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1 Introduction

Within the general framework of a perturbative Quantum Field Theory (QFT), the stan-

dard strategy followed when calculating physical transition amplitudes, is to express the

Lagrangian density in a particular field basis, commonly referred to as mass eigenstate

basis. Contrary to any other possible choice, only in this case the states of the theory

correspond to physical particles with definite mass and symmetry charges. Up to possible

mass degeneracies, this basis is unique and is characterized by the absence of quadratic

mixing terms between different mass eigenstates. Furthermore, all parameters of the La-

grangian in this basis, are physically observable, in the sense that all masses and couplings

can in principle be obtained by a suitable experiment. After having set the Lagrangian to

the mass eigenstates fields basis, one can then deploy the standard QFT machinery and

set the Feynman rules in order to calculate transition amplitudes for any physical process.

Nevertheless, in the vast majority of the models we are interested in, masses are typi-

cally generated or affected by a symmetry breaking mechanism. In this case another basis

is physically meaningful as well. This is the basis where the Lagrangian exhibits explicitly

the properties of the initial symmetry, and the states correspond to eigenstates of a larger
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symmetry group. We will refer to these eigenstates, for gauge bosons and collectively for

fermions and scalars with family replication, as gauge and flavour eigenstates respectively,

although in our definition for the latter there is no implicit requirement of an underly-

ing flavour symmetry. In this sense the flavour eigenstate basis in many models can be

considered in practice arbitrary, constrained only by the other symmetries of the initial

Lagrangian, i.e., gauge symmetry, supersymmetry, etc. The transformation from the ini-

tial basis to the mass eigenstate basis, which is still the physical basis of the theory, is

performed with mass diagonalization involving unitary transformations and field redefini-

tions, typically leaving a physical imprint on the parameters of the mass eigenstate theory.

In the Standard Model (SM) [1–3] this effect is displayed in the gauge sector through the

weak mixing angle and in the fermion sector through the CKM [4, 5] and PMNS [6, 7]

matrices of charged currents. However, even in this very successful model, the CKM or

PMNS parameters along with the fermion mass eigenvalues are insufficient to determine

unambiguously the flavour eigenstate basis.

Although the mass eigenstate basis of a perturbative QFT is the natural basis for

calculations of physical processes, some effects typically related to the symmetries of the

Lagrangian before symmetry breaking are better understood in flavour basis.1 Therefore

for a qualitative analysis of such effects, it is often useful to have our expressions in the

latter basis.2 The standard strategy that has been employed up to date, is an approxi-

mate diagrammatic method commonly referred to as the Mass Insertion Approximation

(MIA) [8–10]. In this approach one defines the Feynman rules of the theory directly in

flavour basis. The diagonal part of the flavour mass matrix is typically absorbed into the

definition of (unphysical) massive propagators and the non-diagonal part commonly re-

ferred to as mass insertions is treated perturbatively, as part of the interaction Lagrangian

which now possesses quadratic mixing terms. Due to the presence of quadratic interac-

tions, besides the standard loop approximation of a perturbative QFT, there is an extra

approximation for each diagram, appearing as an infinite series in terms of mass insertions,

following the presence of a flavour propagator.

In what follows, we present an algebraic treatment of transition amplitudes in mass

eigenstate basis, leading directly to the corresponding amplitudes in flavour basis, in the

form of the MIA or of an equivalent expansion. In particular, we prove a theorem in matrix

analysis [11, 12], that we coin Flavour Expansion Theorem or simply FET, which says that

an analytic function of a Hermitian matrix can be expanded polynomially in terms of its off-

diagonal elements with coefficients being the divided difference of the analytic function and

arguments the diagonal elements of the Hermitian matrix. At one-loop level, this expansion

is naturally related to the remarkable recursive properties of next order Passarino-Veltman

(PV) function [13] being the divided difference [14] of the previous one. We then argue

that FET connects mass and flavour field bases amplitudes. The first non-trivial order

1Since in many cases the mass diagonalization of various sectors of the theory is independent of each

other, one can also work in a mixed basis where some sectors are given in mass basis and others in flavour

basis. In what follows, the basis we work can be easily identified from the context.
2This is after all the basis that more naturally connects couplings and masses to high energies through

their Renormalization Group Equations (RGEs).
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in the expansion [cf. eq. (3.11)], and applications in MSSM flavour physics, have been

presented in refs. [15, 16] but a formal mathematical proof to all orders was unknown until

now. FET is especially useful when is used to evaluate higher order expansion terms, it

is technically easier, elegant and superior to often tedious, time-consuming and thus prone

to mistakes calculations of the diagrammatic MIA. We support our claims with a novel

example towards the end of the article.

More specifically, the paper is organized as follows: in section 2, we present a warming-

up example of a scalar toy-model in order to illustrate the relation between the calculation

of flavour transition amplitudes in mass and flavour bases. Then, in section 3, we formu-

late a general algebraic theorem dealing with the expansion of an analytic function of a

Hermitian matrix, and, discuss its applications to rewriting flavour amplitudes with scalar

and vector particles, from mass to flavour eigenstates basis. We extend our discussion

to the case of amplitudes involving fermions in section 4. In section 5, we illustrate the

developed technique on a (potentially) physical example, expanding the dominant gluino-

squark contribution to the neutron Electric Dipole Moment and showing the importance

of higher order terms. We conclude our results in section 6. Finally, the formal proof of

theorem formulated in section 3 is given in appendix A, while in appendix B we derive the

convergence criterion for the mass insertion expansion of the one-loop integrals.

2 A warming-up example: flavour calculation techniques

To set up a simple framework to introduce the standard techniques of flavour physics

calculations, we consider a scalar field toy model composed of N -complex charged scalar

fields ΦI , with family replication, and an extra neutral, real, scalar field η. The (squared)

mass matrix, M2, and the Yukawa coupling matrix, Y, of the flavour eigenstates ΦI ,

are necessarily Hermitian but not aligned in general. The Lagrangian density, will have

the form:3

Lflavour = (∂µΦ†I) (∂µΦI)−M2
IJΦ†IΦJ +

1

2
(∂µη) (∂µη)− 1

2
m2
ηη

2 − YIJ ηΦ†I ΦJ − . . . ,(2.1)

where dots denote additional scalar field interactions which are irrelevant for the discussion

below. Using the unitary rotation,

ΦI = UIi φi , (2.2)

where U satisfies the condition

U†M2 U = m2 = diag(m2
1, . . . ,m

2
N ) , (2.3)

one can express the Lagrangian in terms of mass eigenstates φi

Lmass = (∂µφ†i ) (∂µφi)−m2
iφ
†
iφi +

1

2
(∂µη) (∂µη)− 1

2
m2
ηη

2 − yij η φ†i φj + . . . , (2.4)

where the transformed scalar couplings are identified as yij = U †iI YIJ UJj .

3Sum over repeated indices is always assumed in the text, unless stated otherwise.
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Figure 1. Scalar self-energy −iΣji(p) in the mass eigenstate basis.
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ΦN

ΦL

k
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. . .

ΦI ΦJη

ΦKΦL

k
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ΦI ΦJη

ΦK

k

k− pp p +

Figure 2. Scalar self-energy −iΣ̂JI(p) in the flavour basis.

First, let us consider the “flavour” changing one-loop One-Particle-Irreducible (1PI)

self-energy diagram of the mass eigenstates fields φi, shown in figure 1. Then using inter-

actions from Lagrangian in eq. (2.4) leads to

−iΣji(p) =

∫
d4k

(2π)4
yj`

1

(k2 −m2
` )((k − p)2 −m2

η)
y`i =

i

(4π)2
yj`B0(p;m2

` ,m
2
η)y`i , (2.5)

where the loop function B0 (and also C0, D0, . . . below) is a PV-function defined in sec-

tion 3.3.

Next, we consider the corresponding one-loop diagram in flavour basis of eq. (2.1),

employing the standard diagrammatic MIA approach. The massive flavour propagators

are defined by absorbing the diagonal part of the flavour mass matrix M2, according to

the decomposition into diagonal and non-diagonal parts,

M2
IJ = (M2

0 )II δIJ + M̂2
IJ , M̂2

II = 0 , (no sum over I) , (2.6)

where δIJ is the usual Kronecker symmetric tensor. The non-diagonal elements M̂2
IJ , are

identified as the mass insertions, treated as perturbative couplings for the non-diagonal

quadratic interactions of flavour fields. The one-loop flavour changing self-energy of the

flavour states, ΦI , is thus represented as the infinite sum of the diagrams shown in figure 2.

By direct calculation, and denoting M2
K ≡ (M2

0 )KK , one obtains

−iΣ̂JI(p) =

∫
d4k

(2π)4

YJKYLI
(k − p)2 −m2

η

×
(

δKL
k2 −M2

K

+
M̂2
KL

(k2 −M2
K)(k2 −M2

L)

+
M̂2
KNM̂

2
NL

(k2 −M2
K)(k2 −M2

N )(k2 −M2
L)

+ . . .

)
(2.7)

=
i

(4π2)
YJKYLI ×

(
δKLB0(p;M2

K ,m
2
η) + M̂2

KLC0(0, p;M2
K ,M

2
L,m

2
η)

+M̂2
KNM̂

2
NLD0(0, 0, p;M2

K ,M
2
N ,M

2
L,m

2
η) + . . .

)
, (2.8)

– 4 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
1

which is essentially an expansion in terms of mass insertions. We should notice that

although M2
K are not the squares of the physical masses, they are always real non-negative.

This is a general property of the diagonal part of any semi-positive definite Hermitian

matrix, including also any Hermitian (squared) mass matrix of a consistent QFT.

As the external indices imply, the self energy diagrams in this example are not invariant

under flavour rotations. One can formally uncover the explicit correspondence between

the flavour and mass basis calculations by considering the flavour invariance of the time

evolution operator, inside the corresponding S-scattering matrix element, with the relevant

contractions∫
d4x

∫
d4y 〈p, J |Φ†J(x)ÔJI(x,y)ΦI(y)|p′, I〉 =

∫
d4x

∫
d4y 〈p, J |φ†j(x)Oji(x,y)φi(y)|p′, I〉 ,

〈p, J |φ†j(x) = 〈0|eipx UJj , φi(y)|p′, I〉 = U †iIe
−ip′y|0〉 , (2.9)

we derive the transformation rule for self-energies,

Σ̂JI(p) = UJj Σji(p) U
†
iI , (2.10)

which can be immediately generalized to the case of an arbitrary n-point amplitude.

Substituting in eq. (2.10) the explicit algebraic expressions for the self-energies we

obtain an interesting result - the flavour rotation of the mass eigenstates loop-function is

an expansion in terms of mass insertions in flavour basis (no sum over K,L),

UK` B0(p,m2
` ,m

2
η) U

†
`L = δKLB0(p;M2

K ,m
2
η) + M̂2

KLC0(0, p;M2
K ,M

2
L,m

2
η)

+M̂2
KNM̂

2
NLD0(0, 0, p;M2

K ,M
2
N ,M

2
L,m

2
η) + . . . . (2.11)

This result, however, can be also obtained by a theorem of matrix analysis [cf. eq. (3.11)]

stated in the next section, rendering diagrammatic calculations in flavour basis, similar to

ones leading to eq. (2.8), obsolete.

3 Flavour expansion theorem

Eq. (2.11) has been obtained diagrammatically with the help of the transformation

rule (2.10). In what follows we show that, such relations can be also obtained purely

algebraically, allowing for an easier transformation between mass and flavour basis calcu-

lations without the use of the diagrammatic MIA. In this section we formulate a relevant

mathematical framework and a useful general theorem of matrix analysis. For brevity we

refer to it as “Flavour Expansion Theorem” or just FET.

Before formulating FET, it is worth noting that obtaining the relation (2.11) in a

closed form without reverting to diagrammatic MIA expansion is not easy with the use

of standard perturbation techniques. The simplest idea of expanding the mass eigenstates

result in a Taylor series around some average mass m2
0 = 1

N

∑N
K=1m

2
K ,

UiK f(m2
K)U?jK = UiK

[ ∞∑
n=0

f (n)(m2
0)

n!
(m2

K −m2
0)n

]
U?jK , (3.1)
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fails to reproduce correctly even the first non-trivial MIA term in eq. (2.11) - the higher

terms of any order in Taylor expansion are proportional to a factor

UiK (m2
K −m2

0)n U?jK =
[(

M2 −m2
0I
)n]

ij
=
[(

M2
0 −m2

0I + M̂2
)n]

ij
, (3.2)

which after expanding would explicitly contain terms linear in M̂2
ij .

Alternatively, a more consistent approach can be developed using the standard quan-

tum mechanic perturbation theory, applied to mass matrix eigenstate problem,(
M2

0 + λM̂2
) (

e
(0)
I + λe

(1)
I + . . .

)
=
[
(m2)

(0)
I + λ(m2)

(1)
I + . . .

] (
e

(0)
I + λe

(1)
I + . . .

)
,

(3.3)

with λ being the expansion parameter. By solving eq. (3.3) order by order we find mass

eigenvalues m2
I and rotation matrices U = (e1, . . . , eN) as a series in λ. Then the product,

UiK f(m2
K)U?fK , can again be expanded in Taylor series in λ parameter, with each term

equivalent to the same order of MIA expansion. Such procedure easily restores the first

terms in eq. (2.11) (see e.g. [17]), but its combinatorial complication grows quickly and

again it is hard to see how the higher order terms combine to form compact n-point loop

functions, a situation which becomes even trickier in case of degenerate eigenvalues.

3.1 Hermitian matrix function and divided differences

We append below definitions that are relevant for presenting the Flavour Expansion

Theorem.

Definition 1. Let A be an n × n Hermitian matrix, diagonalized by a unitary matrix U

to a real diagonal matrix D, through the transformation,

U†AU = D = diag(λ1, . . . , λn) . (3.4)

Also let f(x) be a real analytic function about zero, in a range I ⊆ R, that can be expressed

in terms of its Maclaurin series, as

f(x) =

∞∑
m=0

cmx
m . (3.5)

Then, if all λi ∈ I, one can define a Hermitian matrix function f(A), as

Uf(D)U† =
∞∑
m=0

cmUDmU† =
∑

cmAm ≡ f(A) . (3.6)

Definition 2. For any function f(x), one can define a set of multi-variable functions,

f [k], through a mathematical operation commonly referred to as divided difference. Divided

differences are defined recursively as

f [0](x) ≡ f(x) , (3.7a)

f [1](x0, x1) ≡ f(x0)− f(x1)

x0 − x1
, (3.7b)

. . .

f [k+1](x0, . . . , xk, xk+1) ≡ f [k](x0, . . . , , xk−1, xk)− f [k](x0, . . . , xk−1, xk+1)

xk − xk+1
. (3.7c)
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It is easy to check that divided differences of any order k are always totally symmetric

under the permutation of any set of respective arguments, xi. Moreover, for an analytic

generating functional f = f [0] they also have a well defined degeneracy limit

lim
{x0,...,xm}→{ξ,...,ξ}

f [k](x0, . . . , xk) =
1

m!

∂m

∂ξm
f [k−m](ξ, xm+1 . . . , xk) , (3.8)

applied to any set of respective arguments (m ≤ k), as long as all arguments lie in the

domain of analyticity of f(x).

3.2 The Flavour Expansion Theorem (FET)

By making extensive use of the definitions above, we can formulate a general theorem,

concerning a certain expansion of Hermitian matrix functions, in a form which can be

directly applied to the unitary transformation of loop functions in flavour physics.

Theorem 1. Let A be any n× n Hermitian matrix, decomposed as a sum of its diagonal

and non-diagonal part,

A = A0 + Â , (3.9)

where, by definition,

AI0 ≡ AII ,

ÂIJ ≡ AIJ , ÂII = 0 , (I, J = 1, . . . , n) .
(3.10)

Then, for any Hermitian matrix function f(A), satisfying the restrictions of Def. 1, a given

matrix element 〈I|f(A)|J〉 will be given by the expansion (no sum over I,J)

f(A)IJ = δIJf(AI0) + f [1](AI0, A
J
0 ) ÂIJ +

∑
K1

f [2](AI0, A
J
0 , A

K1
0 ) ÂIK1ÂK1J

+
∑
K1,K2

f [3](AI0, A
J
0 , A

K1
0 , AK2

0 ) ÂIK1ÂK1K2ÂK2J + . . . , (3.11)

in terms of divided differences of f(A0) [see Def. 2] and the (non-diagonal) elements of Â.4

Eq. 3.11 holds as long as the expansion in the r.h.s. is convergent. The formal proof

of this theorem, based on the notion of fully symmetrized polynomials and mathematical

induction, is given in appendix A.

3.3 Divided differences and Passarino-Veltman functions

The natural connection between FET and the expansion of one-loop amplitudes is becoming

striking when looking into the recursive properties of the loop functions in the Passarino-

Veltman basis [13]. The general n-point one-loop functions can be defined as:

i

(4π)2
PV µ1...µl

n (p1, . . . , pn−1;m2
1, . . . ,m

2
n) = (3.12)

=

∫
d4k

(2π)4

kµ1 . . . kµl

(k2 −m2
1)
∏n
j=2((k + p1 + · · ·+ pj−1)2 −m2

j )
, (n ≥ 2) .

4Cases of degenerate eigenvalues and/or diagonal matrix elements are treated uniformly due to prop-

erty (3.8) of the divided differences.
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In the standard notation n = 2, 3 . . . functions are commonly denoted as B,C, . . .-functions.

A useful property associates differences of integral functions of a certain order with

integral functions of next order. In general case this relation has the following structure:

PV X
n (p1 . . . pn−1;m2

1 . . .m
2
n)− PV X

n (p1 . . . pn−1;m′1
2 . . .m2

n)

m2
1 −m′1

2

= PV X
n+1(0, p1 . . . pn−1;m2

1,m
′
1

2
. . .m2

n) , (3.13)

PV X
n (. . . pj−1 . . . ; . . .m

2
j . . . )− PV X

n (. . . pj−1 . . . ; . . .m
′
j
2 . . . )

m2
j −m′j

2

= PV X
n+1(. . . pj−1, 0 . . . ; . . .m

2
j ,m

′
j
2
. . . ), (j ≥ 2)

with X being any set of Lorentz indices of momenta in the numerator of loop integrand.5

Comparing eq. (3.13) with the definition (3.7) one can see immediately that the notion

of divided differences is naturally implemented in the relations between multi-point one-

loop integrals. Eq. (3.13) allow us to express the expansion (3.11) for one-loop amplitudes

in a form in which it is obvious that it is not singular for degenerate diagonal matrix

elements. Namely, every one-loop amplitude can be written as a linear combination of PV

functions. Furthermore, each PV function can be expanded as,[
PV (n)(. . . , A, . . .)

]
IJ

= δIJPV
(n)(. . . , AI0, . . .) + PV (n+1)(. . . , AI0, A

J
0 , . . .)ÂIJ

+
∑
K

PV (n+2)(. . . , AI0, A
J
0 , A

K
0 , . . .)ÂIKÂKJ + . . . , (3.14)

where if necessary one should also specify momenta arguments as prescribed in eq. (3.13).

For example, to make a connection between FET and the toy-model of the previous

section we observe that if we make the following identifications

D→m2 , A→M2 , f(x) ≡ f [0](x)→ B0(p, x,m2
η) , (3.15)

we can immediately see that eq. (2.11) is a special case of eq. (3.11). In section 5, we will

present a highly non-trivial example application of the FET.

3.4 Applications and limitations of FET

The FET formulated as a pure algebraic theorem can be directly applied to expanding a

mass eigenstate result of any transition amplitude in any model involving particles associ-

ated with Hermitian mass matrices, that is scalars or vectors, even at higher loop orders.

As we shall discuss in section 4, with some modifications, FET can be also applied to ex-

panding the amplitudes involving fermions associated with non-Hermitian mass matrices.

The purely algebraic expansion is usually significantly simpler than the more tedious

and prone to mistakes diagrammatic MIA calculation, particularly in models with com-

plicated flavour structure like MSSM. Another advantage of FET is that it can be easily

5Additional discussion and more recursive relations for the various types of PV functions can be found

in appendix A of ref. [18].
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implemented as an algorithm for symbolic manipulation programs, automatizing the expan-

sion procedure. However, the procedure has some limitations, particularly when is applied

to such complicated functions as loop integrals. Three remarks concerning limitations of

FET are summarized here:

Remark 1. FET assumptions require the expanded amplitude to be analytic function of

masses. This is not the case if external momenta are large and loop integrals may have

branch cuts. For the external momenta in the vicinity of branch cuts a mass eigenstate

calculation and use of numerical procedures is more appropriate.

Remark 2. Flavour expansion in the r.h.s. of eq. (3.11) may not converge or converge

very slowly, in both cases again mass eigenstates basis and use of numerical procedures

is preferred.

Remark 3. The UV-singularities do not pose a problem for FET. If they appear, they

come from the loop integrals of positive mass dimension. The coefficients of poles of such

integrals are dimensionless and flavour blind or proportional to positive powers of masses,

so they can be evaluated in terms of flavour basis parameters without any expansion.

Most practical applications of FET concern analyses of models of New Physics where

loop particles are much heavier than the external states (being usually the Standard Model

fields). Thus, it is usually sufficient to calculate relevant amplitudes in the approximation

of vanishing external momenta, or by expanding the loop integrals in the external momenta

and keeping only the first few terms of such an expansion. Since in these processes the

loop integrals are real analytic functions of masses, branch cuts can never appear. Then,

the only remaining problem is the convergence of the FET.

In appendix B, we formulate and prove the condition which has to be fulfilled by the

mass matrices in the flavour basis, in order to make FET written for any one-loop ampli-

tude, convergent. The result is that the moduli of every eigenvalue of the dimensionless

mass insertion matrix has to be smaller than one.

4 Expansion of fermionic amplitudes

Expanding amplitudes in which flavour violation enters through fermionic mass matrices is

more complicated, because such matrices do not need to be Hermitian and in general can

be diagonalized with the use of two different unitary matrices. Nevertheless, as it turns

out, FET can always apply to this case as well, with minor, but necessary, modifications

which we discuss below.

Lets first consider a Lagrangian of N -copies of Dirac fermion free fields. This will have

the general form,

L(0)
flavour = iΨ̄A/∂ΨA −MAB

(
Ψ̄APLΨB

)
−M †AB

(
Ψ̄APRΨB

)
(4.1)

≡ Ψ̄
(
i/∂ −MPL −M†PR

)
Ψ , (4.2)

in a 4-spinor Dirac notation, which is more suitable for mass eigenstates calculations and

offers a more compact description in our following discussion. Since Majorana spinors can
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be understood as Dirac spinors with an extra chirality constraint, our discussion applies

directly to Majorana fermions, as well.

As is well known, in a chiral theory, a Dirac spinor is in general reducible under flavour

rotations. The transformation from flavour to mass basis is performed through two different

unitary matrices, acting independently on its chiral projections, as

ΨLA = UAiψLi , ΨRA = VAiψRi , (4.3)

which can always bring an arbitrary complex flavour mass matrix M into a real non-

negative diagonal form, satisfying

V†M U = m = diag(m1, . . . ,mN ) . (4.4)

The unitary matrices V and U diagonalize also the (semi) positive-definite Hermitian

matrices MM† and M†M, through the transformations

V†M M†V = U†M†M U = m2 . (4.5)

To streamline the notation, we introduce the unitary matrices U and Ū , generaliz-

ing our transformation rules for chirality projected fermion fields to a reducible Dirac

4-spinor, as

U ≡ UPL + VPR , Ū ≡ U†PR + V†PL . (4.6)

In this compact description, eq. (4.3) will result in

ΨA = UAiψi, Ψ̄A = ψ̄i ŪiA . (4.7)

The free propagator for the fermion multiplet Ψ in flavour basis is a matrix both in spinor

and flavour space. Inverting the Dirac operator in eq. (4.2), we find

∆̂(k) =
i

/k −MPL −M†PR

= (M†PL + /kPL)
i

k2 −MM† + (MPR + /kPR)
i

k2 −M†M
. (4.8)

The free propagators in flavour and mass eigenstates basis are related by the same

rotations as fermion fields. From the identity,

〈0|T{ΨB(x)Ψ̄A(y)}|0〉 = UBi 〈0|T{ψi(x)ψ̄i(y)}|0〉 ŪiA , (4.9)

it follows that, (
∆̂(k)

)
BA

=
(
U ∆(k) Ū

)
BA

=

(
U i (/k + m)

k2 −m2
Ū
)
BA

, (4.10)

where ∆i(k) is the fermion propagator in the mass eigenstates basis. Applying the explicit

expressions of eq. (4.6) for the reducible flavour rotation matrices, to eq. (4.10) and using

the following algebraic identities:

Ū† 1

k2 −m2
Ū =

1

k2 −MM†PL +
1

k2 −M†M
PR , (4.11)

U m

k2 −m2
Ū = M† 1

k2 −MM†PL + M
1

k2 −M†M
PR , (4.12)
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the flavour propagator ∆̂(k) can be also obtained from the mass basis propagator ∆(k).

In order to calculate the amplitude, apart from propagators one needs to consider the

transformation rules for the fermionic vertices. A general fermionic current in flavour basis,

can be expressed in the form,

jΨ = Ψ̄AΓ̂ABΨB , (4.13)

where Γ̂ is an operator acting both in flavour and spinor space, and may also depend on

scalar or gauge fields. In any QFT model a general fermionic vertex can be decomposed

into four chirality projected terms as

Γ̂ = Γ̂RL PL + Γ̂LR PR + Γ̂RR PR + Γ̂LL PL

≡ PL Γ̂RL + PR Γ̂LR + PL Γ̂RR + PR Γ̂LL . (4.14)

where Γ̂LR(RL) are scalar- or tensor-type couplings, and Γ̂LL(RR) are vector couplings.

In our compact notation, the transformation rule for vertices can be simply ex-

pressed as:

Γ̂ = Ū† Γ U† , (4.15)

or explicitly in terms of Γ̂ components as

Γ̂RL = V ΓRL U† , Γ̂RR = V ΓRR V† ,

Γ̂LR = U ΓLR V† , Γ̂LL = U ΓLL U† . (4.16)

It is important to notice that the transformation rules for propagators and for vertices

eqs. (4.10) and (4.15), respectively, are different, which reflects the general difference in

transformation rules for amputated and non-amputated Green’s functions.

Let us examine now the general n-point transition amplitude with fermion lines (ex-

ternal or internal - our formalism applies to the latter by setting final and initial fermion

indices to be equal). Lets focus on any chosen fermion line in such an amplitude. The

Feynman rule in the mass eigenstate basis would have the general form,

Mji ∼ (Γ ∆ Γ . . .∆ Γ)ji . (4.17)

Applying flavour rotation to the external states and using eqs. (4.10) and (4.15)), one

can get an expression for the fermion line in flavour basis, M̂JI , written as a sequential

product of flavour-basis fermion vertices and matrix propagators,

M̂ = Ū†M U † ∼
(
Ū†ΓU†

)(
U∆ Ū

)(
Ū†ΓU†

)
. . .
(
U∆ Ū

)(
Ū†ΓU†

)
= Γ̂ ∆̂ Γ̂ . . . ∆̂ Γ̂ . (4.18)

This shows that any fermionic amplitude built of vertices and propagators in the

mass basis can be formally transformed into the amplitude given in terms of respective

quantities in the flavour basis. We can now observe that, as shown explicitly in eq. (4.8),

matrix denominators of the loop integrals in the flavour basis always depend on Hermitian
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matrices MM† or M†M, and only such combinations would appear as formal arguments

of loop functions. As a consequence, one can conclude that FET formulated for Hermitian

matrices can always apply to loop functions appearing in fermionic amplitudes, as well.

From more practical point of view, our derivation leads to the conclusion that the

fermion mixing matrices U and V can appear in amplitudes only is some specific combi-

nations, namely

UBi f(m2
i )U

?
Ai = f(M†M)BA ,

VBi f(m2
i )V

?
Ai = f(MM†)BA ,

UBimif(m2
i )V

?
Ai = M †BC f(MM†)CA = f(M†M)BCM

†
CA ,

VBimif(m2
i )U

?
Ai = MBC f(M†M)CA = f(MM†)BCMCA , (4.19)

which can always be expanded using eq. (3.11).

We should notice that the formal treatment followed in this section can easily generalize

to the case of more complicated flavour models, where sets of flavour fields belong to distinct

flavour families. In this case, the propagators and the vertices in the general formulae

of eqs. (4.17) and (4.18), will carry both internal (flavour) and external (family-group)

indices. However, only Γ or Γ̂ can associate different family groups because propagators,

∆(k) or ∆̂(k) are block diagonal in family space. Therefore, one can accommodate in this

formalism amplitudes with complicated flavour structure like, e.g.,rare processes in the

MSSM with fermions on the external lines and sfermions and gauginos circulating in loops.

FET formalism not only allows one to calculate such diagrams in flavour basis but also in

any other “hybrid” basis of convenience, e.g.,fermions-gauginos in mass and sfermions in

flavour basis, or any other combination.

5 Application of FET: neutron EDM in the MSSM

To illustrate that higher order mass insertion terms can give physically meaningful bounds

we consider the example of the neutron Electric Dipole Moment (nEDM) in the Minimal

Supersymmetric Standard Model [19–21].

The full nEDM can be expressed as a combination of parton level contributions - EDMs

of quarks dq, their chromoelectric dipole moments (CDM) cq and the CDM of gluon cg.

The parton moments are defined as respective coefficients in the effective Hamiltonian:

Hq =
idq
2
q̄σµνγ5qF

µν − icq
2
q̄σµνγ5T

aqGµνa ,

Hg = −cg
6
fabcG

a
µρG

bρ
ν G

c
λσε

µνλσ. (5.1)

The total neutron EDM depend on its hadronic wave function and can be written as

En = ηeddd + ηeudu + e(ηcdcd + ηcucu) +
eηgΛX

4π
cg , (5.2)

where ηi and ΛX areO(1) QCD wave-function factors [22] and the chiral symmetry breaking

scale [23], respectively. Various models can give significantly different values for ηi, differing
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even by an overall sign. Thus, eq. (5.2) and the bounds it puts on MSSM parameters should

be treated as order of magnitude estimates only, since potential cancellations in (5.2)

depend on these poorly known coefficients.

The explicit expressions for dq, cq and cg are given in ref. [24]. In this example, we

consider only the dominant gluino contribution to the up-quark EDM and CDM. Taken

together, their contribution to the nEDM can be expressed as

En =
1

M3

6∑
k=1

Im(Z1k
U Z

4k?
U ) F (xŨk

) , (5.3)

where ZU and mŨk
are up-squark mixing matrices and physical masses, M3 is the gluino

mass (for conventions and the detailed definitions see refs. [25, 26]), and we define the mass

ratios, xQ̃ ≡ m
2
Q̃
/M2

3 . The function F (x) is the sum of loop contributions

F (x) =
eαs
18π

(
8ηeuC12(x)− 3gsηcu

2
(18C11(x) + C12(x))

)
, (5.4)

with C11, C12 being certain PV-functions defined as

C11(x) =
−1 + 3x

4(1− x)2
+

x2

2(1− x)3
log x , (5.5)

C12(x) = − x+ 1

2(1− x)2
− x

(1− x)3
log x . (5.6)

Flavour violation in the MSSM squark sector is strongly bounded by numerous ex-

periments and known to be very small, . O(10−3), for down squark mass matrices if the

diagonal elements of those matrices are around the electroweak scale. Therefore, we as-

sume for the purposes of this example that the left down soft SUSY breaking squark mass

matrix is approximately diagonal, but not degenerate, of the form

(m2
D̃

)LL =

m2
D̃

0 0

0 m2
D̃

+ δm2
D12 0

0 0 m2
D̃

+ δm2
D13

 . (5.7)

In the left up-squark sector the off-diagonal mass terms are then generated by the SU(2)

relation:

(m2
Ũ

)LL = K (m2
D̃

)LLK
† , (5.8)

where K denotes the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Consider now the flavour expansion of eq. (5.3). In the first order it constrains the

imaginary part of the trilinear up-squark mixing,

E(1)
n ⊃ −

v2

M3
3

√
2

Im(A11
U + Yuµ

∗ cotβ)F [1]
(
xŨL1

, xŨR1

)
, (5.9)

where the r.h.s. is now expressed in terms of parameters in flavour basis. In particular, the

arguments of the first divided difference, F [1], are given by diagonal elements of up-squark

mass matrix,

xŨL
≡

(m2
Ũ

)11
LL

M2
3

, xŨR
≡

(m2
Ũ

)11
RR

M2
3

. (5.10)
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Following the current experimental bound, |En| < 2.9 × 10−26 [27], and bearing in mind

potential cancellations, eq. (5.9) sets strong bounds on the imaginary phases of µ and A11
U ,

of the order of 10−3 and 10−5, respectively, for SUSY mass scale of the order of 1 TeV.

What is interesting, and to our knowledge has not been discussed thus far in the liter-

ature, is that the experimental bound on nEDM is so strong that it constrains significantly

also the real parts of up-squark mass insertions, an effect which is easily visible when ana-

lyzing higher orders in MIA expansion. To avoid lengthy expressions, let us assume that in

the up-squark sector only the 31 off-diagonal entries do not vanish in the “right-handed”

soft mass matrix (m2
Ũ

)31
RR and in the trilinear mixing matrix A31

u and that they are purely

real. In addition, the (m2
Ũ

)LL is defined by the relation to diagonal down sector in eq. (5.8).

Then, a non-vanishing contributions to nEDM are generated from higher orders in mass

insertions via the mixing with the complex CKM matrix elements. Using the FET up to

2nd order one can see that the result depends only on the A31
u ,

E(2)
n ⊃

v2 sin 2θ13 cos θ23

2
√

2M5
3

(δm2
D13 − δm2

D12 sin2 θ12)

× sin δCKM ReA31
u F [2]

(
xŨL1

, xŨR1
, xŨL3

)
, (5.11)

where θ12, θ13, θ23, and δCKM are respectively, the angles and the CP-violating phase in

the standard CKM matrix parametrization. Note again that a CP-violating observable

constraints real squark mass parameters through the CKM CP-violating phase.

It is worth noting that even the 3rd order expansion of FET sets numerically significant

constraints on the real parts of flavour violating parameters. In particular, the dependence

on (m2
Ũ

)31
RR parameter, absent at lower orders, is now introduced through,

E(3)
n ⊃ v2 sin 2θ13 cos θ23

2
√

2M7
3

(δm2
D13 − δm2

D12 sin2 θ12) sin δCKM ×

×Re(m2
Ũ

)31
RR Re(A33

U + Ytµ
∗ cotβ)F [3]

(
xŨL1

, xŨR1
, xŨL3

, xŨR3

)
. (5.12)

Comparing separately expressions given in eqs. (5.11) and (5.12) with the experimental

upper bound on the neutron EDM, one can obtain order of magnitude estimates on, other-

wise weakly constrained, 31 and 13 elements of the up-squark trilinear and “right-handed”

soft mass terms in relation to mass splitting in the down-squark sector. Such bounds are

important e.g. for analysis of the maximal allowed decay rates of the top quark to lighter

MSSM Higgs boson, t → uh [18]. The numerical results for a typical MSSM parameter

set, obtained using the full unexpanded mass eigenstates expressions for nEDM and the

SUSY FLAVOR library [28–32], are collected in table 1. They all agree both qualitatively

and quantitatively with eqs. (5.11) and (5.12) that have been obtained from the FET of

eq. (3.11).

Alternatively, one can satisfy the nEDM bound by choosing flavour violating entries

large but correlated so that terms in eqs. (5.11) and (5.12) cancel each other to large

accuracy. It is interesting to observe that CKM-related factors in these equations are

identical, so the correlation between A31
U and (m2

Ũ
)31
RR is given only by SUSY parameters
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δmD13 [TeV ] 0.2 0.4 0.6 0.8 1

|ReA31
U /M3| 2.4× 10−2 1.3× 10−2 1.1× 10−2 8.9× 10−3 7.9× 10−3

|Re(m2
Ũ

)31
RR/M

2
3 | 2.5× 10−2 1.2× 10−2 1.1× 10−2 8.6× 10−3 7.4× 10−3

Table 1. Upper bounds on |ReA31
U /M3| and |Re(m2

Ũ
)31RR/M

2
3 | imposed by current experimental

constraints from neutron EDM. Displayed values were obtained assuming (m2
Ũ

)31RR = 0 for the

2nd row, A31
U = 0 for the 3rd row and no other sources of the sfermion flavour violation. Other

parameters set to tan β = 4, common SUSY-scale M3 = 1.1 TeV and a suitable value of A33
U was

implicitly chosen to satisfy the 125 GeV Higgs mass constraint.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1

 A
U3
1
/M

3

(mU
2
 )RR

31
 / M3

2

(δmD)13 = 0.2 M3  

M3 [TeV]

3.3  
2.2  
1.1  

Figure 3. Range of the ReA31
U /M3 − Re(m2

Ũ
)31RR/M

2
3 plane allowed by current experimental con-

straints from neutron EDM. MSSM parameters defined as in table 1.

(of course once the QCD-related factors in eq. (5.4) become better known). Both terms

exactly cancel when

Re[A31
u /M3]

Re[(m2
Ũ

)13
RR/M

2
3 ]

= −
A33
U + Ytµ

∗ cotβ

M3

F [3]
(
xŨL1

, xŨR1
, xŨL3

, xŨR3

)
F [2]

(
xŨL1

, xŨR1
, xŨL3

) . (5.13)

Eq. (5.13) suggests a linear shape for the allowed ReA31
U −Re(m2

Ũ
)31
RR parameter space,

consistent with the nEDM experimental bound. This result is illustrated clearly in fig-

ure 3, obtained again with the SUSY FLAVOR code (i.e.,without using the MIA expansion),

and assuming values of QCD factors implemented there. Again this result follows closely

eqs. (5.11) and (5.12) that have been obtained from the FET. In particular, numerical com-

parison between approximate formulae eqs. (5.11) and (5.12) and the exact mass eigenstates

calculation implemented in SUSY FLAVOR , exhibit a remarkable agreement, above 98%, in

the central region of figure 3, namely for (ReA31
U /M3) ∼ (Re(m2

Ũ
)31
RR/M

2
3 ) ∼ 5×10−2, while
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even for very large values of the flavor violating parameters, (∼ 0.5), agreement remains

above 85%.

Furthermore, we have successfully applied FET to another observable, namely the

rare top decay to light quarks and a Higgs boson, t → q h, in MSSM [18]. What one

practically gains from using FET in complicated theories, like MSSM for example, is to

algebraically isolate the dominant effects for a given observable without performing tedious

diagrammatic MIA expansion nor extensive computer scans of a multi-parameters space.

6 Summary

In this article we have presented and proved a theorem of matrix analysis, the Flavour

Expansion Theorem (FET), that remarkably translates any transition amplitude, obtained

in terms of mass eigenstate basis parameters, into its corresponding amplitude in flavour

eigenstate basis, purely algebraically, without the use of standard diagrammatic methods

like the Mass Insertion Approximation (MIA) method. Following the formulation of this

theorem, any analytic function of a Hermitian matrix is expanded in terms of its off-

diagonal elements with coefficients being the multi-variable functions, commonly known as

divided differences. Natural implementation of such expansion [see eq. (3.11)] comes from

the intimate connection between the divided differences and the Passarino-Veltman one-

loop functions. Apart from the formal proof, we have discussed also FET limitations, such

as non-analyticity and convergence issues. We have also extended the use of the theorem

in case of general transition amplitudes involving fermion mass matrices which are not

necessarily Hermitian.

We have argued many times throughout this article, that the algebraic derivation of the

flavour basis result using FET is substantially easier, shorter and more compact than the

diagrammatic one. A pedagogical example is given in section 2. However, we also illustrate

how FET works with a significant example based on sparticle (gluon-squark) contributions

to neutron-EDMs. In this example, the use of FET at higher non-trivial orders is capable

to set fairly strong bounds of order ∼ 10−2 on real parts of up-squark mixing matrix

elements from nEDM measurements by assuming that CP-violation arises only from the

CKM-matrix phase. This FET result agrees with our exact numerical calculations [see

table 1 and figure 3 ] using SUSY FLAVOR library. To our knowledge these bounds are

new in the MSSM flavour physics literature and demonstrate the usefulness of the Flavour

Expansion Theorem, especially, when it applies to complicated models.
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A Proof of the Flavour Expansion Theorem

The FET theorem formulated in section 3.2 can be proved using mathematical induction

and the notion of the “fully symmetrized polynomials”.

A.1 Fully symmetrized polynomials

The “fully symmetrized” homogeneous polynomials of degree N [33], can be understood

through the following equivalent definitions:

Definition 3. QMN (x1, . . . , xM ) is the direct sum of all distinct N-degree monomials con-

structed out of the given set of M variables xi.

Definition 4. Alternatively, QMN (x1, . . . , xM ) is defined as

QMN (x1, . . . , xM ) ≡ ###
∑
N

xa11 . . . xaMM ≡
N∑

a1,...,aM=0

(
xa11 . . . xaMM

)∣∣∣
a1+...+aM=N

. (A.1)

Directly from definitions above, one can express the fully symmetrized polynomial,

QMN , for any value of M,N . Due to the symmetric nature of eq. (A.1) there exist many

equivalent representations of this sum. For non trivial M,N , one of these will have the

explicit form

QMN (x1, . . . , xM ) =

(x1)N + (x1)N−1(x2 + x3 + . . .) + (x1)N−2
(
x2

2 + . . .+ (x2x3) + . . .
)

+ . . .+ x1(. . . )

+ (x2)N + (x2)N−1(x3 + . . .) + . . .

. . .

+ (xM )N . (A.2)

The identities, Q0
N = 0, QM0 = 1, Q1

N (x1) = xN1 , also hold trivially by definition.

Due to eq. (A.1) the factorization property,

QMN (x1, . . . , xM ) =
N∑
K=0

QLK(x1, . . . , xL)QM−LN−K(xL+1, . . . , xM ) , (no sum over L) ,

(A.3)

holds for any integer L, satisfying 1 ≤ L ≤M −1, and for any choice of, {L} and {M −L},
respective subsets of M variables, xi.
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Lemma 1. Fully symmetrized polynomials QM+1
N are M -order divided differences of

the generating functional, Q1
N+M , thus satisfying QM+1

N = Q
1 [M ]
N+M . Equivalently, the

expression,

QM+1
N = Q

M [1]
N+1 , (A.4)

holds for any M ≥ 1.

Proof. First, we show the validity of eq. (A.4), for M = 1, namely

Q2
N = Q

1 [1]
N+1 . (A.5)

Applying eq. (A.3), we have

(x1 − x2)Q2
N (x1, x2) =

N∑
K=0

(
Q1
N−K+1(x1)Q1

K(x2)−Q1
K(x1)Q1

N−K+1(x2)
)

= Q1
N+1(x1)−Q1

N+1(x2) +
N∑
K=1

Q1
N−K+1(x1)Q1

K(x2)

−
N∑
K=1

Q1
K(x1)Q1

N−K+1(x2)

= Q1
N+1(x1)−Q1

N+1(x2) , (A.6)

which is equivalent to eq. (A.5). Now it is straightforward to verify eq. (A.4) for M > 1,

as well. Denoting y ≡ {x3, . . . , xM+1}, we have

(x1 − x2)QM+1
N (x1, x2, y)

(A.3)
= (x1 − x2)

N∑
K=0

Q2
K(x1, x2)QM−1

N−K(y)

(A.6)
=

N∑
K=0

(
Q1
K+1(x1)−Q1

K+1(x2)
)
QM−1
N−K(y)

=
N+1∑
K=1

(
Q1
K(x1)−Q1

K(x2)
)
QM−1
N−K+1(y)

+
(
Q1

0(x1)−Q1
0(x2)

)
QM−1
N+1 (y)

= QMN+1(x1, y)−QMN+1(x2, y) , (A.7)

and therefore finishing the proof of the lemma.

A.2 Flavour Expansion Theorem: the proof

Proof. Due to Def. 1, the Hermitian matrix function f(A), can be expressed as a

power series,

f(A) =
∞∑
m=0

cmAm . (A.8)
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One can apply the matrix decomposition A = A0 + Â to the above series (convergent by

assumption) and rearrange terms collecting together the same powers of Â. Assuming that

the resulting summation remains convergent, we have

f(A) = c0 I + c1A0 + c2 A2
0 + c3 A3

0 + . . . : F0

+ c1Â + c2〈ÂA0〉 + c3〈ÂA2
0〉 + c4〈ÂA3

0〉 + . . . : F1

+ c2 Â2 + c3〈Â2A0〉 + c4〈Â2A2
0〉 + . . . : F2

. . .
...

+ cMÂM + cM+1〈ÂMA0〉 + . . . + cn〈ÂMAn−M
0 〉 + . . . : FM

+ cM+1 ÂM+1 + . . . + cn〈ÂM+1An−M−1
0 〉 + . . . : FM+1

. . . . . . (A.9)

where we have defined

〈ÂmAn
0〉 ≡

∑
P−distinct

ÂmAn
0 , (A.10)

for all distinct permutations of the set {Â . . . , A0 . . .} of (m+ n) objects.

The matrix element 〈I|f(A)|J〉 will be given by the sum

(
f(A)

)IJ
=

∞∑
N=0

F IJN = F IJ0 + F IJ1 + F IJ2 + . . . , (A.11)

where, by direct calculation, the above terms are given by (summation over repeated in-

ternal indices Ki, is considered - also if they appear more than twice),

F IJ0 = δIJf(AI0) , (A.12a)

F IJ1 = ÂIJ

(
c1 + c2

[
AI0 +AJ0

]
+ c3

[
(AI0)2 + (AJ0 )2 +AI0A

J
0

]
+ . . .

)
, (A.12b)

F IJ2 = ÂIK1ÂK1J

(
c2 + c3

[
AI0 +AJ0 +AK1

0

]
+ c4

[
(AI0)2 + (AJ0 )2 + (AK1

0 )2 +AI0A
J
0 +AI0A

K1
0 +AJ0A

K1
0

]
+ . . .

)
= ÂIK1ÂK1J

∞∑
N=0

c2+NQ
3
N (AI0, A

J
0 , A

K1
0 ) , (A.12c)

. . .

F IJM = ÂIK1ÂK1K2 . . . ÂKM−1J

∞∑
N=0

cM+NQ
M+1
N (AI0, A

J
0 , A

K1
0 , . . . , A

KM−1

0 ) , (A.12d)

. . . .

To prove the theorem, we need to show

∞∑
N=0

cM+NQ
M+1
N (AI0, A

J
0 , A

K1
0 , . . . , A

KM−1

0 ) = f [M ](AI0, A
J
0 , A

K1
0 , . . . , A

KM−1

0 ) , (A.13)
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for all M ≥ 0. This can be realized using mathematical induction. For M = 0, we

obtain trivially

∞∑
N=0

cNQ
1
N (AI0) =

∞∑
N=0

cN (AI0)N = f(AI0) ≡ f [0](AI0) . (A.14)

Now, let

∞∑
N=0

cM+NQ
M+1
N = f [M ] , (A.15)

holds for some M > 0 and for any set of M + 1 arguments. Then, we need to show that

∞∑
N=0

cM+N+1Q
M+2
N (AI0, A

J
0 , A

K1
0 , . . . , AKM

0 ) = f [M+1](AI0, A
J
0 , A

K1
0 , . . . , AKM

0 ) , (A.16)

which, by Def. 2 of divided differences in eq. (3.7), is equivalent to showing

(AI0 −AJ0 )
∞∑
N=0

cM+N+1Q
M+2
N (AI0, A

J
0 , A

K1
0 , . . . , AKM

0 )

(A.4)
=

∞∑
N=0

cM+N+1

(
QM+1
N+1 (AI0, A

K1
0 , . . .)−QM+1

N+1 (AJ0 , A
K1
0 , . . .)

)
=

∞∑
N=1

cM+N

(
QM+1
N (AI0, A

K1
0 , . . .)−QM+1

N (AJ0 , A
K1
0 , . . .)

)
+ cM

(
QM+1

0 (AI0, A
K1
0 , . . .)−QM+1

0 (AJ0 , A
K1
0 , . . .)

)
=

∞∑
N=0

cM+N

(
QM+1
N (AI0, A

K1
0 , . . .)−QM+1

N (AJ0 , A
K1
0 , . . .)

)
= f [M ](AI0, A

K1
0 , . . .)− f [M ](AJ0 , A

K1
0 , . . .) , (A.17)

and hence the theorem is proved.

B Convergence criterion for FET expansion of the one-loop functions

It is well known that, any one-loop amplitude can be expressed as a linear combination

of “master” PV-integrals with trivial i.e.,equal to 1, integrand numerator. Thus, it is

sufficient to find a convergence criterion for the FET expansion only for master integrals.

Below we formulate such a criterion for the most often considered case of loop functions

with vanishing external momenta. The same criterion can be applied to coefficients of the

expansion of one-loop integrals in terms of external momenta (assuming that they are far

from thresholds and momentum expansion can be performed) - such coefficients can be

also reduced to combinations of master integrals with vanishing momenta.

For vanishing external momenta master integrals can be expressed as

PV
(n)

0 (m2
1, . . . ,m

2
n) = −i(4π)2

∫
d4p

(2π)4

1∏n
j=1(p2 −m2

j )
= (−1)n

∫ ∞
0

udu∏n
j=1(u+m2

j )
,(B.1)
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where we assume n ≥ 3 to avoid divergent integrals - considering the estimates for finite

ones is sufficient to establish the convergence criterion for FET expansion as it depends

only on behaviour of higher order terms.

Eq. (B.1) leads immediately to inequality∣∣∣PV (n+1)
0 (m2

1, . . . ,m
2
n,m

2
n+1)

∣∣∣ ≤ 1

m2
n+1

∣∣∣PV (n)
0 (m2

1, . . . ,m
2
n)
∣∣∣ . (B.2)

Applying this inequality, iteratively for higher order terms, to majorize the r.h.s. of

eq. (3.14) (in what follows we do not write explicitly any PV-function arguments apart

from the ones used in the expansion), we get∣∣∣[PV (n)
0 (A)

]
IJ

∣∣∣ ≤ ∣∣∣δIJPV (n)
0 (AI0)

∣∣∣+
∣∣∣PV (n+1)

0 (AI0, A
J
0 )ÂIJ

∣∣∣
+
∣∣∣PV (n+2)

0 (AI0, A
J
0 , A

K
0 )ÂIKÂKJ

∣∣∣+ . . .

≤
∣∣∣δIJPV (n)

0 (AI0)
∣∣∣+
∣∣∣PV (n+1)

0 (AI0, A
J
0 )
∣∣∣ ∣∣∣ÂIJ ∣∣∣

+
∣∣∣PV (n+2)

0 (AI0, A
J
0 , A

K
0 )
∣∣∣ ∣∣∣ÂIK∣∣∣ ∣∣∣ÂKJ ∣∣∣+ . . .

≤
∣∣∣PV (n)

0 (AI0)
∣∣∣(δIJ +

|ÂIJ |
AJ0

+
|ÂIK |
AK0

|ÂKJ |
AJ0

+ . . .

)
(B.3)

=
∣∣∣PV (n)

0 (AI0)
∣∣∣
δIJ +

√
AI0
AJ0

 |ÂIJ |√
AI0A

J
0

+
|ÂIK |√
AI0A

K
0

|ÂKJ |√
AK0 A

J
0

+ . . .

 ,

where we assume that all indices apart from I, J are implicitly summed in the range

1 . . . N . Let us now define the symmetric matrix Q with elements being the absolute

values of dimensionless quantities commonly referred in the literature as “mass insertions”

(diagonal elements of Q vanish by definition of Â matrix)

QIJ =
|ÂIJ |√
AI0A

J
0

. (B.4)

Then eq. (B.4) can be expressed as∣∣∣[PV (n)
0 (A)

]
IJ

∣∣∣ ≤ ∣∣∣PV (n)
0 (AI0)

∣∣∣(δIJ +

√
AI0
AJ0

(
Q + Q2 + . . .

)
IJ

)
. (B.5)

The expression in the inner parenthesis of the r.h.s. of eq. (B.5) is a geometric series.

According to the definition of a function of Hermitian matrix given in section 3.1, this

series is convergent if it converges also for any of Q eigenvalues, hence their absolute values

must be all smaller than 1. This can be expressed formally, as

sup
||e||=1

|eᵀ Q e| = sup
||e||=1

|eᵀ DQ e| < 1 , (B.6)

where e denotes any real unit vector, and DQ is the diagonal matrix of eigenvalues. Obvi-

ously, this is a sufficient but not necessary condition for the convergence of the expansion.
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Finally we should note that vanishing diagonal elements can not pose a threat for

the convergence of the FET expansion in physical theories. This is because all Hermitian

(squared) mass matrices are semi-positive definite matrices, and for such matrices if AI0 = 0,

then necessarily also ÂIK = ÂKI = 0 for all K. Thus all potentially divergent terms vanish.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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