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Abstract In this paper, ‘massless’ spin- 3
2 fields in the de

Sitter space are considered. This work is a continuation of
a previous paper devoted to the quantization of the de Sit-
ter ‘massive’ spin- 3

2 fields. Due to the appearance of gauge
invariance and an indefinite metric, the covariant quantization
of the ‘massless’ spin- 3

2 fields requires an indecomposable
representation of the de Sitter group. The gauge fixing cor-
responding to the simplest Gupta–Bleuler structure is used,
and a gauge invariant field is discussed. The field equation
is obtained by using the Casimir operator of the de Sitter
group. The solutions are written in terms of the coordinate-
independent de Sitter plane waves. Finally, the generalized
two-point function is calculated.

1 Introduction

In the previous work [1], the ‘massive’ spin- 3
2 fields in the

de Sitter space have been studied. The term ‘massive’ refers
to those de Sitter fields which unambiguously contract to
the Minkowskian massive fields in the zero curvature limit.
These fields are associated with the principal series of unitary
irreducible representations of the de Sitter group SO0(1, 4),
with the Casimir operator eigenvalue 〈Q(1)

ν 〉 = ν2− 3
2 , ν >

3
2 (or equivalently ‘mass’ m2

p = H2(ν2 − 3
2 )). The inter-

pretation of m p as a mass becomes possible by examining
its null curvature limit. The quotation marks on ‘mass’ are
used because of the absence of the intrinsic notion of mass in
de Sitter relativity [2]. Indeed, the principal series of unitary
irreducible representations admits a massive representation
of the Poincaré group in the limit H = 0 [3–5].

In this paper, the ‘massless’ spin- 3
2 fields in the de Sit-

ter space are considered. ‘Massless’ is used by reference to
the conformal invariance and propagation on the light-cone.
They are associated with the discrete series of unitary irre-
ducible representations of the de Sitter group. There are two
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unitary irreducible representations of the de Sitter group in
the discrete series with a Minkowskian meaning in the null
curvature limit, which are denoted by �±3

2 ,
3
2

with the same

Casimir operator eigenvalue 〈Q(1)〉 = − 5
2 .

The field equation of the ‘massless’ spin- 3
2 fields is gauge

invariant in the de Sitter space as well as the massless fields
in the Minkowski space for s ≥ 1. It is well known that
the quantization of gauge invariant theories usually requires
quantization à la Gupta–Bleuler [6,7]. It has been proved that
the use of an indefinite metric is an unavoidable feature if one
insists on preserving of causality (locality) and covariance in
gauge quantum field theories [8]. This means that one can-
not limit the state space of the massless fields (with s ≥ 1)
to Hilbert space; the appearance of states with negative or
null norms is necessary for the quantization of gauge fields.
Therefore, an indecomposable structure appears inevitable,
where the physical states belong to a subspace V of the solu-
tions, but where the field operator must be defined on a larger
gauge dependent space Vλ (which contains negative norm
states). The physical subspace V is invariant but not invari-
antly complemented in Vλ. The same feature is repeated in
V , where one can find the invariant (but again not invari-
antly complemented) subspace of gauge solutions Vg . These
gauge solutions have zero norms and are orthogonal to all the
elements of V [9]. Consequently, one must eliminate them
from the subspace V by considering the physical state space
as the coset V/Vg .

For simplicity, the following units are used:

c = h̄ = 1, [xα/H ] = 1, [M] = H,

where c, h̄ and H are light velocity, Planck constant, and
Hubble parameter, respectively. The paper is organized as fol-
lows: In Sect. 2, some of the useful notations of de Sitter space
and unitary irreducible representations of the de Sitter group
will be recalled. Section 3 is devoted to a derivation ofthe
de Sitter spin- 3

2 ‘massless’ field equation. In this section, we
will show that the field equation is gauge invariant. We will
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adopt a very convenient value for the gauge fixing parame-
ter λ. In this paper, we get the second-order wave equation
by using the Casimir operator; subsequently it is converted
to a first-order equation. There are two different equations
for this case; one of those is considered in the context and
the other is studied in the appendix. In Sect. 4, the solutions
are calculated in terms of the coordinate-independent de Sit-
ter plane waves. It will be shown that, for λ = 1

2 , the field
solution has a simple form. In Sect. 5, we will define the two-
point function S(x, y) that satisfies the following conditions:
(a) indefinite sesquilinear form, (b) locality, (c) covariance,
and (d) normal analyticity. Normal analyticity allows us to
define the two-point function S(x, y) as the boundary value
of the analytic function S(z1, z2) from the tube domains. The
normal analyticity is related to the Hadamard condition that
selects a unique vacuum state.S(z1, z2) is defined in terms of
the spinor-vector de Sitter plane waves in their tube domains.
Section 6 contains a brief conclusion and the outlook.

2 The de Sitter space notations

The de Sitter space is visualized as the hyperboloid described
by the equation

X H =
{

x ∈ IR5; x2 = ηαβxαxβ = −H−2 = − 3

�

}
,

where ηαβ = diag(1,−1,−1,−1,−1);α, β = 0, 1, . . . , 4,
and � is a positive cosmological constant. The metric is

ds2=ηαβdxαdxβ |x2=−H−2=gd S
μνd Xμd Xν;

μ, ν=0, 1, 2, 3,

where Xμ are the four local space-time coordinates on a de
Sitter hyperboloid. A spinor-tensor field 	α1,...,αl (x) on X H

can be viewed as an homogeneous function on IR5 variables
xα with an arbitrary degree of homogeneity σ . Also it must
satisfy the following conditions [10]:

x · ∂	 = σ	, (homogeneity),

x ·	(x) = 0, (transversality).

On the de Sitter space the tangential (or transverse) derivative
is defined by

∂�α = θαβ∂β = ∂α + H2xαx · ∂, x · ∂� = 0, (2.1)

where θαβ = ηαβ + H2xαxβ is transverse projection tensor
(θαβ xα = θαβ xβ = 0).

The unitary irreducible representations of the 10-parameter
group SO0(1, 4) (connected component of the identity) of the
de Sitter space, which is one of the two possible deformations
of the Poincaré group (the other one being SO0(2, 3)), are
characterized by the eigenvalues of the two Casimir operators

Q(1) and Q(2). These operators, commuting with the group
generators, are constant in each unitary irreducible represen-
tation. They read

Q(1)=−1

2
LαβLαβ, Q(2)=−Wα

Wα, Wα= 1

8
εαβγ δηLβγ Lδη,

(2.2)

where εαβγ δη is the usual antisymmetrical tensor in IR5 and
Lαβ = Mαβ + Sαβ is an infinitesimal generator. The orbital
part Mαβ is

Mαβ = −i(xα∂β − xβ∂α) = −i(xα∂
�
β − xβ∂

�
α ). (2.3)

In order to make precise the action of the spinorial part Sαβ
on a field tensor or spinor-tensor one must treat separately
the integer and half-integer cases. Tensor fields of rank l,
	γ1,...,γl (x), show integer spin fields, and the spinorial action
is [7]

S(l)αβ	γ1,...,γl = −i
l∑

i=1

(
ηαγi	γ1,...,(γi→β),...,γl

−ηβγi	γ1,...,(γi→α),...,γl

)
, (2.4)

where (γi → β) means γi index replaced with β. Half-
integer spin fields with spin s = l + 1

2 are represented by
a four component spinor-tensor 	 i

γ1,...,γl
with spinor index

i = 1, 2, 3, 4. The spinorial part now reads

S(s)αβ = S(l)αβ + S

(
1
2

)
αβ , with S

(
1
2

)
αβ = −

i

4

[
γα, γβ

]
,

and with the Dirac gamma matrices γα [11–13]

γ αγ β + γ βγ α = 2ηαβ, γ α† = γ 0γ αγ 0,

the useful representations, which are compatible with the
group, are as follows:

γ 0=
(

I 0
0 −I

)
, γ 4=

(
0 I
−I 0

)
,

γ 1=
(

0 iσ 1

iσ 1 0

)
, γ 2=

(
0 −iσ 2

−iσ 2 0

)
, γ 3=

(
0 iσ 3

iσ 3 0

)
,

(2.5)

where σi are Pauli matrices and I is a 2× 2 unit matrix. The
Casimir operators are simple to manipulate in ambient space
notation. Since Q(1) is a second-order derivative operator,
it is convenient to use for obtaining the field equation. In
particular, it is easy to show that for a l-rank tensor field
	γ1,...,γl (x) one has

Q(1)
l 	 = Q(1)

0 	 − 2�1∂x .	 + 2�1x∂.	

+2�2η	
′ − l(l + 1)	, (2.6)
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where

Q(1)
l = −

1

2
L(l)αβLαβ(l) = −1

2
MαβMαβ − 1

2
S(l)αβ Sαβ(l)

−Mαβ Sαβ(l), (2.7)

Mαβ Sαβ(l)	(x) = 2�1∂x .	 − 2�1x∂.	 − 2l	, (2.8)
1

2
S(l)αβ Sαβ(l)	 = l(l + 3)	 − 2�2η	

′, (2.9)

Q(1)
0 = −

1

2
MαβMαβ, (2.10)

	 ′ is the trace of the l-rank tensor 	(x), and �p is the non-
normalized symmetrization operator:

	 ′α1,...,αl−2
= ηαl−1αl	α1,...,αl−2αl−1αl , (2.11)

(�p AB)α1,...,αl =
∑

i1<i2<···<i p

Aαi1αi2 ,...,αi p

× Bα1,...,	αi1 ,...,	αi2 ,...,	αi p ,...,αl . (2.12)

For half-integer spin fields with spin s = l + 1
2 , the S

( 1
2 )

αβ

acts only upon the index i, and we have [13,14]

S(
1
2 )

αβ Sαβ(l)	(x) = l	(x)−�1γ (γ ·	(x)).
In this case, the Casimir operator is

Q(1)
s =−

1

2

(
Mαβ+S(l)αβ+S

(
1
2

)
αβ

)(
Mαβ+Sαβ(l)+S

αβ
(

1
2

))

=Q(1)
l −

5

2
+ i

2
γαγβMαβ−S

( 1
2 )

αβ Sαβ(l). (2.13)

Then we obtain

Q(1)
s 	(x) =

(
Q(1)

l − l − 5

2
+ i

2
γαγβMαβ

)
	(x)

+�1γ (γ.	(x)), (2.14)

or

Q(1)
s 	(x) =

(
−1

2
MαβMαβ+ i

2
γαγβMαβ−l(l+2)− 5

2

)
	(x)

−2�1∂x .	(x)+2�1x∂.	(x)

+2�2η	
′(x)+�1γ (γ.	(x)).

(2.15)

As you will see in the next section, the spin- 3
2 field equation

can be written in terms of the Casimir operator Q(1).

3 Field equation and Gauge transformation

3.1 Field equation

As previously mentioned, the operator Q(1)
3
2

commutes with

the group generators and consequently it is constant on each
unitary irreducible representation. In fact, we can classify the

spinor-vector unitary irreducible representations by using the
eigenvalues of Q(1). The field equation can be written as
(

Q(1)
3
2
− 〈Q(1)

3
2
〉
)
	(x) = 0. (3.1)

By Takahashi [15] and Dixmier [16], a general classification
scheme for all the unitary irreducible representations of the
de Sitter group is expressed and may be labeled by a pair of
parameters (p, q) with 2p ∈ N and q ∈ C as follows:

〈Q(1)〉 = [−p(p + 1)− (q + 1)(q − 2)],
〈Q(2)〉 = [−p(p + 1)q(q − 1)]. (3.2)

According to the possible values of p and q, two types of
unitary irreducible representations of the spin- 3

2 field are
distinguished for the de Sitter group SO(1, 4) namely, the
principal and the discrete series. More mathematical details
of the group contraction and the relationship between the de
Sitter and the Poincaré groups are given in [17,18]. The uni-
tary irreducible representations of the spin- 3

2 field relevant to
the present work are as follows:

(i) The unitary irreducible representations U
3
2 ,ν in the prin-

cipal series where p = s = 3
2 and q = 1

2 + iν matching
to the Casimir spectral values:

〈Q(1)
3
2
〉 = ν2 − 3

2
, ν ∈ IR ν >

3

2
.

Note that U
3
2 ,ν and U

3
2 ,−ν are equivalent.

(ii) The unitary irreducible representations �±3
2 ,q

of the dis-

crete series, where p = s = 3
2 , correspond to

〈Q(1)
3
2
〉 = −5

2
, q = 3

2
, �±3

2 ,
3
2
, (3.3)

〈Q(1)
3
2
〉 = −3

2
, q = 1

2
, �±3

2 ,
1
2
. (3.4)

The physical content of the principal series and the
discrete series representation from the point of view of
a Minkowskian observer in the limit H = 0 have been
expressed in [1].

The ‘massless’ spin- 3
2 field in the de Sitter space corre-

sponds to the discrete series �±3
2 ,

3
2

and the field equation is

(
Q(1)

3
2
+ 5

2

)
	(x) = 0, (3.5)

where

Q(1)
3
2
	(x) =

(
−1

2
MαβMαβ + i

2
γαγβMαβ − 3− 5

2

)
	(x)

−2∂x .	(x)+ 2x∂.	(x)+ γ γ.	(x). (3.6)
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If we compare this equation with the massive spin- 3
2 field

case (equation (3.7) in [1]) they are equivalent for the values
ν = ±i , but these values are not admissible for the unitary
irreducible representations of the de Sitter group in the prin-
cipal series. It is natural to use the solutions of Eq. (3.1),
which are already given for the massive case [1]. The corre-
sponding spin- 3

2 field solution can be written in the form [1]

	α(x) = 1

〈Q(1)
3
2
〉 + 5

2

Eα(x, ξ)ψ(x), (3.7)

where Eα(x, ξ) andψ(x) also contain constant terms involv-
ing the parameters p and q, not diverging for the specific
values p = q = 3

2 , corresponding to the relation (3.3).
One can simply see that the field solution for these val-
ues is singular (equation (4.12) in [1]). Clearly, the singu-
larity appears only for the spin- 3

2 massless field for repre-
sentations �±3

2 ,
3
2
. This singularity appears due to the gauge

invariance, which will be discussed in the next subsection.
Therefore the subspace ∂.	 = 0 alone cannot be used for
the construction of a quantum massless spin- 3

2 field. One
must solve the equation in a larger space, which includes the
∂·	 	= 0 types of solutions. As expected, one finds three main
types of solutions: the general solutions which are not diver-
genceless, the divergencelessness type, and the gauge type
solution.

3.2 Gauge transformation

The ‘massless’ spin- 3
2 field, however, with the subsidiary

conditions ∂�.	 = 0 = γ.	(x), is singular. This type of
singularity is actually due to the divergencelessness con-
dition needed to associate this field with a specific unitary
irreducible representation of the de Sitter group. To solve
this problem, the subsidiary conditions must be dropped.
Then the field Eq. (3.5) is replaced with the following
equation:

(
Q(1)

3
2
+ 5

2

)
	α(x)− D 3

2α
∂�.	(x) = 0, (3.8)

where D 3
2α
= −H−2∂�α − γ�α 	 x, 	 x = γαxα and γ�α =

θαβγ
β . One can show that this equation is invariant under a

gauge transformation

	α(x)→ 	 ′α(x) = 	α(x)+ D 3
2α
ζ, (3.9)

where ζ is an arbitrary spinor field. For providing a gauge
invariant the following identities are used:

Q(1)
3
2

D 3
2
= D 3

2
Q(1)

1
2
, ∂�.D 3

2
ζ = Q(1)

1
2
ζ + 5

2
ζ.

Let us introduce a gauge fixing parameter λ. The wave equa-
tion now reads(

Q(1)
3
2
+ 5

2

)
	(x)− λD 3

2α
∂�.	(x) = 0, (3.10)

the role of λ is just to fix the gauge spinor field ζ .
It is convenient and usual to continue this work with the

first-order field equation for the spinor case. We can write
Eq. (3.5) such as

D̃β
α Dδ

β	δ = 0, or Dδ
β D̃β

α	δ = 0, (3.11)

where D̃β
α and Dδ

β are defined by

{
D̃δ
β = 	 x 	 ∂�ηδβ − 3ηδβ − xβ 	 xγ δ,

Dβ
α = 	 x 	 ∂�ηβα − ηβα − xα 	 xγ β.

(3.12)

There are two possibilities for the first-order field equation
as follows:

D̃δ
α	δ = 0, (3.13)

Dδ
α	δ = 0, (3.14)

where for physical states, which means λ = 0 in Eq. (3.10),
the two first-order equations (3.13) and (3.14) are equivalent,
since their multiplication gives Eq. (3.5). But for unphysical
states (gauge dependent states, i.e. λ 	= 0 and pure gauge
states, i.e. λ = 1), the solutions of the two equations are
different, although the physical parts or the central parts
are equal in these cases. Equation (3.13) is considered in
Sect. 7.1. Here we consider Eq. (3.14). This equation can be
written in the simple form

	 x 	 ∂�	α(x)− xα 	 x 	 	 −	α(x) = 0. (3.15)

For clarity it can be written as
(

Trpr 	 x 	 ∂� − 1
)
	α(x) = 0, (3.16)

where (Trpr) means the transverse projection. We should
recall that the massless spin- 3

2 is singular when ν = ±i . This
singularity refers to a gauge invariant, as we have this diffi-
culty for all fields with spin s≥ 1. Now we rewrite Eq. (3.16)
as(

Trpr 	 x 	 ∂� − 1
)
	α(x)+ D 3

2α
	 x 	 	(x) = 0, (3.17)

which is invariant under a gauge transformation:

	α(x) −→ 	 ′α(x) = 	α(x)+ ∂�α ζ, (3.18)

ζ is an arbitrary spinor field. Let us introduce a gauge fixing
parameter λ for this case. Now the wave equation reads
(

Trpr 	 x 	 ∂� − 1
)
	α(x)+ λD 3

2α
	 x 	 	(x) = 0. (3.19)
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The above equation under the gauge transformation (3.18)
becomes
(

Trpr 	 x 	 ∂� − 1
)
	α(x)+ λD 3

2α
	 x 	 	(x)

= (1− λ)D 3
2α
	 x 	 ∂�ζ. (3.20)

With the choice of value λ 	= 1, the gauge field ∂�α ζ is put
into the field equation only if ζ obeys

(Trpr 	 x 	 ∂� − 1)∂�α ζ = −D 3
2α
	 x 	 ∂�ζ = 0, (3.21)

which means that the gauge field ζ is fixed. The adjoint	α(x)
is defined as follows [11,13]:

	̄α(x) ≡ 	†
α(x)γ

0γ 4,

satisfying the equation

	̄αγ
4(
←−	 ∂ �	 x)γ 4 − 	̄βγ 4(γ βxα 	 x)γ 4 + 	̄α

+c	̄βγ
4γ β 	 x←−D 3

2α
γ 4 = 0. (3.22)

As stated in [6], ‘the appearance of the (Gupta–Bleuler)
triplet seems to be universal in gauge theories, and cru-
cial for ‘quantization’. The ambient space formalism will
allow one to exhibit this triplet for the present field in
exactly the same manner as it for the electromagnetic
field.

Let us now define the Gupta–Bleuler triplet Vg ⊂ V ⊂ Vλ
carrying the indecomposable structure for the unitary irre-
ducible representations of the de Sitter group appearing in
our problem:

– The space Vλ is the space of all square integrable solu-
tions of the field Eq. (3.19). It is λ dependent so that one
can actually adopt an optimal value of λwhich has a very
simple form. In the next section, we will show that this
value is λ = 1

2 (more generally for a spin s field, we have
λ = (2/(2s + 1)) [7]).

– It contains a closed subspace V of solutions satisfying
the conditions ∂� · 	 = 0 = γ · 	(x). This invariant
subspace V is not invariantly complemented in Vλ. In
view of Eq. (3.19), it is obviously λ independent.

– The subspace Vg of V consists of the gauge solutions of
the form ∂�α ζ and 	 ∂�ζ = 0 = Q0ζ . These are orthog-
onal to every element in V including themselves. They
form an invariant subspace of V but admit no invariant
complement in V .

The de Sitter group acts on the physical (or transverse) space
V/Vg through the massless, helicity ± 3

2 unitary representa-
tion�+3

2 ,
3
2

⊕
�−3

2 ,
3
2
, which are called the central parts in this

paper.

4 The de Sitter spin- 3
2 plane waves

According to the de Sitter plane waves, which were presented
by Bros et al. [19], the de Sitter–Dirac plane wave for a spinor
field was calculated[13]. In this section, the spinor-vector
solution can be written by using de Sitter–Dirac plane wave
in terms of the following form:

	α(x) = Z�α ψ1 + D 3
2α
ψ2 + γ�α ψ3, (4.1)

where Z is an arbitrary five-component constant vector field:

Z�α = θαβ Zβ = Zα + H2xαx · Z , x · Z� = 0.

By putting 	α in Eq. (3.19), we find that the spinor fields
ψ1, ψ2, and ψ3 must obey the following equations:

( 	 x 	 ∂� − 1)ψ1 = 0, (4.2)

	 x 	 ∂�ψ3 + 	 x( 	 x 	 ∂� − 4)ψ2 = 	 xx .Zψ1, (4.3)

2(1−2λ)ψ3+	 x
[
(1−λ) 	 x 	 ∂�−2(1−2λ)

]
ψ2=λ 	 Z�ψ1.

(4.4)

For λ = 1
2 Eq. (4.4) becomes

	 ∂�ψ2 = −	 Z�ψ1. (4.5)

By multiplying Eq. (4.2) by 	 ∂�, we have

Q0ψ1 = 2ψ1.

Since the spinor fields ψ1, ψ2, and ψ3 are homogeneous
functions of the variable x with the same degree of homo-
geneity, by using Eq. (4.5), we obtain

Q0ψ2 =
(

4x .Z + 2Z .	 ∂� + 	 Z�	 x
)
ψ1, (4.6)

and ψ2 can be written in the following form:

ψ2 = Q−1
0

(
4x .Z + 2Z .∂� + 	 Z�	 x

)
ψ1 + ψg, (4.7)

where ψg is ψg = φgU and Q0φg = 0. U is an arbitrary
constant spinor field, and φg is a massless minimally coupled
scalar field. By using the following identities:

Q0x .Zψ1 = −2x .Zψ1 − 2Z .∂�ψ1, (4.8)

Q0 Z .∂�ψ1 = 4x .Zψ1 + 4Z .∂�ψ1, (4.9)

Q0 	 Z�	 xψ1 = 2x .Zψ1 + 2Z .∂�ψ1, (4.10)

and

Q0

(
4x .Z + 2Z .∂� + 	 Z�	 x

)
ψ1 = Q0 	 Z�

	 xψ1 = 2 	 Z�	 xψ1, (4.11)

we obtain

ψ2 = 1

2
	 Z�	 xψ1 + ψg. (4.12)

By replacing Eq. (4.12) in (4.3), we obtain (see Sect. 7.2)

ψ3 = 	 xψg. (4.13)

123
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If Eqs. (4.12) and (4.13) are substituted in Eq. (4.1), it can
be seen that in this choice of gauge λ = 1

2 , the spinor field
ψg or equivalently ψ3 is removed, and the solution can be
written in the following simplest form:

	α(x) = Dαψ1, (4.14)

where

Dα = 1

2

[
3Z�α + x .Z∂�α − γ�α 	 Z�

]
, (4.15)

and ψ1 is the solution of the de Sitter–Dirac field equation.
In the previous paper, the spinor field ψ1 was explicitly cal-
culated, and the solutions are given by [11,13]

(ψ1)1 = V(x, ξ)(H x .ξ )−3, (4.16)

(ψ1)2 = U(ξ)(H x .ξ )−1, (4.17)

where V(x, ξ) = 	 x 	 ξV(ξ) and

ξ ∈ C+

=
{
ξ ; ηαβξαξβ = (ξ0)2 − ξ .ξ − (ξ4)2 = 0, ξ0 > 0

}
.

The two spinors V(ξ) and U(ξ) are

Ua(ξ) = ξ0 − ξ . γ γ 0 + 1√
2(ξ0 + 1)

Ua(
o
ξ+),

Va(ξ) = 1√
2(ξ0 + 1)

Ua(
o
ξ−), a = 1, 2, (4.18)

where

U1(
o
ξ+) = 1√

2

(
α

α

)
, U2(

o
ξ+) = 1√

2

(
β

β

)
, (4.19)

U1(
o
ξ−) = 1√

2

(
α

α

)
, U2(

o
ξ−) = 1√

2

(
β

−β
)
, (4.20)

with α =
(

1
0

)
, β =

(
0
1

)
and ξ = o

ξ±≡ (1, 0,±1). Finally

the two possible solutions for 	α(x) are

	a
1α(x)=

1

2

[
3Z�α +x .Z∂�α −γ�α 	 Z�

] 	 x 	 ξ
x .ξ

V(ξ)(H x .ξ )−2

≡ Vα(x, ξ, Z)(H x .ξ )−2, (4.21)

and

	a
2α(x) =

1

2

[
3Z�α + x .Z∂�α − γ�α 	 Z�

]
U(ξ)(H x .ξ )−1

≡ Uα(x, ξ, Z)(H x .ξ )−1. (4.22)

By taking the derivation of the plane waves (x .ξ )σ , the
explicit forms of Uα and Vα are obtained in terms of ξ as
follows:

Vα(x, ξ, Z) = 1

2

[
3Z�α − 3

x .Z

x .ξ
ξ�α − x .Zγ�α

− γ�α 	 Z�
] 	 x 	 ξ

x .ξ
V(ξ), (4.23)

and

Uα(x, ξ, Z)= 1

2

[
3Z�α −

x .Z

x .ξ
ξ�α − γ�α 	 Z�

]
U(ξ). (4.24)

the spinor field ψ1 satisfies the field equation

(Q0 − 2)ψ1 = 0. (4.25)

It corresponds to the massless conformally invariant field
equation [13,20].

The arbitrariness introduced with the constant vector Z
will be removed by comparison of the solution with the
Minkowskian limit. Unfortunately, our notations for the
‘massless’ conformally coupled scalar field are not adapted
to the computation of the limit H = 0. It is due to the fact
that contrary to the ‘massive’ case the values σ = −1,−2
are constant [21]. In order to obtain the behavior of the field
solutions in the limit H = 0 (at least for the scalar part), one
can use the global conformal coordinate system

xH (X)=
(

x0=H−1 sinh H X0, x=H−1
X
‖ X ‖ cosh H X0 ,

× sin H ‖ X ‖ x4=H−1 cosh H X0 cos H ‖ X ‖
)
,

(4.26)

where X0 = ρ, X1 = α, X2 = θ, X3 = φ [22,23]. The
square-integrable solutions of the field equation are given by
[24]

φ(x) = φ(ρ, v) = cos ρ
e±i(L+1)ρ

√
L + 1

YLlm(v), (4.27)

where YLlm(v) are the hyperspherical harmonics on S3 =
{vi ∈ R4|v2

1 + v2
2 + v2

3 + v2
4 = r2}. The unitary irreducible

representations�±3
2 ,

3
2

of the de Sitter group correspond to the

unitary irreducible representations of the Poincaré group, in
the limit H = 0. Since in this limit the wave solutions are
equivalent to the solutions of the Minkowskian space, the
numbers of the polarization states can be fixed in the same
way as in the Minkowskian counterpart. It can be shown that
in the H = 0 , L →∞ limit and with

ρ=Ht, α=Hr; H L=k0=|k|, with θ, ϕ unchanged,

(4.28)

the functions (4.26) become, when suitably rescaled, the
usual massless spherical waves (with k2 = (k0)2−(k)2 = 0)
[25]. With these coordinates, the de Sitter spinor-vector field
solutions read
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	μ(ρ, v)=V−1(1± iγ 4)
∂xα

∂Xμ
1

2

[
3Z�α +x .Z∂�α −γ�α 	 Z�

]

× cos ρ
e±i(L+1)ρ

√
L+1

YLlm(vecv), (4.29)

where V is a spinor transformation matrix from ambient
space notation to intrinsic coordinate which is defined in [26].

The plane waves (x · ξ)σ are singular at x · ξ = 0 and
they are not globally defined due to the ambiguity con-
cerning the phase factor. In contrast with the Minkowskian
exponentials plane wave, these waves are singular on three-
dimensional light-like manifolds and can at first be defined
only on suitable halves of X H . We will need an appropriate
iε-prescription (indicated below) to obtain global waves; for
details see [20]. For a complete determination, one may con-
sider the solution in the complex de Sitter space-time X (c)H .
The complex de Sitter space-time is defined as [20]

X (c)H =
{

z= x+iy ∈ C
5; ηαβ zαzβ=(z0)2−z.z−(z4)2

= −H−2
}

=
{
(x, y) ∈ IR5×IR5; x2−y2=−H−2, x .y=0

}
,

(4.30)

where T± = IR5 + iV± and V+ (resp. V−) stems from the
causal structure on X H :

V± =
{

x ∈ IR5; x0 >
<

√
‖ x ‖2 +(x4)2

}
. (4.31)

We introduce their respective intersections with X (c)H ,

T ± = T± ∩ X (c)H . (4.32)

which will be called forward and backward tubes of the com-
plex de Sitter space X (c)H . Then we define the above ‘tuboid’

X (c)H × X (c)H by

T12 = {(z, z′); z ∈ T +, z′ ∈ T −}. (4.33)

More details are given in [20]. When z varies in T + (or T −)
and ξ lies in the positive cone C+:

ξ ∈ C+ = {ξ ∈ C; ξ0 > 0}.
The sign of the imaginary part of (z.ξ ) is fixed, so the plane-
wave solutions are globally defined. The phase is chosen such
that

boundary value of (z.ξ )σ |x .ξ>0> 0. (4.34)

Finally we have

	1α(z) = U (λ)α (z, ξ)(H z · ξ)−1, (4.35)

	2α(z) = V(λ)α (z, ξ)(H z · ξ)−3, (4.36)

where z ∈ X (c)H and ξ ∈ C+ these solutions are globally
defined in the de Sitter hyperboloid and they are independent
of the choice of the intrinsic coordinate.

5 Two-point function

The two-point function of the ‘massless’ spin- 3
2 field is

defined as

Si j̄
αα′(x, x ′) =

〈
� | 	 i

α(x)	
j
α′(x
′) | �

〉
, (5.1)

where x, x ′εX H . This function is a solution of the wave equa-
tion (3.19) with respect to x and the wave equation (3.22)
with respect to x ′. In Sect. 7.3, the solution of Eq. (3.22) is
obtained and here we consider Eq. (3.19). The solution can
be found in terms of the two-point function of the spinor field,
which was calculated in the previous paper [13].

By using the recurrence formula (4.1), we define

Sαα′(x, x ′) = θα.θ ′α′ S1(x, x ′)− D 3
2α

S2(x, x ′)γ 4←−D ′3
2α
′γ

4

−γ�α S3(x, x ′)γ 4γ ′�α′γ 4. (5.2)

By imposing the two-point function Sαα′ to obey Eq. (3.19)
and by using the identities of Eqs. (4.2)–(4.4), S1, S2, and S3

must be satisfied by the following equations:

( 	 x 	 ∂� − 1)S1(x, x ′)=0, (5.3)

	 x 	 ∂�S3(x, x ′)γ 4γ ′�α′ γ
4 + 	 x( 	 x 	 ∂�−4)

×S2(x, x ′)γ 4←−D ′3
2α
′γ

4 = 	 xx .θ ′S1(x, x ′), (5.4)

2(1−2λ)S3(x, x ′)γ 4γ ′�α′ γ
4+	 x

[
(1−λ) 	 x 	 ∂�−2(1−2λ)

]

×S2(x, x ′)γ 4←−D ′3
2α
′γ

4 = λγ�.θ ′S1(x, x ′). (5.5)

For λ = 1
2 , Eq. (5.5) becomes

	 ∂�S2(x, x ′)γ 4←−D ′3
2α
′γ

4 = γ�.θ ′S1(x, x ′), (5.6)

and we know that S1 is a solution of Eq. (5.3) and it is given
by [13]

S1(x, x ′)= 1

4π

[
3P(7)−1 (x .x

′) 	 x−P(7)−3 (x .x
′) 	 x ′

]
γ 4. (5.7)

S2 and S3 are given by

S2(x, x ′)γ 4←−D ′3
2α
′γ

4 = −1

2
x .θ ′S1 + Sg,

S3(x, x ′)γ 4γ ′�α′γ 4 = −	 x Sg. (5.8)

Finally, the two-point function is obtained similarly to
Eq. (4.14) as

Sαα′(x, x ′) = Dαα′(x, ∂
�; x ′, ∂ ′�)S1(x, x ′), (5.9)

where

Dαα′ = 1

2

[
3θα · θ ′α′ + x · θ ′α∂�α + γ�α γ · θ ′

]
, (5.10)

this function satisfies the following conditions.
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(a) Indefinite sesquilinear form: For any spinor-vector test
function fα ∈ D(X H ), we have an indefinite sesquilin-
ear form that is defined by

∫
X H×X H

f̄ αi (x)S
i j̄
αα′(x, x ′) f α

′
j̄
(x ′)dσ(x)dσ(x ′), (5.11)

where f̄ is the adjoint of f , and dσ(x) denotes the de
Sitter-invariant measure on X H [20]. D(X H ) is the space
of C∞ spinor-vector functions with compact support in
X H and with values in C

5.
(b) Covariance We have

�αβ�
α′
β ′g
−1Sαα′

(
�(g)x,�(g)x ′

)
i(g) = Sββ ′(x, x ′),

(5.12)

where � ∈ SO0(1, 4), g ∈ Sp(2, 2) and gγ αg−1 =
�αβγ

β . i(g) is the group involution defined by

i(g) = −γ 4gγ 4. (5.13)

(c) Locality For every space-like separated pair (x, x ′), i.e.
x · x ′ > −H−2,

Si j
αα′(x, x ′) = −S ji

α′α(x
′, x), (5.14)

where S j̄i
α′α(x

′, x) = 〈� | 	 j
α′(x
′)	 i

α(x) | �〉.
(d) Transversality We have

x · S(x, x ′) = 0 = x ′ · S(x, x ′). (5.15)

(e) Normal analyticity Sαα′(x, x ′) is the boundary value
(in the distributional sense ) of an analytic function
Sαα′(z, z′).
Sαα′(z, z′) is maximally analytic, i.e., it can be analyti-
cally continued to the ‘cut domain’ [13,20]:

� =
{
(z, z′) ∈ X (c)H × X (c)H : (z − z′)2 ≤ 0

}
.

The two-point function Sαα′(x, x ′) is the boundary value
of Sαα′(z, z′) from T12 and the ‘permuted two-point
function’ Sα′α(x ′, x) is the boundary value of Sαα′(z, z′)
from the domain

T21 = {(z, z′); z′ ∈ T +, z ∈ T −}.

6 Conclusions

We have studied the ‘massless’ spin- 3
2 fields in the de Sitter

space-time in the ambient space formalism. This formalism

is independent from the chosen coordinate system. Gauge
and conformal invariances are the properties of ‘massless’
fields. Gauge invariance and the Gupta–Bleuler triplet are
discussed. We have shown that the field equation of ‘mass-
less’ spin- 3

2 fields is gauge invariant. The two-point function
is calculated. We saw that the spinor field ψ1 in Eq. (4.25) is
conformally invariant. Conformal invariance of the spinor-
vector field will be considered in the forthcoming paper [27].
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7 Appendix

7.1 The field equation (3.13)

In this appendix the field Eq. (3.13) is considered:

D̃δ
α	δ = 0. (7.1)

The solutions of Eq. (7.1) obviously satisfy the field Eq. (3.5).
This equation can be written in the simple form

	 x 	 ∂�	α(x)− xα 	 x 	 	 − 3	α(x) = 0. (7.2)

For clarity it can be written as(
Trpr 	 x 	 ∂� − 3

)
	α(x) = 0. (7.3)

Now we rewrite Eq. (7.3) as(
Trpr 	 x 	 ∂� − 3

)
	α(x)− ∂�α 	 x 	 	(x) = 0, (7.4)

which is invariant under the gauge transformation

	α(x) −→ 	 ′α(x) = 	α(x)+ D 3
2α
ζ, (7.5)

where ζ is an arbitrary spinor field. Let us introduce a gauge
fixing parameter λ for this case. Now the wave equation reads(

Trpr 	 x 	 ∂� − 3
)
	α(x)− λ∂�α 	 x 	 	(x) = 0. (7.6)

The above equation under the gauge transformation (7.5)
becomes(

Trpr 	 x 	 ∂� − 3
)
	α(x)− λ∂�α 	 x 	 	(x)

= (λ− 1)∂�α 	 xγ β D 3
2β
ζ. (7.7)

With the choice of a value λ 	= 1, the gauge field D 3
2α
ζ is

solved for the field equation only if ζ obeys

∂�α 	 xγ βD 3
2β
ζ = (Trpr 	 x 	 ∂� − 3)D 3

2α
ζ = 0, (7.8)
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which means that the gauge field ζ is fixed. The adjoint field
	̄α satisfies the equation

	̄αγ
4←−	 ∂ �	 xγ 4 − 	̄βγ 4(γ βxα 	 x)γ 4 + 3	̄α

−λ	̄βγ 4γ β 	 x←−∂ �α γ 4 = 0. (7.9)

By putting 	α in Eq. (7.6), we find that the spinor fields
ψ1, ψ2, and ψ3 must obey the following equations:

( 	 x 	 ∂� − 3)ψ1 = 0, (7.10)

(λ− 1)[4 	 x + 	 ∂�]ψ2 + 2(1− 2λ)ψ3 = λ 	 Z�ψ1, (7.11)

(λ− 1)[4 	 x + 	 ∂�]ψ2 + [	 x 	 ∂� − 2(2λ+ 1)]ψ3

= ( 	 xx .Z + λ 	 Z�)ψ1. (7.12)

By multiplying Eq. (7.10) by 	 ∂�, we have

Q0ψ1 = 0.

For λ = 1
2 Eq. (7.11) becomes

	 ∂�ψ2 + 4 	 xψ2 = −	 Z�ψ1, (7.13)

and Eq. (7.12) by using Eq. (7.13) becomes

	 x 	 ∂�ψ3 − 4ψ3 = 	 xx · Zψ1. (7.14)

Using Eq. (7.13) and multiplying it by 	 ∂�, we obtain

Q0ψ2=−4ψ2−	 Z�	 xψ1+2Z · ∂�ψ1+4Z · xψ1,

(7.15)

and by using Eq. (7.14), we obtain

	 x Q0ψ3 = −4 	 xψ3 + 2x · Zψ1 + 	 Z�	 xψ1. (7.16)

Since the homogenized coefficient is the same for the func-
tions ψ1, ψ2, and ψ3, we have

Q0ψ2 = 0,

Q0ψ3 = 0.

Then we have

ψ2 = 1

4
(−	 Z�	 xψ1 + 2Z · ∂�ψ1 + 4x · Zψ1), (7.17)

	 xψ3 = 1

4
(2x · Zψ1 + 	 Z�	 xψ1). (7.18)

So the solution be written as follows:

	α =
(
−1

4
Z�α −

5

4
γ�α 	 xx · Z+ 1

4
	 Z�	 x∂�α −

1

2
∂�α Z · ∂�

−x · Z∂�α −
1

2
γ�α 	 x Z · ∂�+ 1

4
	 Z�γ�α

)
ψ1. (7.19)

7.2 The proof of Eq. (4.13)

By replacing Eq. (4.12) in (4.3) we have

	 x 	 ∂�ψ3 + 	 x( 	 x 	 ∂� − 4)

(
1

2
	 Z�	 xψ1+ψg

)
=	 xx .Zψ1.

(7.20)

Multiplying Eq. (7.20) by 	 x , we get

	 ∂�ψ3+ 1

2
	 x 	 ∂�	 Z�	 xψ1−2 	 Z�	 xψ1−4ψg = x .Zψ1.

(7.21)

By using the equation

	 ∂�	 Z�	 xψ1 = 4 	 xx .Zψ1−2 	 Z�ψ1+2 	 x Z .∂�ψ1,

(7.22)

and the following conditions:

x .Zψ1 = −	 Z�	 xψ1 , 	 ∂�ψg = 0,

we have

	 ∂�ψ3 = 4ψg. (7.23)

Finally ψ3 is obtained as follows:

ψ3 = 	 xψg. (7.24)

7.3 Two-point function

Here, the two-point function is calculated with respect to x ′,
which satisfies Eq. (3.22). In this case, we obtain

S1(x, x ′)γ 4(
←−−	 ∂ ′�	 x − 1)γ 4 = 0, (7.25)

γ�α S3(x, x ′)γ 4
←−
∂ ′�	 xγ 4 + D 3

2α
S2(x, x ′)γ 4(

←−−	 ∂ ′�	 x − 4)

×	 xγ 4 = S1(x, x ′)γ 4 	 xx .θ ′γ 4, (7.26)

2(1− 2λ)γ�α S3(x, x ′)

+D 3
2α

S2(x, x ′)γ 4
[
(1− λ)←−−	 ∂ ′�	 x − 2(1− 2λ)

]
	 xγ 4

= λS1(x, x ′)γ 4γ�.θ ′γ 4. (7.27)

Therefore, S2 and S3 are given by

D 3
2α

S2(x, x ′) = −S1
1

2
γ 4x ′.θγ 4 − Sg,

γ�α S3(x, x ′) = −Sgγ
4 	 xγ 4. (7.28)

Finally the two-point function in this case (for λ = 1
2 ) is

Sαα′(x, x ′) = S1(x, x ′)←−D αα′(x, ∂
�; x ′, ∂ ′�), (7.29)

where

Dαα′ (x, ∂
�; x ′, ∂ ′�)= 1

2

[
3θα · θ ′α′ +

←−−	 ∂ ′�x · θ ′α+γ 4γ�α′ γ · θγ 4
]
.
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