
Chapter 16
A Concatenated Error-Correction System
Using the |u|u + v| Code Construction

16.1 Introduction

There is a classical error-correcting code construction method where two good codes
are combined together to form a new, longer code. It is a method first pioneered by
Plotkin [1]. The Plotkin sum, also known as the |u|u + v| construction method [3],
consists of one or more codes having replicated codewords to which are added
codewords from one or more other codes to form a concatenated code. This code
construction may be exploited in the receiver with a decoder that first decodes one
or more individual codewords prior to the Plotkin sum from a received vector. The
detected codewords from this first decoding are used to undo the code concatenation
within the received vector to allow the replicated codewords to be decoded. The
output from the overall decoder of the concatenated code consists of the information
symbols from the first decoder followed by the information symbols from the second
stage decoder. Multiple codewords may be replicated and added to the codewords
from other codes so that the concatenated code consists of several shorter codewords
which are decoded first and the decoded codewords used to decode the remaining
codewords. It is possible to utilise a recurrent construction whereby the replicated
codewords are themselves concatenated codewords. It follows that the receiver has
to use more than two stages of decoding.

With suitable modifications, any type of error-correction decoder may be utilised
including iterative decoders, Viterbi decoders, list decoders, and ordered reliability
decoders, and of particular importance the modified Dorsch decoder described in
Chap.15. It is well known that for a given code rate longer codes have better per-
formance than shorter codes, but implementation of a maximum likelihood decoder
is much more difficult for longer codes. The Plotkin sum code construction method
provides a means whereby several decoders for short codes may be used together to
implement a near maximum likelihood decoder for a long code.
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16.2 Description of the System

Figure16.1 shows the generic structure of the transmitted signal in which the code-
word of length n1 from code u, denoted as Cu is followed by a codeword comprising
the sum of the same codeword and another codeword from code v, denoted as Cv to
form a codeword denoted asCcat of length 2n1. This code construction is well known
as the |u|u+ v| code construction [3]. The addition is carried out symbol by symbol
using the arithmetic rules of the Galois Field being used, namely GF(q). If code u
is an (n1, k1, d1) code with k1 information symbols and Hamming distance d1 and
code v is an (n1, k2, d2) code with k2 information symbols and Hamming distance
d2, the concatenated code Ccat is an (2n1, k1 + k2, d3) code with Hamming distance
d3 equal to the smaller of 2× d1 and d2.

Prior to transmission, symbols from the concatenated codeword are mapped to
signal constellation points in order to maximise the Euclidean distance between
transmitted symbols in keeping with current best transmission practice. For example
see the text book by Professor J. Proakis [4]. The mapped concatenated codeword is
denoted as Xcat and is given by

Xcat = |Xu |Xu+v| = |Xu |Xw|, (16.1)

where Xw is used to represent Xu+v.

Xcat consists of 2 × n1 symbols and the first n1 symbols are the n1 symbols of
Xu and the second n1 symbols are the n1 symbols resulting from mapping of the
symbols resulting from the summation, symbol by symbol, of the n1 symbols of Cu ,
and the n1 symbols of codeword Cv.

The encoding system to produce the concatenated codeword format shown in
Fig. 16.1 is shown in Fig. 16.2. For each concatenated codeword, k1 information
symbols are input to the encoder for the (n1, k1, d1) code and n1 symbols are produced
at the output of the encoder and are stored in the codeword buffer A as shown in
Fig. 16.2. Additionally, for each concatenated codeword, k2 information symbols are
input to the encoder for the (n1, k2, d2) code andn1 symbols are produced at the output
and are stored in the codeword buffer B as shown in Fig. 16.2. The encoded symbols

Fig. 16.1 Format of transmitted codeword consisting of two shorter codewords
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Fig. 16.2 Concatenated code encoder and mapping for transmission

output from the codeword buffer A are added symbol by symbol to the encoded
symbols output from the codeword buffer B and the results are stored in codeword
buffer C. The codeword stored in codeword buffer A is Cu as depicted in Fig. 16.1
and the codeword stored in codeword buffer C isCu+Cv as also depicted in Fig. 16.1.
The encoded symbols output from the codeword buffer A aremapped to transmission
symbols and transmitted to the channel, and these are followed sequentially by the
symbols output from the codeword buffer C which are also mapped to transmission
symbols and transmitted to the channel as shown in Fig. 16.2.

After transmission through the communications medium each concatenated
mapped codeword is received as the received vector, denoted as Rcat and given
by

Rcat = |Ru |Ru+v| = |Ru |Rw|. (16.2)

Codeword Cv is decoded first as shown in Fig. 16.3. It is possible by comparing the
received samplesRu with the received samplesRu+v that the a priori log likelihoods
of the symbols ofRv may be determined, since it is clear that the difference between
the respective samples, in the absence of noise and distortion, is attributable to Cv.
This is done by the soft decision metric calculator shown in Fig. 16.3.

Binary codeword symbols are considered with values which are either 0 or 1.
The ith transmitted sample, Xui = (−1)Cui and the n1 + ith transmitted sample,
Xui+vi = (−1)Cui × (−1)Cvi . It is apparent that Xvi and Cvi may be derived from Xui
and Xui+vi .

An estimate of Xvi and Cvi may be derived from Rui and Rui+vi . First:

Xvi = Xui × Xui+vi = (−1)Cui × (−1)Cui × (−1)Cvi = (−1)Cvi (16.3)

Second, in the absence of distortion andwithGaussian distributed additive noise with
standard deviation σ , and normalised signal power, the log likelihood that Cvi = 0,
Llog(Cvi = 0) is given by

L log(Cvi = 0) = log

[
cosh

(
Rui + Rui+vi

σ 2

)]
− log

[
cosh

(
Rui − Rui+vi

σ 2

)]
.

(16.4)
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Fig. 16.3 Decoder for the concatenated code with the codeword format shown in Fig. 16.1

The soft decision metric calculator, shown in Fig. 16.3, calculates these log likeli-
hoods according to Eq. (16.4) and these are input to the decoder A shown in Fig. 16.3.
The decoder A determines the most likely codewordCv̂ of the (n1, k2, d2) code.With
the knowledge of the detected codeword, Cv̂, the received samples Ru+v, which are
stored in the n1 symbols buffer B, are remapped to form Rû by multiplying Ru+v

byXv̂.

Rû = Ru+v ×Xv̂. (16.5)

This remapping function is provided by the remapper shown in Fig. 16.3. The output
of the remapper isRû . If the decoder’s output is correct, Cv̂ = Cv and there are now
two independent received versions of the transmitted, mapped codeword Cu ,Rû and
the original received Ru . Both of these are input to the soft metric combiner shown
in Fig. 16.3, Rû from the output of the remapper and Ru from the output of the n1
symbols buffer A.

The soft metric combiner calculates the log likelihood of each bit of Cu , Cui from
the sum of the individual log likelihoods:

L log(Cui = 0) = 2Rui

σ 2
+ 2Rûi

σ 2
. (16.6)

These log likelihood values, L log(Cui = 0), output from the soft metric combiner
shown in Fig. 16.3 are input to the decoder B. The output of Decoder B is the k1
information bits of the detected codeword Cû of the (n1, k1, d1) code, and these
are input to the information symbols buffer shown in Fig. 16.3. The other input to
the information symbols buffer is the k2 information bits of the detected codeword
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Fig. 16.4 Format of transmitted codeword consisting of three shorter codewords

Cv̂ of the (n1, k2, d2) code, provided at the output of decoder A. The output of the
information symbols buffer, for each received vector, is the k1 + k2 information
bits which were originally encoded, provided both decoders’ outputs, A and B, are
correct.

In similar fashion to previous constructions, Fig. 16.4 shows the format of a con-
catenated codeword of length 4× n1 symbols consisting of three shorter codewords.
The codeword of length 2× n1 from a (2n1, k1, d1), code u, denoted as Cu is repli-
cated as shown in Fig. 16.4. The first half of the replicated codeword, Cu , is added
to the codeword Cv1 and the second half of the replicated codeword, Cu , is added to
the codeword Cv2, as shown in Fig. 16.4. Each codeword Cv1 and Cv2 is the result of
encoding k2 information symbols using code v, a (n1, k2, d2) code. The concatenated
codeword that results, Ccat , is from a (4n1, k1 + 2k2, d3) concatenated code where
d3 is the smaller of 2d1 or d2.

The decoder for the concatenated code with codeword format shown in Fig. 16.4
is similar to the decoder shown in Fig. 16.3 except that following soft decision metric
calculation each of the two codewords Cv1 and Cv2 are decoded independently. With
the knowledge of the detected codewords, Cv̂1 and Cv̂2 , the received samplesRu+v1 ,
which are buffered, are remapped to form the first n1 symbols ofRû by multiplying
Ru+v1 by Xv̂1 and the second n1 symbols of Rû are obtained by multiplying Ru+v2
byXv̂2 .The two independent received versions of the transmitted, mapped codeword
Cu , Rû and the original received Ru are input to a soft metric combiner prior to
decoding the codeword Cû .

In another code arrangement, Fig. 16.5 shows the format of a concatenated code-
word of length 3 × n1 symbols. The concatenated codeword is the result of three
layers of concatenation. A codeword of length n1 from a (n1, k1, d1), code u, denoted
asCu is replicated twice, as shown in Fig. 16.5. A second codeword of length n1 from
a (n1, k2, d2), code v, denoted as Cv is replicated and each of these two codewords is
added to the two replicated codewords Cu , as shown in Fig. 16.5. A third codeword
of length n1 from a (n1, k3, d3), code w, denoted as Cw is added to the codeword
summation Cu +Cv, as shown in Fig. 16.5. The concatenated codeword that results,
Ccat , is from a (3n1, k1 + k2 + k3, d4) concatenated code where d4 is the smallest of
3d1 or 2d2 or d3.



426 16 A Concatenated Error-Correction System …

Fig. 16.5 Format of transmitted codeword consisting of two levels of concatenation and three
shorter codewords

Fig. 16.6 Format of transmitted codeword after two stages of concatenation

The decoder for the three layered concatenated code with codeword format shown
in Fig. 16.5 uses similar signal processing to the decoder shown in Fig. 16.3 with
changes corresponding to the three layers of concatenation. The codeword Cŵ is
decoded first following soft decision metric calculation using theRu+v and Ru+v+w

sections of the received vector. The detected codeword Cŵ is used to obtain two
independent received versions of the transmitted, mapped result of the two code-
words summation Cu+v, R ˆu+v and the original received Ru+v. These are input to a
soft metric combiner and the output is input to the soft decision metric calculation
together with Ru , prior to decoding of codeword Cv̂. With the knowledge of code-
word Cv̂, remapping and soft metric combining is carried out prior to the decoding
of codeword Cû .

Figure16.6 shows the format of a concatenated codeword of length 4× n1 sym-
bols. The concatenated codeword is the result of three layers of concatenation. A
concatenated codeword with the format shown in Fig. 16.1 is replicated and added to
a codeword, Cŵ, of length 2n1 symbols from a (2n1, k3, d3) code to form a codeword
of an overall concatenated code having parameters (4n1, k1 + k2 + k3, d4), where d4
is equal to the smallest of 4d1, 2d2 or d3.

The decoder for the three layered concatenated code with codeword format shown
in Fig. 16.6 is similar to the decoder described above. Codeword Cŵ is detected
first following soft decision metric calculation using Ru and Ru+v sections of the
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received vector as one input and theRu+w andRu+v+w sections of the received vector
as the other input. The detected codeword Cŵ is used to obtain two independent
received versions of the concatenated codeword of length 2n1 symbols with format
equal to that of Fig. 16.1. Accordingly, following soft metric combining of the two
independent received versions of the concatenated codeword of length 2n1 symbols,
a vector of length equal to 2n1 symbols is obtained which may be input to the
concatenated code decoder shown in Fig. 16.3. This decoder provides at its output
the k1 + k2 detected information symbols which together with the k3 information
symbols already detected provide the complete detected output of the overall three
layer concatenated code.

Any type of code, binary or non-binary, LDPC, Turbo or algebraically constructed
code, may be used. Any corresponding type of decoder, for example an iterative
decoder or a list decoder may be used. As an illustration of this, Decoder A and
Decoder B, shown in Fig. 16.3, do not have to be the same type of decoder.

There are particular advantages in using the modified Dorsch decoder, described
in Chap.15, because the Dorsch decoder may realise close to maximum likelihood
decoding, with reasonable complexity of the decoder. The complexity increases
exponentially with codelength. Using modified Dorsch decoders. Both decoder A
and decoder B shown in Fig. 16.3 operate on n1 received samples and may realise
close to maximum likelihood decoding with reasonable complexity even though the
concatenated codelength is 2×n1 symbols and the total number of received samples
is 2×n1 samples. Using a single modified Dorsch decoder to decode the 2×n1 sam-
ples of the concatenated code directly will usually result in non-maximum likelihood
performance unless the list of codewords evaluated for each received vector is very
long. For example, a modified Dorsch decoder with moderate complexity, typically
will process 100,000 codewords for each received vector and realise near maximum
likelihood performance. Doubling the codelength will require typically in excess of
100,000,000 codewords to be processed for each received vector if near maximum
likelihood performance is to be maintained.

An example of the performance that may be achieved is shown in Fig. 16.7 for the
concatenated codeword format shown in Fig. 16.1. The encoder used is the same as
that shown in Fig. 16.2 and the concatenated code decoder is the same as that shown
in Fig. 16.3. The results were obtained by computer simulation using Quaternary
Phase Shift Keying (QPSK) modulation and featuring the Additive White Gaussian
Noise (AWGN) channel. The decoder error rate, the ratio of the number of incorrect
codewords output by the decoder to the total number of codewords output by the
decoder, is denoted by the Frame Error Rate (FER) and this is plotted against Eb

No
,

the ratio of the energy per information bit to the noise power spectral density. Binary
codes are used and the length of the concatenated code is 256 bits. For best results,
it is important to use outstanding codes for the constituent codes, particularly for
code v which is decoded first. In this example, code u is the (128,92,12) extended
Bose Chaudhuri Hocquenghem (BCH) code. Code v is the (128,36,36) extended
cyclic code, an optimum code described in [5] by D. Schoemaker and M. Wirtz.
The (128,36,36) extended cyclic code is not an extended BCH code as it has roots
{1, 3, 5, 7, 9, 11, 13, 19, 21, 27, 43, 47, 63}. The minimum Hamming distance

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Fig. 16.7 The error rate performance for a (256,128,24) concatenated code compared to iterative
decoding of a (256,128,15) Turbo code and a (256,128,12) LDPC code

of the concatenated code is 2d1 = 24. Both decoder A and decoder B, as shown
in Fig. 16.3, are a modified Dorsch decoder and for both code u and code v, near
maximum likelihood performance is obtained with moderate decoder complexity.
For each point plotted in Fig. 16.7, the number of codewords transmitted was chosen
such that were at least 100 codewords decoded in error.

Also shown inFig. 16.7 is the performance of codes anddecoders designed accord-
ing to the currently known state of the art in error-correction coding that is Low
Density Parity Check (LDPC) codes using Belief Propagation (BP) iterative decod-
ing, and Turbo codes with BCJR iterative decoding. Featured in Fig. 16.7 is the
performance of an optimised Low Density Parity Check (LDPC) (256,128,12) code
using BP, iterative decoding and an optimised (256,128,15) Turbo code with iter-
ative decoding. As shown in Fig. 16.7 both the (256,128,15) Turbo code and the
(256,128,12) LDPC code suffer from an error floor for Eb

No
values higher than 3.5dB

whilst the concatenated code features a FER performance with no error floor. This is
attributable to the significantly higher minimum Hamming distance of the concate-
nated code which is equal to 24 in comparison to 15 for the Turbo code and 12 for
the LDPC code. Throughout the entire range of Eb

No
values the concatenated code can

be seen to outperform the other codes and decoders.
For (512,256) codes, using the concatenated code arrangement, the performance

achievable is shown in Fig. 16.8. The concatenated code arrangement uses the
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Fig. 16.8 Comparison of the error rate performance for a (512,256,32) concatenated code compared
to iterative decoding of a (512,256,18) Turbo code and a (512,256,14) LDPC code

concatenated codeword format which is shown in Fig. 16.4. As before, the FER
results were obtained by computer simulation using QPSK modulation and the
AWGN channel. Both codes v1 and v2 are the same and equal to the outstanding
(128,30,38) best-known code [6]. Code u is equal to a (256,196,16) extended cyclic
code. Featured in Fig. 16.8 is the performance of an optimised Low Density Par-
ity Check (LDPC) (512,256,14) code using BP iterative decoding and an optimised
(512,256,18) Turbo code with iterative decoding. For each point plotted in Fig. 16.8,
the number of codewords transmitted was chosen such that were at least 100 code-
words decoded in error. As shown in Fig. 16.8 both the (512,256,18) Turbo code
and the (512,256,14) LDPC code suffer from an error floor for Eb

No
values higher

than 3.4dB whilst the concatenated code features a FER performance with no error
floor. As before this is attributable to the significantly higher minimum Hamming
distance of the concatenated code which is equal to 32 in comparison to 18 for the
Turbo code and 14 for the LDPC code. Throughout the entire range of Eb

No
values, the

concatenated code system can be seen to outperform the other coding arrangements
for (512,256) codes.
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16.3 Concatenated Coding and Modulation Formats

With the |u|u + v| code construction and binary transmission, the received vector
for the codeword of code v suffers the full interference from the codeword of code
u because it is transmitted as u + v. The interference is removed by differential
detection using the first version of the codeword of code u. However, although the
effects of codeu are removed, differential detection introduces additional noise power
due to noise times noise components. One possible solution to reduce this effect is
to use multi-level modulation such as 8-PSK. Code u is transmitted as 4-PSK and
code vmodulates the 4-PSK constellation by±22.5 degrees. Now there is less direct
interference between code u and code v. Initial investigations show that this approach
is promising, particularly for higher rate systems.

16.4 Summary

Concatenation of good codes is a classic method of constructing longer codes which
are good. As codes are increased in length, it becomes progressively harder to realise
a near maximum likelihood decoder. This chapter presented a novel concatenated
code arrangement featuring multiple near maximum likelihood decoders for an opti-
mised matching of codes and decoders. It was demonstrated that by using some
outstanding codes as constituent codes, the concatenated coding arrangement is able
to outperform the best LDPC and Turbo coding systems with the same code para-
meters. The performance of a net (256,128) code achieved with the concatenated
arrangement is compared to a best (256,128) LDPC code and a best (256,128) Turbo
code. Similarly, the performance of a (512,256) net concatenated code is compared
to a best (512,256) LDPC code and a best (512,256) Turbo code. In both cases, the
new system was shown to outperform the LDPC and Turbo systems. To date, for
the AWGN channel and net, half rate codes no other codes or coding arrangement is
known that will outperform the system presented in this chapter for codes of lengths
256 and 512 bits.
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