on strength, this can be summarised by: which
results would be expected to be observed if the data were
free of any bias? A causal effect is more likely if, after bias
adjustment, the interval estimate excludes the null value,
and it is even more likely if the lower boundary is far from
the null value. If adjustment is done properly, systematic
error in the corrected interval estimate decreases if the
knowledge about biases increases. As a consequence, one
can hardly ever demonstrate a causal effect if biases are
poorly understood – this is the case even in large samples,
because the associated systematic error in the results
would remain even while random error decreases.

9. Analogy
For analogous exposures and outcomes an effect has already been 
shown
Hill [5] wrote that it would be sometimes acceptable to
"judge by analogy". He gives the following example:

"With the effects of thalamoide and rubella before us we would
surely be ready to accept slighter but similar evidence with
another drug or another viral disease in pregnancy."

Susser [11] interpreted Hill as someone claiming that
"when one class of causal agents is known to have pro-
duced an effect, the standards for evidence that another
agent of that class produces a similar effect can be
reduced." Rothman and Greenland [[18], p. 27] retorted:

"Whatever insight might be derived from analogy is handi-
capped by the inventive imagination of scientists who can find
analogies everywhere. At best, analogy provides a source of
more elaborate hypothesis about the associations under study;
Page 7 of 9
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absence of such analogies only reflects lack of imagination or
lack of evidence."

When applying the consideration on analogy scientists
should ask themselves: would you expect the same associ-
ation if you used settings analogous to those in other stud-
ies (while taking biases into account, which may differ
across the studies)? The term "analogous" suggests that
the entities in external studies are only similar to those in
the observed data (but not identical). This requires an
additional modelling of the counterfactual effects of using
analogous but not identical entities in different studies.
This makes the application of the analogy consideration
even more uncertain than the application of considera-
tions on plausibility and coherence.

Conclusion
Hill himself used the terms "viewpoints" and "features to
be considered" when evaluating an association. His aim
was to unravel the question: "What aspects of this associ-
ation should we especially consider before deciding that
the most likely interpretation of it is causation?"[5] He
expressed his ambivalence about the usefulness of his
own considerations as follows:

"None of my nine viewpoints can bring indisputable evidence
for or against the cause-and-effect hypothesis..."

Rothman and Greenland's conclusion [36] suggests that
there are no causal criteria at all in epidemiology :

"Causal inference in epidemiology is better viewed as an exer-
cise in measurement of an effect rather than as criterion-guided
process for deciding whether an effect is present or not."

The usefulness of the counterfactual approximation of
Hill's considerations is that their heuristic value can be
assessed by answering counterfactual questions. I have
argued that the application of seven of the nine consider-
ations (consistency, specificity, temporality, biological
gradient, plausibility, coherence and analogy) involves
comprehensive causal theories. Complex causal systems
comprise many counterfactuals and assumptions about
biases. If complexity becomes very large, the uncertainty
regarding whether or not to apply a given consideration
can be expected to approach a decision made by coin toss.
Thus, with increasing complexity, the heuristic value of
Hill's considerations diminishes.

Here, an original argument of Hill [5] becomes of partic-
ularly important: the required amount of evidence for a
causal effect should depend on the possible consequences
of interventions derived from causal conclusions. If a
causal conclusion needed an action that brought about
more harm if wrongly taken than benefit if rightly taken,

a correspondingly high amount of evidence would be
required. If the relationship between benefit and harm
were converse, less evidence would be necessary. The
major tool to assess the applicability of these considera-
tions is multiple bias modelling. Multiple bias models
should be much more frequently used. Moreover, the
decision as to whether or not to apply one of these consid-
erations is always implicitly based on one or several mul-
tiple bias models. For instance, demanding an association
of at least a certain magnitude is logically equivalent to
the "true bias model" being part of the set of multiple bias
models in which priors on bias parameters would require
at least this magnitude of association to be observed.

One may ask the counterfactual question of how epidemi-
ology and medical research would have developped if Hill
had been more explicit in recommending when to apply
each of his considerations. I am far from claiming to be
able to answer this question, but I consider my specula-
tion being worth mentioning. In their paper entitled "The
missed lessons of Sir Austin Bradford Hill" [6] Phillips
and Goodman reviewed malpractices denounced by Hill
that were still being made later in practice: over-emphasis
of statistical tests, systematic error being under-estimated
and cost/benefit trade-offs being disregarded in interven-
tion decisions. Hill's considerations were misused as
"causal criteria", and they were taught more often than
more sound causal conceptions [6]. There is no reason to
believe that more explicit recommendations on when to
apply his considerations would have been better heeded;
the cautionary notes that Hill actually made were largely
ignored.

My own experience is that scientific recommendations are
widely followed if they provide easy guidance; recommen-
dations that call for complex action are frequently
ignored. My guess is that this is due to many researchers'
desire for simple and globally applicable answers. This
desire leads to misinterpretation of scientific texts and to
taking individual statements out of their context. More
pessimistically, the question of which guidance is fol-
lowed depends on which guidelines are in line with the
desired answer. Therefore, it seems likely that, even if
Hill's paper had not been published, scientists' desire for
simple answers would have caused another paper to be
written or to be misinterpreted in the same way as hap-
pened with Hill's [5] article.

List of abbreviations
MCSA: Monte Carlo sensitivity analyses

RCT: randomised and controlled trial
Page 8 of 9
(page number not for citation purposes)



Emerging Themes in Epidemiology 2005, 2:11 http://www.ete-online.com/content/2/1/11
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
I wish to thank Evelyn Alvarenga for language editing.

References
1. Armitage P: Before and after Bradford Hill: Some trends in medical

statistics.  J Roy Stat Soc A 1995, 158:143-153.
2. Doll R: Sir Austin Bradford Hill: A personal view of his contri-

bution to epidemiology.  J Roy Stat Soc A 1995, 158:155-163.
3. Armitage P: Fisher, Bradford Hill, and randomisation.  Int J Epi-

demiol 2003, 32:925-928.
4. Chalmers I: Fisher and Bradford Hill: theory and pragmatism?

Int J Epidemiol 2003, 32:922-924.
5. Hill AB: The environment and disease: Association or causa-

tion?  Proceed Roy Soc Medicine – London 1965, 58:295-300.
6. Phillips CV, Goodman KJ: The missed lessons of Sir Austin Brad-

ford Hill.  Epidemiol Perspect & Innov 1965, 1:3.
7. Goodman KJ, Phillips CV: The Hill criteria of causation.  In Ency-

clopedia of Statistics in Behavioral Sciences London: Wiley; 2005. 
8. Hussain SP, Harris CC: Molecular epidemiology of human can-

cer.  Toxicol Lett 1998, 103:219-225.
9. Spitzer WO: Bias versus causality: Interpreting recent evi-

dence of oral contraceptive studies.  Am J Obstet Gynecol 1998,
179:S43-S50.

10. Naschitz JE, Kovaleva J, Shaviv N, Rennert G, Yeshurun D: Vascular
disorders preceding diagnosis of cancer: distingushing the
causal relationship based on the Bradford-Hill guidelines.
Angiology 2003, 54:11-17.

11. Susser M: What is a cause and how do we know one? A gram-
mar for pragmatic epidemiology.  Amer J Epidemiol 1991,
7:635-648.

12. Morabia A: On the origin of Hill's causal criteria.  Epidemiol 1991,
5:367-369.

13. Little RJA, Rubin DB: Causal effects in clinical and epidemiolog-
ical studies via potential outcomes: Concepts and analytical
approaches.  Annu Rev Public Health 2000, 21:121-145.

14. Höfler M: Causal inference based on counterfactuals.  BMC
Med Res Methodol 2005, 5:18.

15. Holland PW: Statistics and causal inference.  J Amer Stat Ass 1986,
81:945-962.

16. Rubin DB: Estimating causal effects of treatments in ran-
domised and nonrandomised studies.  J Educ Psychol 1974,
66:688-701.

17. Rosenbaum PR, Rubin DB: The central role of the propensity
score in observational studies for causal inference.  Biometrika
1983, 70:41-55.

18. Rothman KJ, Greenland S, eds: Modern Epidemiology 2nd edition. Phil-
adelphia: Lippincott Williams & Wilkins; 1998. 

19. Pearl J: Causality – Models, reasoning and inference Cambridge: Cam-
bridge University Press; 2002. 

20. Maldonado G, Greenland S: Estimating causal effects.  Int J Epide-
miol 2002, 31:422-429.

21. Rothman KJ: Causes.  Amer J Epidemiol 1976, 104:587-592.
22. Lewis D: Causation. Journal of Philosophy.  1973, 70:556-567.
23. Maclure M, Schneeweiβ S: Causation of bias: the episcope.  Epi-

demiology 2001, 12:114-122.
24. Kraemer HC, Kazdin AE, Offord DE, Kessler RC, Jensen PS, Kupfer

DJ: Measuring the potency of risk factors for clinical or policy
significance.  Psychol Meth 1999, 4:257-271.

25. Rothman KJ, Poole C: A strengthening programme for weak
associations.  Int J Epidemiol 1988, 17:955-959.

26. Rosenbaum PR: Observational Studies 2nd edition. New York: Springer;
2002. 

27. Greenland S: Multiple-bias modelling for analysis of observa-
tional data.  J Roy Stat Soc 2005, 168:267-291.

28. Cox DR, Wermuth N: Multivariate Dependencies. Models, Analyses and
Interpretation London: Chapman and Hall; 1996. 

29. Greenland S: Basic problems in interaction assessment.  Envir
Health Perspect 1993, 101:59-66.

30. Weiss N: Can the "specificity" of an association be rehabili-
tated as a basis for supporting a cuasal hypothesis?  Epidemiol-
ogy 2002, 13:6-8.

31. Greenland S, Pearl J, Robins JM: Causal diagrams for epidemio-
logical research.  Epidemiology 1999, 10:37-48.

32. Mineka S, Watson D, Clark LA: Comorbodity of anxiety and uni-
polar mood disorders.  Annu Rev Psychol 1998, 49:377-412.

33. O'Sullivan S, Cormican L, Murphy M, Poulter LW, Conor MB: Effects
of varying doses of flutocasone propionate on the physiology
and bronchial wall immunopathology in mild-to-moderate
asthma.  Chest 2002, 122:1966-1972.

34. Melmon KL, Morelli HF, Hoffman BB, Niederenberg DW, Eds: Clinical
pharmacology: Basic principles in therapeutics New York: McGraw-Hill;
1992. 

35. Lanes SF, Poole C: Truth in packaging' The unwrapping of epi-
demiological research.  J Occupat Medic 1984, 8:571-574.

36. Rothman KJ, Greenland S: Causation and causal inference in epi-
demiology.  Am J Publ Health 2005, 95:S144-150.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12593491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12593491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10884949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10884949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10884949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15904499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11980807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4684392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11138805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3225112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3225112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9888278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9888278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9496627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9496627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475834
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction
	Analysis
	Counterfactual causality
	The Bradford Hill considerations
	1. Strength of association
	A strong association is more likely to have a causal component than is a modest association

	2. Consistency
	A relationship is observed repeatedly

	3. Specificity
	A factor influences specifically a particular outcome or population

	4. Temporality
	The factor must precede the outcome it is assumed to affect

	5. Biological gradient
	The outcome increases monotonically with increasing dose of exposure or according to a function predicted by a substantive theory

	6. Plausibility
	The observed association can be plausibly explained by substantive matter (e.g. biological) explanations

	7. Coherence
	A causal conclusion should not fundamentally contradict present substantive knowledge

	8. Experiment
	Causation is more likely if evidence is based on randomised experiments

	9. Analogy
	For analogous exposures and outcomes an effect has already been shown



	Conclusion
	List of abbreviations
	Competing interests
	Acknowledgements
	References

