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Abstract
The purpose of this paper is to introduce a novel approach based on the operational
matrix of orthonormal Bernoulli polynomial for the numerical solution of the class of
singular second-order boundary value problems that arise in physiology. The main
thrust of this approach is to decompose the domain of the problem into two
subintervals. The singularity, which lies in the first subinterval, is removed via the
application of an operational matrix procedure based on differentiating that is
applied to surmount the singularity. Then, in the second subdomain, which is outside
the vicinity of the singularity, the resulting problem is treated via employing the
proposed basis. The performance of the numerical scheme is assessed and tested on
specific test problems. The oxygen diffusion problem in spherical cells and a
nonlinear heat-conduction model of the human head are discussed as illustrative
examples. The numerical outcomes indicate that the method yields highly accurate
results and is computationally more efficient than the existing ones.
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1 Introduction
The aim of this paper is to introduce a new approach for the numerical solution of the
following class of singular boundary value problems (SBVP) arising in physiology:

y′′ +
m
x

y′ = f (x, y) ()

defined on the interval [, ] and subject to the following boundary conditions:

αy() + βy′() = γ, ()

αy() + βy′() = γ. ()

We assume that f (x, y) is continuous, ∂f
∂x exists and it is continuous on the domain [, ].

SBVP ()-() arises in important applications, for different values of m = , ,  and certain
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linear and nonlinear functions f (x, y). For instance, SBVP ()-() with m =  and

f (x, y) =
ny

y + k
, n > , k > 

arises in the modeling of steady state oxygen diffusion in a spherical cell with Michaelis-
Menten uptake kinetics (see [, ]). Another case of physical significance is when m = 
and

f (x, y) = –le–lky, l > , k > ,

which occurs in the formulation of the distribution of heat sources in the human head (see
[, ]).

In recent years, finding numerical solutions of singular differential equations, partic-
ularly those arising in physiology, has been focused by several authors. Ravi Kanth and
Bhattacharya [] used a quasi-linearization technique to reduce a class of nonlinear SBVP
arising in physiology to a sequence of linear problems; the resulting set of differential equa-
tions is modified at the singular point, then spline collocation is utilized to obtain the nu-
merical solution. Pandey and Singh [] described a finite difference method based on a
uniform mesh for the solution of a class of SBVP arising in physiology; it was shown that
the method is of second-order accuracy under quite general conditions. Caglar et al. []
used B-spline functions to develop a numerical method for computing approximations to
the solution of nonlinear SBVP associated with physiological science. The original differ-
ential equation was modified at the singular point, then the boundary value problems were
treated by using the B-spline approximation. Asaithambi and Garner [] presented a nu-
merical technique for obtaining pointwise bounds for the solution of a class of nonlinear
boundary-value problems appearing in physiology. Gustaffsson [] presented a numerical
method for solving SBVP. Ravi Kanth and Reddy [] presented a numerical method for
solving a two-point boundary value problem in the interval [, ] with regular singularity
at x = . Ravi Kanth and Reddy [] presented a numerical method for singular two-point
boundary value problems via Chebyshev economization. A number of papers discussed
the existence of solutions for the given problem, for instance, existence and uniqueness of
the solution of SBVP ()-() for the special case m = , α = α = γ and β =  were given in
[]. In the past decade, there has been a great deal of interest [–] in applying the de-
composition method for solving a wide range of nonlinear equations, including algebraic,
differential, partial-differential, differential-delay and integro-differential equations.

This paper is organized as follows. In Section , we are going to introduce Bernoulli
polynomials and their properties; also we will show the operational matrix of derivative
for orthonormal Bernoulli polynomials. In Section , the operational matrix of derivative
of the proposed basis together with collocation method are used to reduce the nonlinear
singular ordinary differential equation to a nonlinear algebraic equation that can be solved
by Newton’s method. Section  illustrates some applied models to show the convergence,
accuracy and advantage of the proposed method and compares it with some other existing
method. Finally Section  concludes the paper.

2 Definition of Bernoulli polynomials
In this section, we introduce Bernoulli polynomials and their properties such as differenti-
ation, integral means conditions, etc. Obviously, Bernoulli polynomials are not orthonor-
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mal polynomials, we orthonormal these polynomials by Gram-Schmidt algorithm. The
operational matrix constructed by this new basis is sparser than the operational matrix
which is made by Bernoulli polynomial, which can be the advantage of normalization of
Bernoulli polynomials. Also, by this new basis, we construct a new approach to solve SBVP,
which can get better approximation for numerical solution of these equations in compar-
ison with other methods.

2.1 Bernoulli polynomials
The recurrence formula for Bernoulli polynomials of degree n is defined as []

n∑

k=

(
n + 

k

)
Bk(x) = (n + )xn, ()

where

B(x) = ,

B(x) = x –



,

B(x) = x – x +



,

B(x) = x –



x +



x,

...

If in Eq. () n varies from  to N , we have the following matrix equation MB(x) = X, such
that

M =

⎛

⎜⎜⎜⎜⎝

(

)

 . . . 


(


) 


(


)

. . . 
...

...
. . .

...


N+
(N+


) 

N+
(N+


)

. . . 
N+

(N+
N

)

⎞

⎟⎟⎟⎟⎠
,

B(x) =
[
B(x), B(x), . . . , BN (x)

]T ,

X =
[
, x, . . . , xN]T .

Since M is a lower triangular matrix with nonzero diagonal elements, it is nonsingular and
hence M– exists. Thus, the Bernoulli polynomials in vector form can be given directly
from

B(x) = M–X. ()

By using Gram-Schmidt algorithm, we obtain orthonormal Bernoulli polynomials to con-
struct a new basis, this new basis is introduced by OBn(x). For instance, for n = ,

B(x) = x – x + x –



,
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Figure 1 The graph of the first six of orthonormal Bernoulli polynomials.

and

OB(x) = x – x + x – x + .

Thus, the proposed basis is

{
OB(x), OB(x), . . . , OBn(x)

}
.

So, we can approximate the functions by using this basis. The orthonormal Bernoulli poly-
nomials considered in this paper have special properties and applications in different fields
of mathematics apart from analytic theory of numbers to the classical and numerical anal-
ysis [, ]. In the following, we mention some properties of the Bernoulli polynomials
which will be of fundamental importance in the sequel.

• Property  (Integral means conditions):

∫ 


OBi(x) dx = , i = , , . . . , n.

• Property  (Norm):

∥∥OBi(x)
∥∥

 = , i = , , . . . , n.

In Figure  the behavior of several orthonormal Bernoulli polynomials in the interval [, ]
is shown. The property of

∫ 
 OBi(x) dx =  could be observed geometrically.
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2.2 Function approximation
Suppose H = L[, ] and {OB(x), OB(x), . . . , OBn(x)} ⊂ H , also

Y = span
{

OB(x), OB(x), . . . , OBn(x)
}

and f (x) is an arbitrary element in H . Since Y is a finite dimensional vector space, f (x) has
the unique best approximation [] out of Y such as f(x) ∈ Y , that is,

∀y(x) ∈ Y ,
∥∥f (x) – f(x)

∥∥ ≤ ∥∥f (x) – y(x)
∥∥.

Since f(x) ∈ Y , there exist the unique coefficients c, c, . . . , cn such that

f (x) � f(x) =
n∑

i=

ciOBi(x) = CT OB(x), ()

where

OB(x) =
[
OB(x), OB(x), . . . , OBn(x)

]
()

and

C = [c, c, . . . , cn]T , ()

where the constant coefficient ci for i = , , . . . , n is

ci =
〈f (x), OBi(x)〉

〈OBi(x), OBi(x)〉 . ()

2.3 Error bounds
In this section, the error bound and convergence are established by the following lemma.

Theorem  [] Let H be a Hilbert space and W be a closed subspace of H such that
dimW < ∞ and {w, w, . . . , wn} is any basis for W . Let g be an arbitrary element in H and
g be the unique best approximation to g out of W . Then

‖g – g‖ = Gg ,

where

Gg =

√
F(g, w, . . . , wn)
F(w, . . . , wn)

,

and F is introduced in [].

Lemma  [] Suppose that g ∈ Cm+ is an m+ times continuously differentiable function
such that g =

∑n
j= gj, and let Y = span{OB(x), OB(x), . . . , OBn(x)}. If CT

j OBj(x) is the best
approximation to gj from Y , then CT OB(x) approximates g with the following error bound:

∥∥g – CT OB(x)
∥∥

 ≤ δ

nm+(m + )!
√

m + 
, δ = max

x∈[,]

∣∣gm+(x)
∣∣.
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Proof The Taylor expansion for the function gj(x) is

gj(x) � g̃j(x) = gj

(
j – 

n

)
+ g ′

j

(
j – 

n

)(
x –

j – 
n

)
+ g ′′

j

(
j – 

n

) (x – j–
n )

!
+ · · ·

+ g(m)
j

(
j – 

n

) (x – j–
n )m

m!
,

j – 
n

≤ x <
j
n

,

for which it is known that

∣∣gj(x) – g̃j(x)
∣∣ ≤ ∣∣g(m+)(η)

∣∣ (x – j–
n )m+

(m + )!
, η ∈

[
j – 

n
,

j
n

]
, j = , , . . . , n. ()

Since CT
j OBj(x) is the best approximation to gj from Y and g̃j ∈ Y , using Eq. (), we have

∥∥gj – CT
j OBj(x)

∥∥
 ≤ ‖gj – g̃j‖

 =
∫ j/n

(j–)/n

∣∣gj(x) – g̃j(x)
∣∣ dx

≤
∫ j/n

(j–)/n

( |g(m+)(η)|(x – j–
n )m+

(m + )!

)

dx

≤
[

δ

(m + )!

] ∫ j/n

(j–)/n

(
x –

j – 
n

)m+

dx

=
[

δ

(m + )!

] 
nm+(m + )

.

Now,

∥∥g – CT OB(x)
∥∥

 ≤
n∑

j=

∥∥gj – CT
j OBj(x)

∥∥
 ≤ δ

nm+[(m + )!](m + )
.

By taking the square roots, we have the above bound. �

2.4 Operational matrix of derivative
The derivative of the vector OB(t) can be expressed by

d(OB(t))
dt

= D()OB(t), ()

where D() is the (n + ) × (n + ) operational matrix of derivative and its elements are

D() = (dij) =

{

√

i – 
√

j – , i > j and i + j = l + ,
, otherwise

for each l ∈N. For example, for n = , we have

D() = 

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

     √
     


√


√

    √
 

√

√

   


√

√

 
√


√

  √
 

√


√
 

√


√
 

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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By using Eq. (), it is clear that

dnOB(x)
dxn =

(
D())nOB(x), ()

where n ∈N and the superscript in D() denotes matrix powers. Thus

D(n) =
(
D())n, n = , , . . . . ()

The presented operational matrix is a sparse matrix, so it can reduce the error of solving
Eq. ().

3 Implementation of operational matrix of orthonormal Bernoulli polynomials
on physiology problems

In this section we solve nonlinear singular boundary value problem of the form Eq. ()
with the mixed conditions Eq. () and Eq. () by using the operational matrix of derivative
[] based on orthonormal Bernoulli polynomials. From Eq. () we can approximate an
unknown function as

y(x) = CT OB(x), ()

where OB(x) and C are defined in Eqs. ()-(). By using Eqs. ()-() we have

y′(x) = CT OB′(x) = CT D()OB(x), ()

and

y′′(x) = CT OB′′(x) = CT(
D())OB(x). ()

By substituting Eqs. ()-() in Eq. (), we have

CT(
D())OB(x) +

(
m
x

)
CT D()OB(x) = f

(
x, CT OB(x)

)
. ()

Also, by using Eqs. ()-() and Eqs. ()-(), we have

αCT OB() + βCT D()OB() = γ, ()

αCT OB() + βCT D()OB() = γ. ()

Eqs. ()-() give two linear equations. Since the total unknowns for vector C in Eq. ()
is (n + ), we collocate Eq. () in (n – ) Newton-Cotes points xi in the interval [, ], then
we have

CT(
D())OB(xi) +

(
m
xi

)
CT D()OB(x) = f

(
xi, CT OB(xi)

)
()

for i = , . . . , n – . Now the resulting Eqs. ()-() generate a system of (n + ) nonlinear
equations in (n + ) unknown. We used the Maple 15 software to solve this nonlinear
system.
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4 Illustrative examples
To show the efficiency of the proposed method, we implement it on three nonlinear singu-
lar boundary problems that arise in real physiology applications. Our results are compared
with the results in Refs. [, ]. The austerity of our method in implementation in analogy
to other existing methods and its trusty answers is considerable.

Example  Consider the following oxygen diffusion problem:

y′′(x) +

x

y′(x) =
.y

y + .
,

with boundary conditions

y′() = , y() + y′() = .

Table  shows the numerical results for various number of meshes, and present method
solutions are compared with the results in Refs. [] and [].

Example  Consider this problem that coincides by heat conduction model of the human
head

y′′(x) +

x

y′(x) = –e–y,

we consider the solution of this problem with conditions as follows:

y′() = , y() + y′() = .

Table  illustrates the results for this example by the proposed method alongside numerical
solutions for this example that were given in Refs. [] and [].

Example  Consider the following singular two-point boundary value problem:

y′′(x) +

x

y′(x) = –ey,

y′() = , y() = ,

Table 1 Approximate solutions for Example 1

x Present method
with n = 14

Method in [28]
with n = 20

Method in [30]
with n = 60

0.0 0.82848328186193 0.82848329481355 0.82848327295802
0.1 0.82970609243390 0.82970609688790 0.82970607521884
0.2 0.83337473359110 0.83337473804308 0.83337471691089
0.3 0.83948991395381 0.83948991833986 0.83948989814383
0.4 0.84805278499617 0.84805278876051 0.84805277036165
0.5 0.85906492716933 0.85906492753032 0.85906491397434
0.6 0.87252831995828 0.87252831569855 0.87252830841853
0.7 0.88844530562329 0.88844529949702 0.88844529589927
0.8 0.90681854806690 0.90681854179965 0.90681854026297
0.9 0.92765098836568 0.92765098305256 0.92765098252660
1.0 0.95094579849657 0.95094579480523 0.95094579461056
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Table 2 Approximate solutions for Example 2

x Present method
with n = 14

Method in [27]
with forth-order

Method in [29]

0.0 0.3675152742 0.3675181074 0.3675169710
0.1 0.3663623292 0.3663637561 0.3663623697
0.2 0.3628940661 0.3628959378 0.3628941066
0.3 0.3570975457 0.3570991429 0.3570975842
0.4 0.3489484206 0.3489499903 0.3489484612
0.5 0.3384121487 0.3384136581 0.3384121893
0.6 0.3254435224 0.3254450019 0.3254435631
0.7 0.3099860402 0.3099878567 0.3099860810
0.8 0.2919711030 0.2919789654 0.2919711440
0.9 0.2713170101 0.2713185637 0.2713170512
1.0 0.2479277233 0.2479292837 0.2479277646

Table 3 Numerical errors for Example 3

x Present method
with n = 10

Present method
with n = 14

Approach II [28]
with n = 20

0.0 3.77× 10–8 6.72× 10–8 2.00× 10–6

0.1 1.05× 10–7 6.69× 10–8 1.99× 10–6

0.2 6.33× 10–9 7.87× 10–9 1.97× 10–6

0.3 5.91× 10–8 6.92× 10–9 1.94× 10–6

0.4 2.12× 10–7 2.87× 10–8 1.83× 10–6

0.5 1.00× 10–8 7.40× 10–10 1.78× 10–6

0.6 5.36× 10–7 6.32× 10–8 1.67× 10–6

0.7 4.25× 10–8 6.95× 10–8 1.34× 10–6

0.8 8.32× 10–7 3.38× 10–9 9.20× 10–7

0.9 4.67× 10–8 7.85× 10–8 4.57× 10–7

1.0 6.42× 10–8 6.63× 10–8 0

with the exact solution y(x) =  ln( c+
cx+ ), where c = –

√
. Table  shows numerical errors

of this example in analogy to errors for this example in [].

5 Conclusion
This paper presents a new approach based on the operational matrix of derivative of
the orthonormal Bernoulli polynomials for the numerical solution of a class of singular
boundary value problems arising in physiology. By use of orthonormal Bernoulli polyno-
mials as basis and the operational matrix of derivative of these functions, we convert such
problems to an algebraic system. The implementation of current approach in analogy to
existing methods is more convenient and the accuracy is high, and we can execute this
method in a computer in a speedy manner with minimum CPU time used. The numerical
applied models that have been presented in the paper are compared with other methods.
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