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Abstract
In this paper, feedback control problem is considered for networked systems with
discrete, infinite distributed delays and sampled-data. A Markov chain is used to
characterize the random sampled measurement process of the networked control
systems. In addition, an event-driven transmitter is introduced to transmit the control
signal according to the measurement sampling period. Based on Lyapunov functional
and the matrix analysis techniques, several sufficient conditions are given to ensure
the asymptotical stability in the mean square of the addressed control systems.
Furthermore, a novel output feedback controller is proposed with both sampling and
event-driven transmitter-induced delay indexes. Finally, a simulation example is
provided to illustrate the effectiveness of the theoretical results and the proposed
method.
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1 Introduction
In the traditional feedback control systems, the connections between system compo-
nents are established by point-to-point cables. Compared to the traditional point-to-point
systems, networked control systems are real-time control systems where sensors, actua-
tors and controllers are interconnected by a shared digital communication network. Net-
worked control systems (NCSs) offer many advantages such as lower cost, simpler instal-
lation, easier maintenance, and resource sharing []. And NCSs have great applications in
aircrafts and spacecrafts control, robotics, process control and vehicles []. Therefore, the
field of NCSs has been becoming a hot research topic [–].

Since digital microprocessors are quickly becoming indispensable in practical applica-
tions, control designing problems of systems tend to be implemented on digital platforms
[, ]. The periodic sampling leads to conservativeness in the usage of computational re-
source and bandwidth, because the constant sampling period is chosen to guarantee sta-
bility in the worst case []. For reducing the usage of computational resource and limited
bandwidth, the nonuniform sampler was employed in the implementations of NCSs. Re-
cently, several initial attempts have been proposed to study the stability of NCSs with
nonuniformly sampled systems [, ].

On the other hand, time delays widely exist in practical systems due to the unreliable
communication channel [, ]. It is well known that time delay makes the analysis and
synthesis of NCSs more complex and important. And time delay is also the major cause
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for NCS performance deterioration and potential system instability []. Discrete time
delay is common [], Liou and Ray proposed the synthesis of a stochastic regulator in the
presence of randomly varying delays from the controller to actuator []. Distributed time
delay

∑+∞
r= μrx(k – r) is another important delay, which has recently drawn much research

interest when modeling a realistic complex system [].
With the very interesting results reported in [, ], it is seen that, in some cases,

the activities of sensors/actuators are even triggered by events characterizing stochastic
processes, e.g., Markov process [, ]. Experimental result [] shows that the event-
triggered control scheme can efficiently reduce the number of control task executions
so that communication resources can be saved significantly while retaining satisfactory
closed-loop performance.

In practical engineering, discrete and distributed time delays always appear simultane-
ously in the systems, and the measurement, communication and control updates need the
nonuniform sampler. It is therefore essential and challenging to investigate the control for
Markov sampled-data systems with event-driven transmitter, which has great potential
in practical applications. Therefore, for the mixed time-delay NCSs, an interesting prob-
lem is to find a co-design method of the event-triggered control scheme in this paper. In
consequence of the above discussion, the networked-based feedback control problem with
event-driven transmitter is investigated for NCSs. The main contributions of this paper are
the following ones: () we consider nonuniform sample data, discrete and distributed time-
delays, and present criteria for ensuring stochastic stability of the closed-loop networked
system; () A novel output feedback controller incorporating both Markov-based sam-
pling,

∑+∞
r= μrx(k – r) and event-driven transmitter-induced delay indexes is proposed.

2 System description
Consider the following networked control system:

{
x(k + ) = Ax(k) + Bx(k – d(k)) + C

∑+∞
r= μrx(k – r) + Du(k),

y(θi) = Ex(θi), θi ∈ {kh}, k, i ∈ N ,
()

where x(k) ∈ R
n is the system state, u(k) ∈ R

q is the control input, and y(θi) ∈ R
q is the

measurement sampled at arbitrary instants θi ( = θ < θ < · · · < θi < · · · ). A, B, C, D
and E are known real matrices with appropriate dimensions. The positive integer d(k)
denotes the time-varying delay satisfying d ≤ d(k) ≤ d, k ∈ N

+, where d and d are
known positive integers. The constants μr ≥  (r = , , . . .) satisfy

∑+∞
r= rμr < +∞ and

μ̄�
∑+∞

r= μr < +∞.
The schematic diagram for system () is shown in Figure . System () is derived by dis-

cretizing the original continuous-time system under the sampling period h. The measure-
ment cannot be sampled any instant kh. Then the previous measurement y(k –) is applied
in the controller side, and the measurement received by the controller can be expressed
as follows:

y(k) = Ex(k – τk), θi ≤ k < θi+, ()

where the sampling-induced delay index τk � k – θi is still a random variable, and τk is
assumed to be governed by a Markov chain. Moreover, the transition probability matrix
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Figure 1 The structure of NCS in (1).
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where πi ∈ {, }, i ∈ {, , . . . , N – }.

3 Observer-based output feedback control
Suppose that the system output is available and will be sampled before it is transmitted to
the controller through network. Then there is the sampling-induced delay in the sensor-
to-controller channel. Certainly, in the controller-to-actuator channel, there is the event-
driven induced delay. Therefore, both sampling-induced delay and event-driven induced
delay indexes are taken into account to design the output feedback controller:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̂(k + ) = Ax̂(k) + Bx̂(k – d(k)) + Du(k) + C
∑+∞

r= μrx̂(k – r)
+ Lτk–,τk (y(k – τk) – ŷ(k)),

ŷ(k) = Ex̂(k), x̂() = ,
u(k) = Kτk–,τk x̂(k – τk–),

()

where x̂(k) ∈R
n, ŷ(k) ∈R

q are the state and output of the controller, respectively. Kτk–,τk ∈
R

m×n is the controller gain, and Lτk–,τk ∈R
n×q is the observer gain needed to be designed,

where

τk– =

{
k –  – θi if θi < k < θi+,
k –  – θi– if k = θi.

()

Define the following augmented state vector X(k), X̂(k), X(k – d(k)), X̂(k – d(k)), and the
error vector e(k) = X(k) – X̂(k), e(k – d(k)) = X(k – d(k)) – X̂(k – d(k)) and

X(k) =
(
xT (k) xT (k – ) · · · xT (k – N)

)T ,

X̂(k) =
(
x̂T (k) x̂T (k – ) · · · x̂T (k – N)

)T .
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The augmented system of () and () can be represented as

X(k + ) = ĀX(k) + D̄K̄τk–,τk Rτk– X̂(k) + B̄X
(
k – d(k)

)
+ C̄

+∞∑

r=

μrX(k – r), ()

X̂(k + ) = (Ā – L̄τk–,τk Ē)X̂(k) + B̄X̂
(
k – d(k)

)
+ C̄

+∞∑

r=

μrX̂(k – r)

+ L̄τk–,τk ĒRτk X(k) + D̄K̄τk–,τk Rτk– X̂(k), ()

where
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The closed-loop system based on the augmented systems () and () with Z(k) =
[XT (k)eT (k)]T can be further expressed as follows:

Z(k + ) = ÂZ(k) + B̂Z
(
k – d(k)

)
+ Ĉ

+∞∑

r=

μrZ(k – r), ()

where

Â =

[
A∗ –D̄K̄τk–,τk Rτk–

L̄τk–,τk Ē Ā – L̄τk–,τk Ē

]

, B̂ =

[
B̄ 
 B̄

]T

,

A∗ = Ā + D̄K̄τk–,τk Rτk– – L̄τk–,τk ĒRτk , Ĉ =

[
C̄ 
 C̄

]T

.

4 Main results
In the following, the main results of this paper will be presented, which can be used to
study the asymptotical stability in the mean square of system ().

Theorem  Considering the discrete system (), the closed system () with controller () is
asymptotically stable in the mean square if there exist matrices Pi > , � > , W > , Ki,j
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and Li,j (i, j = , , . . . , N ) satisfying

⎡

⎢
⎣

� ÂT P̄iB̂ ÂT P̄iĈ
∗ B̂T P̄iB̂ – � B̂T P̄iĈ
∗ ∗ ĈT P̄iĈ – 

μ̄
W

⎤

⎥
⎦ < , ()

where � = ÂT P̄iÂ – Pi + ( + d + d)� + μ̄W .

Proof Construct the following Lyapunov-Krasovskii function:

V (k) = V(k) + V(k) + V(k) + V(k), ()

where

V(k) = ZT (k)Pτk– Z(k), V(k) =
k–∑

r=k–d(k)

ZT (r)�Z(r),

V(k) =
k–d∑

s=k–d+

k–∑

r=s
ZT (r)�Z(r), V(k) =

+∞∑

r=

μr

k–∑

s=k–r

ZT (s)WZ(s),

where Pτk– > , � > , W > . Then let τk– = i and τk = j. Calculating the difference of V (k)
along system () and taking the mathematical expectation E{�Vi(k)} = E{Vi(k + )|k} –
Vi(k), we have

E
{
�V(k)

}
= E

{
V(k + )|k}

– V(k) = W T
P P̄iWP – ZT (k)PiZ(k), ()

where P̄i =
∑N

j= πijPj, WP = ÂZ(k) + B̂Z(k – d(k)) + Ĉ
∑+∞

r= μrZ(k – r).

E
{
�V(k)

}
=
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ZT (r)�Z(r) –
k–∑
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ZT (r)�Z(r)

≤
k–d∑

r=k–d+

ZT (r)�Z(r) – ZT(
k – d(k)

)
�Z

(
k – d(k)

)

+ ZT (k)�Z(k), ()

E
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= –
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)T
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μrZ(k – r)

)

+ μ̄ZT (k)WZ(k). ()
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A combination of ()-() leads to

E
{
�V (k)

} ≤ ξT (k)
ξ (k), ()

where


 =

⎡

⎢
⎣

� ÂT P̄iB̂ ÂT P̄iĈ
∗ B̂T P̄iB̂ – � B̂T P̄iĈ
∗ ∗ ĈT P̄iĈ – 

μ̄
W

⎤

⎥
⎦ ,

ξ (k) =
[
ZT (k) ZT (k – d(k))

∑+∞
r= μrZT (k – r)

]T .

Hence, by inequality () in Theorem , we can get E{�V (k)} ≤ . From Lyapunov stability
theory, we can conclude that closed system () with controller () is asymptotically stable
in the mean square. The proof of Theorem  has been completed. �

Next, we present the results on the solvability of the control problem based on Theo-
rem , where the cone complementarity linearization approach is introduced to deal with
the constraint. The main result is concluded in the following theorem by using the Schur
complement method and letting G = P̄–

 , Gi+ = P̄–
i+.

Remark  In [], Markov-based sample data was reflected on the networked control
systems, in which the sampling-induced delay index was modeled by a Markov chain.
Different from [], our model includes discrete time-delays, distributed time-delays
(
∑+∞

r= μrx(k – r)) and Markov-based sample data.

Remark  Unlike the method in [], Theorem  gives the sufficient and necessary con-
dition for the stability, which helps to reduce the conservatism. It should be pointed out
that Theorem  can be easily applied to stability analysis by LMIs conditions for systems
with time-varying and distributed delays in this paper.

Theorem  There exists output controller () such that closed-loop system () is asymp-
totically stable in the mean square if there exist positive matrices Pi, G, Gi+, � and W
such that the following conditions hold for all i ∈ {, , , . . . , N – }:

⎡

⎢
⎣

–�i Hi, Hi,i+

∗ –G 
∗ ∗ –Gi+

⎤

⎥
⎦ < ,

[
–�N HN ,

∗ –G

]

< , ()

where �i = diag{Pi – μ̄W – ( + d – d)�,�, 
μ̄

W }, G = P̄–
 , Gi+ = P̄–

i+, GN = P̄–
N and

Hi,j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ā + D̄K̄i,jRi – L̄i,jĒRj –D̄K̄i,jRi

L̄i,jĒR Ā – L̄i,jĒR

B̄ 
 B̄
C̄ 
 C̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Based on the cone complementarity linearization method [], the controller and ob-
server gains can be obtained by the following nonlinear minimization problem subject to
():

{
Min{Tr(

∑N
i=(PiGi))},[ Pi I

∗ Gi

] ≥ , i ∈ {, , . . . , N}.

Remark  According to [], the computational complexity of the controller design by
solving LMIs is defined by T(F) = O(F) [], where F is the total number of scalar de-
cision variables. From () and the minimization problem, we can see that F satisfies
F = N(n + n) + (N – )(nq + nm) for Theorem . Therefore, the computational com-
plexity of Theorem  is O(Nn) for the system dimension n and the transition matrix
dimension N .

5 Numerical examples
In this section, the simulation results are presented to illustrate the theoretical results
derived in this paper.

Example  Consider the networked system () with N = . And other networked system
parameters are given as follows:

A =

⎡

⎢
⎣

. . .
. –. .
.  .

⎤

⎥
⎦ , B =

⎡

⎢
⎣

 . .
.  .
. . 

⎤

⎥
⎦ , D =

⎡

⎢
⎣


.
.

⎤

⎥
⎦ ,

C =

⎡

⎢
⎣

  .
–.  .
. . .

⎤

⎥
⎦ , E =

⎡

⎢
⎣

.
.
.

⎤

⎥
⎦

T

, � =

⎡

⎢
⎣

. . 
.  .
  

⎤

⎥
⎦ ,

d(k) =  +
 + (–)k


, μr = –(r+).

It is easy to verify that d = , d = , and μ̄ = 
 . By using Matlab Toolbox and applying

Theorem  to this example, the following feasible controller and observer gain matrices
are obtained for controller () as follows:

K = [. –. –.], K = [. –. –.],

K = [. –. –.], K = [. –. –.],

K = [. –. –.], L = [–. . .]T ,

L = [–. . .]T , L = [–. . .]T ,

L = [–. . .]T , L = [–. . .]T .

The sampling-induced delay index τk is a random variable, τk is assumed to be gov-
erned by a Markov chain. And the transition probability matrix is �. Based on the ex-
periment, the channel-induced delay is described in Figure . For the initial states x() =
[. –. –.]T and x̂() = [–. . –.]T , the trajectories of x
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Figure 2 Sampling-induced delay.

Figure 3 State trajectory of x(k).

Figure 4 State trajectory of x̂(k).

and x̂ are shown in Figures  and , respectively. We can conclude that, based on the
event-driven transmitter, system () is asymptotically stable in mean square.

6 Conclusions
In this paper, we have presented a theoretical framework to analyze network-based output
feedback control for Markov sampled-data systems with mixed delays. At first, the net-
worked control systems model is constructed including nonuniform sample data, discrete
and distributed time-delays. Furthermore, the novel output feedback controller incorpo-
rating both Markov-based sampling and event-driven transmitter-induced delay indexes
is proposed.

Based on the results obtained in this paper, a new form of controller u(k) =
∑

r krx(k – r)
will be developed and most efforts will be made to solve different kr in our subsequent
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work. And we will consider other approaches to give the sufficient and necessary condi-
tions to ensure stability of the closed-loop system.
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