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Abstract We consider the problem of approximating a function f from an Euclidean
domain to a manifold M by scattered samples ( f (ξi ))i∈I , where the data sites (ξi )i∈I
are assumed to be locally close but can otherwise be far apart points scattered through-
out the domain. We introduce a natural approximant based on combining the moving
least square method and the Karcher mean. We prove that the proposed approximant
inherits the accuracy order and the smoothness from its linear counterpart. The analy-
sis also tells us that the use of Karcher’s mean (dependent on a Riemannian metric and
the associated exponential map) is inessential and one can replace it by a more general
notion of ‘center of mass’ based on a general retraction on themanifold. Consequently,
we can substitute the Karcher mean by a more computationally efficient mean. We
illustrate our work with numerical results which confirm our theoretical findings.
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1 Introduction

Let f : � ⊂ R
s → M with M a Riemannian manifold be an unknown function and

we only know its values at a set of distinct points (ξi )i∈I ⊂ �̄. We are concerned with
finding an approximant to f . Such an approximation problem for manifold-valued
data arises in numerical geometric integration [23], diffusion tensor interpolation [7]
andmore recently in fast online methods for dimensionality reduced-order models [5].
In a Stanford press release associated with the aeronautical engineering publications
[3–5], it is emphasized that being able to accurately and efficiently interpolate on
manifolds is a key to fast online prediction of aerodynamic flutter, which, in turn, may
help saving lives of pilots and passengers.

In the aforementioned references it was implicitly assumed that the data points
( f (ξi ))i∈I ∈ M are close enough so that they can all be mapped to a single tan-
gent space TpM by the inverse exponential map log. In these previous works the
base point p ∈ M is typically one of ( f (ξi ))i∈I and the choice can be quite arbi-
trary. In this setting, the problem simply reduces to a linear approximation problem
on the tangent space TpM . To approximate the value f (x) ∈ M , use any standard
linear method (polynomial, spline, radial basis function etc.) to interpolate the values
(log(p, ( f (ξi )))i∈I ⊂ TpM at the abscissa (ξi )i∈I , then evaluate the interpolant Q at
the desired value x , and finally apply the exponential map to get the approximation
f (x) ∼ exp(p, Q(x)).
This ‘push-interpolate-pull’ technique onlyworks when all the available data points

( f (ξi ))i∈I fallwithin the injectivity radius of the point p, and themethod only provides
an approximation for f (x) if x is near p. In this case the problem is local, and the
topology of the manifold plays no role. One may then question what would be the
difference if one uses the push-interpolate-pull approach but with the exponential map
replaced by an arbitrary chart. With the exponential map, the push-interpolate-pull
method respects the symmetry, if any, of the manifold. However, it is not clear what
is the practical advantage of the latter and if respecting symmetry is not the main
concern, one is free to replace the exponential map by a retraction (see, e.g., [1,11])
on the manifold.

The problem is more challenging when we have available data points ( f (ξi ))i∈I ∈
M scattered at different parts of the manifold, and the manifold has a nontrivial
topology. In this setting, we desire an approximation method with the following
properties:

(i) Themethod is well-defined as long as the scattered data sites are reasonably close
locally, but can otherwise be far apart globally.

(ii) The approximant should provide a decent approximation order when f is suffi-
ciently smooth. Since standard approximation theory (see for example chapter 3
of [9]) tells us that for linear data there are methods which provide an accuracy of
O(hm)when f isCm smooth, and h = mini �= j |ξi −ξ j | is the global meshwidth,
it is natural to ask for a method for manifold-valued data with the same accuracy
order.

(iii) The approximant itself should be continuous.
(iv) The approximant should be efficiently computable for any given x .
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Scattered manifold-valued data approximation 989

Such amethod ought to ‘act locally but think globally’,meaning that the approximating
value should only depend on the data f (ξi ) for ξi near x , but yet the approximant
should be continuous and accurate for all x in the domain. This forces the method to
be genuinely nonlinear.

In the shift-invariant setting, i.e. when � = R
s and (ξi )i∈I = hZ

s , the above
problem was solved successfully first by a subdivision technique [13,32] and more
recently by a method based on combining a general quasi-interpolant with the Karcher
mean [14]. Even more recently, the work [17] used a projection-based approach to
generalize B-spline quasi-interpolation for regularly spaced data. In either case, it
was shown that an approximation method for linear data can be suitably adapted to
manifold-valued data without jeopardizing the accuracy or smoothness properties of
the original linear method. This kind of (smoothness or approximation order) equiv-
alence properties are analyzed by a method known as proximity analysis. It is also
shown that in certain setups, the smoothness or approximation order equivalence can
breakdown in unexpected ways [10,11,17,30–32].

Note that all the previous work assumes ‘structured data’ in the sense that samples
are taken on a regular grid or the nodes of a triangulation of a domain. However, there
exist several applications (for instance in model reduction applications [3–5]) where
such structured samples are not available but only scattered samples are provided.

The case of scattered data interpolation has not been treated so far and in this
paper we provide a solution to the above problem in the multivariate scattered data
setting.More precisely we combine the ideas of [14,16] with the classical linear theory
of scattered data approximation [29] to arrive at approximants which satisfy (i)-(iv)
above.

We give a brief outline of this work. The following Sect. 2 presents a brief overview
of approximation results for scattered data approximation of Euclidean data. Then in
Sect. 3wepresent our generalization of the linear theory to themanifold-valued setting.
This section also contains our main result regarding the approximation power of our
nonlinear construction. It turns out that our scheme retains the optimal approximation
rate as expected from the linear case. This is formalized in Theorem3.5. In this theorem
the dependence of the approximation rate on the geometry of M is made explicit
and appears in form of norms of iterated covariant derivatives of the log function
of M . To measure the smoothness of an M-valued function we utilize a smoothness
descriptor introduced in [16] and which forms a natural generalization of Hölder
norms to the manifold-valued setting. Our results also hold true for arbitrary choices
of retractions. We discuss this extension in Sect. 3.3. Finally in Sect. 4 we present
numerical experiments for the approximation of functions with values in the sphere
and in the manifold of symmetric positive definite (SPD) matrices. In all cases the
approximation results derived in Sect. 3 are confirmed.We also examine an application
to the interpolation of reduced order models and compare our method to the method
introduced in [6] where it turns our that our method delivers superior approximation
power.

123



990 P. Grohs et al.

2 Scattered data approximation in linear spaces

In this section we present classical results concerning the approximation of scattered
data in Euclidean space. Our exposition mainly follows the monograph [29].

2.1 General setup

We start by describing a general setup for scattered data approximation. Let � ⊂ be
an open domain and �̄ its closure. Let � = (ξi )i∈I ⊂ �̄ ⊂ R

s be a set of sites
and � := (ϕi )i∈I ⊂ Cc(�̄, R) a set of basis functions, where Cc(�̄, R) denotes the
set of compactly supported real-valued continuous functions on �̄. The linear quasi-
interpolation procedure, applied to a continuous function f : �̄ → R, is defined as

Q f (x) :=
∑

i∈I
ϕi (x) f (ξi ) for all x ∈ �̄. (1)

Essential for the approximation power of the operator Q is the property that poly-
nomials up to a certain degree are reproduced:

Definition 2.1 The pair (�,�) reproduces polynomials of degree k if

∑

i∈I
ϕi (x)p(ξi ) = p(x) for all p ∈ Pk(R

s) and x ∈ �̄, (2)

where Pk(R
s) denotes the space of polynomials of (total) degree ≤ k on R

s .

If (�,�) reproduces polynomials of degree k ≥ 0 then necessarily

∑

i∈I
ϕi (x) = 1 for all x ∈ �̄. (3)

Definition 2.2 We define the local meshwidth h : �̄ → R≥0 by

h(x) := sup
i∈I(x)

|ξi − x |,

where

I(x) := {i ∈ I|ϕi (x) �= 0}

and | · | denotes the Euclidean norm.

The following example gives a simple procedure to interpolate univariate data with
polynomial reproduction degree 1.
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Scattered manifold-valued data approximation 991

Example 2.3 Let � = (0, 1), 0 = ξ1 < ξ2 · · · < ξn = 1 and

ϕi (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

x−ξi−1
ξi−ξi−1

if i > 1 and ξi−1 ≤ x < ξi

ξi+1−x
ξi+1−ξi

if i < n and ξi ≤ x < ξi+1

0 otherwise

.

These functions, also known as hat functions, reproduce polynomials up to degree 1.
The local meshwidth for ξi ≤ x < ξi+1 is

h(x) =
⎧
⎨

⎩

0 x = ξi

ξi+1 − x ξi < x ≤ ξi+ξi+1
2

x − ξi
ξi+ξi+1

2 < x < ξi+1

.

We define the Ck seminorm of f : � → R on U ⊂ � by

| f |Ck (U,R) := sup
x∈U

sup
l∈Ns

|l|=k

|∂ l f (x)|,

where for l = (l1, . . . , ls) ∈ N
s we define |l| := ∑s

i=1 li and

∂ l f (x) := ∂ |l | f (x)
∏s

i=1 (∂xi )li
.

Additionally we define ∂ l f = f if l = (0, . . . , 0). To estimate the approximation
error at x ∈ � we use the set

�x :=
⋃

i∈I(x)

{(1 − t)x + tξi | t ∈ [0, 1)} .

Note that if � is convex we have �x ⊂ � for all x ∈ �. The following result gives
a bound for the approximation error at x ∈ � in terms of the local meshwidth, the
polynomial reproduction degree and the Ck seminorm of f on �x .

Theorem 2.4 Let� ⊂ R
s be an opendomain, k > 0 apositive integer,� = (ξi )i∈I ⊂

�̄ ⊂ R
s a set of sites and � = (ϕi )i∈I ⊂ Cc(�̄, R) a set of basis functions. Assume

that (�,�) reproduces polynomials of degree smaller than k. Then there exists a
constant C > 0, depending only on k and s such that for all f ∈ Ck(�, R) and x ∈ �

with �x ⊂ � and | f |Ck (�x ,R) < ∞ we have

| f (x) − Q f (x)| ≤ C
∑

i∈I
|ϕi (x)| | f |Ck (�x ,R)h(x)k . (4)

We omit a proof here as a general theorem will be proven in the next section. If
�x � � we can consider an extension operator Ex : Ck(�, M) → Ck(� ∪ �x , M).
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992 P. Grohs et al.

Then the estimate (4) with a constant C also depending on the domain � holds true
(see Remark 3.6). In contrast to other results, such as those in [29], Theorem 2.4 poses
no restrictions on the sites� = (ξi )i∈I . In the following subsection we will show how
the approximation results in [29] follow as a corollary to the previous Theorem 2.4.

2.2 Moving least squares

In this subsection, we will follow [29] and show how to construct a set of compactly
supported basis functions � = (ϕi )i∈I with polynomial reproduction degree k for a
set of sites � = (ξi )i∈I ⊂ �̄ ⊂ R

s which is (k, δ)-unisolvent.

Definition 2.5 A set of sites � = (ξi )i∈I ⊂ �̄ ⊂ R
s is called (k, δ)-unisolvent if

there exists no x ∈ �̄ and p ∈ Pk(R
s) with p �= 0 and p(ξi ) = 0 for all i ∈ I with

|ξi − x | ≤ δ.

Let α : [0,∞) → [0, 1] with α(0) = 1, α(z) = 0 for z ≥ 1 and α′(0) = α′(1) = 0,
e.g. the Wendland function defined by

α(x) :=
{

(1 + 4x)(1 − x)4 0 ≤ x ≤ 1
0 x > 1

.

For every i ∈ I and x ∈ �̄ we define

ϕi (x) := α

( |x − ξi |
δ

)
p(ξi ) (5)

where p ∈ Pk(R
s) is chosen such that the basis functions � = (ϕi )i∈I satisfy the

polynomial reproduction property (2) of degree k, i.e.

∑

j∈I
α

( |x − ξ j |
δ

)
p(ξ j )q(ξ j ) = q(x) ∀ q ∈ Pk(R

s). (6)

As � is (k, δ)-unisolvent the left hand side of (6) can be regarded as an inner product
of p and q. Furthermore q → q(x) is a linear functional on Pk(R

s). Hence by the
Riesz representation theorem there exists a unique polynomial p ∈ Pk(R

s) with (6).
Note that choosing a basis onPk(R

s) one can compute p by solving a linear system
of equations. Hence we can compute ϕ(x) in a reasonable time and Q satisfies (iv)
from the introduction. In [29] it is shown that the function ϕ has the same smoothness
as α. This shows that Q satisfies (iii) from the introduction.

The theory in [29] considers a quasi-uniform set of sites � as defined below.

Definition 2.6 The pair (�, δ) is called quasi-uniform with constant c > 0 if

δ ≤ cq�,
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Scattered manifold-valued data approximation 993

where q� is the separation distance defined by

q� := 1

2
min
i, j∈I
i �= j

|ξi − ξ j |.

For a shorter notation we introduce the symbol [n] := {1, . . . , n}.
Example 2.7 Let � = (−1, 1) and k, n ∈ N. For i ∈ [n] we choose the node ξi
uniformly at random in the interval (−1+2(i−1)/n,−1+2i/n) and δ = 2(k+1)/n.
Then the set of sites � = (ξi )i∈[n] is (k, δ)-unisolvent. However, in order to make �

quasi-uniform the constant c > 0 can get arbitrarily large as q� can get arbitrarily
small.

Example 2.8 Let � = (−1, 1) and k, n ∈ N. For i ∈ [n] we choose the node ξi
uniformly at random in the interval [−1 + (4i − 3)/(2n),−1 + (4i − 1)/(2n)] and
δ = (2k + 3)/n. Then the set of sites � = (ξi )i∈[n] is (k, δ)-unisolvent and quasi-
uniform with c = 2(2k + 3).

The following theorem is the main result of [29] regarding the approximation with
moving least squares.

Theorem 2.9 [29] Let � ⊂ R
s be an open and convex domain, k > 0 a positive

integer,� = (ξi )i∈I ⊂ �̄ ⊂ R
s a (k−1, δ)-unisolvent set of sites and� = (ϕi )i∈I ⊂

Cc(�̄, R) the basis functions as defined in (5). Let δ > 0 and assume that (�, δ) is
quasi-uniform with c > 0. Then there exists a constant C > 0, depending only on c,
k and s such that for all f ∈ Ck(�, R) with | f |Ck (�,R) < ∞ we have

‖ f − Q f ‖L∞(�) ≤ C | f |Ck (�,R)δ
k .

We show that Theorem 2.9 is a consequence of Theorem 2.4.

Proof Note that h(x) = supi∈I(x) |ξi − x | ≤ δ. Due to [29, Theorem 4.7(2)]
supi∈I(x) |ϕi (x)| can be bounded by a constant depending only on k, c and s. We
now show that |I(x)| can be bounded by a constant depending only on c and s. Note
that

I(x) ⊆ {i ∈ I | |x − ξi | ≤ δ}.

Hence the pairwise disjoint balls with centers (ξi )i∈I(x) and radii q� lie in the ball
with center x and radius δ + q�. As the fraction (δ + q�)/q� is bounded from above
by (1+ c) we have that supx∈� | I(x)| is bounded by the number of balls with radius
1 that fit into a ball of radius (1+ c). In the following we use the letter C as a symbol
for a constant whose value may change from equation to equation. By Theorem 2.4
we have,

‖ f − Q f ‖L∞(�) = sup
x∈�

| f (x) − Q f (x)|
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994 P. Grohs et al.

≤ sup
x∈�

C
∑

i∈I(x)

|ϕi (x)|| f |Ck (�x ,R)h(x)k

≤ sup
x∈�

C |I(x)| sup
i∈I

|ϕi (x)|| f |Ck (�,R)δ
k

≤ C | f |Ck (�,R)δ
k .

��

3 Scattered data approximation in manifolds

The present section extends Theorems 2.4 and 2.9 to the case of manifold-valued
functions f : � → M with a Riemannian manifold M . First, in Sect. 3.1 we present
a geometric generalization of the operator Q to the manifold-valued case. The con-
struction is based on the idea to replace affine averages by a Riemannian mean as
studied e.g. in [21]. Subsequently, in Sect. 3.2 we study the resulting approximation
error. Finally, in Sect. 3.3 we extend our results to the case of more general notions of
geometric average, induced by arbitrary retractions as studied e.g. in [15].

3.1 Definition of Riemannian moving least squares

In this section we consider a Riemannian manifold M with distance metric d : M ×
M → R≥0 and metric tensor g, inducing a norm | · |g(p) on the tangent space TpM at
p ∈ M .

Extending the classical theory which we briefly described in Sect. 2 we now aim
to construct approximation operators for functions f : � → M . We follow the ideas
of [14,16,26–28] where the sum in (1) is interpreted as a weighted mean of the data
points ( f (ξi ))i∈I(x). Due to (3) this is justified.

Forweights
 = (γi )i∈I ⊂ Rwith
∑

i∈I γi = 1 and data pointsP = (pi )i∈I ⊂ M
we can define the Riemannian average

avM (
,P) := argmin
p∈M

∑

i∈I
γi d(p, pi )

2. (7)

One can show [21,28] that avM (
,P) is a well-defined operation, if the diameter of
the set P is small enough:

Theorem 3.1 ([2,28])Given a weight sequence 
 = (γi )i∈I ⊂ R with
∑

i∈I γi = 1.
Let p0 ∈ M and denote for ρ > 0 by Bρ the geodesic ball of radius ρ around p0.
Then there exist 0 < ρ1 ≤ ρ2 < ∞, depending only on

∑
i∈I |γi | and the geometry

of M such that for all points P = (pi )i∈I ⊂ Bρ1 the functional
∑

i∈I γi d(p, pi )2

assumes a unique minimum in Bρ2 .

Whenever the assumptions of Theorem 3.1 hold true, the Riemannian average is
uniquely determined by the first order condition
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Scattered manifold-valued data approximation 995

∑

i∈I
γi log (avM (
,P), pi ) = 0, (8)

which could alternatively be taken as a definition of the weighted average in M , see
also [28].

We can now define an M-valued analogue for Eq. (1).

Definition 3.2 Denoting�(x) := (ϕi (x))i∈I ⊂ R and f (�) := ( f (ξi ))i∈I ⊂ M we
define the nonlinear moving least squares approximant

QM f (x) := avM (�(x), f (�)) ∈ M.

It is clear that in the linear case this definition coincides with (1). Furthermore it is
easy to see that the smoothness of the basis functions � = (ϕi )i∈I gets inherited by
the approximation procedure QM , see e.g. [27]. Hence our approximation operator
QM satisfies (iii) from the introduction.

Remark 3.3 We wish to emphasize that the approximation procedure as defined in
Definition 3.2 is completely geometric in nature. In particular it is invariant under
isometries of M . In mechanics this leads to the desirable property of objectivity.
The push-interpolate-pull described in the introduction does in general not have this
property.

3.2 Approximation error

We now wish to assess the approximation error of the nonlinear operator QM and
generalize Theorem 2.4 to the M-valued case.

3.2.1 The smoothness descriptor of manifold-valued functions

Two basic things need to be considered to that end. First we need to decide how we
measure the error between the original function f and its approximation QM f . This
will be done pointwise using the geodesic distance d : M ×M → R≥0 on M . Slightly
more subtle is the question what is the right analogue to the term ‖ f ‖Ck (�,R) in the
manifold-valued case? In [16] a so-called smoothness descriptor has been introduced
to measure norms of derivatives of M-valued functions. Its definition requires the
notion of covariant derivative in a Riemannian manifold. With D

dxl
we denote the

covariant partial derivative along f with respect to xl . That is, given a function f : � →
M and a vector fieldW : � → T M attached to f , i.e.,W (x) ∈ T f (x)M for all x ∈ �.
Then in coordinates on M , the covariant derivative of W in xl reads

D

dxl
Wr (x) := dWr

dxl
(x) + 
r

i j ( f (x))
d f i

dxl
W j (x),

where we sum over repeated indices and denote with 
r
i j the Christoffel symbols

associated to the metric of M [8]. For iterated covariant derivatives we introduce the
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996 P. Grohs et al.

symbolDl f which means covariant partial differentiation along f with respect to the
multi-index l in the sense that

Dl f := D

dxlk
. . .

D

dxl2
d f

dxl1
, l ∈ [d]k, k ∈ N0. (9)

Note that (9) differs from the usual multi-index notation, which cannot be used
because covariant partial derivatives do not commute. The smoothness descriptor of
an M-valued function is defined as follows.

Definition 3.4 [Smoothness descriptor] For a function f : � → M , k ≥ 1 andU ⊂ �

we define the k-th order smoothness descriptor

k,U ( f ) :=
k∑

n=1

∑

l j∈[d]m j

m j>0, j∈[n]∑n
j=1 m j=k

sup
x∈U

n∏

j=1

∣∣∣∣Dl j f (x)

∣∣∣∣
g( f (x))

.

The smoothness descriptor as defined above represents a geometric analogue of the
classical notions ofHölder norms and seminorms.Note that, even in the Euclidean case
(for instance M = R) the expression k,U ( f ) is not equal to the Hölder seminorm
| f |Ck (U,R), as additional terms are present in the definition of k,U ( f ). But we have
the implications

k,U ( f ) < ∞ ⇔ | f |Cl (U,R) < ∞ for all l ∈ [k].

In the proof of Theorem 3.5 it will become clear why the additional terms in k,U ( f )
are needed in the case of general M where, in contrast to M = R, higher order
covariant derivatives of the logarithmmapping need not vanish, compare also Remark
3.7 below.

3.2.2 Further geometric quantities

Coming back to the anticipated generalization of Theorem 2.4, we also aim to quantify
exactly to which extent the approximation error depends on the geometry of M . To
this end let log(p, ·) : M → TpM be the inverse of the exponential map at p. Denote
by ∇1, ∇2 the covariant derivative of a bivariate function with respect to the first and
second argument, respectively. In particular, for l ∈ N we will require the derivatives

∇l
2 log(p, q) : (TqM)l → TpM

and their norms

‖∇l
2 log(p, q)‖ = sup

v1,...,vl∈TqM

∣∣∇l
2 log(p, q) (v1, . . . , vl)

∣∣
g(p)∏l

i=1 |vi |g(q)

.
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Scattered manifold-valued data approximation 997

3.2.3 Main approximation result

We now state and prove our main result.

Theorem 3.5 Let� ⊂ R
s be an opendomain, k > 0 apositive integer,� = (ξi )i∈I ⊂

�̄ ⊂ R
s a set of sites and � = (ϕi )i∈I ⊂ Cc(�̄, R). Assume that (�,�) reproduces

polynomials of degree smaller than k. Then there exists a constant C > 0, depending
only on k and s, such that for all f ∈ Ck(�, M) and x ∈ � with �x ⊂ � and
k,�x ( f ) < ∞ we have

d
(
QM f (x), f (x)

)
≤ Ck,�x ( f )

∑

i∈I(x)

|ϕi (x)|

× sup
1≤r≤k

sup
y∈�x

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥ (h(x))k . (10)

Remark 3.6 If �x � � we can consider an extension operator (see e.g. [19])
Ex : Ck(�, M) → Ck(� ∪ �x , M). Then the estimate (10) with f (y) replaced by
Ex f (y) and a constant C also depending on the domain � holds true.

Proof We shall use the balance law (8) which implies that we can write

ε(x) := log
(
QM f (x), f (x)

)

= log
(
QM f (x), f (x)

)

−
∑

i∈I(x)

ϕi (x) log
(
QM f (x), f (ξi )

)
. (11)

Now we consider the function G : � × � → T M defined by

G(x, y) := log
(
QM f (x), f (y)

)
∈ TQM f (x)M. (12)

Since, for fixed x ∈ �, the function G maps into a linear space we can perform a
Taylor expansion of G in y around the point (x, x) ∈ � × � and obtain

G(x, y) =
∑

l∈Ns

|l |<k

(y − x)l

l ! ∂ l2G(x, x) +
∑

l∈Ns

|l |=k

Rl(x, y)(y − x)l, (13)

where for any l = (l1, . . . , ls) ∈ N
s and z = (z1, . . . , zs) ∈ R

s we define

zl :=
s∏

i=1

(zi )
li , l ! :=

s∏

i=1

li !, ∂ l2G(x, z) := ∂ |l |G(x, z)
∏s

i=1 (∂zi )li

and

Rl(x, y) := |l |
l !
∫ 1

0
(1 − t)|l |−1∂ l2G(x, x + t (y − x))dt. (14)
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We insert (13) into (11) and get the following expression for ε(x):

ε(x) = G(x, x)−
∑

i∈I(x)

ϕi (x)

⎛

⎜⎜⎝
∑

l∈Ns

|l |<k

(ξi − x)l

l ! ∂ l2G(x, x) +
∑

l∈Ns

|l |=k

Rl(x, ξi )(ξi − x)l

⎞

⎟⎟⎠

(15)
Exchanging summation order in (15) yields

ε(x) = G(x, x) −
∑

l∈Ns

|l |<k

∑

i∈I(x)

ϕi (x)
(ξi − x)l

l ! ∂ l2G(x, x)

︸ ︷︷ ︸
(I )

+
∑

l∈Ns

|l |=k

∑

i∈I(x)

ϕi (x)Rl(x, ξi )(ξi − x)l

︸ ︷︷ ︸
(I I )

.

We will show that (I ) = 0 and (I I ) = O(h(x)k) which implies our claim.
Let us start by showing that (I ) = 0. As a first observation we note that, due to (3),

we can write

(I ) =
∑

l∈Ns

0<|l |<k

∑

i∈I(x)

ϕi (x)
(ξi − x)l

l ! ∂ l2G(x, x)

︸ ︷︷ ︸
(Il)

.

We claim that (Il) = 0 for all l ∈ N
s with |l | < k. Indeed, pick x∗ ∈ � arbitrary.

Then, by the polynomial reproduction property (2) and k ≤ m + 1 we get

∑

i∈I(x)

ϕi (x)
(ξi − x∗)l

l ! ∂ l2G(x∗, x∗) = ∂ l2G(x∗, x∗)
(x − x∗)l

l ! for all x, x∗ ∈ �.

(16)
Setting x∗ = x in (16) yields

(Il) =
∑

i∈I(x)

ϕi (x)
(ξi − x)l

l ! ∂ l2G(x, x) = ∂ l2G(x, x)
(x − x)l

l ! = 0

which proves the desired claim.
We nowmove on to prove our second claim, namely that (I I ) = O(h(x)k). To this

end we need to estimate, for any l ∈ N
s with |l | = k the quantity

(I I )l :=
∑

i∈I(x)

ϕi (x)Rl(x, ξi )(ξi − x)l. (17)

To this endwe consider, for fixed l and i ∈ I(x), the quantity Rl(x, ξi ). In the following
we use the letter C as a symbol for a constant whose value may change from equation
to equation. Inserting Definition (12) and using the chain rule we obtain that
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∣∣∣∂ l2G(x, y)
∣∣∣
g(QM f (x))

≤ C
∑

1≤r≤k, l∈[d]m∑r
j=1 m=k

∣∣∣∇r
2 log

(
QM f (x), f (y)

)

×
(
Dl1 f (y), . . . ,Dlr f (y)

)∣∣∣
g(QM f (x))

,

which can be estimated by

∣∣∣∂ l2G(x, y)
∣∣∣
g(QM f (x))

≤ C sup
1≤r≤k

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥

×
∑

1≤r≤k, l j∈[d]m j

m j>0, j∈[r ]∑r
j=1 m j=k

∣∣∣Dl1 f (y)
∣∣∣
g( f (y))

· · · · ·
∣∣∣Dlr f (y)

∣∣∣
g( f (y))

≤ C sup
1≤r≤k

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥k,�x ( f ). (18)

Inserting estimate (18) into the definition (14) of Rl we get that

|Rl(x, ξi )|g(QM f (x)) ≤ Ck,�x ( f )
∫ 1

0
(1 − t)k−1

× sup
1≤r≤k

∥∥∥∇r
2 log

(
QM f (x), f (x + t (ξi − x))

)∥∥∥ dt

≤ Ck,�x ( f ) sup
1≤r≤k

sup
y∈�x

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥ . (19)

Finally, putting (19) into (17) we get that

|(I I )l|g(QM f (x)) ≤ Ck,�x ( f ) sup
1≤r≤k

sup
y∈�x

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥

×
∑

i∈I(x)

|ϕi (x)||ξi − x ||l |

≤ Ck,�x ( f ) sup
1≤r≤k

sup
y∈�x

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥

×
∑

i∈I(x)

|ϕi (x)|h(x)k . (20)

Summing up over all l ∈ N
s with |l | = k we get the desired estimate. ��

Two remarks are in order regarding Theorem 3.5.

Remark 3.7 Clearly, in the linear case higher order (i.e. higher than order 1) derivatives
of the logarithm mapping log(p, q) = q − p vanish. Using this fact it is easy to see
that our proof of Theorem 3.5 reduces to Theorem 2.4 in the linear case.
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1000 P. Grohs et al.

Remark 3.8 The estimate in Theorem 3.5 completely separates the error contributions
of f and of the geometry of M . We thus see that the only geometric quantity which
influences the approximation consists of iterated covariant derivatives of the logarithm
mapping.

Using Theorem 3.5 we can now state and prove a geometric generalization to Wend-
land’s main theorem on moving least squares approximation, e.g., Theorem 2.9.

Theorem 3.9 Let � ⊂ R
s be an open and convex domain, k > 0 a positive integer,

� = (ξi )i∈I ⊂ �̄ ⊂ R
s a (k − 1, δ)-unisolvent set of sites and � = (ϕi )i∈I ⊂

Cc(�̄, R) the basis functions as defined in (5). Let δ > 0 and assume that (�, δ) is
quasi-uniform with c > 0. Then there exists a constant C > 0, depending only on c,
k and s such that for all f ∈ Ck(�, M) with k,�( f ) < ∞ we have

sup
x∈�

d
(
f (x),QM f (x)

)
≤ C sup

1≤r≤k
sup
x∈�

sup
y∈�x

∥∥∥∇r
2 log

(
QM f (x), f (y)

)∥∥∥k,�( f )δk .

Proof The proof proceeds exactly as the proof of Theorem 2.9, using Theorem 3.5
instead of Theorem 2.4. ��

Our approximation operator QM satisfies (i) and (ii) from the introduction.

3.3 Generalization to retraction pairs

The computation of the quasi-interpolant QM f (x) requires the efficient computation
of the exponential and logarithm mapping of M . For many practical examples of M
this is not an issue, however in certain cases (for instance the Stiefel manifold [15])
it is computationally expensive to compute the exponential or logarithm function of
a given manifold. Then, alternative functions can sometimes be used. This idea is
formalized by the concept of retraction pairs.

Definition 3.10 ([15], see also [1,12]) A pair (P, Q) of smooth functions

P : T M → M, Q : M × M → T M

is called a retraction pair if

P (x, Q (x, y)) = y, for all x, y ∈ M, and

P (x, 0) = x,
d

dv
P(x, v)

∣∣∣
v=0

= Id for all x ∈ M.

In general P may only be defined locally around M , and Q around the diagonal of
M × M .

Example 3.11 Certainly, the pair (exp, log) satisfies the above assumptions [8], and
therefore forms a retraction pair. Let Sm = {x ∈ R

m+1||x | = 1} be them-dimensional
sphere. Here we can define a retraction pair (P, Q) by
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P(x, y) = x + y

|x + y| and Q(x, y) = y

〈x, y〉 − x,

where 〈·, ·〉 is the standard inner product. We refer to [1] for further examples of
retraction pairs for several manifolds of practical interest.

Given a retraction pair (P, Q), we can construct generalized quasi-interpolants
Q(P,Q) f (x) based on the first order condition (8), which defines a geometric average
based on (P, Q) via ∑

i∈I
γi Q

(
avP,Q(
,P), pi

) = 0 (21)

The results in [15] show that this expression is locally well-defined. The construction
above allows us to define a geometric quasi-interpolant based on an arbitrary retraction
pair as follows.

Definition 3.12 Given a retraction pair (P, Q) and denoting �(x) := (ϕi (x))i∈I ⊂
R and f (�) := ( f (ξi ))i∈I ⊂ M we define the nonlinear moving least squares
approximant

Q(P,Q) f (x) := avP,Q(�(x), f (�)) ∈ M. (22)

The following generalization of Theorem 3.5 holds true.

Theorem 3.13 Let � ⊂ R
s be an open domain, k > 0 a positive integer, � =

(ξi )i∈I ⊂ �̄ ⊂ R
s , � = (ϕi )i∈I ⊂ Cc(�̄, R) and (P, Q) a retraction pair. Assume

that (�,�) reproduces polynomials of degree smaller than k. Then there exists a
constant C > 0, depending only on k and s, such that for all f ∈ Ck(�, M) and
x ∈ � with �x ⊂ � and k,�x ( f ) < ∞ we have

∣∣∣Q
(
Q(P,Q) f (x), f (x)

)∣∣∣
g(Q(P,Q) f (x))

≤ Ck,�x ( f )
∑

i∈I(x)

|ϕi (x)| sup
1≤r≤k

sup
y∈�x

∥∥∥∇r
2Q

(
Q(P,Q) f (x), f (y)

)∥∥∥ h(x)k . (23)

Proof Theproof is completely analogous to the proof ofTheorem3.5with log replaced
by Q. ��

4 Numerical examples

In this section we describe the implementation and an application for our approxima-
tion operatorQM . In Sect. 4.1 we briefly explain for several manifolds how to compute
the Riemannian average. In Sect. 4.2 we present two examples of approximations of
manifold-valued functions. Finally in Sect. 4.3 we apply our approximation operator
on parameter dependent linear time-invariant systems.

123



1002 P. Grohs et al.

4.1 Computation of Riemannian averages

In this section we briefly explain how the Riemannian average can be computed.
For data points P = (pi )i∈I ⊂ M with weights (γi )i∈I ⊂ R we use the iteration
φ : M → M defined by

φ(p) := exp

(
p,
∑

i∈I
γi log(p, pi )

)
. (24)

By (1.5.1)–(1.5.3) of [21] for data points close to each other this iteration converges lin-
early to theRiemannian averagewith convergence rate boundedby supi, j∈I d2(pi , p j )

times a factor that depends only on the sectional curvature of M . If P = (pi )i∈I(x) =
( f (ξi ))i∈I(x) and f ∈ C1(�, M) we have

d(pi , p j ) = d( f (ξi ), f (ξ j )) ≤ | f |C1(�,M)|ξi − ξ j | ≤ | f |C1(�,M)2h(x).

Hence, the convergence rate is bounded by | f |2
C1(�,M)

h(x)2 times a constant depend-

ing only on the sectional curvature of M . Therefore, our approximation operator QM

satisfies (iv) from the introduction. To perform the iteration (24) we only need to
know the exponential and logarithm map of the manifold. For the manifolds of prac-
tical interest there are explicit expressions for log and exp available. For the sphere
we have for example

exp(p, v) = cos(|v|)p + sin(|v|)
|v| v and

log(p, q) = arccos(〈p, q〉)√
1 − 〈p, q〉2 (q − 〈p, q〉p).

With the usual metric on the space of SPD matrices (see e.g. [24]) the exponential and
logarithm map are

exp(P, Q) = P1/2 Exp(P−1/2QP−1/2)P1/2 and

log(P, Q) = P1/2 Log(P−1/2QP−1/2)P1/2.

where Exp denotes the matrix exponential and Log the matrix logarithm. See [20,25]
for a survey of different methods for the computation of the Karcher mean of SPD
matrices.

The exponential and logarithm map on the space of invertible matrices are

exp(X,Y ) = Exp(Y )X and log(X,Y ) = Log(Y X−1). (25)

An alternative way to compute the Karcher mean is to use Newton-like methods. See
[22] for the computation of theKarchermean on the sphere and the space of orthogonal
matrices using Newton-like methods.
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4.2 Interpolation of a sphere-valued and a SPD-valued function

In this section we present two examples for the interpolation of manifold-valued func-
tions. For both interpolations we use the hat functions defined in Example 2.3. Then
QM f is a piecewise geodesic function. Figures 1 and 2 illustrate that the approxima-
tion error can be bounded by a constant times the squared local meshwidth as stated
in Theorem 3.9.

Example 4.1 We consider the function f : [0, 1] → S2 defined by

[0, 1] � x �→
(
1, x, x2

)
∣∣(1, x, x2

)∣∣

and the nodes {0} ∪ {2− j | j ∈ {0, 1, . . . , 6}}.

Example 4.2 Let � = (0, 1), (ξ1, . . . , ξ7) = (0, 0.1, 0.3, 0.35, 0.5, 0.8, 1) and
f (x) = cos(xπ/2)A0 + sin(xπ/2)A1, where A0 and A1 are randomly chosen
SPD matrices. To measure the error we used the geodesic distance d(X,Y ) =
‖Log(X−1/2Y X−1/2)‖F , where F denotes the Frobenius norm.

Fig. 1 Approximation error for
a sphere-valued function
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Fig. 2 Approximation error for
a SPD-valued function
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4.3 Approximation of reduced order models (ROMs)

In [6], Amsallem and Farhat present a fast method for solving parameter dependent
linear time-invariant (LTI) systems. They assume that the solution is known for a
few sets of parameters and interpolate the matrices of a reduced order models to
get the matrix of a reduced order model for a new set of parameters. Some of these
matrices live in a nonlinear space. They choose the ‘push-interpolate-pull’ technique
to interpolate the data. We present an adaptation of this method, based upon the theory
in this paper, for approximating reduced order models (ROMs). As wewill see in some
cases our adaptation yields reliable result whereas the original ROM approximation
method fails.

We start by introducing linear time invariant systems. Then we present the ROM
approximation method and our adaptation.

4.3.1 Linear time-invariant systems

In a parameter dependent LTI system as in [6] we assume that for each x ∈ � there
exists a unique solution zx : [0, T ] → R

q of

dwx

dt
(t) = A(x)wx (t) + B(x)u(t), (26)

zx (t) = C(x)wx (t) + D(x)u(t), (27)

where A : � → GL(n), with GL(n) the set of invertible matrices of size n × n,
B : � → R

n×p, C : � → R
q×n, D : � → R

q×p and u : [0, T ] → R
p. Typically zx

is an output functional of a dynamical system with control function u and n � p, q.
Furthermore we assume that A, B, C and D are continuous. For k < n we define the
compact Stiefel manifold by

St (n, k) := {U ∈ R
n×k | UTU = Ik},

where Ik denotes the k × k identity matrix. Let U, V : � → St (n, k) define test
and trial bases, respectively. The state vector wx (t) will be approximated as a linear
combination of column vectors of V (x), i.e. wx (t) ≈ V (x)w̄x (t) where w̄x will be
defined by substituting wx by V (x)w̄x and multiplying Eq. (26) from the left by
U (x)T . Hence we get the system of equations

UT V (x)
dw̄x

dt
(t) = UT AV (x)w̄x (t) +UT B(x)u(t), (28)

z̄x (t) = CV (x)w̄x (t) + D(x)u(t), (29)

where all operations on matrix-valued functions are defined pointwise. Multiplying
Eq. (28) from the left by (UT V (x))−1 yields the new LTI system

dw̄x

dt
(t) = A(x)w̄x (t) + B(x)u(t), (30)
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z̄x (t) = C(x)w̄x (t) + D(x)u(t), (31)

where A : � → R
k×k , B : � → R

k×p, C : � → R
q×k and D : � → R

q×p are

A := (UT V )−1UT AV, (32)

B := (UT V )−1UT , (33)

C := CV and (34)

D := D. (35)

The aim is that z̄x has the same properties and features as zx . Furthermore k should
be much smaller than n so that z̄x (t) can be computed (with the help of the matrices
A, B, C and D) significantly faster than zx (t).

Let O(k) := {Q ∈ R
k×k |QQT = Ik} be the space of orthogonal matrices. Note

that a coordinate transformation Ū (x) = UQ(x) where Q(x) ∈ O(k) is an orthog-
onal matrix does not change the matrices A, . . . ,D nor the solution z̄x . Similarly
a coordinate transformation V̄ (x) = V Q(x) where Q(x) ∈ O(k) is an orthogonal
matrix transforms the solution z̄x isometrically.We therefore introduce the equivalence
relation

U ∼ Ū : ⇔ ∃Q : � → O(k) s.t. Ū = UQ. (36)

The corresponding space St (n, k)/O(k) is also known as the Grassmannian.
Given a parameter dependent LTI-system and assume that for each choice of the

parameter x ∈ � there exists a ROM with matrices U (x), V (x),A(x),B(x), C(x).
Furthermore assume that the maps x �→ �(U (x)) and x �→ �(V (x)) where
� : St (n, k) → St (n, k)/O(k) denotes the natural projection, are continuous. The
maps U , V ,A, B and C on the other hand do not have to be continuous. The problem
of interpolating reduced-order models (ROMs) is: given the reduced order models
(A(ξi ),B(ξi ), C(ξi )) for several parameters ξi , i ∈ I and x ∈ � find an approxima-
tion for the reduced order model (A(x),B(x), C(x)).

As we are aiming for a fast method the running time should be independent of n. In
addition to the matrices (A(ξi ),B(ξi ), C(ξi )) we can also use precomputed matrices
of size � n.

4.3.2 The ROM approximation method

We sketch the method proposed by Amsallem and Farhat in [6]. The algorithm is
divided into two steps. In the first step we construct a continuous function V c : � →
St (n, k) with V c ∼ V . To this end we choose V0 ∈ R

n×k such that V (x)T V0 ∈ R
k×k

is invertible for all x ∈ �. In [6] the matrix V0 is chosen by V0 := V (ξi ) for some
i ∈ I. Then we define f by

f (V )(x) := V (x)P(x) := V (x)PO(k)(V (x)T V0), (37)

for all V : � → St (n, k) where PO(k) denotes the closest point projection onto O(k)
defined below.
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Definition 4.3 We define the closest point projection PO(k) : GL(k) → O(k) by

PO(k)(X) := argminY∈O(k) ‖X − Y‖F .

To compute the closest point projection onto O(k) in a stable way, one can use the
iteration (see e.g. [18])

φ(X) = X + X−T

2
.

The next lemma shows that f can be regarded as a map from � into St (n, k)/O(k).

Lemma 4.4 If (Ṽ , V ) we have

f (Ṽ ) = f (V ).

Proof By the definition of the equivalence relation (36) there exists Q : � → O(k)
such that Ṽ = V Q. Note that it is enough to prove that

Q(x)PO(k)(Ṽ (x)T V0) = PO(k)(V (x)T V0)

for all x ∈ �. By left invariance of the closest point projection with respect to orthog-
onal matrices we have

Q(x)PO(k)(Ṽ (x)T V0) = Q(x)PO(k)(Q(x)T V (x)T V0)

= QQT (x)PO(k)(V (x)T V0)

= PO(k)(V (x)TU0).

��
Next we prove that f (V ) has the same smoothness as �(V ).

Proposition 4.5 Assume that �(V ) : � → St (n, k)/O(k) is k times differentiable.
Then the map f (V ) : � → St (n, k) is k-times differentiable as well.

Proof By the assumption there exists a k times differentiable function V̄ with V̄ ∼ V .
By Lemma 4.4 we have f (V ) = f (V̄ ). By the smoothness of the closest point
projection we have that f (V̄ ) is k times differentiable. ��
Replacing V by V c = f (V ) in (32) we can define continuous matrix-valued functions
Ac,Bc, Cc for the reduced order models by

Ac := (UT V c)−1UT AV c = PTAP,

Bc := (UT V c)−1UT B = PTB and
Cc := CV c = CP,
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where P(x) = PO(k)(V (x)T V0) for all x ∈ �. In step2 the dataAc(x) is approximated
with respect to the space GL(k) [see (25) for the logarithm and exponential map on
GL(k)].

The ROM approximation algorithm interpolates the data Ac(ξi ) using the ‘push-
interpolate-pull’ technique, i.e. it chooses an i0 ∈ I and maps the data Ac(ξi ) by the
logarithm map log with base point Ac(ξi0) to the tangent space at Ac(ξi0). Then the
new data is approximated with a method for linear spaces and finally mapped back to
the manifold by the exponential map exp.

The data Bc(x) and Cc(x) is approximated with a method for linear spaces.
We present an adaptation of theROMapproximation algorithmby using the approx-

imation operator QM defined in 3.2 to interpolate the data A(x) in GL(k).

Algorithm 1: Step 2 of ROM approximation algorithm using the ‘push-
interpolate-pull’ technique
Input : (Ac(ξi ),Bc(ξi ),Cc(ξi )) for all i ∈ I and x ∈ �

Output: Approximation (Acx , B
c
x ,C

c
x ) of (Ac(x),Bc(x),Cc(x))

1 Interpolate each entry of the matrices Bc(ξi ),Cc(ξi ), i ∈ I(x) independently to obtain Bc
x and Cc

x .
2 Choose i0 ∈ I(x).
3 Compute

(Ac(ξi )
)
t = log(Ac(ξi0 ),Ac(ξi )) for all i ∈ I(x).

4 Interpolate the matrices
(Ac(ξi )

)
t , i ∈ I(x) with a method for linear spaces to obtain

(Ac
x
)
t .

5 Compute Acx = exp(A(ξi0 ),
(Ac

x
)
t ).

Algorithm 2: Adaptation of step 2 of ROM approximation algorithm
Input : (Ac(ξi ),Bc(ξi ),Cc(ξi )) for all i ∈ I and x ∈ �

Output: Approximation (Acx , B
c
x ,C

c
x ) of (Ac(x),Bc(x),Cc(x))

1 Interpolate each entry of the matrices Bc(ξi ),Cc(ξi ), i ∈ I(x) independently to obtain Bc
x and Cc

x .

2 Interpolate the matrices Ac(ξi ), i ∈ I(x) on the space of non-singular matrices using QM .

4.3.3 Numerical experiments

In Section 5.1 of [6] a simple academic example where the ROM approximation
method yields good results is shown. In the next example we can only get a reasonable
approximation if we use our adaptation.

Example 4.6 In this example we consider an interpolation of LTI-systems without
a reduction. Hence we can set (A,B, C) = (A, B,C) and omit step 1 of the ROM
Approximation Algorithm. Let

A(x) :=
(

cos(g(x)) sin(g(x)
− sin(g(x) cos(g(x))

)
,

where g(x) = 4 sin(πx) and ξi = i
4 for i ∈ {−2,−1, 0, 1, 2}. We choose i0 = 0 and

the hat functions ϕi (x) from Example 2.3 as basis functions. The error for Ameasured
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Fig. 3 Error plot of ROM
approximation algorithm and its
adapted version
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x

ROM approximation algorithm
Adaptation of algorithm

A0 = M̃

A1A2

log(A0, A1)log(A0, A2)

M

Fig. 4 Illustration for the explanation of the large error in Fig. 3

in the Frobenius norm for the ROM-Approximation and its adapted algorithm are
illustrated in Fig. 3. An illustration why the ROM approximation method has a large
error is shown in Fig. 4. As thematrices A(x) are two dimensional rotationmatrices we
can see them as points on a circle. The Riemannian average of points A1 and A2 with
weights λ1 = λ2 = 0.5 is M . However if we transform the points by the logarithm to
the tangent space at A0, interpolate on this tangent space and transform back by the
exponential map we get a different point M̃ �= M .

Example 4.7 We consider the values n = 3, p = q = 1 and the matrices A(x) :=
A0 + x A1, B(x) := B and C(x) := C for all x ∈ [−1, 1] where

A0 :=
⎛

⎝
6 4 2
8 4 2

12 4 20

⎞

⎠ , A1 :=
⎛

⎝
1 2 3
4 5 6
3 2 1

⎞

⎠ , B :=
⎛

⎝
1
0
0

⎞

⎠ and C := (
1 2 3

)
.

We set U (x) and V (x) equal to the first 2 columns of the orthogonal matrices of the
singular value decomposition of A(x). We choose the data sites from Example 2.8
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Fig. 5 Convergence plot for
error made in Algorithm 2
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10−3

n

Adapted algorithm
C n-3

with k = 2. The L∞-norm of the error made in Step 2 of Algorithm 2 is shown in Fig.
5. As we can see the convergence rate is as predicted by Theorem 3.9.
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