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Abstract Esca disease, which attacks the wood of grape-
vine, has become increasingly devastating during the past
three decades and represents today a major concern in all
wine-producing countries. This disease is attributed to a
group of systematically diverse fungi that are considered
to be latent pathogens, however, this has not been conclu-
sively established. This study presents the first in-depth
comparison between the mycota of healthy and diseased
plants taken from the same vineyard to determine which
fungi become invasive when foliar symptoms of esca ap-
pear. An unprecedented high fungal diversity, 158 species,
is here reported exclusively from grapevine wood in a single
Swiss vineyard plot. An identical mycota inhabits wood of

healthy and diseased adult plants and presumed esca patho-
gens were widespread and occurred in similar frequencies in
both plant types. Pioneer esca-associated fungi are not trans-
mitted from adult to nursery plants through the grafting
process. Consequently the presumed esca-associated fungal
pathogens are most likely saprobes decaying already senes-
cent or dead wood resulting from intensive pruning, frost or
other mecanical injuries as grafting. The cause of esca
disease therefore remains elusive and requires well execu-
tive scientific study. These results question the assumed
pathogenicity of fungi in other diseases of plants or animals
where identical mycota are retrieved from both diseased and
healthy individuals.
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Introduction

Grapevine trunk diseases are considered to be the most
destructive diseases of grapevine of the past three decades
and are of rapidly growing concern in all wine producing
countries (Bertsch et al. 2009). The worldwide economical
cost for the replacement of dead grapevine plants alone is
here roughly estimated to be in excess of 1.5 billion dollars
per year (Box 1). In the literature, the term ‘grapevine trunk
diseases’ refers to a number of different diseases that are
inflicted by pathogenic fungi that deteriorate the perennial
organs of grapevine. The most destructive among these
diseases are esca and young vine decline (‘young esca’) that
develop respectively in established and newly planted vine-
yards (Halleen et al. 2003; Larignon and Dubos 1997;
Martin and Cobos 2007; Mugnai et al. 1999). Esca occurs
in adult plants aged 10 years or more and can manifest itself
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in two ways: a slow evolving form that is recognizable by
visible foliar symptoms or an apoplectic form that kills the
plants within a few days (Mugnai et al. 1999). A plant may
express foliar symptoms over a few years, consecutively or
not, but will then generally die from apoplexy. Known since
antiquity, esca was long considered as an almost negligible
weakness disease that could be controlled with fungicides
(Graniti et al. 2000). During the past three decades however,
and coinciding with the recent ban on the use of sodium
arsenite, the incidence of esca increased drastically infecting
as many as 50 % of vines in some Italian vineyards (Bertsch
et al. 2009; Surico et al. 2006). At the same time, the broad
establishment of new vineyards globally has been accompa-
nied by a dramatic increase of young vine decline, a disease
expressing similar foliar symptoms as esca, but occurring in
grapevine plants 1 to 9 years old (Edwards et al. 2001;
Eskalen et al. 2007; Ferreira et al. 1999; Gramaje and
Armengol 2011).

Box 1. Estimate of the yearly economic cost of world-
wide grapevine (Vitis vinifera) replacement due to fungal
trunk diseases.

Esca (including black dead arm [BDA] after Surico et al. [2006] or also
called black measles), young vine decline (0 Petri disease, young
esca, including black foot disease), and eutypa dieback are
considered fungal diseases of grapevine wood that lead generally to
the death of the plant. If these diseases are present in all vineyards
worldwide (Bertsch et al. 2009), their incidence is highly variable
depending on the geographical area, the year, the grapevine cultivar,
the rootstock used for grafting and environmental factors (Surico et
al. 2006; Gramaje and Armengol 2011; Sosnowski et al. 2007). Esca
diseased plants can exhibit foliar symptoms during several years,
consecutively or not, before dying, but in all cases part of the yield
will be lost (Marchi 2001, Surico et al. 2000). Precise information
concerning fungal diseases on grapevine is sparse and the data are
usually restricted to a particular wine-producing region or country, or
may apply only to a single specific fungal disease or to a particular
grapevine cultivar. For some Italian vineyards, the incidence of
cumulated esca diseases (up to 50 %) values has been estimated
(Surico et al. 2006). A six-year study of esca in Austria revealed an
annual increase of 2.7 % for the appearance of the foliar symptoms in
vineyards (Reisenzein et al. 2000). In the region of Alsace (France),
esca and Eutypa dieback together have been reported to result in up
to 10 % of plant replacement yearly (Kuntzmann et al. 2010). Young
vine decline has been reported as widespread in California but is
responsible for the replacement of only 1 to 5 % of the plants in
newly established vineyards (Eskalen et al. 2007). Eutypa dieback
alone has been estimated to cause production losses in Australia
equivalent of 20 million Australian dollars (US$ 20.5 millions) for
the sole Shiraz cultivar (Sosnowski et al. 2005), while in California
(USA) the cost to wine grape production alone by this same disease
has been estimated to be in excess of 260 million dollars per year
(Rolshausen and Kiyomoto 2011).

It is clear that grapevine trunk diseases constitute a major concern in
many wine-producing regions and countries of the world, but the lack
of precise and comparable data makes it impossible to calculate the
approximate economic impact of these diseases. Nevertheless, con-
sidering solely the replacement of dead plants it is possible to
estimate the rough minimal cost due to grapevine trunk diseases. The
International Organisation of Vine and Wine (OIV report 2011),

estimates the actual surface of vineyards worldwide to amount to
7.550.000 ha. On the other hand, the overall cost for planting a single
hectare of vineyard has been evaluated to be equivalent to 15.000
euros (Brugali 2009). Considering now a replacement of only 1 % of
the plants per year - a considerable underestimate in view of the
individual regional data found in the literature - the worldwide annual
financial cost of the replacement of death plants due to grapevine
trunk diseases is without doubt in excess of 1.132 billion euros (US$
1.502 billion).

Studies on trunk diseases of grapevine have mainly fo-
cused on the description of the disease symptoms and on the
isolation and identification of the fungi present in necrotic
wood of symptomatic plants. The principal pathogenic taxa
associated with esca are Eutypa lata, Phaeomoniella chla-
mydospora, and various species of the genera Botryosphae-
ria, Cylindrocarpon, Fomitiporia, Phaeoacremonium,
Phellinus, Phomopsis, and Stereum (Armengol et al. 2001;
Larignon and Dubos 1997; Mugnai et al. 1999; Surico et al.
2006). With the exception of basidiomycetous Fomitiporia,
Stereum, and Phellinus species, all these pathogens have
also been isolated from necrotic wood of plants suffering
from young vine decline, although with a higher incidence
for Cylindrocarpon species, Phaeomoniella chlamydospora,
Phaeoacremonium aleophilum, and one additional genus,
Cadophora (Edwards and Pascoe 2004; Giménez-Jaime et
al. 2006; Gramaje and Armengol 2011; Halleen et al. 2003;
Martin and Cobos 2007; Scheck et al. 1998). The fungi that
are held responsible for esca or young vine decline have also
been associated individually with other grapevine diseases.
As such, Eutypa lata is considered to be responsible for
eutypa dieback (Kuntzmann et al. 2010), Phomopsis viticola
for excoriosis, Botryosphaeria dothidea for cane blight
(Phillips 2000), various Cylindrocarpon species for black
foot disease (Halleen et al. 2006) and Botryosphaeria spe-
cies for cankers (Urbez-Torres et al. 2006). It is unclear
whether esca and young vine decline are due to these dif-
ferent fungi acting jointly or in succession (Graniti et al.
2000). These disease-associated fungi have also been isolat-
ed with variable incidence from nursery plants (Casieri et al.
2009), rootstock mother vines (Gramaje and Armengol
2011; Aroca et al. 2010) as well as from apparently healthy
young and adult grapevines (Gonzáles and Tello 2010),
leading to the view that these fungi are latent pathogens
(Verhoeff 1974). Climatic and edaphic factors as well as
host genotype (i.e. grapevine cultivar) have been reported to
influence the incidence of these trunk diseases (Bertsch et al.
2009; Surico et al. 2006; Graniti et al. 2000), thereby sug-
gesting that these fungal pathogens are a prerequisite for the
expression of the disease symptoms, but are themselves not
always responsible for their appearance. In spite of an im-
pressive number of phytopathological studies over the past
years, the epidemiology and etiology of grapevine wood
diseases remain poorly understood (Bertsch et al. 2009).
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The assumption that these fungi are latent pathogens
implies that they may live asymptomatically for at least part
of their life in a plant, but should then, at some point, modify
their behavior and become invasive, thereby leading to the
expression of the disease symptoms (Verhoeff 1974). A first
objective of the present study was to determine which fungal
species modified their latent behavior and became invasive
when esca symptoms appear. Secondly, as the contamination
of nursery plants is presently one of the major concerns of the
wine industry, we also wanted to determine whether the esca-
associated fungi were transmitted to nursery plants through
grafting material. In order to achieve these objectives, we
analyzed the cultivable part of the fungal community that
inhabits the wood of both healthy and esca-symptomatic
grapevine plants, as well as the cultivable part of the fungal
community that is associated with the wood of nursery plants.
In this respect, it is important that the latter were not hot water
treated and were grafted on identical rootstock as adult plants
using shoots of apparently healthy material sampled from the
same experimental adult vineyard.

Materials and methods

Grapevine plant selection and isolation of fungal strains
from Vitis vinifera wood

The Agroscope Changins-Wädenswil (Federal Research
Station in Agronomy, Switzerland) has surveyed a number
of vineyards for the presence of esca foliar symptoms and
occurrence of apoplexy since 2002. Among these vineyards,
we chose a plot of 1134 grapevine plants of a Chasselas
cultivar grafted on rootstock 3309 in Perroy (Lavaux) suf-
fering a 5.5 % incidence of esca foliar symptoms in 2009,
the year of the experiment (Online Resource 1). Interested
by the transition from asymptomatic to symptomatic plants,
we sampled only plants expressing the esca foliar symptoms
for the first time since the beginning of the vineyard survey,
38 adult plants (15–30 years old), and 69 plants that had not
expressed any signs of esca disease since 2002. Interested in
the transmission of esca-related fungi during the grafting
process, we also isolated fungi from 73 nursery plants made
by the vineyard grower himself, who cultivates his own
rootstock. We considered that by sampling nursery plants
grafted on the identical rootstock as that of the adult plants
sampled, and by using grafting material of apparently
healthy plants from the same adult vineyard, the bias of
sampling location should be considerably reduced (Arnold
et al. 2003). These nursery plants were not hot water treated;
commercial dormant nursery plants are usually treated with
hot water (50°C, 30 min) to obtain plants free from patho-
genic fungi, bacteria, nematodes and Plasmopara (Gramaje
and Armengol 2011; Crous et al. 2001).

Wood of adult plants was sampled in the field via a non-
destructive method. Using a power drill with a surface-
sterilized (EtOH 90 %) drill (Ø 2.5 mm), a hole was made
to remove the bark and access to the deeper part of the
wood. The sampling was then performed by running the
drill gently in the same hole to allow coiled wood pieces (2–
3 cm long) to stick to the drill bit without breaking. The
wood fragments were immediately placed in an Eppendorf
tube containing 1.5 ml of sterile Potato Dextrose Broth
(PDB, Difco) with alcohol surface sterilized tweezers. Such
wood samples were taken from three different parts of each
trunk (base, middle and upper part). We sampled a maxi-
mum of 20 plants per day to be able to plate wood pieces
from the PDB Eppendorfs on to 15 cm diameter Petri dishes
containing potato dextrose agar (PDA, Difco) amended with
aureomycin (12.5 mg L−1) the same day. Very small, 2–
3 mm wood pieces were placed on agar (15 wood pieces per
plant, 5 from each part of the trunk) in order to maximize the
chance to retrieve slow growing species. For nursery plants,
the sampling method was destructive. The plants were first
stripped of their bark and surface sterilized with 3.5 %
NaOCl for 20 min after removal of the roots, soil and
residual waxes. Fifteen small sections (1 mm) were asepti-
cally cut regularly from the basal end to the grafting end of
the plant and 2–3 mm of each wood sections transferred on
PDA. Consequently fungi associated with nursery plants
have been isolated from 15 independent wood samples
while fungi associated with adult plants have been isolated
from only three independent wood samples, each split in
five pieces.

Plates were inspected daily for the emergence of fungi
over 4 weeks. Emerging fungi were isolated in pure culture
and grown on PDA+aureomycin at room temperature.
Pieces of wood from which no fungus had grown were
eventually transferred onto a new plate to avoid contamina-
tion by fast growing species developing from closely plated
wood pieces. We isolated in pure culture 2595 fungi from
180 grapevine plants (934 fungal isolates from 69 asymp-
tomatic plants, 531 fungal isolates from 38 esca symptom-
atic plants, and 1130 fungal isolates from 73 nursery plants).
A single culture medium, PDA, was used to isolate and
grow our isolates from the grapevine wood pieces, although
several studies have shown that some fungi need particular
media to grow (Guo et al. 2001; Van Wyk et al. 2007).
However, since our study focused essentially on fungi
associated with wood diseases of grapevine that all grow
on PDA medium, we limited ourselves to this commonly
used culture medium for our experiment even if involved
the risk of missing a few wood-associated fungi that are
difficult or unable to grow on this medium. We use the
term fungal community or mycota aware that we isolated
only part of the culturable fungi and missed uncultivable
fungal species.
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Amplification and sequencing of the fungal isolates ITS1-
5.8S-ITS2 rDNA (ITS) region

Amplification and sequencing of the ITS of the fungal
isolates was performed with the primers ITS1F (or ITS1)
and ITS4 (the sequences of these primers are available at:
http://www.biology.duke.edu/fungi/mycolab/primers.htm).
Direct PCR was performed using a sterile pipetor tip (10 μl)
to transfer aseptically a very small amount of mycelium
in a PCR tube and to squash it manually with the tip in
the PCR mix (25 μl mix, reagents and conditions of the
Taq PCR core kit (QIAGEN, Inc., Valencia, California,
USA). Sequencing used the amplification primers, reagents
and conditions of the BigDye®Terminator v3.1 Cycle
sequencing Kit and an automated capillary sequencer
ABI 3700 DNA analyzer (Perkin Elmer, Applied Biosystems,
Foster City, CA, USA).

Fungal diversity and species accumulation curves

Nomenclatural issues follow Mycobank. We estimated the
species diversity in asymptomatic, esca-symptomatic, and
nursery plants by calculating the Simpson index of the
fungal community identified in each plant sample. The
community composition was assessed based on the rela-
tive abundance of species in the culturable part of the
fungal community. The expected total species diversity in
the different plant categories was estimated by resampling
the available plant samples. Based on 1000 replicates
without replacement, we calculated the total recovered
diversity within each plant category. Species accumula-
tion curves were estimated using the vegan package
implemented in the R statistical software (R Development
Core Team 2006).

Principal component analyses (PCA)

A principal component analysis was performed in order
to eventually identify differentiated fungal communities
between symptomatic, asymptomatic and nursery plants.
Each plant was considered as an independent replicate
and the isolated fungal community on each plant sample
was recoded as presence-absence data. We assessed the
fungal community based on incidence data rather than
on relative frequencies to reduce the bias introduced by
species that may be more easily brought into culture
than others. The R package vegan was used to calculate
the main ordination axes 1 and 2 based on Euclidean
distances (R Development Core Team 2006). Biplots
were produced based on the PCA to show both the
relationship of the fungal species and the plant samples
in respect to the main axes.

Results

Delimitation and classification of the operational taxonomic
units (OTUs) based on ITS sequences of the fungal isolates

The isolates were grouped based on their vegetative macro-
morphology. Some OTUs were readily identified based on
their well-documented and singular anamorphic features
(e.g. Phaeomoniella chlamydospora, Aureobasidium pullu-
lans, Truncatella angustata, Botrytis cinerea or Phaeoacre-
monium viticola). Other species, especially closely related
species within a single genus (e.g. Cladosporium, Phoma,
Alternaria or the anamorphs of Botryosphaeriaceae and
Nectriaceae), as well as some species exhibiting a variable
morphology on Petri dishes (e.g. Epicoccum nigrum), could
not be delimitated based on their vegetative morphology.
We first amplified and sequenced the ITS region of a few
fungal isolates for all morphotypes. For more plastic mor-
photypes, we sequenced more isolates. When the sequences
obtained for the different isolates of plastic morphotypes
were identical, we did not sequence the rest of the isolates
grouped in this morphotype. When the sequences of the
different isolates of a given morphotype were different we
adopted two strategies depending on their similarity BLAST
top score in GenBank: either the top score indicated that the
isolates belong to the same species and we did not sequence
the other isolates, or the BLAST top score indicated that
they belonged to different species and we sequenced the ITS
region for all isolates, except in the case of Alternaria for
which we recovered ITS rDNA genotypes for 216 out of the
523 strains isolated (Online Resource 2) that differed only in
the length of a T-repeat at the end of the ITS2 (see the
Discussion section).

Having sequenced 907 out of a total of 2595 fungal
isolates, we obtained 197 ITS genotypes. The GenBank
accession numbers and the GenBank BLAST top score
similarity of these ITS genotypes, excluding uncultured
and environmental sequences, are listed in Online Ressource
2. We used a 99 % sequence BLAST similarity threshold for
species delimitation (Gazis et al. 2011) even though previ-
ous fungal endophyte-related studies have used a lower
threshold (≤98 %; Higgins et al. 2011; Neubert et al. 2006;
O’Brien et al. 2005; Sánchez et al. 2007; Sánchez et al.
2008; U’Ren et al. 2010). The ITS sequence of the fungal
isolate acwVHB69/4 (Online Resource 2) was 100 % sim-
ilar with the ITS GenBank sequences of six different species
of Cladosporium, including C. subtilissimum. In those cases
where ITS rDNA sequences data discriminated more than
one taxa, we used the prefix ‘cf’ in the fungal name (e.g.
Cladosporium cf subtilissimum, Online Resource 2, Table 1).
On the other hand, we also recovered variable ITS geno-
types that corresponded to the same species under the blast
results. In these cases we used the name derived from
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Table 1 Classification of the fungal isolates and abundance/incidence of the OTUs in the different types of plants (asymptomatic, esca-
symptomatic and nursery plants).

Taxon anamorpha Class, Order Family Asymptomatic Esca-
symptomatic

Nursery

Acaromyces ingoldii (B)b Exobasidiomycetes ? 2 iso/2 plc 2 iso/1 pl 0 iso/0 pl

Acremonium alternatum (A) Sordariomycetes, Hypocreales ? 8 iso/4 pl 6 iso/3 pl 19 iso/15 pl

Acremonium fusidioides (A) ? ? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Alternaria alternata species complex
(A)

Dothideomycetes, Pleosporales Pleosporaceae 153 iso/51 pl 96 iso/32 pl 274 iso/68
pl

Alternaria infectoria (A) Dothideomycetes, Pleosporales Pleosporaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Aspergillus iizukae (A) Eurotiomycetes, Eurotiales Trichocomaceae 4 iso/2 pl 2 iso/1 pl 0 iso/0 pl

Atheliaceae sp. (B) Agaricomycetes, Atheliales Atheliaceae 0 iso/0 pl 0 iso/0 pl 15 iso/9 pl

Aureobasidium pullulans (A) Dothideomycetes, Dothideales Dothioraceae 147 iso/50 pl 80 iso/28 pl 19 iso/16 pl

Bjerkandera adusta (B) Agaricomycetes, Russulales Meruliaceae 3 iso/3 pl 0 iso/0 pl 0 iso/0 pl

Boeremia telephii (A) Dothideomycetes, Pleosporales Didymellaceae 6 iso/3 pl 2 iso/1 pl 1 iso/1 pl

Botrytis cinerea (A) Leotiomycetes, Helotiales Sclerotiniaceae 37 iso/17 pl 17 iso/10 pl 28 iso/12pl

Botrytis sp. (A) Leotiomycetes, Helotiales Sclerotiniaceae 0 iso/0 pl 0 iso/0 pl 3 iso/1 pl

Cadophora luteo-olivacea (A) Leotiomycetes, Helotiales ? 10 iso/7 pl 7 iso/4 pl 80 iso/32 pl

Cadophora melinii (A) Leotiomycetes, Helotiales ? 3 iso/1 pl 1 iso/1 pl 0 iso/0 pl

Cadophora sp. (A) Leotiomycetes, Helotiales ? 3 iso/3 pl 0 iso/0 pl 0 iso/0 pl

Candida railenensis (A) Saccharomycetes,
Saccharomycetales

? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Candida sake (A) Saccharomycetes,
Saccharomycetales

? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Cantharellales sp. (B) Agaricomycetes, Cantharellales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Capronia sp. (A) Eurotiomycetes, Chaetothyriales Herpotrichiellaceae 3 iso/3 pl 0 iso/0 pl 0 iso/0 pl

Ceratobasidium sp. (B) Agaricomycetes, Cantharellales Ceratobasidiaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Chaetomium globosum (A) Sordariomycetes, Sordariales Chaetomiaceae 0 iso/0 pl 1 iso/1 pl 2 iso/1 pl

Chaetomium sp. (A) Sordariomycetes, Sordariales Chaetomiaceae 0 iso/0 pl 0 iso/0 pl 4 iso/3 pl

Chalara sp. (A) Leotiomycetes, Helotiales ? 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Ciboria americana (A) Leotiomycetes, Helotiales Sclerotiniaceae 0 iso/0 pl 2 iso/1 pl 0 iso/0 pl

Cladosporium cf subtilissimum (A) Dothideomycetes, Capnodiales Davidiellaceae 6 iso/5 pl 3 iso/3 pl 1 iso/1 pl

Cladosporium xylophilum (A) Dothideomycetes, Capnodiales Davidiellaceae 41 iso/21 pl 24 iso/11 pl 3 iso/3 pl

Clonostachys rosea f. catenulata (A) Sordariomycetes, Hypocreales Bionectriaceae 12 iso/7 pl 7 iso/3 pl 65 iso/34 pl

Cochliobolus homomophorus (A) Dothideomycetes, Pleosporales Pleosporaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Colletotrichum phormii (A) Sordariomycetes, Glomerellaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Coniolariella sp. (A) Sordariomycetes, Xylariales Xylariaceae 0 iso/0 pl 0 iso/0 pl 12 iso/6 pl

Cosmospora vilior (A) Sordariomycetes, Hypocreales Nectriaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Cucurbitariaceae sp. (A) Dothideomycetes, Pleosporales Cucurbitariaceae 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Cylindrocarpon destructans (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 27 iso/18 pl

Cylindrocarpon liriodendri (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 9 iso/5 pl

Cylindrocarpon macrodidymum (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 38 iso/29 pl

Cylindrocarpon pauciseptatum (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 3 iso/3 pl

Cylindrocarpon sp. 1 (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 4 iso/3 pl

Cylindrocarpon sp. 2 (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 9 iso/6 pl

Diaporthe viticola (A) Sordariomycetes, Diaporthales Valsaceae 0 iso/0 pl 0 iso/0 pl 20 iso/13 pl

Diplodia seriata (A) Dothideomycetes, Botryosphaeriales Botryosphaeriaceae 57 iso/21 pl 41 iso/18 pl 11 iso/7 pl

Epicoccum nigrum (A) Dothideomycetes, Pleosporales Didymellaceae 25 iso/12 pl 7 iso/5 pl 37 iso/24 pl

Eucasphaeria sp. (A) Sordariomycetes, Hypocreales ? 0 iso/0 pl 0 iso/0 pl 18 iso/14 pl

Eutypa lata (A) Sordariomycetes, Xylariales Diatrypaceae 54 iso/19 pl 23 iso/10 pl 2 iso/1 pl

Exophiala sp. (A) Eurotiomycetes, Chaetothyriales Herpotrichiellaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Fomitiporia mediterranea (B) Agaricomycetes, Hymenochaetales Hymenochaetaceae 1 iso/1 pl 4 iso/2 pl 0 iso/0 pl
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Table 1 (continued)

Taxon anamorpha Class, Order Family Asymptomatic Esca-
symptomatic

Nursery

Fusarium acuminatum (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 7 iso/2 pl

Fusarium avenaceum (A) Sordariomycetes, Hypocreales Nectriaceae 6 iso/4 pl 2 iso/2 pl 58 iso/29 pl

Fusarium cf graminearum (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 1 iso/1 pl 1 iso/1 pl

Fusarium equiseti (A) Sordariomycetes, Hypocreales ? 3 iso/3 pl 0 iso/0 pl 11 iso/9 pl

Fusarium oxysporum (A) Sordariomycetes, Hypocreales ? 5 iso/4 pl 0 iso/0 pl 9 iso/7 pl

Fusarium proliferatum (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Fusarium solani (A) Sordariomycetes, Hypocreales Nectriaceae 0 iso/0 pl 0 iso/0 pl 7 iso/4 pl

Fusarium sporotrichioides (A) Sordariomycetes, Hypocreales ? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Fusicoccum aesculi (A) Dothideomycetes, Botryosphaeriales Botryosphaeriaceae 5 iso/4 pl 2 iso/1 pl 4 iso/3 pl

Geomyces pannorum (A) Leotiomycetes, Myxotrichaceae 0 iso/0 pl 0 iso/0 pl 4 iso/3 pl

Geotrichum sp. (A) Saccharomycetes, Saccharomycetales Dipodascaceae 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Glaera sp. (A) Leotiomycetes, Helotiales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Gongronella sp. (C) Mucorales Mucoraceae 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Gymnopus erythropus (B) Agaricomycetes, Agaricales Tricholomataceae 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Halosphaeriaceae sp. (A) Sordariomycetes, Microascales Halosphaeriaceae 5 iso/1 pl 9 iso/2 pl 0 iso/0 pl

Helotiales sp. (A) Leotiomycetes, Helotiales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Hyphodermella rosae (B) Agaricomycetes, Polyporales Phanerochaetaceae 4 iso/1 pl 2 iso/1 pl 0 iso/0 pl

Hypocreales sp. 1 (A) Sordariomycetes, Hypocreales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Hypocreales sp. 2 (A) Sordariomycetes, Hypocreales ? 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Lecanicillium aphanocladii (A) Sordariomycetes, Hypocreales Cordycipitaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Leptosphaerulina australis (A) Dothideomycetes, Pleosporales Didymellaceae 0 iso/0 pl 3 iso/1 pl 0 iso/0 pl

Lophiostoma corticola (A) Dothideomycetes, Pleosporales Lophiostomataceae 12 iso/5 pl 4 iso/2 pl 2 iso/1 pl

Lophiostoma sp. 1 (A) Dothideomycetes, Pleosporales Lophiostomataceae 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Lophiostoma sp. 2 (A) Dothideomycetes, Pleosporales Lophiostomataceae 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Lophiostoma sp. 3 (A) Dothideomycetes, Pleosporales Lophiostomataceae 19 iso/7 pl 5 iso/3 pl 0 iso/0 pl

Lophiostoma sp. 4 (A) Dothideomycetes, Pleosporales Lophiostomataceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Lophiotrema rubi (A) Dothideomycetes, Pleosporales Lophiostomataceae 4 iso/3 pl 1 iso/1 pl 0 iso/0 pl

Microdochium bolleyi (A) Sordariomycetes, Xylariales ? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Mortierella alpina (C) Mortierellales Mortierellaceae 1 iso/1 pl 0 iso/0 pl 4 iso/4 pl

Mortierella elongata (C) Mortierellales Mortierellaceae 0 iso/0 pl 0 iso/0 pl 2 iso/1 pl

Mucor circinelloides (C) Mucorales Mucoraceae 8 iso/5 pl 2 iso/2 pl 11 iso/10 pl

Mucor hiemalis (C) Mucorales Mucoraceae 0 iso/0 pl 0 iso/0 pl 5 iso/4 pl

Mucor sp. (C) Mucorales Mucoraceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Mycena sp. (B) Agaricomycetes, Agaricales Tricholomataceae 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Mycoarthris corallinus (A) Leotiomycetes, Helotiales ? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Myrothecium verrucaria (A) Sordariomycetes, Hypocreales ? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Nectriaceae sp. (A) Sordariomycetes, Hypocreales Nectriaceae 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Neofabraea malicorticis (A) Leotiomycetes, Helotiales Dermateaceae 4 iso/2 pl 0 iso/0 pl 0 iso/0 pl

Neofusicoccum parvum (A) Dothideomycetes, Botryosphaeriales Botryosphaeriaceae 0 iso/0 pl 0 iso/0 pl 27 iso/11 pl

Neofusicoccum sp. (A) Dothideomycetes, Botryosphaeriales Botryosphaeriaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Neosetophoma sp. 1 (A) Dothideomycetes, Pleosporales Phaeosphaeriaceae 0 iso/0 pl 0 iso/0 pl 2 iso/1 pl

Neosetophoma sp. 2 (A) Dothideomycetes, Pleosporales Phaeosphaeriaceae 0 iso/0 pl 0 iso/0 pl 5 iso/4 pl

Ophiostoma piceae (A) Sordariomycetes, Ophiostomatales Ophiostomataceae 0 iso/0 pl 0 iso/0 pl 42 iso/21 pl

Ophiostoma quercus (A) Sordariomycetes, Ophiostomatales Ophiostomataceae 0 iso/0 pl 0 iso/0 pl 18 iso/9 pl

Paecilomyces farinosus (A) Sordariomycetes, Hypocreales Cordycipitaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Paraconiothyrium sporulosum (A) Dothideomycetes, Pleosporales Montagnulaceae 1 iso/1 pl 5 iso/1 pl 0 iso/0 pl

Paraphaeosphaeria sp. (A) Dothideomycetes, Pleosporales Montagnulaceae 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Paraphoma chrysanthemicola (A) Dothideomycetes, Pleosporales Phaeosphaeriaceae 1 iso/1 pl 2 iso/1 pl 4 iso/3 pl
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Table 1 (continued)

Taxon anamorpha Class, Order Family Asymptomatic Esca-
symptomatic

Nursery

Paraphoma sp. (A) Dothideomycetes, Pleosporales Phaeosphaeriaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Penicillium brevicompactum (A) Eurotiomycetes, Eurotiales Trichocomaceae 3 iso/2 pl 2 iso/1 pl 9 iso/9 pl

Penicillium cf decaturense (A) Eurotiomycetes, Eurotiales Trichocomaceae 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Penicillium crustosum (A) Eurotiomycetes, Eurotiales Trichocomaceae 0 iso/0 pl 0 iso/0 pl 6 iso/6 pl

Penicillium expansum (A) Eurotiomycetes, Eurotiales Trichocomaceae 1 iso/1 pl 0 iso/0 pl 13 iso/12 pl

Penicillium glabrum (A) Eurotiomycetes, Eurotiales Trichocomaceae 8 iso/4 pl 2 iso/1 pl 2 iso/2 pl

Penicillium miczynskii (A) Eurotiomycetes, Eurotiales Trichocomaceae 1 iso/1 pl 1 iso/1 pl 0 iso/0 pl

Penicillium olsonii (A) Eurotiomycetes, Eurotiales Trichocomaceae 2 iso/2 pl 0 iso/0 pl 2 iso/2 pl

Penicillium sizovae (A) Eurotiomycetes, Eurotiales Trichocomaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Penicillium thomii (A) Eurotiomycetes, Eurotiales Trichocomaceae 0 iso/0 pl 0 iso/0 pl 25 iso/19 pl

Penicillium waksmanii (A) Eurotiomycetes, Eurotiales Trichocomaceae 2 iso/2 pl 0 iso/0 pl 0 iso/0 pl

Pestalotiopsis uvicola (A) Sordariomycetes, Xylariales Amphisphaeriaceae 5 iso/4 pl 4 iso/3 pl 2 iso/2 pl

Phaeoacremonium aleophilum (A) Sordariomycetes, Calosphaeriales Calosphaeriaceae 8 iso/6 pl 4 iso/3 pl 0 iso/0 pl

Phaeoacremonium mortoniae (A) Sordariomycetes, Calosphaeriales Calosphaeriaceae 18 iso/12 pl 6 iso/3 pl 0 iso/0 pl

Phaeoacremonium sp. (A) Sordariomycetes, Calosphaeriales Calosphaeriaceae 3 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Phaeoacremonium viticola (A) Sordariomycetes, Calosphaeriales Calosphaeriaceae 2 iso/2 pl 14 iso/6 pl 0 iso/0 pl

Phaeomoniella chlamydospora (A) Eurotiomycetes, Chaetothyriales Herpotrichiellaceae 102 iso/30 pl 64 iso/16 pl 0 iso/0 pl

Phaeosphaeria sp. (A) Dothideomycetes, Pleosporales Phaeosphaeriaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Phialemonium sp. (A) ? ? 3 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Phialophora sp. 1 (A) Leotiomycetes, Helotiales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Phialophora sp. 2 (A) Sordariomycetes, Magnaporthales Magnaporthaceae 0 iso/0 pl 3 iso/1 pl 0 iso/0 pl

Phlebia tremellosa (B) Agaricomycetes, Corticiales Corticiaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Phoma bellidis (A) Dothideomycetes, Pleosporales Didymellaceae 1 iso/1 pl 3 iso/2 pl 0 iso/0 pl

Phoma eupyrena (A) Dothideomycetes, Pleosporales Didymellaceae 0 iso/0 pl 0 iso/0 pl 4 iso/3 pl

Phoma glomerata (A) Dothideomycetes, Pleosporales Didymellaceae 0 iso/0 pl 0 iso/0 pl 2 iso/2 pl

Phoma negriana (A) Dothideomycetes, Pleosporales Didymellaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Phoma pomorum (A) Dothideomycetes, Pleosporales Didymellaceae 3 iso/3 pl 0 iso/0 pl 6 iso/3 pl

Phoma radicina (A) Dothideomycetes, Pleosporales Phaeosphaeriaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Phomopsis oblonga (A) Sordariomycetes, Diaporthales Valsaceae 0 iso/0 pl 0 iso/0 pl 6 iso/2 pl

Phomopsis sp. 1 (A) Sordariomycetes, Diaporthales Valsaceae 0 iso/0 pl 0 iso/0 pl 2 iso/1 pl

Phomopsis viticola (A) Sordariomycetes, Diaporthales Valsaceae 30 iso/12pl 23 iso/10 pl 28 iso/18 pl

Pilidiella eucalyptorum (A) Sordariomycetes, Diaporthales Melanconidaceae 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Pithomyces sp. (A) Dothideomycetes, Pleosporales Didymellaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Pleospora sp. (A) Dothideomycetes, Pleosporales Pleosporaceae 8 iso/6 pl 3 iso/2 pl 0 iso/0 pl

Pleosporales sp. 1 (A) Dothideomycetes, Pleosporales ? 0 iso/0 pl 3 iso/1 pl 0 iso/0 pl

Pleosporales sp. 2 (A) Dothideomycetes, Pleosporales ? 2 iso/1 pl 4 iso/1 pl 0 iso/0 pl

Pleosporales sp. 3 (A) Dothideomycetes, Pleosporales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Pleosporales sp. 4 (A) Dothideomycetes, Pleosporales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Pleosporales sp. 5 (A) Dothideomycetes, Pleosporales ? 8 iso/2 pl 5 iso/1 pl 0 iso/0 pl

Pleosporales sp. 6 (A) Dothideomycetes, Pleosporales ? 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Pleosporales sp. 7 (A) Dothideomycetes, Pleosporales ? 0 iso/0 pl 4 iso/1 pl 0 iso/0 pl

Purpureocillium lilacinum (A) Sordariomycetes, Hypocreales Ophiocordycipitaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Pyrenochaeta cava (A) Dothideomycetes, Pleosporales Pleosporaceae 0 iso/0 pl 3 iso/1 pl 0 iso/0 pl

Pyrenochaeta sp. (A) Dothideomycetes, Pleosporales Pleosporaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Rhizoctonia sp. (B) Agaricomycetes, Cantharellales Ceratobasidiaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Rhodotorula glutinis (B) Microbotryomycetes, Sporidiobolales ? 17 iso/10 pl 6 iso/4 pl 17 iso/13 pl

Sistotrema brinkmannii (B) Agaricomycetes, Corticiales Corticiaceae 2 iso/2 pl 1 iso/1 pl 0 iso/0 pl

Stagonosporopsis dorenboschii (A) Dothideomycetes, Pleosporales Didymellaceae 0 iso/0 pl 0 iso/0 pl 26 iso/17 pl
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GenBank, accepting that this was not aligned with extype.
For Alternaria, we recovered ITS rDNA genotypes for 216
isolates that differed only in the length of a T-repeat at the
end of the ITS2. Sequences with 6, 7 or 8 T-repeats were
respectively 100 % similar with GenBank sequences of
Alternaria alternata, A. arborescens, and A. mali (Online
resource 2). We considered these 3 ITS rDNA genotypes as
a single OTU, the “Alternaria alternata species complex”
(Table 1). When ITS rDNA sequences exhibited less than
99 % of similarity with any GenBank sequence, we limited
the identification to the rank of genus (95–98 % sequence
similarity) and only so when the BLAST scores following
the top score were part of the same genus. For BLAST
scores <95 % we accepted either the family, order, or class
rank for identity depending on the consistency of the sys-
tematic placement indicated by the BLAST scores following
the top score. From 180 grapevine plants, we retrieved 197
different fungal ITS genotypes (Online Resource 2). Using
the aforementioned strategy for OTUs delimitation, these
genotypes were assigned to 150 operational taxonomic units
(OTUs), plus eight undetermined fungal morphotypes for
which amplification was unsuccessful (Online Resource 2).
As such, a total of 158 OTUs were delimited. The 150
OTUs that could be molecularly delimitated represent

8 fungal classes, 26 orders, and 41 families belonging to
various lineages of ascomycetes, basidiomycetes and basal
fungal lineages (Table 1). Based on BLAST results, these
150 ITS sequences (Table 1) were distributed in 3 phyla and
6 subphyla: Ascomycota [Pezizomycotina and Saccharomy-
cotina], Basidiomycota [Agaricomycotina, Pucciniomytina
and Ustilaginomycotina], and one basal lineage [Mucoromy-
cotina]). The large majority of these OTUs were Ascomycota
(5 classes, 16 orders, 31 families, and 130 OTUs) followed by
Basidiomycota (3 classes, 8 orders, 8 families, and 14 OTUs),
and Mucoromycotina (2 orders, 2 families, and 6 OTUs).

One single vineyard plot harbored a high species richness
of wood-inhabiting fungi

The number of OTUs isolated from a single plant, indepen-
dently of the plant type, ranged from two to 13 (Fig. 1a).
Considering each plant type separately, the mean number of
OTUs isolated per grapevine plant (Fig. 1b) was very sim-
ilar for asymptomatic and esca-symptomatic plants (6
OTUs), but higher for nursery plants (8 OTUs). The Simp-
son index, estimated for each plant type, indicated never-
theless that the fungal species diversity was high (≥0.8) in
all plant types (Fig. 1c).

Table 1 (continued)

Taxon anamorpha Class, Order Family Asymptomatic Esca-
symptomatic

Nursery

Stereum rugosum (B) Agaricomycetes, Russulales Stereaceae 2 iso/2 pl 1 iso/1 pl 0 iso/0 pl

Thysanophora penicillioides (A) Eurotiomycetes, Eurotiales Trichocomaceae 1 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Torula sp. (A) Dothideomycetes, Pleosporales ? 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Trichoderma brevicompactum (A) Sordariomycetes, Hypocreales Hypocreaceae 0 iso/0 pl 0 iso/0 pl 5 iso/5 pl

Trichoderma cf viridescens (A) Sordariomycetes, Hypocreales Hypocreaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Trichoderma hamatum (A) Sordariomycetes, Hypocreales Hypocreaceae 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Trichoderma harzianum (A) Sordariomycetes, Hypocreales Hypocreaceae 1 iso/1 pl 3 iso/1 pl 7 iso/7pl

Truncatella angustata (A) Sordariomycetes, Xylariales Amphisphaeriaceae 5 iso/4 pl 0 iso/0 pl 14 iso/12 pl

Undetermined fungus 1 ? ? 4 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Undetermined fungus 2 ? ? 3 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Undetermined fungus 3 ? ? 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

Undetermined fungus 4 ? ? 0 iso/0 pl 1 iso/1 pl 0 iso/0 pl

Undetermined fungus 5 ? ? 0 iso/0 pl 0 iso/0 pl 2 iso/1 pl

Undetermined fungus 6 ? ? 0 iso/0 pl 0 iso/0 pl 2 iso/1 pl

Undetermined fungus 7 ? ? 0 iso/0 pl 0 iso/0 pl 3 iso/1 pl

Undetermined fungus 8 ? ? 0 iso/0 pl 0 iso/0 pl 1 iso/1 pl

Verticillium nigrescens (A) Sordariomycetes, Hypocreales ? 2 iso/1 pl 0 iso/0 pl 0 iso/0 pl

a As the taxonomy of the OTUs has been inferred from ITS sequences BLAST top scores in GenBank (Online Resource 2) we reported the
GenBank classification adopted by the authors for the BLAST top score(s) sequence(s). We are aware that some names may be wrong and
consequently their classification
b Abbreviations used: (A): Ascomycota; (B): Basidiomycota; (C): Basal fungal lineage
c Abundance is the number of fungal strains of a given OTU (iso) isolated from each plant category and incidence is the number of plants (pl) from
which an OTU has been isolated in each plant category
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Species accumulation curves (Fig. 2) used incidence data
(presence or absence of an OTU in a plant) instead of
abundance data (number of isolates of an OTU in a plant)
to take in account the sampling bias between nursery and
adult plants (see Materials and methods section). We were
aware that such procedure gave more importance to rarely
isolated OTUs than it did for the frequently isolated ones.
None of the estimated species accumulation curves for
asymptomatic, esca-symptomatic and nursery plants showed
any sign of leveling off (Fig. 2), indicating that more sam-
pling effort is required to fully characterize the mycota
associated to each plant type.

None of the presumed esca-associated fungi were significantly
more invasive in symptomatic plants compared
to asymptomatic plants

Among the 150 identified OTUs, 23 OTUs are generally
regarded as being associated with the esca and/or young vine
decline grapevine trunk diseases: Eutypa lata, Fomitiporia
mediterranea, Phaeomoniella chlamydospora, Stereum

rugosum, anamorphs of the genus Botryosphaeria (Diplodia
seriata, Fusicoccum aesculi, Neofusicoccum parvum), Cado-
phora spp., Cylindrocarpon spp., Phaeoacremonium spp.,
and Phomopsis spp. (Online Resource 2, Table 1). Only 11
of the 180 plants analyzed (6.1 %) were found to be free from
esca and young vine decline associated fungi (asymptomatic:
4, esca-symptomatic: 3, and nursery: 4).

When comparing symptomatic and asymptomatic plants
in the Chasselas vineyard, with the exception of basidiomy-
cetes both plant types hosted esca-associated species with
medium to high incidence (Fig. 3). Four trunk disease
associated fungal species or genera had similar medium to
high incidence in adult plants: P. chlamydospora (asymp-
tomatic: 43.5 %, esca-symptomatic: 42.1 %), Phaeoacremo-
nium spp. (30.4 %, 28.9 %), E. lata (27.5 %, 28.9 %) and
Cadophora (17.4 %, 13.2 %). Botryosphaeria anamorphs
were more frequently isolated from esca symptomatic plants
(50 %) than from asymptomatic ones (36.2 %). The same
pattern was observed for Phomopsis spp. (esca-symptomatic:
26.3 %, asymptomatic: 17.4 %). The genus Cylindrocarpon
was absent from adult plants.

Number of different fungal OTUs isolated
N

um
be

r 
of

 p
la

nt
s

35

N
um

be
r 

of
 fu

ng
al

 O
T

U
 is

ol
at

ed

Plant category

S
im

ps
on

 in
de

x

0
5

10
15

20
25

30

2
4

6
8

10
12

00
 

02
 

04
 

06
 

08
 

10

Plant category

2 4 6 8 10 12 1 2 3 1 2 3

cbaFig. 1 Fungal diversity
indices: a. Number of distinct
OTUs isolated per plant; b.
Number of distinct OTUs
isolated per plant for each plant
type (1. asymptomatic, 2. esca-
symptomatic, 3. nursery); c.
Simpson index estimated for
each plant type based on the
relative frequencies of the
OTUs in the plants (1. asymp-
tomatic, 2. esca-symptomatic,
3. nursery)

60
80

Number of plants sampled

N
um

be
r 

of
 fu

ng
al

 O
T

U
s 

re
co

ve
re

d

Number of plants sampled

0 10 20 30 40 50 60 70

0
20

40

0 10 20 30 40 50 60 70

0
20

40
60

80

0 10 20 30

0
10

20
 

30
40

50
60

Number of plants sampled

cba
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Both esca-symptomatic and asymptomatic plants exhibited
a similar abundance of wood disease associated fungi (Fig. 4,
esca-symptomatic: 35.8 %, asymptomatic: 31.9 %). The most
frequent species, Phaeoacremonium chlamydospora, was iso-
lated exclusively from adult plants, (asymptomatic: 10.9%, and
esca-symptomatic: 12.1 %). The second highest abundance in
esca-symptomatic plants (7.7 %) was for Diplodia seriata, the
anamorph of Botryosphaeria obtusa, but the number of isolates
of that species retrieved from asymptomatic plants was compa-
rable (6.1 %). When considering the other Botryosphaeria
anamorphs, the relative abundance of Fusicoccum aesculi

was low (<0.6 %) in both plant types. Cumulative relative
abundance of Botryosphaeria spp. was slightly higher in
esca-symptomatic plants than in asymptomatic ones (respec-
tively 8.1 % and 6.6 %). The next most frequent species in the
fungal community associated with adult plants was Eutypa lata
(asymptomatic: 5.8 % and esca-symptomatic: 4.3 %). The
genus Phomopsis, was represented in adult plants only by P.
viticola. Although having a relatively high incidence, this spe-
cies represented less than 5% of the fungal community that was
associated with asymptomatic (3.2 %) or esca-symptomatic
plants (4.3 %). For Phaeoacremonium spp., the highest

Fig. 3 Incidence of wood
disease associated fungi in each
plant type. Incidence is defined
as the relative frequency of
occurrence (presence/absence)
of a fungal genus or species in a
plant type expressed as a
percentage of the total number
of plants of each type.
Abbreviations used: Bots spp.
(Botryosphaeria species), Phom
spp. (Phomopsis species),
Phaeo spp. (Phaeoacremonium
species), Pch (Phaeomoniella
chlamydospora), Ela (Eutypa
lata), Fme (Fomitiporia
mediterranea), Shi (Stereum
hirsutum), Cylin spp.
(Cylindrocarpon species) and
Cado spp. (Cadophora species)

Fig. 4 Abundance of wood
disease associated fungi in each
plant type. Abundance is
defined as the number of fungal
isolates of a given OTU as a
percentage of the total number
of fungal isolates obtained from
each plant category. Plant types:
1. asymptomatic, 2. esca-
symptomatic, 3. nursery
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abundance was noted for P. viticola in esca-symptomatic plants
(2.6 %), but for P. mortoniae in asymptomatic plants (1.9 %).
Relative abundance of other species of the same genus was
lower than 1 % in adult plants. Overall abundance differences
of trunk disease associated fungal species (Fig. 4) were all ≤2%
when comparing esca-symptomatic and asymptomatic plants
except for Phaeoacremonium viticola (2.4%).As a result, none
of these presumed pathogens was significantlymore invasive in
esca-symptomatic plants.

Pioneer esca-associated fungi were not transmitted
from adult to nursery plants through grafting

Our results (Fig. 3) showed that except for Phomopsis and
Botryosphaeria anamorphs that were hosted respectively by
43.8 and 28.8 % of the nursery plants, esca-associated
fungal species were either absent or of very low incidence
in plants ready for planting. Nursery plants neither hosted
typical esca pioneer species (i.e. Phaeomoniella chlamydo-
spora and Phaeoacremonium spp.), nor did they host basi-
diomycetes whereas only very few nursery plants had been
contaminated with Eutypa lata (1.4 %). While most adult
plants contracted esca-associated fungal species, the major-
ity of nursery plants hosted fungi that were more typically
associated with young vine decline (Figs. 3, 4), i.e. various
species of Cylindrocarpon (incidence: 57.5 %, cumulated
relative abundance: 8 %), a genus that was completely
absent from adult plants. The genus Cadophora had a much
higher incidence (57.5 %) in nursery plants than in adult
plants (asymptomatic: 1.7 %, esca-symptomatic: 1.5 %).
Consequently nursery plants hosted presumed fungal patho-
gens with a high incidence, but there was a clear shift in the
involved fungal genera and species during plant maturation
(Figs. 3, 4).

The fungal community associated with the wood of adult V.
vinifera plants was highly similar in both symptomatic
and asymptomatic plants, but very different from nursery plants

Apart from the generally assumed pathogens, other species
of the fungal community could be involved in the expres-
sion of esca-disease. When comparing the systematic struc-
ture of the fungal communities associated with the different
plant types (Fig. 5, inferred from Table 1), the most fre-
quently isolated OTUs belonged to the Dothideomycetes
and the Sordariomycetes, with a dominance of Dothideo-
mycetes in adults plants (54.9-56.9 % of the fungal isolates).
Both classes were equally represented in nursery plants
(40.4 % of the isolates are Sordariomycetes and 38.31 %
are Dothideomycetes) [Fig. 5a]. Taken together, both classes
represented more than 73 % of the isolates in all plant
categories. The two other dominant classes in all plant
categories were Eurotiomycetes (asymptomatic: 13.8 %,

esca-symptomatic: 13.6 %, nursery: 5 %) and Leotiomy-
cetes (asymptomatic: 6.6 %, esca-symptomatic: 5.1 %, nurs-
ery: 10.3 %) but with a dominance of the former in adults
plants and of the latter in nursery plants. Fungal isolates of
the five remaining classes represented less than 6 % of the
fungal community of each of the plant types. The compar-
ison of the systematic placement of our fungal isolates
revealed a clear shift from nursery plants to adult grapevine
plants: Dothideomycetes and Eurotiomycetes increased in
frequency at the expense of Leotiomycetes and Sordariomy-
cetes. These frequency shifts were observed for both esca-
symptomatic and asymptomatic plants.

The fungal communities hosted by the adult plants, symp-
tomatic or not, were also very similar based on the distribution
of the isolates in the different fungal orders (Fig. 5b). If
Pleosporales were the most diverse in all plant types (asymp-
tomatic: 27.5 %, esca-symptomatic: 28.6 %, nursery: 32.5 %),
the second best represented order was Dothideales for adult
plants (asymptomatic: 15.7 %, esca-symptomatic: 15.1 %,
nursery: 1.7 %), but Hypocreales for nursery plants (nursery:
26.8 %, asymptomatic: 4.6 %, esca-symptomatic: 3.8 %).
Several orders were exclusively found in adult plants (Chae-
tothyriales, Calosphaeriales, Magnaporthales, Microascales,
Agaricales, Corticiales, Hymenochaetales, Polyporales, and
Russulales), whereas Ophiostomatales and Atheliales were
exclusively present in nursery plants. Most of these orders
were represented by singletons or doubletons totaling less
than 5 % of the isolated fungi in each plant category. Excep-
tions were Chaetothyriales in adult plants (asymptomatic:
11.3 %, esca-symptomatic: 12.1 %) and Ophiostomatales in
nursery plants (5.3 %). At the ordinal level, the shift in fungal
groups from nursery to adult plants showed a considerable
decrease of Hypocreales and a complete disappearance of
Ophiostomatales. In contrast, Xylariales and particularly
Dothideales and Capnodiales increased significantly with
plant age.

The principal component analysis (PCA) of OTUs inci-
dence data showed that the indicator species of the fungal
community of adult plants were highly similar while nursery
plants hosted a very different mycota composition (Fig. 6).

Discussion

To investigate the shift toward pathogenicity of the fungi
generally assumed to generate the esca disease symptoms,
we compared the fungal communities respectively associat-
ed with wood of asymptomatic and esca-symptomatic plants
in a single vineyard. As endophyte assemblages of plants are
known to vary between sites (Arnold et al. 2003), we limited
our experiment to a single adult vineyard. To determine if
the esca-associated fungi were transmitted through the graft-
ing process we also analyzed the fungal community associated
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with nursery plants that were not hot water treated, and grafted
with material sampled in the same vineyard and on the iden-
tical rootstock as the adult plants.

The fungal biodiversity (158 OTUs—Online Resource 2)
was estimated using direct identification and comparison of
ITS sequences with those in GenBank. Using GenBank to
identify some genera to species level must be treated with
caution unless the sequence is derived from an extype strain
(Cai et al. 2011a,b; Ko Ko et al. 2011; Maharachchikumbura
et al. 2011, Manamgoda et al. 2011; Tempesta et al. 2011;
Udayanga et al. 2011; Wikee et al. 2011; Yang et al. 2011).
We adopted a 99 % sequence BLAST similarity threshold to
determine species names (Gazis et al. 2011) because recent

studies used more variable gene regions than the ITS to delim-
itate species that were frequent in our sampling (Aveskamp et
al. 2009; Aveskamp et al. 2010; Chaverri et al. 2011; Schubert
et al. 2007).

Recovering more OTUs in the wood of nursery plants
than in the wood of adult plants (Fig. 1b) was not expected
because the diversity of endophytes has been shown to increase
with plant age (McCutcheon et al. 1993; Zabalgogeazcoa
2008). However, this fact can be explained by the sampling
bias mentioned in theMaterials andmethods section: compared
to nursery plants, the isolation of fungi from the wood of adult
plants was likely to be biased toward the repeated recovery of
the same species, since a single sample of wood was more

Fig. 5 Systematic structure of
the fungal communities
respectively associated with the
different plant types. a.
Distribution of the fungal
isolates in the different classes;
b. Distribution of the fungal
isolates in the different orders.
Plant types: 1. asymptomatic, 2.
esca-symptomatic, 3. nursery
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likely to be completely occupied by the same fungal species.
The diversity of fungi isolated from the wood of 180 grapevine
plants was nevertheless unexpectedly high for each of the plant
types analyzed (Simpson index ≥0.8, Fig. 1c), more than two
times higher than the one found to be associated not only with
wood, but also with shoots and leaves of several cultivars of V.
vinifera at different ages in the whole of the area surrounding
Madrid, Spain (Gonzáles and Tello 2010). These divergent
results may partially be explained by the different locations of
the experiments, but are more likely related to the methodology
used to isolate the fungi from the plants and to the sampling
effort (Hyde and Soytong 2008). Species accumulation curves
of each plant type (Fig. 2) also suggest that the cultivable part of
the fungal community associated with the wood of grapevine in
a single vineyard plot or with nursery plants is still far from
completely sampled. Consequently, the diversity of fungal
endophytes that can associate with V. vinifera remains probably
largely unknown.

When comparing asymptomatic and esca-symptomatic
plants, the incidence and abundance of esca-related fungi
were high independently of the plant type, and adult plants,
diseased or not, carried the same fungal parasitic load
(Figs. 3, 4). We observed no significant difference in the
systematic structure of the mycota associated with asymp-
tomatic and esca-symptomatic plants, this at different sys-
tematic ranks (Fig. 5). Finding the same taxa in both
diseased and healthy plants also suggests that they are part
of the normal mycota associated with adult V. vinifera plants
(Frias-Lopez et al. 2002; Toledo-Hernández et al. 2008). If
the group of generally accepted, esca-associated fungi were
indeed latent pathogens, the emergence of symptoms of the
disease would be the consequence of a shift in species

abundance in favor of pathogenic species, leading to the
typical discoloration of the leaves associated with esca
(Surico et al. 2006). Our results suggest that the esca-
associated fungi are probably not pathogens, but more likely
either true endophytes sensu Mostert et al. (2000) or latent
saprobes sensu Promputtha et al. (2007), or else some non-
specific saprobes that are part of a fungal decomposer com-
munity specialized in the decay of senescent or dead wood
material. Our study provides the first empirical evidence for
this hypothesis.

There have been three major arguments in favor of the
pathogenicity-hypothesis for fungi associated with esca and
young vine decline, the first of which concerns the world-
wide increase of the incidence of esca and young vine
decline since the ban of sodium arsenite. It is true that before
the ban of sodium arsenite, esca and young vine decline
were considered to be negligible diseases (Bertsch et al.
2009; Mugnai et al. 1999; Graniti et al. 2000). However,
even if sodium arsenite can reduce the severity of esca
symptoms, it does not contribute significantly towards esca
incidence and plant mortality (Fussler et al. 2008). This
fungicide has never been registered and therefore has never
been used in Switzerland, nor in Germany. Yet, the emergence
of the esca disease followed a very similar pattern in these two
countries compared to the other European countries (Fischer
and Kassemeyer 2003; Viret et al. 2004). Also, when a re-
stricted use of sodium arsenite was still allowed in France,
Portugal and Spain, esca was nevertheless already widespread
in these countries (Mugnai et al. 1999). The causal link
between the ban of sodium arsenite and esca emergence
appears therefore entirely circumstantial.

The two other arguments in favor of a presumed patho-
genicity of the esca-associated fungi are the repeated isola-
tion of the same fungal groups from grapevine wood
necroses and, finally, the ability of some of these fungi to
decompose grapevine wood in vitro and to generate necro-
ses in vivo. Many past and present studies on esca have
presented lists of fungi that were repeatedly isolated from
necrotic wood. Consequently, these fungi were thought to be
involved in the esca disease (Armengol et al. 2001; Bertsch
et al. 2009; Gramaje and Armengol 2011; Larignon and
Dubos 1997; Surico et al. 2006), even though one could
also argue that all these studies have essentially shown that
esca-related fungi are frequently associated with dead wood
in V. vinifera. Pathogenicity tests inoculating sterilized wood
pieces of grapevine plants with one or several of the esca- or
young vine decline-associated fungi showed that some of
these were able to colonize dead wood (Chiarappa 1997;
Larignon and Dubos 1997; Mugnai et al. 1996; Úrbez-
Torres et al. 2009), without demonstrating that these fungi
were able to generate wood necroses in vivo. However, field
inoculation experiments showed that wood-streaking and
vessel discoloration were induced months after the
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inoculation with P. chlamydospora and P. aleophilum and
that these species could then be isolated back from the
margin of the extending necroses (Eskalen et al. 2007).
Vacuum inoculations of young vine decline associated fungi
in hot water treated rootstock cuttings resulted in a decrease
of number of plants emerging from dormancy, in an increase
of wood necroses months after inoculation but not for all
fungal species and all cultivars (Gramaje et al. 2010). Yet,
inoculation experiments generally failed to reproduce the
typical foliar symptoms of esca (Mugnai et al. 1999, Gramaje
et al. 2010).

In inoculation tests with pathogenic fungi, tylose devel-
opment around the inoculation region has been interpreted
as a defense reaction of the plant preventing free movement
of the pathogens in the plant’s xylem, fungi being not able to
degrade suberine (Clerivet et al. 2000). More recently Sun et
al. (2006) showed that the mere wounding of V. vinifera
wood tissues, without pathogen inoculation, causes very
abundant tylose development in stems of grapevines result-
ing in the occlusion of approximately 40 % of the vessels.
These authors suggested that tylose formation associated
with infection might result from the inoculation wound itself
and not from a defense reaction against a pathogen. The
same authors also observed that the literature tacitly
assumes that tyloses form in functional vessels, but that this
assumption has never been proven. In a more recent study,
the same authors showed that, while grapevine summer
pruning leads to the production of tylose, winter pruning
essentially leads to the secretion of gels that have pectin as a
major component (Sun et al. 2008). Pectin is a perfect
substrate for decomposition by fungi (Green et al. 1996;
Green and Clausen 1999). Several esca-associated wood-rot
fungi, e.g. Eutypa lata, Phaeomoniella chlamydospora and
Phaeoacremonium aleophilum, have been shown to invade
grapevine wood essentially during winter, the infection be-
ing more serious with early winter pruning (Larignon and
Dubos 2000; Munkvold and Marois 1995). Frost injuries
should also induce the production of pectin gels in the
damaged wood of grapevines and create favorable niches
for fungal development. The above findings, coupled with
the traditional winter pruning practiced worldwide, therefore
suggest that even healthy grapevine is likely to contain high
amounts of senescent or dead wood, although precise data
on the amounts of dead wood in healthy V. vinifera plants
are not available.

If tylose and pectin gels do not form in functional vessels
of grapevine, our hypothesis of a specialized fungal wood
decomposer community that develops in grapevine, which
is pruned on a yearly basis, provides an explanation for the
fact that none of the presumed esca-related species becomes
more invasive in symptomatic plants. The assumption of a
wood decomposer community that is specific to damaged
plant tissues may also explain why we did not find any of

the early esca-associated fungi in nursery plants that were
grafted with identical rootstock as the adult plants and with
healthy scions sampled from the same adult plants studied
here. Indeed, the major risk for potential transmission of
fungi associated with esca and young vine decline is gener-
ally assumed to be during the grafting process of the grape-
vine cultivar on a new rootstock (Gramaje and Armengol
2011; Giménez-Jaime et al. 2006; Aroca et al. 2010). How-
ever, if pioneer esca species were indeed fungal saprobes
specialized in wood decay, grapevine healthy shoots of the
rootstock mother plant and of the selected cultivar used for
grafting are unlikely to host any of these fungi. Once the
grafting process terminated, nursery plants do contain dam-
aged tissues that can be invaded by these fungal saprobes. In
fact, several earlier studies reported Phaeomoniella chlamy-
dospora and Phaeoacremonium species from nursery plants
(Chicau et al. 2000; Edwards and Pascoe 2004; Giménez-
Jaime et al. 2006; Halleen et al. 2003). However, Halleen et
al. (2003) observed that these esca-associated fungal species
were mostly associated with either the rootstock or the graft
union. We concur with Halleen et al. (2003) in that the best
explanation for this result was the availability of sufficient
weakened plant tissue due to the grafting process or through
aerial contamination by fungal spores during the grafting
process. Weeds sampled in grapevine rootstock mother
fields have been shown to host Phaeomoniella chlamydo-
spora, Cylindrocarpon macrodidymum and Cadophora
luteo-olivacea (Agustí-Brisach et al. 2011). The high occur-
rence of Cylindrocarpon in newly planted grapevines has
been attributed to mechanical injuries of the young root
callus during the planting process, exposing grapevine cut-
tings to infection by these soil-borne fungi (Halleen et al.
2003). A presumed saprotrophy for the esca fungi is also in
line with observations that esca development is generally
patchy in a vineyard and does not spread from a particular
point of infection (Mugnai et al. 1999; Surico et al. 2006).
Disease incidence and identity of presumed trunk disease-
associated fungi have been shown to vary in function of
studied grapevine cultivars, geography, soil type and climate
(Armengol et al. 2001; Bertsch et al. 2009; Casieri et al.
2009; Edwards et al. 2001; Larignon 2012; Larignon and
Dubos 1997; Marchi 2001; Mugnai et al. 1999; Surico et al.
2006). At the same time, the host specificity of esca-
associated fungal species is very broad and nearly all iden-
tified fungi that were recovered in this study have also been
reported from other hosts (Online Resource 2). Therefore,
fungal infection should be primarily dependent on the envi-
ronmentally available species pool, including the presumed
trunk disease associated species, and this for both young and
adult grapevine plants.

In more general terms, our study questions the presumed
pathogenic status of fungi involved in other newly emerging
diseases of plants and animals in cases where no significant
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differences were observed between the fungal communities
that inhabit healthy and diseased individuals. For example, a
study comparing the occurrence of fungi between necrotic
and non-symptomatic shoots of the tree Fraxinus excelsior
found that the same fungal taxa were dominant in all shoots,
diseased or not, and that moderate to high similarity of
fungal communities was observed in all shoots independent
from symptoms (Bakys et al. 2009). An example from
zoology is the study by Zuluaga-Montero et al. (2010),
focusing on sea fans (Gorgonia ventalina), in which the
results indicated that the fungal community composition
did not differ significantly between healthy and diseased
tissues in each reef and that the differences in fungal com-
munities were more attributable to differences between reefs
than to the health of the studied colonies.

Defining a fungus as a pathogen implies a difference in
its incidence and certainly in its abundance between healthy
and diseased individuals. The appearance of the disease
symptoms should be the consequence of the increasing
proliferation of the causal pathogen and this should have
an impact on the fungal community structure. In the case of
esca, such a shift in fungal community structure is not
observed. In our study, however, a single fungal OTU
(based on ITS similarity) possibly embraces very closely
related species, subspecies or strains that have a different
virulence and could be differentially associated with healthy
or diseased plants, as for instance in the case of Alternaria
(Table 1, Pryor and Michailides 2002), Phaeomoniella chla-
mydospora (Mostert et al. 2006) or Phaeoacremonium
angustius (Santos et al. 2005). Also, cumulated small differ-
ences in abundance of several OTUs might eventually dif-
ferentiate between healthy and diseased plants, but such
slight differences in abundance are, each taken separately,
too small to contribute to a significant distinction between
healthy and diseased plants in a PCA analysis (Fig. 6).
Nevertheless, our experiment was conducted in a single,
small vineyard plot, making it unlikely to observe differ-
ences in virulence between strains or subspecies associated
with adjacent plants. If some strains were indeed more
virulent within a single OTU, this would have resulted in
an increase of the abundance of such an OTU in diseased
grapevine plants, as a more virulent strain is expected to be
more invasive than less virulent ones. Neither is it likely that
unculturable fungi are responsible for the emergence of esca
in the sense that a shift toward pathogenicity - and conse-
quently invasiveness - of these fungi should also have an
impact on the culturable part of the fungal community
associated with grapevine, which is not the case in our
study. Nevertheless, there remains an urgent need to char-
acterize the genotypes of the fungi associated with esca
disease in more detail before we can firmly exclude fungi
as the principal cause of esca. Other organisms, such as
bacteria, may be involved in esca but eventual differences

between the bacterial communities associated with diseased
or healthy grapevines have never been studied. As sug-
gested by Bertsch et al. (2009), environmental parameters
may also play an important role in the emergence of grapevine
trunk diseases, as may changes in vineyard management and
cultural practices (Graniti et al. 2000) or differences between
grapevine genotypes (Santos et al. 2005).
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