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Abstract

Background: Granulin-epithelin precursor (GEP), a secretory growth factor, demonstrated overexpression in various
human cancers, however, mechanism remain elusive. Primary liver cancer, hepatocellular carcinoma (HCC), ranks the
second in cancer-related death globally. GEP controlled growth, invasion, metastasis and chemo-resistance in liver
cancer. Noted that GEP gene locates at 17q21 and the region has been frequently reported to be amplified in
subset of HCC. The study aims to investigate if copy number gain would associate with GEP overexpression.

Methods: Quantitative Microsatellite Analysis (QuMA) was used to quantify the GEP DNA copy number, and
fluorescent in situ hybridization (FISH) was performed to consolidate the amplification status. GEP gene copy
number, mRNA expression level and clinico-pathological features were analyzed.

Results: GEP DNA copy number determined by QuMA corroborated well with the FISH data, and the gene copy
number correlated with the expression levels (n = 60, r = 0.331, P = 0.010). Gain of GEP copy number was observed
in 20% (12/60) HCC and associated with hepatitis B virus infection status (P = 0.015). In HCC with increased GEP
copy number, tight association between GEP DNA and mRNA levels were observed (n = 12, r = 0.664, P = 0.019).

Conclusions: Gain of the GEP gene copy number was observed in 20% HCC and the frequency comparable to
literatures reported on the chromosome region 17q. Increased gene copy number contributed to GEP
overexpression in subset of HCC.
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Background
Granulin-epithelin precursor (GEP) contributes in multiple
vital biological processes and its alias partly indicates its
function, including progranulin, proepithelin, acrogranin,
and PC cell-derived growth factor. GEP is a pluripotent
growth factor important in fetal development, neuronal
cell survival, wound healing and tumorigenesis [1-4].
Over-expression of GEP has been reported in a number of
human cancers including breast, prostate, and ovary can-
cers [5-7]. In addition to its classical well-known biological
function on growth regulation, GEP has recently been
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shown to control chemo-resistance [8-10]. Nonetheless,
the mechanism of GEP over-expression remains elusive.
The incidence of primary liver cancer, hepatocellular

carcinoma (HCC), has been increasing globally in the
past two decades. HCC is the second most frequent
cause of cancer-related death worldwide [11]. Major risk
factors for HCC development include infections with
hepatitis B virus (HBV) and hepatitis C virus (HCV), al-
coholic liver diseases and fatty liver diseases. In China,
with endemic HBV infection, HCC is the second leading
cause of cancer death [12]. In Western countries, HCC
incidence is increasing steadily [11]. Treatment of HCC
remains a challenge, as curative partial hepatectomy and
liver transplantation are only applicable for early stage
patients [13]. However, with limited surveillance, and
early stage HCC usually asymptomatic, the majority of
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HCC patients are diagnosed at advanced stages. Prognosis
of advanced stage HCC is poor with overall survival rate
less than 5%. Treatment options for advanced HCC are
limited, systemic chemotherapy and hormone therapy
have not been effective [14]. The research effort should
continue to comprehend hepatocarcinogenesis. GEP has
shown over-expression in HCC with functional roles on
growth, invasion, tumorigenicity and cancer stem cell
properties [8,9,15]. In addition, GEP has demonstrated the
potential to serve as therapeutic target [16-18]. Noted the
GEP gene locus at chromosome 17q21 and the region has
been frequently reported with copy number gain in HCC
[19,20]. In this study, we investigated the GEP DNA
copy number, and analyzed the association with gene
expression levels and clinico-pathological features.

Methods
Clinical specimens
Sixty patients underwent curative partial hepatectomy
for hepatocellular carcinoma (HCC) between September
2002 and July 2005 at Queen Mary Hospital, Hong
Kong, were recruited with informed consent. Clinico-
pathological data were prospectively collected. Ten blood
samples from healthy individuals were recruited and
served as control with informed consent. The study proto-
col was approved by the Institutional Review Board of the
University of Hong Kong / Hospital Authority Hong Kong
West Cluster (HKU/HA HKW IRB).

Quantitative microsatellite analysis (QuMA)
Copy number of GEP gene was measured by Quantitative
Microsatellite Analysis (QuMA) as described using quanti-
tative real-time PCR amplification [21]. Chromosome 3
consistently showed stable copy number in HCC [19,20,22]
and thus microsatellite D3S1609 was used as a reference
locus. Copy Number Assay for GEP and D3S1609 were
ready-made reagents (Applied Biosystems, Foster City,
CA). The number of PCR cycles (CT) required for the sig-
nal intensities to exceed a threshold just above back-
ground was calculated for the test and reference reactions.
CT values were determined for test and reference reac-
tions in each sample, averaged, and subtracted to obtain
deltaCT (dCT) [dCT = CT (test locus) –CT (reference
locus)]. dCT values were measured for each unknown
sample [dCT (test DNA)] and for samples from ten unre-
lated healthy individuals (calibrator) [average dCT (cali-
brator DNA)]. Relative copy number at each locus in the
test sample was then calculated as described [21]:

Relative DNA copy number ¼ N� 1þ Eð Þ‐ddCT

where ddCT = dCT (test DNA) – average dCT (calibrator
DNA), and E = PCR efficiency. The primers had showed
PCR efficiencies >95% (Additional file 1: Figure S1), and
N= 2 for diploid normal individuals, and for simplicity,
relative DNA copy number = 2 × 2-ddCT. Tolerance inter-
val (TI) was calculated to determine if the test sample in
the QuMA measurement was significantly different from
the mean of measurements made on samples from the
healthy individuals [21]:

TI ¼ N� SD� 3:38

where SD was the standard deviation and 3.38 was the
two-sided tolerance limiting factor for the measurements
on healthy samples, and N = 2 for diploid status. Measure-
ments outside this range were considered significantly dif-
ferent from normal.

Fluorescence in situ hybridization (FISH)
FISH analysis was performed to confirm the copy num-
ber status in paraffin-embedded HCC tissues as de-
scribed [23]. Two primary HCCs were investigated by
FISH based on histology assessment among the samples
with DNA copy number gain by QuMA. Two BAC
clones RP11-436 J4 and RP11-52 N13 flanking GEP gene
located at 17q21 were labelled with Spectrum Green
(Molecular Probes, Life Technologies). The centromeric
probes at chromosome 3 (pAE0.68) and chromosome 17
(pEZ17-4) were labelled with Spectrum Orange (Molecu-
lar Probes) and used as reference probes. Chromosomal
locations of these probes were validated in metaphases of
normal individual.

Statistical analysis
All analyses were performed using the statistical soft-
ware IBM SPSS Statistics Version 21 (Armonk, NY).
Continuous variables were assessed by Pearson correl-
ation analyses. The comparison of categorical variables
was examined by Pearson chi-square test with Yates con-
tinuity correction. Difference was considered statistical
significant if the P value was less than 0.05.

Results
GEP DNA copy number by QuMA
The GEP DNA copy number was measured by QuMA
using real-time PCR. The efficiencies of the PCR were
examined (Additional file 1: Figure S1). The CT values
were plotted against the amount of DNA in serial dilu-
tions. Both assays showed efficiencies close to 100%,
demonstrated that the PCR products were nearly doubled
in each cycle. The DNA copy number was calculated by
the formula described in the Method section.
GEP DNA copy numbers were stable in the ten

healthy individuals (DNA copy number ranged 1.88 to
2.12, SD = 0.09) (Figure 1). These measurements were
used as reference for the diploid (N = 2) status, and with
regard to the tolerance interval, GEP copy number >2.28
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Figure 1 GEP DNA copy number determined by QuMA. Healthy
blood DNA (n = 10) showed trivial variations on DNA copy number.
Notably, HCC tumor DNA (n = 60) demonstrated considerable
variations on GEP DNA copy number.
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was considered significantly higher copy number than
control. In HCC, GEP copy number variations were
common (ranged 1.00 to 2.95, SD = 0.42) and 20% HCC
(12/60) demonstrated gain of GEP DNA (Figure 1).

Characterization of 17q21 region by FISH analysis
To further substantiate the gene copy number by
QuMA, we have examined the copy number of 17q21
region in primary HCC samples (HCC801 and HCC884)
by FISH analysis. Both BAC clones (RP11-436 J4 and
Figure 2 GEP gene copy number by FISH analysis with reference to centro
detected by two flanking probes, RP11-436 J4 (left) and RP11-52 N13 (right
(CEN17) and centromere 3 (CEN3). DNA copy number for each set was qua
Table 1. This case HCC801 showed CEN17 scores ranged 3.37 to 3.51, and G
17 copy number at centromere and GEP locus at 17q21. Nonetheless, CEN
chromosome 3 (diploid) with reference to GEP scores 3.73 by different pro
was 3.60 by FISH analysis (reference to CEN3) compared to 2.56 by QuMA
extend of underestimation would depend on the percentage of non-tumo
have also been described in Discussion.
RP11-52 N13) flanking GEP gene demonstrated increased
DNA copy number (Figure 2; Table 1). Nonetheless, the
centromeric probe at chromosome 17 (pEZ17-4) also re-
vealed increased DNA copy number per cell (Table 1).
CEN17 scores ranged 2.92 to 3.51 per cell, and GEP scores
ranged 3.02 to 3.80 per cell. The data indicated an in-
creased chromosome 17 copy number, at both the centro-
mere and GEP locus in these cases.
To further comprehend the GEP DNA copy number,

we therefore used centromere 3 as reference chromo-
some for FISH analysis as chromosome 3 as shown to be
stable on copy number [19,20,22]. CEN3 scores ranged
1.92 - 2.17 per cell, indicating approximately two copies
of chromosome 3 in these cases. The number of GEP
DNA per 2 centromere (diploid) was 3.60 and 2.86 for
HCC801 and HCC884, respectively, by FISH analysis
with reference to CEN3. Notably, similar GEP DNA
copy number increased was observed in both HCC801
and HCC884 using QuMA. The data indicated chromo-
somal gain of the GEP gene locus at 17q21.

GEP copy number correlated with transcript levels and
clinico-pathological features
GEP transcript levels had been demonstrated to be sig-
nificantly elevated in HCC compared with their adjacent
non-tumor liver tissues and normal livers from healthy
individuals [8,15]. The transcript data was extracted
from the previous reported cohort [8] and analyzed with
mere 17 (CEN17) and centromere 3 (CEN3). GEP gene (green) was
), respectively. Control probes (red) included the centromere 17
ntified for 100 cells and the scores (signals per cell) presented in
EP scores 3.66 to 3.80. The data indicated an increased chromosome

3 scores ranged 1.97 to 2.17, indicating approximately two copies of
bes flanking the gene region. GEP copy number for this case HCC801
(reference to D3S1609). QuMA is a PCR-based assay method and the
r cells, e.g. infiltrating lymphocytes etc., within the tumor mass. Details



Table 1 GEP DNA copy number with reference to A.)
centromere 17 (CEN17)1 and B.) centromere 3 (CEN3)2 by
FISH analysis3,4

A. GEP CEN17 GEP CEN17

HCC RP11-436 J4 pEZ17-4 RP11-52 N13 pEZ17-4

801 3.66 3.37 3.80 3.51

884 3.08 2.92 3.02 2.77

B. GEP CEN3 GEP CEN3

HCC RP11-436 J4 pAE0.68 RP11-52 N13 pAE0.68

801 3.73 2.17 3.73 1.97

884 2.85 2.10 2.89 1.92
1GEP DNA copy number with reference to centromere 17 (CEN17). In these
two cases, CEN17 scores ranged 2.92 to 3.51 per cell, and similarly GEP scores
ranged 3.02 to 3.80 per cell. The data indicated an increased chromosome 17
copy number, at centromere and GEP locus at 17q21, in these cases.
2GEP DNA copy number with reference to centromere 3 (CEN3). CEN3 scores
ranged 1.92-2.17 per cell, indicating approximately two copies of chromosome
3. The number of GEP DNA per 2 centromere (diploid) was 3.60 and 2.86 for
HCC801 and HCC884, respectively, by FISH analysis. GEP copy number was
2.56 and 2.93 for HCC801 and HCC884, respectively, by QuMA (reference
to D3S1609).
3DNA copy number for each set was quantified for 100 cells and data
presented per cell.
4Noted independent platform using QuMA qPCR, both HCC801 and HCC884
showed similar increased GEP DNA copy number.

Table 2 Clinico-pathological features of HCC in relation to
GEP DNA copy number

GEP DNA copy number

HCC features No gain Gain P1

Venous infiltration

Absent 19 7 0.397

Present 29 5

Tumour size

Small (≤5 cm) 10 3 1.000

Large (>5 cm) 38 9

pTNM stage

Early stage (I-II) 31 9 0.732

Late stage (III-IV) 17 3

Edmondson grade

Well differentiation 41 10 1.000

Poor differentiation 7 2

Gender

Male 42 7 0.055

Female 6 5

Age

Young (≤60) 37 6 0.133

Elderly (>60) 11 6

Serum AFP level

Low (≤20 ng/mL) 21 1 0.052

High (>20 ng/mL) 27 11

HBV status (HBsAg)

Negative 4 5 0.015

Positive 44 7
1Pearson chi-square test with Yates continuity correction.
Abbreviations: AFP alpha-fetoprotein, HBV hepatitis B virus, HBsAg hepatitis B
surface antigen.
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the current DNA data. Notably, GEP DNA copy number
correlated with transcript levels (n = 60, r = 0.331, P =
0.010) (Figure 3). Importantly, in HCC cases with GEP
gene amplification, increased GEP gene copy number
was tightly associated with enhanced expression levels
(n = 12, r = 0.664, P = 0.019).
The GEP copy number in HCCs were further analyzed

for clinico-pathological significance. The HCCs were
categorized as “no gain” or “gain” groups according to
the GEP DNA copy number. GEP DNA copy number
was significantly associated with HBV status (P = 0.015)
(Table 2).
Figure 3 GEP DNA copy number correlated with expression levels.
GEP DNA copy number correlated with transcript levels (n = 60,
r = 0.331, P = 0.010).
Discussions
Increased GEP transcript and protein levels have been
reported in various human cancers [5-7]. The en-
hanced GEP expressions have been demonstrated to
associate with aggressive tumor features, including
large tumor size [15,24], metastasis [15,25], and poor
prognosis [5,8,25-27]. Biological roles have been dem-
onstrated with cell models and xenograft systems with
regulatory functions on growth [7,15,25,28,29], inva-
sion [15,30,31], tumorigenicity [15,25,30], drug resist-
ance [8,28,30,32] and cancer stem cell properties [8,9].
The biological function of GEP corroborates very well
with the aggressive clinical features of the tumors
showing over-expression. Studies on the signaling
pathways demonstrated substantial molecules associ-
ated with GEP expressions. GEP stimulated MAPK and
PI3K pathways [29]. GEP was a cofactor for toll-like re-
ceptor 9 signaling [33]. In addition, GEP protein over-
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expressions were associated with accumulation of
wild-type p53 protein [34]. GEP has also been shown
to be regulated by endothelin, lysophosphatidic acid
and cAMP [7]. Protein kinase C signaling has demon-
strated to influence GEP protein levels [35]. Nonetheless,
the exact mechanism for GEP over-expression in the ma-
jority of human cancers warrant further investigation.
Elevated expressions of growth factors and oncogenes

have been reported to associate with gene copy number
gain. In the current study, the GEP gene copy number
was investigated by real-time PCR based method QuMA
and FISH analysis. QuMA has been commonly employed
for quantitative measurement of DNA copy number
[21,36,37]. Nonetheless, there were technical limitations
that DNA samples were extracted from tumor mass which
would contain tumor cells and tumor-infiltrating cells in-
cluding lymphocytes etc. Therefore, copy number assays
would underestimate the tumor chromosomal aberrations
and would need further computational analyses [38,39].
The extent of underestimation would depend on the per-
centage of tumor-infiltrating cells which fluctuate between
specimens. In contrast, FISH analysis was performed
under microscope. Thus, tumor cells could be distin-
guished from non-tumor components and focused to
analyze for genetic alterations. FISH has been shown to be
useful to facilitate the diagnosis of neoplasms [40-42].
Comparatively, FISH is reliable but technically demanding
and expensive, while QuMA prone to underestimate gen-
etic aberration but is economical and suitable for large
scale screening by automation. The two methods should
be used in complementary for investigation of cancer gen-
etic aberrations.
Copy number gain at specific chromosomal region

contributes on activation of oncogenes and growth fac-
tors. The process is important during tumor initiation
and also progression along carcinogenesis. However,
there always have concerns on whether high levels of
amplification are necessary or if the gain of single extra
copy would be able to advance cancer. Recently, there
are reports that low copy number gain contributes on
cancer progression [43-45]. Gain of single supernumer-
ary segment encompassing Myc, Pvt1, Ccdc26 and
Gsdmc has shown to promote cancer [43]. The present
study demonstrated low copy number gain at centromere
17 and GEP gene at 17q21 associated with increased GEP
expressions. Therefore, the specific chromosomal region
17q21 would be the focus to examine if this segment
contains the essential gene set for tumor initiation and
progression.
Recurrent genomic and expression alterations have

been reported on chromosomal arm 17q. Independent
studies demonstrated expression gains of gene set at
17q12-21 [46] and 17q21-25 [47], respectively, in HCC
by expression imbalance map analysis. These expression
gain regions corroborated with chromosomal gain re-
gions frequently reported in HCC [48,49]. Furthermore,
TOP2A gene locus at 17q21-22 has reported copy gains
and overexpression, and regulated chemo-resistance in
HCC [47]. Similar copy number gain status has also
been revealed in HER2 with copy number gain at gene
locus 17q21 and centromere 17, and showed protein
over-expression in breast cancer [50]. Elevated HER2 ex-
pression has been demonstrated in HCC tissues [51] and
blood samples [52], and associated with poor survival
[49]. HER2 associated with hepatitis B virus infection
[52] in particular hepatitis B x (HBx) antigen [51,53]
where HBx has been shown to promote chronic liver
disease and HCC development [54]. Further investiga-
tion would be warranted to examine the minimal gene
set that drives neoplasia. Potential candidates at chromo-
somal segment 17q21 that demonstrated copy number
gain and overexpression included GEP, TOP2A and
HER2. These genes could constitute partly the essential
gene set that initiate and promote HCC progression.
Conclusion
These observations show copy number gain of GEP gene
at 17q21 in 20% HCC, and the increased GEP gene copy
number correlated with enhanced expression levels in
these HCC. This partly provides a mechanistic explan-
ation for the over-expression of GEP for the subset of
HCC. Future studies should also examine the chromo-
somal region at 17q21 for the minimal essential set of
genes for HCC initiation and progression. Notably, GEP
over-expression has been observed in over 70% HCC
[8,15]. Further investigations are warranted to under-
stand tumor that showed GEP over-expression in the ab-
sence of GEP gene copy number gain.
Additional file

Additional file 1: Figure S1. PCR efficiencies. Serial dilutions of
template DNA was used for the PCR. The CT values were plotted against
the amount of DNA used. Both assays showed efficiencies close to 100%,
denoted that the PCR products were amplified with a factor close to 2 in
each cycle.
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