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1 Introduction

Despite the good agreement of the Standard Model (SM) with a wealth of experimental

data, both empirical reasons (e.g. the observation of dark matter) and theoretical argu-

ments (such as the naturalness problem and the desire for gauge coupling unification) point

to physics beyond the SM. One of the most thoroughly studied extensions of the SM is Su-

persymmetry (SUSY). In particular the Minimal Supersymmetric Standard Model (MSSM)

with R-parity conservation and superpartner masses at the TeV scale could provide a solu-

tion to the above issues. The search for SUSY at the TeV scale is therefore a central part

of the physics program of the Large Hadron Collider (LHC) at CERN. In the context of the

MSSM, and of any other R-parity conserving model, the supersymmetric partners of the

SM particles are produced in pairs, and squarks and gluinos, coupling strongly to quarks

and gluons, have typically the highest production rates. Experimental searches for SUSY

have been performed at LEP, the Tevatron and the LHC in various final-state signatures,

see [1] for a recent review. For squark- and gluino-pair production the tightest bounds

generically arise from jets+missing energy signatures, where the two LHC experiments

have set lower bounds on the mass of squarks and gluinos of about 800GeV-1TeV [2, 3],
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depending on the precise underlying theoretical model assumed. Once upgraded to its

nominal energy of 14TeV the LHC should be sensitive to squark and gluino masses of up

to 3TeV [4].

SUSY searches and, if squarks and gluinos are discovered, the measurement of their

properties rely on a precise theoretical understanding of the production mechanism and

on accurate predictions of the observables used in the analysis. From the theoretical point

of view, the simplest of such observables is the total production cross section, on which

we will focus in this work. For QCD mediated processes, such as squark- and gluino-pair

production, the Born cross section is notoriously affected by large theoretical uncertainties,

such that the inclusion of at least the next term in the expansion in the strong coupling

constant αs is mandatory for a reliable prediction. Next-to-leading order (NLO) SUSY

QCD corrections for production of squarks and gluinos were computed in [5] and imple-

mented in the program PROSPINO [6, 7]. The corrections are large, up to 100% of the

tree-level result, and lead to a significant reduction of the scale dependence of the cross

section. Electroweak contributions were also investigated [8–13], but found to be much

smaller than the QCD contributions, less than 5–10% of the Born result.

The size of the O(αs) corrections raises the question of the magnitude of unknown

higher-order QCD corrections, and makes it desirable to include at least the dominant con-

tributions beyond NLO. It is known that a non-negligible part of the full NLO corrections

arises from the partonic threshold region, defined by the limit β ≡
√

1− 4M2/ŝ → 0,

with M the average mass of the particles produced and ŝ the partonic centre-of-mass en-

ergy. In the threshold region the partonic cross section is dominated by soft-gluon emission

off the initial- and final-state coloured particles and by Coulomb interactions of the two

non-relativistic heavy particles, which give rise to singular terms of the form αs ln
2,1 β and

αs/β, respectively. These corrections can be resummed to all orders in αs, thus leading to

improved predictions of the cross section and smaller theoretical uncertainties. Note that

to obtain the total hadronic cross section, the partonic cross section is convoluted with

parton luminosity functions. The convolution scans over regions where β is not necessarily

small, unlessM is close to the hadronic centre-of-mass energy s. Hence, in these regions the

threshold-enhanced terms cannot be expected a priori to give the dominant contribution

to the cross section. However, one often finds after convoluting with the parton luminosity

that the threshold contributions give a reasonable approximation to the total hadronic

cross section (see figures 3 and 5 below for the case of squark and gluino production), so

resummation is also relevant for improving predictions of the hadronic cross section.

Resummation of soft logarithms for squark and gluino production at the next-to-

leading (NLL) logarithmic accuracy have been presented in [14–18] using the Mellin-space

resummation formalism developed by [19–22]. Recently the same formalism has been ex-

tended to NNLL order [23] and applied to squark-antisquark production [24]. These works

do not resum Coulomb corrections to all orders, though the numerically dominant terms

are accounted for at fixed order. All-order resummation of Coulomb contributions and

bound-state effects for squark-gluino and gluino-gluino production were on the other hand

investigated in [25–27], without the inclusion of soft resummation. In [28, 29] partial

NNLL resummation of soft logarithms has been used to construct approximated NNLO
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results for the squark-antisquark production cross section. Recently a new formalism for

the combined resummation of soft and Coulomb corrections has been developed [30, 31],

and applied to NLL resummation of squark-antisquark production [31], and NNLL resum-

mation of tt̄ hadroproduction [32]. Contrary to the traditional Mellin-space formalism,

in our approach, which is based on soft-collinear effective theory (SCET) and potential

non-relativistic QCD (pNRQCD), resummation is performed directly in momentum space

via renormalization-group evolution equations [33–35]. The combined soft-Coulomb effects

have been found to be sizeable for the case of squark-antisquark production [31] and lead

to a reduction of the scale uncertainty, as has been observed as well in [24].

In this work we extend the results given in [31] to the remaining production processes

for squarks and gluinos at NLL accuracy, i.e. squark-squark, squark-gluino and gluino-

gluino production. We also consider separately the production of pairs of stops, which

requires the extension of the formalism presented in [31] to particles pair-produced in a

P -wave state. The paper is organized as follows: in section 2 we give an overview of squark

and gluino production processes, set up the calculation and briefly review the resummation

formalism we employ, listing the ingredients needed for NLL resummation. The validity

of the formalism for P -wave induced processes, which is necessary for resummation of

the stop-antistop cross section, is established in appendix A. Numerical results for the

cross sections are presented in section 3, including predictions for a representative set

of the benchmark points proposed in [36] and a comparison to results using the Mellin-

space formalism [16, 17]. Finally in section 4 we present our conclusions and outlook.

Explicit expressions for resummation functions appearing in the NLL cross sections are

provided in appendix B, while appendix C contains some details on the scales used in

the momentum-space resummation and on our method to estimate ambiguities in the

resummation procedure.

2 NLL resummation for squark and gluino production

At hadron colliders, the dominant production channels for squarks q̃ and gluinos g̃ are

pair-production processes of the form

N1N2 → s̃s̃′X, (2.1)

where N1,2 denote the incoming hadrons and s̃, s̃′ the two sparticles. The total hadronic

cross sections for the processes (2.1) can be obtained by convoluting short-distance pro-

duction cross sections σ̂pp′(ŝ, µf ) for the partonic processes

pp′ → s̃s̃′X , p, p′ ∈ {q, q̄, g}, (2.2)

with the parton luminosity functions Lpp′(τ, µ):

σN1N2→s̃s̃′X(s) =

∫ 1

τ0

dτ
∑

p,p′=q,q̄,g

Lpp′(τ, µf )σ̂pp′(τs, µf ) , (2.3)
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where τ0 = 4M2/s, with the average sparticle mass

M =
ms̃ +ms̃′

2
. (2.4)

The parton luminosity functions are defined from the parton density functions (PDFs) as

Lpp′(τ, µ) =

∫ 1

0
dx1dx2δ(x1x2 − τ)fp/N1

(x1, µ)fp′/N2
(x2, µ) . (2.5)

We perform a NLL resummation of threshold logarithms and Coulomb corrections to

the partonic cross section, counting both αs/β and αs lnβ as quantities of order one, where

β = (1 − 4M2/ŝ)1/2 is the heavy-particle velocity. Our predictions include all corrections

to the Born cross section of the schematic form

σ̂NLL
pp′ ∝ σ̂(0)

∑

k=0

(

αs

β

)k

exp
[

lnβ g0(αs lnβ) + g1(αs lnβ)
]

. (2.6)

A resummation at NNLL accuracy in the counting αs lnβ ∼ 1, αs/β ∼ 1 , which is beyond

the scope of this paper but has recently been performed for top-pair production [32], would

include in addition terms of the form exp[αsg2(αs lnβ)] and corrections of order O(αs)

relative to the NLL cross section, including NLO corrections to the Coulomb potential and

other higher-order potentials, as well as the non-logarithmic one-loop hard corrections. The

recent NNLL calculation of squark-antisquark production [24] included the corrections of

the g2-type related to soft corrections and the hard O(αs) corrections, but kept only the

(αs/β)
1-term in the sum over k. In section 2.1 we collect some facts about the production

processes of gluinos and the superpartners of the light quarks at LO and NLO while the

formalism employed for the NLL resummation is reviewed in section 2.2. The production

of stop pairs is included in 2.3, while details about the choice of the soft scale in the

momentum-space resummation formalism and our procedure to estimate the remaining

theoretical uncertainty are discussed in 2.4.

2.1 LO and NLO results

At leading order [37–39], the following partonic channels contribute to the production of

light-flavour squarks and gluinos:

gg, qiq̄j → q̃ ¯̃q ,

qiqj → q̃q̃, q̄iq̄j → ¯̃q ¯̃q ,

gqi → g̃q̃, gq̄i → g̃ ¯̃q ,

gg, qiq̄i → g̃g̃ , (2.7)

where i, j = u, d, s, c, b. At NLO further partonic processes contribute to the cross

section. To keep the notation as simple as possible, in (2.7) we have suppressed the

helicity and flavour indices of the squarks. It is understood that in the predictions

for the cross sections presented below the contributions of the ten light-flavour squarks

(ũL/R, d̃L/R, c̃L/R, s̃L/R, b̃L/R) are always summed over. Furthermore, the ten scalars are
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Figure 1. Ratio of the LO production cross sections for the processes (2.7) to the total Born

production rate of coloured sparticles, σSUSY, for the LHC with
√
s = 7 TeV. Left: Mass dependence

for a fixed mass ratio mq̃ = mg̃ = M . Right: Dependence on the ratio mg̃/mq̃ for a fixed average

mass (mq̃ +mg̃)/2 = 1.2TeV.

assumed to be degenerate in mass, with the common light-flavour squark mass given bymq̃.

In the following, the charge-conjugate subprocesses for squark-squark and gluino-squark

productions will be included in our results. As input for the convolution (2.3) we will

use the MSTW08 set of PDFs [40] at the appropriate perturbative order (the LO PDFs

for Born-level predictions and the NLO PDFs for the NLO and NLL results) and set the

factorization scale to the average mass of the produced sparticles, µf = M . We use a set

of PDFs with an improved accuracy at large x provided to us by the MSTW collaboration

that has also been employed for the NLL results in [18].

To illustrate the relative magnitude of the various processes depending on the squark

and gluino masses, the ratio of the total hadronic cross section for the processes (2.7) to the

total inclusive cross section for squark and gluino production σSUSY = σPP→q̃ ¯̃q+q̃q̃+g̃q̃+g̃g̃

is shown in figure 1 for the LHC with
√
s = 7TeV centre-of-mass energy. From the left-

hand side plot, showing the relative contributions of the various processes as a function of

a common squark and gluino mass, it can be seen that squark-squark and squark-gluino

production are by far the dominant channels over the full mass range considered. In the

right-hand side plot, the relative contributions are shown as a function of the squark-

gluino mass ratio for average mass
mg̃+mq̃

2 = 1.2TeV and it is seen that only for gluinos

that are significantly lighter than squarks, gluino-pair production becomes the dominant

production channel. In figure 2 we show the K-factor KNLO = σNLO/σLO for the SUSY-

QCD corrections for the various production processes as obtained from PROSPINO [6].1

The corrections are positive and enhance the cross section from 40% for squark-gluino

production with light sparticle masses up to 100% or larger for squark-antisquark and

gluino-pair production at large sparticle masses.

Since the focus of this work is on higher-order corrections that are enhanced in the

threshold limit β → 0, we consider here the corresponding terms appearing at NLO. To

this end, we decompose the partonic cross section σ̂pp′ into a complete colour basis, and

1To see the genuine size of the NLO corrections, the K-factors have been computed using the NLO PDFs

for the Born cross sections.
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Figure 2. NLO K-factor for the processes (2.7) at the LHC with
√
s = 7TeV. Left: Mass

dependence for a fixed mass ratio mq̃ = mg̃ = M . Right: Dependence on the ratio mg̃/mq̃ for

a fixed average mass (mq̃ +mg̃)/2 = 1.2TeV.

parametrize the higher-order corrections as

σ̂pp′ =
∑

Rα

σ̂
(0),Rα

pp′

{

1 +
αs

4π
f
(1),Rα

pp′ + . . .
}

. (2.8)

The sum is over the irreducible colour representations appearing in the decomposition

R⊗R′ =
∑

Rα, where R, R
′ are the SU(3) representations of the two final-state sparticles.

The relevant decompositions for squark and gluino production are given by

q̃ ¯̃q : 3⊗ 3̄ = 1⊕ 8 ,

q̃q̃ : 3⊗ 3 = 3̄⊕ 6 ,

q̃g̃ : 3⊗ 8 = 3⊕ 6̄⊕ 15 ,

g̃g̃ : 8⊗ 8 = 1⊕ 8s ⊕ 8a ⊕ 10⊕ 10⊕ 27 .

(2.9)

The explicit basis tensors for the various representations have been constructed in [30]

(see also [15, 16]), where it has been shown that an s-channel colour basis based on the

decompositions (2.9) is advantageous for the all-order summation of soft-gluon corrections.

In eq. (2.8) σ̂
(0),Rα

pp′ represents the tree-level cross section for a given process in colour channel

Rα, while the f
(1),Rα

pp′ are colour-specific NLO scaling functions. The colour-separated Born

cross sections for squark and gluino production are available in [15–17]. The NLO scaling

functions, on the contrary, are only known numerically in their colour-averaged form [5].

However, a simple formula is available for the threshold limit of the NLO scaling functions,

containing all the threshold-enhanced contributions, for arbitrary colour representation

Rα [41]:

f
(1),Rα

pp′ = −2π2DRα

β

√

2mr

M
+ 4(Cr + Cr′)

[

ln2
(

8Mβ2

µf

)

+ 8− 11π2

24

]

−4(CRα + 4(Cr + Cr′)) ln

(

8Mβ2

µf

)

+ 12CRα + h
(1),Rα

pp′ +O(β), (2.10)

withM the average mass of the two particles produced (2.4), while mr denotes the reduced

mass, mr = ms̃ms̃′/(ms̃ +ms̃′). Cr, Cr′ and CRα are the Casimir invariants for the colour

– 6 –
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q̃ ¯̃q D1 = −4
3 D8 =

1
6

q̃q̃ D3̄ = −2
3 D6 =

1
3

g̃q̃ D3 = −3
2 D6̄ = −1

2 , D15 = +1
2

g̃g̃ D1 = −3 D8 = −3
2 D10 = 0 D27 = 1

Table 1. Numerical values of the coefficients of the Coulomb potential (2.11) for squark and gluino

production processes. Negative values correspond to an attractive potential.

representations of the initial-state particles, p and p′, and for the irreducible representation

Rα of the SUSY pair. The coefficients DRα of the Coulomb potential for the production

of heavy particles in SU(3) representations R and R′ in the colour channel Rα are given in

terms of the quadratic Casimir operators for the various representations:

DRα =
1

2
(CRα − CR − CR′) , (2.11)

where negative values correspond to an attractive Coulomb potential, positive values to

a repulsive one. The numerical values for the representations relevant for squark and

gluino production can be found in [31, 42] and are collected in table 1. The coefficient

h
(1),Rα

pp′ is the one-loop contribution to the hard matching coefficient appearing in eq. (2.13)

below, and represents the only process-specific quantity in eq. (2.10). It has been obtained

recently for squark-antisquark production and gluino-gluino production [24, 26] but is not

known yet for the remaining production processes. The knowledge of h
(1),Rα

pp′ is required

for NNLL resummation [24], but not at NLL accuracy as considered here, so the h
(1),Rα

pp′

will be always set to zero in the following. Using the Born cross sections for the different

colour channels [15, 16] and (2.10) one can reproduce the threshold expansions of the NLO

corrections in [5].2

In figure 3 we study to which extent the full NLO corrections as obtained from

PROSPINO are approximated by the singular NLO corrections, obtained by dropping all

constant terms from (2.10), including ln 2 terms, and convoluting the resulting partonic

cross section (2.8) with the parton luminosities. For the Born cross sections σ̂
(0),Rα

pp′ in (2.8)

the exact expressions, without use of the threshold approximation, have been kept, but

colour channels with a vanishing threshold limit of the Born cross section at leading or-

der in β have been dropped. For the case of degenerate squark and gluino masses it is

seen that the difference of the threshold-enhanced contributions to the full NLO correc-

tions is at the 10–30% level over the whole mass range considered, with the exception of

the squark-squark production channel where the threshold contributions account for only

2In [5] there is a typo in the sign of the Coulomb correction for like-flavour q̃q̃ production, i.e. the

function fV +S
qq in eq. (54). Also note that [5] choose to expand the cross section of q̃g̃ production in the

variable β̄ =
√

1− 4mq̃mg̃/(s− (mq̃ −mg̃)2) ≈ β
√

M/2mr which leads to the appearance of additional

ln(mr/M) terms. For this process they also observe an apparent non-factorization of the colour-averaged

NLO threshold corrections from the Born cross section. This is nevertheless consistent with (2.10) since the

Born q̃g̃ cross section in the colour-triplet channel is not proportional to that for the other channels [16].
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Figure 3. Ratio of the singular NLO contributions obtained from (2.10) to the exact NLO correc-

tions for the LHC with
√
s = 7TeV. Left: Mass dependence for a fixed mass-ratio mq̃ = mg̃ = M .

Right: Dependence on the ratio mg̃/mq̃ for a fixed average mass (mq̃ +mg̃)/2 = 1.2TeV.

40–50% of the full NLO corrections. For mg̃ > mq̃ the singular terms overestimate the

corrections for the processes involving gluinos, while the agreement for squark-antisquark

production improves. For mg̃ < mq̃ the singular terms approximate the full corrections

very well for all processes apart from squark-squark production.3 Comparing to figure 1, it

is seen that the singular terms capture the NLO corrections to the dominant processes for

larger mass ratios (i.e. squark-squark production for mg̃ ∼ 2mq̃ and gluino-pair production

for mg̃ ∼ 0.5mq̃) rather well. For degenerate squark and gluino masses the quality of the

threshold approximation for the dominant squark-squark and squark-gluino processes is

somewhat worse. In all cases, the inclusion of the threshold enhanced NLO corrections in

addition to the Born terms improves the agreement with the full NLO results. This moti-

vates the computation of the higher-order threshold-enhanced terms through resummation,

as performed in the remainder of this work.

2.2 Soft-gluon and Coulomb resummation

Next, we briefly review the formalism for the combined resummation of soft- and Coulomb-

gluon corrections [30, 31] and provide the relevant ingredients for squark and gluino pro-

duction at NLL accuracy. We also discuss some features of our implementation that differ

from that used previously for squark-antisquark production in [31].

The combined soft-Coulomb resummation for the production of squarks and gluinos is

based on a factorization of the hard-scattering total cross section for partonic subprocesses

of the type (2.2). It can be shown that near the partonic threshold,

ŝ ∼ (ms̃ +ms̃′)
2, (2.12)

the partonic cross section factorizes into three contributions [31], a hard function H, a

soft function W containing soft gluons to all orders, and a potential function J summing

3Note that one could improve the threshold approximation by including the constant terms in (2.10) once

the coefficients h
(1),Rα

pp′
are known. This could be particularly relevant for the squark-squark process where

the threshold contributions to the NLO cross section are relatively small due to the smaller colour charges

involved and an accidental cancellation of Coulomb corrections between the same-flavour and different-

flavour production channels.
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Coulomb-gluon exchange:

σ̂pp′(ŝ, µ) =
∑

Rα

HRα

pp′ (mq̃,mg̃, µ)

∫

dω JRα

(

E − ω

2

)

WRα(ω, µ) . (2.13)

Here E =
√
ŝ−2M is the energy relative to the production threshold and the sum is over the

colour representations (2.9). In (2.13) the s-channel colour basis mentioned above, that can

be shown to diagonalize the soft function to all orders [30], is chosen for the hard-scattering

amplitudes. Independent of the sparticle type, the soft function then depends only on the

colour representations of the initial-state partons and the irreducible representation Rα of

the sparticle pair appearing in the decompositions (2.9), in agreement with the picture

that soft-gluon radiation is only sensitive to the total colour charge of the slowly moving

sparticle pair [22]. The formula (2.13) has been derived in [31] for S-wave dominated

production processes up to NNLL accuracy. This covers all production processes of squarks

and gluinos, apart from quark-antiquark initiated stop-antistop production, that proceeds

through a P -wave. The applicability of the formalism to stop production is discussed in

section 2.3 and appendix A.

It can be argued that the natural scale for the evaluation of the hard function in (2.13),

leading to well-behaved higher-order corrections, is of the order of µh ∼ 2M , while the

natural scale for soft-gluon radiation is of the order of µs ∼Mβ2. We use the momentum-

space resummation formalism of [33–35] to evolve the soft and hard functions from their

natural scales to the factorization scale µf used for the evaluation of the parton distribution

functions, commonly taken to be of the order of µf ∼ M . In this way, logarithms of

µs/µf ∼ β2 are summed to all orders. The precise prescription for the choice of the soft

scale adopted in our calculation is discussed in 2.4. The exchange of multiple Coulomb

gluons can be summed up using the method of Coulomb Green’s functions in non-relativistic

QCD [43–45].

For resummation at NLL accuracy, the leading-order hard and soft functions are re-

quired as fixed-order input to the evolution equations. The leading-order soft function

is trivial, W (0)Rα(ω) = δ(ω). The leading-order hard functions are obtained from the

threshold limit of the Born cross section for the colour channel Rα [31],

σ̂
(0),Rα

pp′ (ŝ) ≈
ŝ→4M2

(2mr)
2

2π

√

E

2mr
H

(0),Rα

pp′ . (2.14)

Although the Born-cross sections in the threshold limit appear on the left-hand side

in (2.14), we keep the exact expressions in our numerical implementation, so the hard func-

tions in practice depend on ŝ. This incorporates some higher-order terms in β, albeit not

systematically.4 Here our current treatment differs from that used for squark-antisquark

production in [31] where only the threshold limit of the Born cross section was used to

compute the hard function.

4This corresponds to the treatment of [15–17], up to the fact that we set the hard function for a given

production and colour channel to zero if the Born cross section vanishes at threshold at leading order in β,

even if the full Born cross section for this channel is non-vanishing. This affects the subprocesses qq̄ → g̃g̃

in the singlet channel and qiqi → q̃iq̃i in the triplet channel. The numerical effect is however negligible.
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For the resummation of Coulomb corrections, we use results for the non-relativistic

Coulomb Green’s function obtained for top-quark production at electron-positron colliders

and stop production [43, 46]. For positive values of E and vanishing decay widths of the

sparticles, the S-wave potential function is given by the Sommerfeld factor

JRα(E) =
(2mr)

2πDRααs

2π

(

e
πDRααs

√

2mr
E − 1

)−1

, E > 0, (2.15)

with the coefficients DRα of the Coulomb potential given in (2.11). For an attractive

potential, a series of bound states develops below threshold with energies

En = −
2mrα

2
sD

2
Rα

4n2
. (2.16)

Their contribution to the S-wave potential function is given by

Jbound
Rα

(E) = 2
∞
∑

n=1

δ(E − En)

(

2mr(−DRα)αs

2n

)3

E < 0. (2.17)

For sufficiently broad squarks and gluinos with decay widths exceeding the binding energy

of the would-be bound states, Γs̃ +Γs̃′ > |E1−E2|, the bound state poles are smeared out

by the finite lifetimes.5 We consider here a situation where the widths of the squarks and

gluinos are large enough to prevent the formation of bound states, but small enough that

the use of a narrow-width approximation is justified, which is the case for SUSY scenarios

with moderate mass ratios of squarks and gluinos where Γs̃/Ms̃ ∼ 1%. The contributions

to the total cross section below the nominal production threshold, ŝ = 2M , can then be

included by setting the sparticle widths to zero and including the bound-state poles (2.17).

For other observables, the finite width can be taken into account to a first approximation by

the replacement E → E+ i(Γs̃+Γs̃′)/2 in the potential function, see e.g. [25–27] for recent

studies of the invariant-mass spectrum of gluino-pair and squark-gluino production. The

study of finite-width corrections for larger decay widths (e.g. for gluino masses mg̃ & 2mq̃)

is left for future work. In the numerical results presented in this work, the contributions

of the bound state poles for E < 0 will always be included in our default implementation,

and are convoluted with the resummed soft function as described in [32]. Note that in

the previous results for squark-antisquark production [31] the bound-state corrections have

been added without soft-gluon resummation.

The resummed cross section at NLL accuracy is obtained by inserting the potential

function (2.15) and the solutions to the evolution equations of the hard and soft func-

tions [30, 49] into the factorization formula (2.13). Using the solutions in momentum-space

5The actual formation of bound states is possible if the decay widths of the sparticles are smaller than

the decay-rate of the bound state. For long-lived gluinos, or light stops without allowed two-body decays,

higher-order corrections to bound-state production have been recently obtained in [47, 48]. Since the bound

states decay into gluon or photon pairs, this scenario leads to very different collider signatures compared

to the missing-energy signatures of continuum production and is not considered further here.
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obtained in [35], the NLL cross section is written as

σ̂NLL
pp′ (ŝ, µf ) =

∑

Rα

H
(0),Rα

pp′ (µh)Ui(M,µh, µs, µf )
e−2γEη

Γ(2η)

∫ ∞

0
dω

JRα(Mβ2 − ω
2 )

ω

( ω

2M

)2η
.

(2.18)

Here the label i jointly refers to the colour of the initial-state partons and the represen-

tation Rα of the sparticle pair. The function η =
2αs(Cr+Cr′)

π ln(µs/µf ) + . . . contains

single logarithms, while the resummation function Ui sums the Sudakov double logarithms

αs log
2 µh

µf
and αs log

2 µs

µf
. Explicit expressions up to NLL accuracy are given in appendix B.

For µs < µf the function η is negative and the factor ω2η−1 in the resummed cross sec-

tion (2.18) has to be understood in the distributional sense, as discussed in detail in [32].

We have used the non-relativistic expression E = Mβ2 in the argument of the potential

function, that is valid near the partonic threshold (2.12). This follows the default treat-

ment of top-pair production in [32] and leads to the customary expansion of the cross

section in β (see eq. 2.10). We also perform this replacement in the definition of the hard

functions (2.14). The difference between this default implementation and the results ob-

tained by consistently keeping the expression E =
√
ŝ− 2M (as in the previous results for

squark-antisquark production [31]) will be used to estimate the effect of subleading terms

in the cross section, as discussed in section 2.4.

In order to assess the importance of the Coulomb corrections and to compare to the re-

sults of the Mellin approach [16] we will also present results without Coulomb resummation,

obtained by inserting the trivial potential function J (0)(E) = (2mr)2

2π

√

E/2mr into (2.18).

In this approximation, that we will denote by NLLs+h, a fully analytical expression for the

resummed cross section can be obtained:

σ̂
NLLs+h

pp′ =
∑

Rα

σ̂
(0)
pp′(ŝ, µh)Ui(M,µh, µs, µf )

√
πe−2ηγE

2Γ(2η + 3
2)
β4η. (2.19)

Since contributions to the cross section from outside the threshold region can be nu-

merically non-negligible, we match the NLL resummed cross section to the fixed-order NLO

calculation by subtracting the NLO expansion of the NLL expression and adding back the

full NLO corrections:

σ̂matched
pp′ (ŝ) =

[

σ̂NLL
pp′ (ŝ)− σ̂NLL(1)

pp′ (ŝ)
]

+ σ̂NLO
pp′ (ŝ) , (2.20)

where σ̂NLO
pp′ (ŝ) is the fixed-order NLO cross section obtained in standard perturbation the-

ory, as implemented in PROSPINO [6], and σ̂
NLL(1)
pp′ is the resummed cross section expanded

to NLO, as given in [31]. The total hadronic cross section at NLL is then obtained by

convoluting (2.20) with the parton luminosity, as in (2.3).

2.3 Stop-antistop production

Beside the channels listed in (2.7), in section 3 we will also present predictions for stop-pair

production:

gg, qiq̄i → t̃j
¯̃tj , (2.21)
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(a) (b)
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Figure 4. Tree-level diagram topologies contributing to qk q̄l → q̃i ¯̃qj .
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Figure 5. Left: NLO K-factor for stop-pair production at
√
s = 7TeV as a function of the stop

mass. Right: ratio of the singular NLO contributions obtained from eqs. (2.10) and (2.25) to the

full NLO cross section for PP → t̃1
¯̃t1.

where only the initial states appearing at leading order have been shown. The NLO SUSY-

QCD corrections have been computed in [7] and are implemented in PROSPINO [6]. Contrary

to the light-flavour squark case, in most scenarios the mixing of the two weak eigenstates

t̃L, t̃R, and the mass difference of the resulting mass eigenstates, t̃1 = t̃L cos θt̃ + t̃R sin θt̃,

t̃2 = −t̃L sin θt̃+t̃R cos θt̃, is non-negligible. Off-diagonal production of the mass eigenstates,

e.g. t̃1
¯̃t2, appears at NLO in SUSY-QCD, and through electroweak contributions. It is

therefore suppressed compared to diagonal production [7, 50] and will not be considered

here. It must also be mentioned that because of the absence of a significant top-quark

component inside the nucleon the processes t̃t̃ and g̃t̃ first contribute to the cross section at

NLO, and are thus numerically suppressed. The NLO K-factor for the process PP → t̃1
¯̃t1

is shown in figure 5 for a centre-of-mass energy of 7TeV, and the mass range M = 100–

1000GeV. As can be seen, NLO corrections are in the 50–60% range. The predictions

for the second mass eigenstate differ only in the fixed-order NLO results, and for a given

mass the numerical difference between the cross sections for t̃1
¯̃t1 and t̃2

¯̃t2 production is

below 2% for the mass range considered in this work. We therefore omit results for the

process PP → t̃2
¯̃t2.

Contrary to the production of a light squark-antisquark pair, stop-pair production in

the qq̄ channel cannot be mediated by a t-channel diagram like in figure 4(a), again due to

the extreme suppression of top-quark PDFs inside the proton. As a result, at LO in QCD

– 12 –
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a stop-antistop pair is produced in a P -wave state in quark-antiquark collisions. As shown

in appendix A, the resummation formalism can be extended in a straightforward way to

qq̄-initiated stop-antistop production at NLL, and the only modification of (2.13) is the

replacement of the potential function by that appropriate for P -wave processes. For stable

particles, above threshold the result is given by [46] (see also [51])

JP
Rα

(E) = 2mrE

(

1 +
(αsDRα)

22mr

4E

)

JRα(E) , E > 0. (2.22)

The bound-state contributions of the P -wave Green’s function can be found in [46] but are

not needed here, since only the repulsive colour-octet channel appears in our application

to stop-pair production. By expanding (2.22) in the strong coupling constant one ob-

tains the coefficients of the fixed-order Coulomb corrections. While the one-loop Coulomb

correction agrees with that for S-wave production (2.10), the second Coulomb correction
(DRααs)2

12 (π2 + 3)/β2 differs from the S-wave case. Due to the different normalization of

the P -wave Green’s function, the definition of the leading-order hard functions for P -wave

production reads

σ̂
(0),Rα

pp′,P (ŝ) ≈
ŝ→4M2

(2mr)
4

2π

√

(

E

2mr

)3

H
(0),Rα

pp′ . (2.23)

In addition to the the combined soft/Coulomb resummation, we will again con-

sider the NLLs+h approximation where the trivial P -wave potential function J (0)(E) =
(2mr)4

2π (E/2mr)
3/2 is used in the resummation formula, leading to the analytical result

σ̂
NLLs+h

pp′,P =
∑

Rα

σ̂
(0)
pp′(ŝ, µh)Ui(M,µh, µs, µf )

3
√
πe−2ηγE

4Γ(2η + 5
2)
β4η. (2.24)

In analogy to the S-wave result (2.10), one can use the resummation formalism to

obtain the threshold-enhanced one-loop scaling functions for P -wave production in the

colour channel Rα from initial-state partons in the representations r and r′:

f
(1)Rα

pp′,P = −2π2DRα

β

√

2mr

M
+ 4 (Cr + Cr′)

[

ln2
(

8E

µf

)

+
104

9
− 11π2

24

]

− 4

(

CRα +
16

3
(Cr + Cr′)

)

ln

(

8E

µf

)

+
44

3
CRα + h

(1)
i (µf ) . (2.25)

In agreement with [17] one finds that the coefficient of the single logarithms related to

initial-state radiation is multiplied by a factor of 4
3 compared to the S-wave case while

the double logarithm and the logarithms related to final state radiation proportional to

CRα are unchanged. In addition, the constant terms are different which is irrelevant at

NLL accuracy but has to be taken into account if one aims to extract the one-loop hard

function from a computation of the NLO cross section. In figure 5 we study the accuracy of

the threshold approximation defined by inserting the NLO singular terms, obtained from

eqs. (2.10) and (2.25) by dropping constant terms, into (2.8). The ratio of the singular

NLO corrections to the full NLO corrections to the hadronic cross section obtained using

PROSPINO is shown in figure 5 (right plot). Analogously to squark-antisquark production,

the threshold terms provide an excellent approximation of the full NLO result.
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2.4 Scale choices

As explained in section 2.2, the resummed partonic cross section (2.13) depends on a num-

ber of scales related to the factorization of hard, soft and Coulomb effects. The dependence

on these scales would cancel in the exact result, but a residual dependence remains at a

given logarithmic order. As already pointed out, our default choice for the factorization

and hard scales are µf ≡M and µh ≡ 2M , respectively. On the other hand, the resumma-

tion of all NLL effects related to Coulomb exchange requires that the scale in the potential

function JRα is chosen of the order of
√
2mrMβ, which is the typical virtuality of Coulomb

gluons. A more detailed analysis shows in fact that for an attractive Coulomb potential the

Coulomb scale freezes when β ∼ |DRα |αs, due to bound-state formation. We thus choose

the scale in JRα to be

µC = Max
{

2αs(µC)mr|DRα |, 2
√

2mrMβ
}

. (2.26)

Note that, for a repulsive potential, DRα > 0, no bound states arise, so that (2.26) is not

completely justified. However in this case resummation of Coulomb corrections leads to

small effects, and JRα vanishes for small β, so that the precise choice of µC in this limit

has a negligible numerical impact on predictions of the cross section.

The choice of the soft scale µs presents some subtleties. The exponentiation of all

NLL lnβ-terms in the partonic cross section would require a choice µs ∼ Mβ2. However

a running scale leads to strong oscillations of the cross section for small β, due to the

prefactor e−2γEη/Γ(2η) in (2.18), amplified by the factor ω2η and terms in the function Ui,

and eventually hits the Landau pole of the strong coupling constant αs when β → 0. To

overcome these problems two different approaches have been used in the literature:

Fixed µs: in [33–35] the choice of a fixed soft scale was advocated. Such a scale is deter-

mined from the minimization of the one-loop soft corrections to the hadronic cross section,

0 = µs
d

dµs

∑

p,p′

∫ 1

τ0

dτ Lpp′(τ, µs)
σ̂
(1)
pp′,soft(τs, µs)

σ
(0)
N1N2

(s, µs)
. (2.27)

In this approach threshold logarithms are resummed in an average sense and not locally

at the level of the partonic cross section. However one can argue that, for threshold

dominated processes, the choice (2.27) preserves the hierarchy between the soft and short-

distance scales and that logarithmic corrections log(1 − τ0) to the hadronic cross section

are correctly resummed. This was the method adopted in [31] for resummation of the

squark-antisquark production cross section. The explicit value of the scales determined

with the minimization procedure (2.27) are given in eq. (C.1) in appendix C.

Running µs: for the NNLL resummation of soft effects in tt̄ production presented in [32]

a different approach was adopted. There a running soft scale,

µ>s = ksMβ2 , (2.28)

was used in the interval β > βcut, and replaced by a fixed soft scale

µ<s = ksMβ2cut (2.29)
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below the cutoff. With this scale choice, logarithms of β are exponentiated locally in the

partonic cross section in the large-β region, where the use of a fixed soft scale cannot be a

priori justified. On the other hand if βcut is not too big, in the lower interval the hadronic

cross section is in fact dominated by logarithms of βcut, as can be explicitly checked by

convoluting the partonic cross section with toy parton luminosities [35], so that the use of

a fixed scale once again correctly resums the dominant logarithms. The precise value of

βcut is chosen through the prescription described in [32], which is reviewed in appendix C.

The default choice for the prefactor ks adopted here is ks = 1. We have observed that,

for the SUSY processes considered here, the NLL expression and its NNLO expansion are

generally stable against variations of ks for this choice.6

The two possible choices of the soft scale µs just discussed are one of the ambiguities

associated with threshold resummation. Others are related to the choice of the hard and

Coulomb scales and to power-suppressed terms which are not controlled by resummation.

Additionally, one has to consider the ambiguity arising from the choice of the factorization

scale µf . The latter clearly also applies to the fixed-order NLO result. Thus, to reliably

ascertain the residual uncertainty of the fixed-order and resummed results we present in

section 3, we adopt the following procedure:

• Scale uncertainty: for both the NLO and NLL result the factorization scale µf is

varied between half and twice the default value, i.e. M/2 < µf < 2M . For the NLL

result, this is done keeping the other scales µh, µC µs and the parameters βcut and

ks fixed.

• Resummation uncertainty: both hard and Coulomb scales are varied between half

and twice the default values, i.e. M < µh < 4M and µ
(0)
C /2 < µC < 2µ

(0)
C , where µ

(0)
C

is the solution of the implicit equation (2.26). In addition, for the NLL implementa-

tion with a fixed soft scale, µs is varied between half and twice its default value, while

for the running-scale implementation uncertainties related to the choice of βcut and ks
are estimated according to the procedure given in [32] (and reviewed in appendix C).

Finally, as anticipated below (2.18), we take the difference in parametrizing the re-

summed cross section in terms of β or Ê as a measure of the effect of power-suppressed

terms. All the scales and the parameters βcut and ks are varied one at the time keep-

ing the other fixed to their central values, and the resulting errors are summed in

quadrature.

• PDF uncertainty: we estimate the error due to uncertainties in the PDFs using the

68% confidence level eigenvector set of the MSTW08NLO PDFs [40].

An additional source of error arises from the uncertainty on the αs-determination. This

effect has been found to be of the order of 3% for the NLO cross sections of squark-

squark, squark-antisquark and squark gluino production and up to 8% for gluino-pair

production [18]. We expect a similar uncertainty of the NLL results.

6Our choice of ks deviates from the one adopted in [32], where ks = 2. This corresponds to resumming

some of the ln 2 terms in the fixed-order cross section alongside the threshold-enhanced lnβ contributions.
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In the following we will often refer to the sum in quadrature of scale and resummation

uncertainty as “total theoretical uncertainty”. Note that the terminology adopted here dif-

fers slightly from the one used for tt̄ production in [32] where the errors from variation of

the hard and Coulomb scales, and of the soft scale for the fixed-scale implementation, had

been incorporated into the scale uncertainty, while we consider them as resummation ambi-

guities. Additionally, in [32] independent and simultaneous variations of the factorization

and renormalization scale have been considered, whereas in this work we identify the factor-

ization and renormalization scales and vary them as one scale, i.e. M/2 < µf ≡ µr < 2M .

This is the default procedure implemented in the numerical code PROSPINO used for the

computation of the fixed-order NLO result [6].

It is interesting to study how the choice of a fixed or running soft scale affects the

NLL resummed cross section, especially in view of the uncertainties just discussed. In

figure 6 we plot the NLL K-factor, defined in eq. (3.2), as a function of a common SUSY

mass M = mg̃ = mq̃ for the four processes listed in (2.7), for a centre-of-mass energy of

7TeV (the situation for
√
s = 14TeV is qualitatively similar). Results for the stop-pair

production process and the total SUSY production rate are also shown. The thick lines

represent the central values for the two implementations, whereas the bands (delimited by

thinner lines) correspond to the resummation uncertainty as defined above. The central

values are in good agreement for squark-antisquark and gluino-pair production, and for

squark-gluino production at larger masses. For squark-squark production the agreement

is less satisfactory, especially for smaller masses. This is consistent with the observation

from figure 3 that the NLO corrections for squark-squark production are not as dominated

by the threshold contributions as those for the other processes. In all cases, however,

the two different NLL predictions are consistent with each other once the uncertainty

associated with the resummation procedure is taken into account. It can also be seen

that the uncertainty band for the fixed-scale implementation NLLfixed is mostly contained

inside the uncertainty band of the running-scale result, with the possible exception of

the small-mass region. In light of this, in section 3 we will take the matched NLO/NLL

result, eq. (2.20), with a running soft scale, eqs. (2.28) and (2.29), as our default and

best prediction.

3 Numerical results

In this section we present numerical results for the cross sections of the five SUSY processes

introduced in section 2.1 and 2.3. In section 3.1 we discuss the impact of the NLL soft and

Coulomb corrections on the central value of the total cross sections and the uncertainties for

the production of light-flavour squarks and gluinos. In section 3.2 we provide predictions

for a selection of the benchmark points defined in [36]. The results for stop-antistop

production are presented in 3.3. In order to facilitate the use of our results, the arXiv

submission of this paper includes grids with predictions for the LHC with
√
s = 7 and

8TeV, for light-flavour squark and gluino masses from 200–2000GeV and stop masses from

100–1000GeV (200–2500GeV and 100–1200GeV, respectively, for
√
s = 8TeV). We also

provide a Mathematica file containing interpolations of the cross sections with an accuracy
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Figure 6. Resummation uncertainty for the NLL resummed result with a running soft scale (NLL,

solid blue) and a fixed soft scale (NLLfixed, dashed red) for squark-antisquark (top-left), squark-

squark (top-right), squark-gluino (centre-left), gluino-gluino (centre-right), stop-antistop (bottom-

left) production and the inclusive gluino and light-flavour squark cross section (bottom-right) at

LHC with
√
s = 7 TeV. The central line represents the K-factor for the default scale choice, while

the band gives the resummation uncertainty associated with the result. See text for explanation.

that is typically better than ∼ 1%, and at worst 1–2% for almost degenerate masses or

2–3% for the lower boundaries of the intervals where mq̃,mg̃ < 400GeV.

3.1 Squark and gluino production at NLL

To illustrate how different classes of corrections contribute to the total cross section, we

introduce three different NLL implementations:

• NLL: our default implementation. Contains the full combined soft and Coulomb
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resummation, eq. (2.18), including bound-state contributions below threshold,

eq. (2.17). For the soft scale we adopt the running scale given in eqs. (2.28), (2.29).

• NLLnoBS: as above, but without the inclusion of bound-state effects.

• NLLs+h: this implementation includes resummation of soft and hard logarithms only,

without Coulomb resummation. This is obtained using eqs. (2.19) and (2.24).

The three NLL approximations defined above are always matched to the exact NLO results

computed with PROSPINO, according to (2.20). As input for the convolution with the parton

luminosity functions, eq. (2.3), we adopt the MSTW08NLO PDF set [40] and the associated

strong coupling constant αs(MZ) = 0.1202. Unless otherwise specified, the parameter r,

defined as

r =
mg̃

mq̃
, (3.1)

is set to one.

We start presenting results for the NLL K-factor, defined as

KNLL =
σmatched

σNLO
, (3.2)

where σmatched is our matched result for one of the NLL implementations defined in the

beginning of this section and σNLO the fixed-order NLO result obtained using PROSPINO.

The NLL-K-factor for LHC with 7TeV centre-of-mass energy is plotted in figure 7, for

the four light-squark/gluino production processes and the mass range mq̃ = mg̃ = 500-

2000GeV. The results for
√
s = 14 TeV and the mass range mq̃ = mg̃ = 500-3000GeV are

given in figure 8. The NLL corrections for our default implementation (solid blue lines)

can be large, with corrections to the fixed-order NLO results of up to 120% in the upper

mass range for gluino-gluino production at 7TeV. The higher-order effects are smaller, but

still sizeable, for the other three processes, due to the smaller colour charges involved in

squark-antisquark, squark-squark and squark-gluino production. Furthermore, for a fixed

SUSY mass the KNLL-factor decreases from 7 to 14TeV, consistently with the expectation

that at lower centre-of-mass energies the threshold region plays a more prominent role.

The effect of including Coulomb resummation and its interference with soft resumma-

tion is on average as large as (or even larger than) the effect of pure soft and hard cor-

rections, as can be seen comparing our default implementation NLL with NLLs+h (dashed

red lines). Pure soft contributions beyond O(αs) amount to 5–60% of the fixed-order NLO

result, depending on the mass and process considered, whereas pure Coulomb effects and

interference of soft and Coulomb corrections can amount to up to 60%. An exception to

this is the squark-squark production process, where the effect of Coulomb corrections is

small. This particular behaviour originates from cancellations between the cross sections

for same-flavour squark production, where the repulsive colour-sextet channel is numeri-

cally dominant and gives rise to negative O(α2
s ln

2 β/β) corrections, and different-flavour

squark production, where the corresponding term is positive, due to the dominance of the

attractive colour-triplet channel.
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Figure 7. NLL K-factor for squark-antisquark (top-left), squark-squark (top-right), squark-gluino

(centre-left) and gluino-gluino (centre-right) production at LHC with
√
s = 7 TeV, and for the

sum of the four processes (bottom). The plots show KNLL as a function of M for different NLL

approximations: NLL (solid blue), NLLno BS (dot-dashed purple) and NLLs+h (dashed red). See

the text for explanation.

For squark-antisquark, squark-gluino and gluino-gluino production, a significant por-

tion of the total Coulomb and soft-Coulomb corrections originates from bound-state effects

below threshold. These correspond to the difference between the NLL and NLLno BS (dot-

dashed purple) curves in the plots. For squark-antisquark and squark-gluino production

bound-state corrections amount to 2–10% of the fixed-order NLO cross section, whereas

for gluino-gluino production they can be as large as 30%.

– 19 –



J
H
E
P
0
6
(
2
0
1
2
)
0
5
2

1000 1500 2000 2500 3000
M@GeVD

1.05

1.10

1.15

1.20

KNLL

PP ® q�q� H s = 14 TeVL

NLL

NLLno BS

NLLs+h

1000 1500 2000 2500 3000
M@GeVD

1.02

1.04

1.06

1.08

KNLL

PP ® q�q� H s = 14 TeVL

NLL

NLLno BS

NLLs+h

1000 1500 2000 2500 3000
M@GeVD

1.05

1.10

1.15

1.20

1.25

1.30

KNLL

PP ® q�g� H s = 14 TeVL

NLL

NLLno BS

NLLs+h

1000 1500 2000 2500 3000
M@GeVD

1.1

1.2

1.3

1.4

1.5

1.6

KNLL

PP ® g�g� H s = 14 TeVL

NLL

NLLno BS

NLLs+h

1000 1500 2000 2500 3000
M@GeVD

1.05

1.10

1.15

KNLL

PP ® q�q�+q�q�+q�g�+g�g� H s = 14 TeVL

NLL

NLLno BS

NLLs+h

Figure 8. NLL K-factor for squark-antisquark (top-left), squark-squark (top-right), squark-gluino

(centre-left) and gluino-gluino (centre-right) production at LHC with
√
s = 14 TeV, and for the

sum of the four processes (bottom). The plots show KNLL as a function of M for different NLL

approximations: NLL (solid blue), NLLno BS (dot-dashed purple) and NLLs+h (dashed red). See

the text for explanation.

Figure 9 shows the NLLK-factor for the total SUSY production rate at the 7TeV LHC

as a contour plot in the (mg̃,mq̃)-plane. The r-dependence of the total resummed cross

section arises from an interplay of the r-dependence of the single-process cross sections

and of the relative dominance of the four subprocesses for a given r. The largest K-

factor is obtained for mq̃ ∼ 2TeV and mg̃ ∼ 1.4TeV, with corrections of 50% to the NLO

cross section. The plot shows also the recent exclusion limit published by the ATLAS

collaboration in [2] assuming a simplified model of a massless neutralino, a gluino octet
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√
s = 7TeV as a function

of the gluino mass mg̃ and average squark mass mq̃. The dashed line corresponds to the most recent

exclusion limit presented in [2].
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Figure 10. Ratio of the NLL production-cross sections for the processes (2.7) to the total NLL

rate of coloured sparticle production σSUSY for the LHC with
√
s = 7 TeV. Left: Mass dependence

for a fixed mass-ratio mq̃ = mg̃ = M , Right: Dependence on the ratio mg̃/mq̃ for a fixed average

mass (mq̃ +mg̃)/2 = 1.2TeV.

and degenerate squarks of the first two generations, while all the other supersymmetric

particles, including stops and sbottoms, are decoupled by giving them a mass of 5TeV.

The limits are therefore not directly comparable to our results which treat the sbottom

as degenerate with the light-flavour squarks, but are shown here as an indication of the

current LHC reach. We do not attempt to estimate how resummation would affect the

determination of this limit. However, one can observe that in the large squark-mass region
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the exclusion limit crosses regions with a K-factor bigger than 1.3, where resummation

effects on the limit extraction might be relevant.

Given the large effect of resummation, especially for squark-gluino and gluino-gluino

production, it is interesting to study how the relative contribution of the four production

processes to the total SUSY production rate is modified by the inclusion of NLL corrections.

This is shown in figure 10. The qualitative behaviour of the relative contribution of the

four different processes is very similar to the LO result (figure 1). However at large masses

one can notice an enhancement of the squark-gluino production rate compared to the

squark-squark channel (left plot), as one would expect from the larger NLL K-factor for

the first processes. For a fixed average squark and gluino mass of 1.2TeV (right plot)

the relative ratios are basically unchanged for moderate values of r = mg̃/mq̃, though one

observes a significant enhancement of the squark-antisquark cross section for large gluino

masses (r = 2).

As a result of including the threshold-enhanced higher-order corrections, one expects

that the uncertainty due to missing perturbative corrections is reduced compared to the

NLO results. While for NLO the theoretical uncertainty arises from scale-variation only,

the total theoretical error of the NLL results is obtained by adding scale and resummation

uncertainties in quadrature, as defined in section 2.4. The uncertainty bands for NLO,

NLLs+h and NLL approximations are shown in figure 11 for the LHC with
√
s =7TeV and

in figure 12 for the LHC with
√
s =14TeV . In all plots the cross sections are normalized

to unity at the central values of the scales and other input parameters. It is evident that

the combined resummation of soft and Coulomb effects (NLL, solid blue) generally leads

to a significant reduction of theoretical uncertainties compared to the NLO result (dotted

black), especially in squark-antisquark and squark-squark production, where the error is

reduced by a factor 2 or more in the large-mass region. The behaviour of NLLs+h (dashed

red) is more process-dependent, with basically no uncertainty reduction compared to the

fixed-order NLO result for squark-antisquark production, and moderate effects for squark-

gluino and gluino-gluino production. For squark-squark production (and, as a consequence

of the dominance of squark-squark production, for the total SUSY production rate) the

uncertainties of NLLs+h and NLL are very similar, due to the smallness of Coulomb effects

in this particular production channel. The large reduction of the scale dependence for

squark-antisquark production by soft-Coulomb interference effects is consistent with recent

NNLL studies in this channel [24] that include the first Coulomb correction.

3.2 Benchmark points for SUSY searches at LHC

In addition to the grid files provided with the arXiv submission of this paper, we here

present numerical predictions for some benchmark points at the LHC with 7TeV centre-

of-mass energy, in order to illustrate the effect of our NLL results on the production cross

sections. We employ the sets of benchmark points defined in [36], that are compatible with

recent LHC bounds and other data such as b → sγ, but not necessarily with constraints

from the anomalous magnetic moment of the muon, or from the dark matter relic abun-

dance. We consider the seven lines in the constrained MSSM (CMSSM) parameter space

defined in [36] and one line for the minimal gauge mediated SUSY breaking (mGMSB)
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Figure 11. Total theoretical uncertainty of the NLO approximation (dotted black), full NLL

resummed result (solid blue) and NLLs+h (dashed red) at the LHC with
√
s =7TeV. All cross

sections are normalized to one at the central value of the scales.

scenario. For each line we selected one benchmark point expected to be relevant for 5 fb−1

of data and a second point relevant for 10–30 fb−1, where we naively extrapolate the reach

of the 1 fb−1 LHC data [2, 3] that exclude CMSSM benchmark points and simplified models

with total SUSY production cross sections of the order of σSUSY & 0.04 pb formq̃ . mg̃ and

σSUSY & 0.1 pb for mq̃ > mg̃. The mGMSB scenario we have selected has a quasi-stable

neutralino as next-to-lightest SUSY particle (NLSP), so a similar reach as for CMSSM-type

scenarios are expected. Since only the squark and gluino masses are relevant for the pro-

duction cross sections, we have chosen points with a reasonable spread of masses and mass

ratios, covering the range of average sparticle masses, 1.3 TeV . (mg̃ +mq̃)/2 . 1.5 TeV,

and the mass ratios 0.75 .
mg̃

mq̃
. 1.12. This mass range is also compatible with the esti-

mated discovery reach [52] of mg̃ ∼ 1.3TeV (1.6TeV) for mq̃ ∼ mg̃ at 5 fb−1 (30 fb−1) and
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Figure 12. Total theoretical uncertainty of the NLO approximation (dotted black), full NLL

resummed result (solid blue) and NLLs+h (dashed red) at the LHC with
√
s =14TeV. All cross

sections are normalized to one at the central value of the scales.

mg̃ ∼ 0.8TeV (1TeV) for mq̃ ≫ mg̃ in a CMSSM scenario with tanβ = 0.45, A0 = 0. The

remaining families of benchmark scenarios introduced in [36] tend to have very similar mass

ratios as our selected points. Therefore the relative contributions of the different produc-

tion channels and the effect of the higher-order QCD corrections will be similar, although

the decay chains and the resulting collider signatures can be very different. For some sce-

narios lighter squarks and gluinos than the ones considered here might still be allowed, for

instance in GMSB with a stau NLSP. Predictions for such scenarios can be obtained by an

interpolation of the grid files provided with the arXiv submission of this paper.

The SUSY breaking parameters and the resulting mass spectrum of the coloured SUSY

particles for the selected points is shown in tables 2, 3 and 4 together with our best NLL

predictions for the total cross section for light-flavour squark and gluino production (in-

cluding simultaneous soft-gluon and Coulomb resummation as well as bound-state effects).
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σSUSY(pb),
√
s = 7TeV

Point m0 m1/2 mg̃ mq̃ NLO NLL ∆PDF KNLL

10.1.3 150 600 1357 1209 0.91+0.13
−0.14 × 10−2 1.04+0.10

−0.09 × 10−2 +4.2%
−2.9% 1.15

10.1.4 162.5 650 1461 1300 4.17+0.60
−0.64 × 10−3 4.79+0.45

−0.42 × 10−3 +4.2%
−3.0% 1.15

10.2.2 225 550 1255 1130 1.83+0.25
−0.27 × 10−2 2.10+0.20

−0.18 × 10−2 +4.2%
−3.0% 1.15

10.2.5 300 700 1569 1412 1.66+0.26
−0.27 × 10−3 1.92+0.18

−0.17 × 10−3 +4.4%
−3.1% 1.16

10.3.2 350 525 1209 1115 2.21+0.30
−0.33 × 10−2 2.54+0.24

−0.23 × 10−2 +4.4%
−3.2% 1.15

10.3.3 400 600 1367 1261 6.32+0.92
−0.98 × 10−3 7.31+0.71

−0.66 × 10−3 +4.4%
−3.3% 1.16

10.4.2 850 400 983 1160 3.48+0.57
−0.59 × 10−2 4.24+0.48

−0.43 × 10−2 +7.0%
−6.2% 1.22

10.4.4 1050 500 1207 1427 3.65+0.68
−0.66 × 10−3 4.59+0.54

−0.50 × 10−3 +8.5%
−7.4% 1.26

Table 2. CMSSM benchmark points and total inclusive SUSY production cross sections for tanβ =

10, A0 = 0. All masses are given in GeV.

σSUSY(pb),
√
s = 7TeV

Point m0 m1/2 mg̃ mq̃ NLO NLL ∆PDF KNLL

40.1.2 345 550 1259 1144 1.66+0.23
−0.25 × 10−2 1.91+0.18

−0.17 × 10−2 +4.3%
−3.1% 1.15

40.1.4 375 650 1468 1325 3.48+0.52
−0.55 × 10−3 4.02+0.38

−0.36 × 10−3 +4.4%
−3.1% 1.15

40.2.2 600 500 1172 1153 1.90+0.28
−0.29 × 10−2 2.22+0.23

−0.21 × 10−2 +5.0%
−3.8% 1.17

40.2.5 750 650 1492 1460 1.34+0.22
−0.23 × 10−3 1.59+0.17

−0.16 × 10−3 +5.3%
−4.0% 1.19

40.3.1 1000 350 886 1182 5.30+0.96
−0.94 × 10−2 6.63+0.77

−0.71 × 10−2 +8.4%
−7.8% 1.25

40.3.5 1200 450 1111 1446 5.29+1.06
−1.00 × 10−3 6.86+0.83

−0.77 × 10−3 +10%
−9.3% 1.30

Table 3. CMSSM benchmark points and total inclusive SUSY production cross sections for tanβ =

40, A0 = −500GeV. All masses are given in GeV.

Here mq̃ denotes the average mass of all squarks except the stops, following the setup

of [24, 53]. The low-scale mass parameters have been generated using SUSY-HIT [54] employ-

ing SuSpect2.41 [55] with the standard model input mt = 172.5GeV, αs(mZ) = 0.1172,

mb(mb) = 4.25GeV.7 The cross sections for the separate squark and gluino production

processes are shown in tables 5 and 6. The stops are always heavier than mt̃1
> 750GeV

for the considered benchmark points so direct stop-antistop production will be out of reach

at the LHC with
√
s = 7TeV (for some of the benchmark points, it might be possible to

discover them in the gluino-decay products). Therefore we will give results for stop-antistop

production separately in section 3.3.

7Note that in the mass-spectra quoted in [36] the masses are rounded to 5GeV accuracy and only the

light-flavour squark masses are averaged. Furthermore version 2.3 of SuSpect has been used for the CMSSM

benchmark points and SOFTSUSY for the mGMSB benchmark points.
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σSUSY(pb),
√
s = 7TeV

Point ΛSUSY mg̃ mq̃ NLO NLL ∆PDF KNLL

mGMSB2.2.1 1.2× 105 943 1142 4.55+0.76
−0.77 × 10−2 5.57+0.63

−0.57 × 10−2 +7.3%
−6.4% 1.22

mGMSB2.2.4 1.5× 105 1154 1408 5.04+0.95
−0.92 × 10−3 6.38+0.76

−0.69 × 10−3 +8.9%
−7.9% 1.27

Table 4. mGMSB benchmark points and total inclusive SUSY production cross sections for tanβ =

15, Nmess = 1, Mmess = 109 GeV. All masses and scales in GeV.

For comparison, NLO results obtained using PROSPINO are also shown in the tables.

Our setup agrees with the one in [18, 53] and the NLO results agree at the expected

one-percent level or better with the results obtained from an interpolated grid using

NLL-fast [53]. For the NLO results the scale uncertainty is estimated by varying the

factorisation scale in the interval M/2 < µf < M , with the renormalization scale set equal

to the factorization scale. The tables also include the relative PDF uncertainties of the

NLO cross sections. Based on experience with top-pair production [32], we expect that

these agree with the relative PDF uncertainties of the NLL results at the relevant accuracy.

Note that, due to correlations, the PDF uncertainty of the total SUSY production cross

section is not equal to the sum of the uncertainties of the individual channels [18]. For the

NLL results we quote the total uncertainty including scale and resummation uncertainties,

as discussed in section 2.4. In this case, the uncertainty of the total SUSY production

cross section was obtained by neglecting correlations and adding the uncertainties of the

individual production channels linearly, which gives a conservative upper bound.

As can be seen from tables 2, 3 and 4, for the benchmark points with mq̃ . mg̃ the

NLL correction to the inclusive squark and gluino production cross section is in the 15–

19%-range, which is consistent with figure 9. For these points the theoretical uncertainty is

reduced from ±14-15% at NLO to ±9-10% at NLL, in agreement with the behaviour seen

in figure 11. The PDF uncertainty is also small for the benchmark points with mq̃ < mg̃,

since only the relatively precisely known quark PDFs are relevant at leading order for the

dominant squark-squark production channel. For scenarios where the gluinos are lighter

than the squarks, the NLL corrections grow to 20-30% and the theoretical uncertainty at

NLL is at the 11-12% level. These features can be understood by considering the relative

contributions of the different production processes in figure 10 and tables 5 and 6. For

mq̃ . mg̃, squark-pair production with moderate NLL corrections in the 6-10% range is

the dominant production channel, with a non-negligible contribution from squark-gluino

production with larger NLL corrections of the order of 30%. For mg̃ < mq̃ the roles

are reversed, resulting in larger NLL corrections to the total rate and a slightly larger

theoretical uncertainty, as can be seen from the uncertainties of the different production

channels in figure 11. Due to the large uncertainties in the current gluon PDF sets for

large x, the PDF error for these points rises to the 10%-level. In gluino-pair production,

especially for large gluino masses, the PDF error can even become ∼ 30%. At a mass ratio
mg̃

mq̃
. 0.75, as realized for the 40.3.1 and 40.3.5 points, gluino-pair production overtakes

squark-pair production as the second-most important channel. For these points, the gluinos
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Figure 13. KNLL for stop-antistop production at the LHC at
√
s = 7TeV (left) and

√
s = 14TeV

(right) for different NLL approximations: NLL (solid blue), NLLno BS (dot-dashed purple) and

NLLs+h (dashed red).
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Figure 14. Total theoretical uncertainty of the NLO approximation (dotted black), full NLL

resummed result (solid blue) and NLLs+h (dashed red) for t̃1
¯̃t1 at the LHC with

√
s =7TeV (left)

and
√
s =14TeV (right). All cross sections are normalized to one at the central value of the scales.

are relatively light, and the NLL corrections to gluino-pair production are at most 45%.

For benchmark points with heavier gluinos, the NLL corrections can grow to 70-80%, but

the gluino-pair production rate is negligible for these points. For the moderate mass ratios

considered here, squark-antisquark production is always much suppressed, but would have

the second-largest cross section for
mg̃

mq̃
→ 2 .

3.3 Results for stop-antistop production

In this section we present results for resummation for stop-antistop production PP → t̃i
¯̃ti.

At LO the cross section depends only on the stop mass, while at NLO it also presents

a (much smaller) dependence on the mixing angle θt̃ and the squark and gluino masses.

For definiteness, we follow [18] and fix all the parameters, except for the stop mass, to

the values corresponding to the CMSSM benchmark point 40.2.4 with SUSY breaking

parameters m0 = 700GeV, m1/2 = 600GeV, A0 = −500GeV and tanβ = 40 [36]. Using

SUSY-HIT [54] we obtain the relevant input parameters mg̃ = 1386GeV, mq̃ = 1358 and

cos θt̃ = 0.39. The numerical dependence on these parameters has been studied in [17] and
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σ(pp→ s̃s̃′)(pb),
√
s = 7TeV

Point s̃s̃′ NLO NLL ∆PDF KNLL

10.1.3 q̃ ¯̃q 7.26+1.34
−1.25 × 10−4 8.80+0.84

−0.73 × 10−4 +11%
−11% 1.21

q̃q̃ 6.22+0.81
−0.88 × 10−3 6.72+0.55

−0.48 × 10−3 +3.8%
−2.8% 1.08

q̃g̃ 2.06+0.30
−0.35 × 10−3 2.69+0.32

−0.32 × 10−3 +11%
−10% 1.31

g̃g̃ 0.77+0.17
−0.17 × 10−4 1.26+0.24

−0.22 × 10−4 +25%
−23% 1.64

10.1.4 q̃ ¯̃q 2.91+0.56
−0.52 × 10−4 3.59+0.35

−0.31 × 10−4 +13%
−12% 1.23

q̃q̃ 3.02+0.41
−0.44 × 10−3 3.28+0.27

−0.24 × 10−3 +3.9%
−2.8% 1.09

q̃g̃ 0.83+0.13
−0.15 × 10−3 1.11+0.13

−0.14 × 10−3 +12%
−11% 1.33

g̃g̃ 2.54+0.59
−0.57 × 10−5 4.36+0.87

−0.81 × 10−5 +28%
−25% 1.72

10.2.2 q̃ ¯̃q 1.60+0.29
−0.27 × 10−3 1.92+0.18

−0.16 × 10−3 +9.9%
−9.6% 1.20

q̃q̃ 1.17+0.15
−0.16 × 10−2 1.25+0.10

−0.09 × 10−2 +3.7%
−2.7% 1.07

q̃g̃ 4.81+0.67
−0.79 × 10−3 6.18+0.71

−0.72 × 10−3 +9.7%
−9.2% 1.28

g̃g̃ 2.27+0.48
−0.48 × 10−4 3.56+0.65

−0.61 × 10−4 +23%
−22% 1.57

10.2.5 q̃ ¯̃q 0.96+0.19
−0.18 × 10−4 1.21+0.12

−0.10 × 10−4 +14%
−14% 1.26

q̃q̃ 1.26+0.18
−0.19 × 10−3 1.38+0.12

−0.11 × 10−3 +4.0%
−3.0% 1.10

q̃g̃ 3.00+0.51
−0.55 × 10−4 4.11+0.51

−0.53 × 10−4 +13%
−12% 1.37

g̃g̃ 0.80+0.20
−0.19 × 10−5 1.44+0.30

−0.28 × 10−5 +31%
−27% 1.81

10.3.2 q̃ ¯̃q 1.88+0.34
−0.32 × 10−3 2.24+0.21

−0.18 × 10−3 +9.8%
−9.2% 1.19

q̃q̃ 1.33+0.17
−0.19 × 10−2 1.43+0.12

−0.10 × 10−2 +3.7%
−2.7% 1.07

q̃g̃ 6.49+0.89
−1.05 × 10−3 8.30+0.94

−0.95 × 10−3 +9.4%
−8.9% 1.28

g̃g̃ 3.70+0.77
−0.77 × 10−4 5.69+1.03

−0.96 × 10−4 +22%
−21% 1.54

10.3.3 q̃ ¯̃q 4.40+0.85
−0.78 × 10−4 5.37+0.52

−0.45 × 10−4 +12%
−11% 1.22

q̃q̃ 4.23+0.58
−0.62 × 10−3 4.58+0.39

−0.34 × 10−3 +3.8%
−2.9% 1.08

q̃g̃ 1.58+0.24
−0.27 × 10−3 2.08+0.24

−0.25 × 10−3 +11%
−10% 1.32

g̃g̃ 0.69+0.16
−0.15 × 10−4 1.13+0.22

−0.21 × 10−4 +26%
−23% 1.64

10.4.2 q̃ ¯̃q 1.25+0.22
−0.21 × 10−3 1.48+0.14

−0.12 × 10−3 +10%
−9.9% 1.19

q̃q̃ 1.09+0.16
−0.16 × 10−2 1.16+0.12

−0.10 × 10−2 +3.7%
−2.7% 1.07

q̃g̃ 1.82+0.29
−0.31 × 10−2 2.30+0.24

−0.23 × 10−2 +8.3%
−8.0% 1.27

g̃g̃ 4.55+0.99
−0.94 × 10−3 6.37+0.95

−0.88 × 10−3 +17%
−17% 1.40

10.4.4 q̃ ¯̃q 0.85+0.17
−0.16 × 10−4 1.07+0.10

−0.09 × 10−4 +15%
−15% 1.25

q̃q̃ 1.29+0.22
−0.21 × 10−3 1.40+0.16

−0.13 × 10−3 +4.0%
−3.0% 1.08

q̃g̃ 1.86+0.35
−0.34 × 10−3 2.47+0.28

−0.27 × 10−3 +11%
−10% 1.33

g̃g̃ 4.12+1.02
−0.91 × 10−4 6.19+0.99

−0.90 × 10−4 +22%
−20% 1.50

Table 5. NLL results for CMSSM benchmark points for tanβ = 10, A0 = 0.

found to be negligible. As discussed in section 2.3 we will limit ourselves to results for the

lighter mass-eigenstate t̃1.

Numerical results for the lightest stop mass eigenstates for masses in the 100-400GeV

range are presented in table 7. The NLL K-factor is plotted as a function of the mass in

figure 13. For the stop-mass range considered here the resummation effects are in the 15-

– 28 –



J
H
E
P
0
6
(
2
0
1
2
)
0
5
2

σ(pp→ s̃s̃′)(pb),
√
s = 7TeV

Point s̃s̃′ NLO NLL ∆PDF KNLL

40.1.2 q̃ ¯̃q 1.41+0.26
−0.24 × 10−3 1.68+0.16

−0.14 × 10−3 +10%
−9.7% 1.20

q̃q̃ 1.05+0.13
−0.15 × 10−2 1.13+0.09

−0.08 × 10−2 +3.7%
−2.7% 1.07

q̃g̃ 4.46+0.63
−0.73 × 10−3 5.74+0.66

−0.67 × 10−3 +9.8%
−9.2% 1.29

g̃g̃ 2.18+0.46
−0.46 × 10−4 3.42+0.63

−0.58 × 10−4 +23%
−22% 1.57

40.1.4 q̃ ¯̃q 2.28+0.45
−0.41 × 10−4 2.83+0.27

−0.24 × 10−4 +13%
−13% 1.24

q̃q̃ 2.51+0.35
−0.37 × 10−3 2.73+0.23

−0.21 × 10−3 +3.9%
−2.9% 1.09

q̃g̃ 7.25+1.16
−1.28 × 10−4 9.71+1.17

−1.21 × 10−4 +12%
−11% 1.34

g̃g̃ 2.37+0.57
−0.54 × 10−5 4.08+0.81

−0.75 × 10−5 +28%
−25% 1.72

40.2.2 q̃ ¯̃q 1.34+0.26
−0.23 × 10−3 1.60+0.16

−0.13 × 10−3 +10%
−9.7% 1.19

q̃q̃ 1.04+0.14
−0.15 × 10−2 1.11+0.10

−0.08 × 10−2 +3.7%
−2.7% 1.07

q̃g̃ 6.74+0.97
−1.11 × 10−3 8.65+0.98

−0.98 × 10−3 +9.4%
−8.9% 1.28

g̃g̃ 5.48+1.15
−1.14 × 10−4 8.28+1.46

−1.35 × 10−4 +22%
−20% 1.51

40.2.5 q̃ ¯̃q 6.14+1.34
−1.17 × 10−5 7.75+0.79

−0.67 × 10−5 +15%
−15% 1.26

q̃q̃ 9.01+1.41
−1.43 × 10−4 9.87+0.94

−0.82 × 10−4 +4.0%
−3.1% 1.10

q̃g̃ 3.64+0.64
−0.67 × 10−4 4.98+0.61

−0.62 × 10−4 +13%
−12% 1.37

g̃g̃ 1.82+0.46
−0.42 × 10−5 3.14+0.62

−0.57 × 10−5 +29%
−26% 1.72

40.3.1 q̃ ¯̃q 1.00+0.18
−0.17 × 10−3 1.19+0.11

−0.10 × 10−3 +11%
−10% 1.19

q̃q̃ 0.95+0.15
−0.15 × 10−2 1.01+0.12

−0.09 × 10−2 +3.7%
−2.7% 1.06

q̃g̃ 2.83+0.48
−0.49 × 10−2 3.57+0.37

−0.35 × 10−2 +7.9%
−7.5% 1.26

g̃g̃ 1.42+0.31
−0.29 × 10−2 1.93+0.27

−0.25 × 10−2 +15%
−15% 1.36

40.3.5 q̃ ¯̃q 7.05+1.45
−1.30 × 10−5 8.81+0.87

−0.75 × 10−5 +15%
−15% 1.25

q̃q̃ 1.14+0.20
−0.19 × 10−3 1.23+0.15

−0.12 × 10−3 +4.2%
−3.0% 1.08

q̃g̃ 2.87+0.55
−0.53 × 10−3 3.78+0.41

−0.40 × 10−3 +10%
−9.8% 1.32

g̃g̃ 1.21+0.29
−0.26 × 10−3 1.75+0.26

−0.24 × 10−3 +19%
−18% 1.45

mGMSB2.2.1 q̃ ¯̃q 1.48+0.26
−0.25 × 10−3 1.76+0.17

−0.14 × 10−3 +10%
−9.6% 1.19

q̃q̃ 1.26+0.19
−0.19 × 10−2 1.34+0.15

−0.12 × 10−2 +3.8%
−2.6% 1.06

q̃g̃ 2.43+0.39
−0.41 × 10−2 3.07+0.32

−0.31 × 10−2 +8.1%
−7.6% 1.26

g̃g̃ 7.17+1.54
−1.46 × 10−3 9.92+1.45

−1.35 × 10−3 +17%
−16% 1.38

mGMSB2.2.4 q̃ ¯̃q 1.04+0.21
−0.19 × 10−4 1.29+0.13

−0.11 × 10−4 +14%
−14% 1.24

q̃q̃ 1.52+0.26
−0.25 × 10−3 1.65+0.19

−0.15 × 10−3 +4.1%
−2.9% 1.08

q̃g̃ 2.67+0.49
−0.49 × 10−3 3.52+0.39

−0.38 × 10−3 +10%
−9.9% 1.32

g̃g̃ 0.74+0.18
−0.16 × 10−3 1.09+0.17

−0.15 × 10−3 +20%
−19% 1.47

Table 6. NLL results for CMSSM benchmark points for tanβ = 40, A0 = −500 and mGMSB

benchmark points.

25% range at the LHC with
√
s = 7TeV and at the 12-20%-level at a centre-of-mass energy

of 14TeV. The NLL-corrections are therefore moderate for the mass-ranges accessible at the

LHC, but larger than for light-flavour squark-antisquark production for the same masses

(c.f. figure 7). Contrary to the latter, for stops the most substantial contribution is given
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σ(pp→ t̃1
¯̃t1)(pb),

√
s = 7TeV

mt̃1
NLO NLL ∆PDF KNLL

100 4.18+0.63
−0.59 × 102 4.77+0.87

−0.66 × 102 +2.0%
−2.4% 1.14

200 1.28+0.17
−0.18 × 101 1.47+0.25

−0.19 × 101 +3.1%
−4.1% 1.15

300 1.28+0.17
−0.18 1.49+0.24

−0.19
+4.4%
−5.3% 1.17

400 2.12+0.28
−0.31 × 10−1 2.50+0.38

−0.30 × 10−1 +5.7%
−6.4% 1.18

Table 7. Stop-antistop production cross sections. All masses are given in GeV.

by pure soft resummation, with Coulomb effects, including bound-state corrections, in the

5% range of the NLO result. As the partonic cross sections for the gluon-fusion channel are

identical for the light-flavour and top squarks, the different behaviour can be attributed

to the quark-antiquark induced channel. For the light-flavour squarks it is dominated by

S-wave colour-singlet production with a large, attractive Coulomb potential. For stop

production the colour-singlet channel is absent, and only the P -wave colour-octet channel

with a smaller repulsive Coulomb potential contributes. The increased relative size of the

soft corrections compared to the light-flavour squarks follows from the P -wave suppression

of the quark-antiquark channel and the resulting dominance of the gluon-fusion channel

with larger soft corrections due to the colour factors CA = NC .

The total theoretical uncertainty of the fixed-order NLO result and the resummed cross

section, with and without Coulomb resummation, is compared in figure 14. The width

of the uncertainty band for NLL and NLLs+h is similar, consistent with the observed

small effect of Coulomb resummation. One can also notice that the resummed results

shows almost no uncertainty reduction compared to the NLO result, except for the high-

mass range.

3.4 Comparison with Mellin-space results

Results for NLL resummation of soft logarithms for squark and gluino production have

been presented earlier in [14–18]. These works adopt the so-called Mellin-space formal-

ism, in which the threshold logarithms are exponentiated in Mellin-moment space, where

singular terms appear as logarithms of the Mellin-moment N , and the resummed cross

section is then numerically inverted back to momentum-space. In this section we compare

these earlier predictions to the momentum-space formalism adopted here, using the nu-

merical code NLL-fast [53] to compute the Mellin-space resummed cross sections. Since

NLL-fast provides results for soft-resummation only (i.e. no Coulomb effects beyond O(αs)

are included), for the comparison we introduce two additional NLL implementations:

• NLLs: this implementation includes NLL resummation of soft logarithms, but no

Coulomb or hard effects beyond O(αs). This is achieved using eqs. (2.19) and (2.24)

and setting µh = µf . For the soft scale we adopt the running scale given in

eqs. (2.28), (2.29).
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• NLLs,fixed: as above, but with the running scale replaced by the fixed soft scale µs
determined from eq. (2.27).

The K-factor for NLLs (solid blue), NLLs,fixed (dashed red) and the Mellin-space result

(green dots) from NLL-fast are shown in figure 15. For clarity, we do not show the

resummation uncertainties of the NLLs and NLLs,fixed results that are significant, especially

for smaller masses, as can be anticipated from the full NLL-results including Coulomb

resummation in figure 6. Even though the difference between NLLs and NLLMellin can be

sizable, the envelope of the three curves in the plots in figure 15 is well within the theoretical

uncertainties of the predictions, and is thus correctly accounted for by our estimate of the

intrinsic ambiguities of NLL resummation.

The comparison of our default running-scale implementation NLLs with NLLMellin

shows different features for the various production channels. For squark-antisquark and

gluino-pair production the agreement is overall reasonable, although the behaviour as a

function of the mass is different in both cases, leading to a better agreement at large

masses in the former case and at smaller masses in the latter. For squark-gluino produc-

tion, the agreement also improves at larger masses. In contrast, for the squark-squark

production channel, there is a constant shift, and the differences are sizable over the whole

mass range. Since the NLL corrections are small for this production channel, the discrep-

ancies in the cross-section predictions are however less important. For all processes, the

fixed-scale momentum-space results NLLs,fixed are closer to the Mellin-space results, with

similar magnitude and mass-dependence of the corrections. Since NLLs and NLLMellin both

resum threshold logarithms (lnβ and lnN respectively) appearing in the partonic cross sec-

tions, while NLLs,fixed resums logarithms in the hadronic cross section, this behaviour is

somewhat counter-intuitive and deserves further studies in the future.8 The spread of

the three predictions for stop production is comparable to the one observed for the other

SUSY processes in the same mass range. In this case, however, the two momentum-space

predictions with a fixed and running soft scale show a better agreement with each other.

It is interesting to note that the NNLL results for squark-antisquark production ob-

tained in the N -space approach in [24] are very similar to our best prediction for this

channel in figures 7 and 8. Part of this agreement can be attributed to the fact that

ref. [24] includes the interference of the first Coulomb correction with higher-order soft

corrections, which give a dominant contribution to our full NLL predictions (i.e. to the dif-

ference between the red and blue curves in figures 7 and 8), and to the difference between

the NLL and NNLL results in [24]. However, our prediction includes higher-order Coulomb

corrections and bound-state effects not included in the results of [24], while their results in-

clude one-loop hard corrections and NNLL soft corrections not included in ours. Therefore

the good agreement is to some extent fortunate, and cannot necessarily be expected for the

other processes where the Coulomb corrections are of less relative importance (in particu-

lar for squark-squark production), and where an NNLL analysis remains to be performed.

8An analytic comparison of momentum-space resummation with fixed soft scale to N -space resummation

has appeared recently for Drell-Yan production [56], but no such investigation for the running scale with a

lower cutoff has been performed yet.
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Figure 15. Comparison of soft resummation in the momentum-space formalism adopted in this

work and in the conventional Mellin-space approach for squark-antisquark (top-left), squark-squark

(top-right), squark-gluino (centre-left), gluino-gluino (centre-right), stop-antistop (bottom-left) pro-

duction and the inclusive gluino and light-flavour squark cross section (bottom-right) at LHC with√
s = 7 TeV. The plots show the K-factor for our default running-scale implementation (NLLs,

solid blue), for the fixed-scale implementation (NLLs,fixed, dashed red) and for the Mellin-space

result (NLLMellin, green dots) obtained with NLL-fast. See the text for more details.

Furthermore, a combined NNLL soft/Coulomb resummation as performed for top-quark

pair production in [32] would include higher-order Coulomb effects included neither in our

present predictions nor in [24].

4 Conclusions and outlook

We have performed a combined resummation of soft-gluon and Coulomb effects for all

squark- and gluino-pair production channels at the LHC, including bound-state effects,
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based on the formalism derived in [30, 31]. We have also extended the derivation of the

factorization and resummation formalism to the case of stop-antistop production with a

quark-antiquark initial state, that proceeds through a P -wave. The corrections from higher-

order Coulomb and bound-state effects and their interference with soft corrections are not

included in previous predictions and can be sizeable, in particular for gluino-pair produc-

tion, where they are as large as the soft-gluon corrections alone, and for squark-antisquark

production where the effect is even bigger. For benchmark scenarios with moderate squark-

gluino mass splitting the effect on the total inclusive squark and gluino production cross

section is less pronounced but still relevant, with the total NLL corrections of the order of

15–30% of the NLO cross section. Therefore these predictions should be taken into account

in the analysis of the upcoming LHC results expected this year. To facilitate the appli-

cation of our results we provided numerical predictions for some of the benchmark points

defined in [36], and include grid files with our results for squark and gluino masses in the

200-2000GeV (200-2500GeV) range at the 7TeV (8TeV) LHC with the arXiv submission

of this paper.

Our results for soft-gluon resummation alone, obtained in the momentum-space re-

summation approach [33–35] and with the scale-setting procedure introduced in [32], agree

within our estimate of resummation ambiguities with results obtained in the Mellin-space

formalism [16, 17], although a more detailed study of the relation between the approaches

and the different scale choices within the momentum space framework would be desirable.

In our analysis, the squarks and gluinos have been treated as stable, but contributions

to the cross section from below the nominal production threshold have been included

through bound-state corrections. This is expected to take the effect of small, but finite,

widths to some extent into account. A more refined analysis is possible in our framework

using a complex energy in the argument of the potential function in the factorization

formula (2.13), as done in recent studies of the invariant mass spectrum of gluino-pair

and squark-gluino production [25–27]. The investigation of the combined effect with soft

resummation, as well as the extension to NNLL accuracy following ref. [32], is left for

future work.
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A NLL resummation for stop-antistop production

In this appendix we derive the factorization formula (2.13) for stop-antistop production

from quark-antiquark annihilation that proceeds in a P -wave state. While the aim is to
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establish resummation at NLL accuracy, the arguments suggest that the combined soft-

Coulomb resummation can be performed at NNLL accuracy as well. Our reasoning applies

to partonic subprocesses with a leading P -wave contribution, as relevant for stop-antistop

production, but not to P -wave contributions to S-wave dominated subprocesses.

Following [31] the scattering process qq̄ → t̃¯̃t+X is described in terms of an effective

field theory using soft-collinear effective theory (SCET) [57–60] for the initial state quarks

and potential non-relativistic QCD (pNRQCD) [61–64] for the stop and antistop. In this

framework, the scattering amplitude in the full MSSM is expressed in terms of expecta-

tion values of EFT operators multiplied by short-distance coefficients C, that contain the

dependence on hard modes not present in the EFT (e.g. gluinos, hard off-shell gluons):

A(qq̄ → t̃¯̃tX) =
∑

ℓ,Rα

C(ℓ),Rα(µ) 〈t̃¯̃tXs|O(ℓ),Rα(µ)|qq̄〉EFT . (A.1)

The series in ℓ accounts for the threshold expansion in powers of β, while Rα = 1, 8

are the irreducible colour representations of the stop-antistop pair. Due to the threshold

kinematics, (k1 + k2)
2 ∼ 4M2, no collinear modes can appear in the final state Xs, that

only contains soft modes. Both the short-distance coefficients C(ℓ),Rα and the operators

O(ℓ),Rα can carry open Lorentz and spin indices, that have been suppressed. For NLL

resummation, only the colour-octet state is relevant.9 For the case of P -wave production,

the leading ℓ = 0 term in the expansion of the scattering amplitude (A.1) vanishes and the

first non-vanishing term occurs for ℓ = 1, i.e. it is suppressed by O(β) compared to the

S-wave case. The P -wave production operator for a colour-octet state reads

O(1),8
µ (µ) =

1√
2

[

(ξ̄c̄Wc̄)T
a(W †

c ξc)
]

[

ψ†T a

(

− i
2

←→
D µ,⊤

)

χ

]

(µ). (A.2)

Here the field ψ† (χ) is a non-relativistic field that creates the stop (antistop) while ξc
(ξ̄c̄) is a collinear (anti-collinear) field that destroys the initial-state quark with momentum

∼
√
ŝ/2n (antiquark with momentum ∼

√
ŝ/2 n̄), with light-cone vectors n2 = n̄2 = 0,

n · n̄ = 2. The Wc (Wc̄) are collinear (anti-collinear) Wilson lines summing up collinear

gluon emission to all orders [57, 58]. D⊤ denotes the projection of the covariant derivative

Dµ = (∂µ − igsT
aAa

µ(x)) in the direction orthogonal to the timelike velocity wµ of the

stop-antistop pair.

At this stage, the operator (A.2) is written in NRQCD and contains the full gluon field

A. This does not yet incorporate a systematic expansion in β. For this purpose we adopt

potential non-relativistic QCD (pNRQCD) [61–64], where only soft gluons with momenta

scaling as

q ∼Mβ2 (A.3)

and the non-relativistic fields with so-called potential momenta scaling as

k0 ∼Mβ2 , ~k ∼Mβ (A.4)

9At NLO a finite, non-logarithmic colour-singlet contribution is generated by real-gluon emission [48]

that is suppressed by αsβ
2 compared to the leading P -wave contribution, and therefore not even relevant at

NNLL. Since there is no leading S-wave contribution to qq̄ → t̃¯̃t, the situation is simpler than for quarkonium

production, where singularities cancel among colour octet S-wave and singlet P -wave channels [65].
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are retained in the EFT, while potential gluons with momenta scaling like (A.4) and modes

with momenta of order Mβ are integrated out. After this step, the covariant derivative

in (A.2) contains only the soft gluon field As with the same scaling as the soft momentum,

Aµ
s ∼Mβ2. (A.5)

Therefore the term gsAs,µ⊤ in the covariant derivative is suppressed by a factor gsβ com-

pared to the derivative term ∂µ⊤ ∼ β and the production operator (A.2) at leading power

in pNRQCD is simply given by

O(1),8
µ (µ) =

1√
2

[

(ξ̄c̄Wc̄)T
a(W †

c ξc)
]

[

ψ†T a

(

− i
2

←→
∂ µ,⊤

)

χ

]

(µ). (A.6)

The potential, collinear and anti-collinear fields interact only through the exchange

of soft gluons. These interactions can be removed from the leading effective-theory La-

grangians by a decoupling transformation of the collinear [58, 66] and potential [31] fields

involving soft Wilson lines of the schematic form W †
c ξc = SnW

(0)†
c ξ

(0)
c and χ = Swχ

(0), and

similar transformations for the conjugate fields. For definitions of the Wilson lines Sn and

Sw see [31]. Since the fields with superscript (0) do not interact with each other in the

leading effective Lagrangians, the scattering amplitude assumes a factorized form:

A(qq̄ → t̃i
¯̃tiX) =

(

− i

2
√
2

)

C(1),8
µ (µ) 〈0|(W (0)†

c ξ(0)c )j1 |q〉 〈0|(ξ̄c̄Wc̄)j2 |q̄〉

× 〈Xs|(S†
n̄T

aSn)j2j1(S
†
wT

aSw)j3j4 |0〉 〈t̃i¯̃ti|ψ
(0)†
j3

←→
∂µ⊤χ

(0)
j4
|0〉 .

(A.7)

Note that the factorization (A.7) holds only at leading power in the β-expansion, since the

field redefinition does not remove the interaction with the spatial components of the soft

gluons in the P -wave production operators, or in the subleading effective Lagrangians. We

will argue below that these corrections are not relevant at NLL accuracy for stop-antistop

production from quark-antiquark annihilation.

Using the representation of the scattering amplitude (A.7) and following the steps

discussed in detail in [31] one derives the factorization formula

σ̂qq̄(ŝ, µ) = H8
qq̄(µ)

∫

dω JP
8

(

E − ω

2

)

W 8(ω, µ) . (A.8)

Here the potential function for P -wave production in a colour octet state is given by

JP
8 (q) =

1

2

∫

d4z eiq·z 〈0|[χ(0)†
←→
∂µ⊤T

aψ(0)](z)[ψ(0)†T a←→∂⊤,µχ(0)](0)|0〉 , (A.9)

while the colour-octet soft function (defined in terms of the squared matrix element of the

soft Wilson lines in (A.7)) is identical to that appearing for S-wave production [30]. The

factorization formula resembles that for S-wave production, up to the replacement of the

potential function by the appropriate P -wave expression.

We now show that no corrections to (A.8) appear at NNLL. As far as soft-gluon effects

are concerned, we have argued that the corrections to the production operator (A.6) from
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the subleading As,⊤-terms in (A.2) are of order gsβ. Since the potential function for S-P -

wave interference vanishes, there can be no contributions to the total cross section where

one A⊤-operator interferes with a leading operator (A.6). The squared A⊤-term gives a

correction to the cross section of the order10 ∆σ ∼ σ0αsβ
2{1, lnβ}. These corrections are

at most of order N3LL in the combined counting αs/β ∼ 1 and αs lnβ ∼ 1.

Following [31] one sees that insertions of higher-order soft-collinear interactions into

the matrix element (A.1) are at least suppressed by O(β2) and therefore are beyond NNLL.

For P -wave production it has to be shown in addition that no contributions to the ℓ = 1

operators in (A.1) are generated from partonic channels with leading S-wave (ℓ = 0)

contributions. In the EFT language they would correspond to operators where one or

both of the quark/antiquark fields are replaced by (anti)collinear gluon fields. A non-

vanishing matrix element of such an operator in the |q̄q〉 initial state requires splittings

of a collinear quark into a collinear gluon and a soft quark that are mediated by O(β)-
suppressed interactions in the SCET Lagrangian [60] (recall that no collinear final state

particles appear at partonic threshold). Since there is no qg-initiated production of stop-

antistop pairs at leading order, two subleading splittings are required so these contributions

to the amplitude are suppressed by g2sβ compared to the ℓ = 1 term. The resulting real

corrections to the total cross section are therefore even further suppressed compared to the

subleading soft effects.

Finally, subleading soft-potential effects due to chromoelectric ~x · ~Es interactions [64]

have been shown to be beyond NNLL in the S-wave case [31] since the potential function

with a single insertion of an operator ∼ ~x vanishes by rotational invariance. The same

argument holds for the P -wave potential function.11 Furthermore, as mentioned before,

due to the absence of a leading S-wave contribution to the quark-antiquark channel, no

mixing of S-wave and P -wave states by subleading interactions appears. Therefore, while

we didn’t perform an exhaustive study of effects beyond NLL, we do not encounter an

obstruction for NNLL resummation for the quark-antiquark initial-state contribution to

stop-antistop production. Note, however, that Coulomb resummation at this accuracy

requires the computation of the NLO P -wave Coulomb Green’s function for scalar particles.

B Resummation functions

The resummation functions appearing in (2.18) are given by

Ui(M,µh, µf , µs) =

(

4M2

µ2h

)−2aΓ(µh,µs) (µ2h
µ2s

)η

× exp
[

4(S(µh, µf )− S(µs, µf ))

− 2aVi (µh, µs) + 2aφ,r(µs, µf ) + 2aφ,r
′

(µs, µf )
]

(B.1)

10We have allowed for logarithmic corrections in the generalized potential function from contractions of

the two gluon insertions. A simple estimate indicates, however, that these are in fact absent.
11A possible interference of a single A⊤-term in the production operator with a chromoelectric vertex

might lead to a non-vanishing potential function but would be of the same order αsβ
2{1, lnβ} as the soft

contributions considered above.
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and η = 2aΓ(µs, µf ). The labels r, r′ denote the colour representation of the initial-state

partons p, p′. At NLL the functions S, aVi and aΓ are given by [31, 35]

S(µi, µj) =
Cr+Cr′

2β20

[

4π

αs(µi)

(

1− 1

r
−ln r

)

+

(

2K−β1
β0

)

(1−r+ln r)+
β1
2β0

ln2 r

]

,

aΓ(µi, µj) =
Cr + Cr

β0
ln r , aVi (µi, µj) =

γ
(0),V
i

2β0
ln r, aφ,r(µi, µj) =

γ(0)φ,r

2β0
ln r, (B.2)

where r = αs(µj)/αs(µi) and γVi = γr + γr
′

+ γRα

H,s. The one-loop anomalous-dimension

coefficients appearing here are given by

γ
(0),Rα

H,s = −2CRα , γ(0)3 = −3CF = −γ(0)φ,3, γ(0)8 = −β0 = −γ(0)φ,8 (B.3)

and the coefficients of the beta function are

β0 =
11

3
CA −

2

3
nf , β1 =

34

3
C2
A −

10

3
CAnf − 2CFnf . (B.4)

We also used the factor K =
(

67
18 − π2

6

)

CA − 10
9 TFnf appearing in the ratio of one- and

two-loop cusp anomalous dimensions. The explicit values of the Casimir invariants for the

SU(3) representations relevant for squark and gluino production are:

C1 = 0 , C3 =
4

3
, C6 =

10

3
, C8 = 3 , C10 = 6 , C15 =

16

3
, C27 = 8 . (B.5)

C Determination of µs and βcut

The soft scale µs used in the fixed-scale implementation, NLLfixed, is defined by eq. (2.27).

For equal squark and gluino masses, mq̃ = mg̃, the minimization procedure yields the

following results:

q̃ ¯̃q : µs = 127− 170GeV (
√
s = 7TeV), µs = 146− 376GeV (

√
s = 14TeV),

q̃q̃ : µs = 122− 135GeV (
√
s = 7TeV), µs = 146− 312GeV (

√
s = 14TeV),

g̃q̃ : µs = 109− 141GeV (
√
s = 7TeV), µs = 131− 310GeV (

√
s = 14TeV),

g̃g̃ : µs = 106− 141GeV (
√
s = 7TeV), µs = 127− 308GeV (

√
s = 14TeV) .

(C.1)

The scales for a centre-of-mass energy of 7TeV refers to a mass range M = 500–2000GeV,

while for a 14TeV LHC the mass interval M = 500–3000GeV was considered. For stop-

antistop production we obtain the scales

t̃¯̃t : µs = 29− 138GeV (
√
s = 7TeV), µs = 31− 230GeV (

√
s = 14TeV) (C.2)

for the mass range mt̃ = 100–1000GeV for a centre-of-mass energy of 7TeV and mt̃ = 100–

1400GeV at 14TeV . In [35] it was suggested to fit the mass and energy dependence of the

soft scales (C.1) by a function of the form

µs =
M(1− ρ)√
a+ bρ

, (C.3)
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LHC(7TeV) LHC(14TeV)

q̃ ¯̃q a = 12.1328 a = 11.5289

b = 159.828 b = 171.856

q̃q̃ a = 10.9627 a = 10.9981

b = 265.414 b = 278.062

g̃q̃ a = 16.5459 a = 15.3779

b = 235.227 b = 267.763

g̃g̃ a = 17.95 a = 16.7483

b = 231.545 b = 264.702

t̃¯̃t a = 16.8468 a = 15.7282

b = 365.735 b = 481.045

Table 8. Coefficients of the fit (C.3) for the squark-gluino production processes at centre-of-mass

energies of 7 and 14TeV.

with ρ = 4M2/s. The coefficients a and b for the different processes are given in table 8,

and provide a fit to (C.1) with accuracy better than 5% for the mass range considered.

The procedure used to determine βcut, which enters the definition of the soft scale used

in our default NLL implementation, eqs. (2.28) and (2.29), was explained in detail in [32].

Following [32] we introduce eight different cross sections

σ̂pp′(A<, B>, βcut) = σ̂A<

pp′ θ(βcut − β) + σ̂B>

pp′ θ(β − βcut) , (C.4)

defined using one of two possible matching prescriptions for the lower interval (A< ∈
{NLL1,NLL2}) and one of four possible approximations for the upper interval (B> ∈
{NLL2,NLOapp,NNLOA,NNLOB}). Here NLL2 denotes our default approximation,

eq. (2.20), while NLL1 is the resummed result matched to the Born instead of the NLO

cross section,

σ̂NLL1
pp′ (ŝ) =

[

σ̂NLL
pp′ (ŝ)− σ̂NLL(0)

pp′ (ŝ)
]

+ σ̂LOpp′ (ŝ) . (C.5)

NLOapp represents the sum of the full Born cross section and the approximated NLO

corrections given in (2.10), while the two NNLO approximations contain in addition the

O(α4
s) terms arising from the expansion of the NLL resummed result, including all of them

(NNLOA) or only the subset which is completely determined at NLL (NNLOB). βcut is

then determined such that the width of the envelope of the eight different implementations

σ̂pp′(A<, B>, βcut) is minimal.12

12The values (C.6) are also used for the NLLs+h approximation (2.19), instead of recalculating βcut using

that approximation in (C.4). Since the difference of NLL and NLLs+h is used in order to assess the effect

of Coulomb resummation, we consider it more meaningful to use the same βcut for both in order not to

obscure the genuine Coulomb effects by different scale choices.

– 38 –



J
H
E
P
0
6
(
2
0
1
2
)
0
5
2

600 800 1000 1200 1400 1600 1800 2000
M@GeVD

0.25

0.30

0.35

0.40

0.45

0.50

Βcut

s = 7 TeV

q�q�

q�q�

q�g�

g�g�

1000 1500 2000 2500 3000
M@GeVD

0.25

0.30

0.35

0.40

0.45

0.50

Βcut

s = 14 TeV

q�q�

q�q�

q�g�

g�g�

Figure 16. Mass dependence of the parameter βcut for the four SUSY production processes.

The procedure described provides, for the default choice ks = 1 and equal squark and

gluino masses, the following values for βcut:

q̃ ¯̃q : β
(7TeV)
cut = 0.47− 0.36 , β

(8TeV)
cut = 0.48− 0.34 , β

(14TeV)
cut = 0.48− 0.38 ,

q̃q̃ : β
(7TeV)
cut = 0.30− 0.24 , β

(8TeV)
cut = 0.31− 0.24 , β

(14TeV)
cut = 0.31− 0.25 ,

g̃q̃ : β
(7TeV)
cut = 0.40− 0.34 , β

(8TeV)
cut = 0.40− 0.33 , β

(14TeV)
cut = 0.40− 0.36 ,

g̃g̃ : β
(7TeV)
cut = 0.50− 0.39 , β

(8TeV)
cut = 0.51− 0.37 , β

(14TeV)
cut = 0.52− 0.40 .

(C.6)

The numbers refer to the usual mass range of 500–2000GeV at
√
s = 7TeV and 500–

3000GeV at
√
s = 14TeV, and the exact mass dependence is plotted in figure 16. We

have also included the results for the mass range of 500–2500GeV at
√
s = 8TeV. For

stop-antistop production the result is

t̃¯̃t : β
(7TeV)
cut = 0.53− 0.40 , β

(8TeV)
cut = 0.53− 0.39 , β

(14TeV)
cut = 0.54− 0.41 , (C.7)

for the mass range mt̃ = 100–1000GeV at 7TeV, mt̃ = 100–1200GeV at 8TeV and mt̃ =

100–1400GeV at 14TeV. The theoretical ambiguities of the resummed result with the

running scale are estimated as follows: i) the default implementation NLL2 is parametrized

in terms of Ê instead of β, ii) the NLL2 result is computed for the values ks = 1/2, 2,

recomputing βcut anew for each choice and iii), the envelope of the eight cross sections (C.4)

is taken while βcut is varied by ±20%. The uncertainties from the three sources are added

in quadrature, and iii) gives the dominant contribution, in the 3–13% range depending on

the process, while i) and ii) are usually below 2%.
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