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1 Introduction

Currently, the focus of high energy physics is the LHC experiment. To understand the

experiment data, we need to evaluate scattering amplitudes to high accuracy level required

by data. Thus for most processes, the one-loop evaluation becomes necessary. In last

ten years, enormous progress has been made in the computation of one-loop scattering

amplitudes (see, for example, the references [1–3] and citations in the papers). However,

for some processes in modern colliders, such as the process gg → γγ which is an important

background for searching the Higgs boson at the LHC, one-loop amplitudes do not suffice

since their leading-order terms begin at one loop. Thus next-to-leading order corrections

require the computation of two-loop amplitudes [4–6].

The traditional method for amplitude calculation is through the Feynman diagram.

This method is well organized and has clear physical picture. It has also been implemented

into many computer programs. However, with increasing of loop level or the number

of external particles, the complexity of computation increases dramatically. Thus even

with the most powerful computer available, many interesting processes related to LHC

experiments can not be dealt by the traditional method.

To solve the challenge, many new methods (see books [7–9]) have been developed,

such as IBP (integrate-by-part) method [10–19] (some new developments, see [20–22]),

differential equation method [23–30], MB (Mellin-Barnes) method [31–34], etc. Among

these methods, the reduction method [35–41] is one of the most useful methods. More

explicitly, the reduction of an amplitude means that any amplitude A can be expanded by

bases (or “master integral”) as

A =
∑

i

ciAi , (1.1)

with rational coefficients ci. With this expansion, the amplitude calculation can be sepa-

rated into two parts: (a) the evaluation of bases (or master integrals) at given loop order

and (b) the determination of coefficients ci for a particular process. For the former part,

it can be done once for all and the results can be applied to any process. Thus in the

practical application, the latter part, i.e., the determination of coefficients, becomes the

central focus of all calculations.

Unitarity method is an ideal tool to determine coefficients [42–72]. With the expan-

sion (1.1), if we perform unitarity cut on both sides, we will get

∆A =
∑

i

ci∆Ai . (1.2)

So if both ∆A and ∆Ai can be evaluated analytically, and if different ∆Ai has distinguish-

able analytic structure (which we will call the ”signature” of basis under the unitarity cut),
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we can compare both sides of (1.2) to determine coefficients ci, analogous to the fact that

if two polynomials of x are equal, so are their coefficients of each term xn. The unitarity

method has been proven to be very successful in determining coefficients for one-loop am-

plitudes (see reviews [73, 74]). For some subsets of bases (such as box topology for one-loop

and double-box topology for planar two-loop), more efficient method, the so called “gener-

alized unitarity method” (or “maximum unitarity cut” or “leading singularity”), has been

developed [48, 75–87].

The applicability of reduction method is based on the valid expression of expan-

sion (1.1). Thus the determination of bases becomes the first issue. From recent study, it

is realized that there are two kinds of bases: the integrand bases and the master integrals.1

The integrand bases are algebraically independent rational functions before performing

loop integration. For one-loop, the integrand bases have been determined by OPP [88].

For two-loop or more, the computational algebraic geometry method has been proposed to

determine the integrand bases [89–99].

In general the number of integrand bases is larger than the number of master integrals,

because after loop integration, some combinations of elements in integrand bases may

vanish. For one-loop amplitudes, the difference between these two numbers is not very

significant. For example, the number of master integral is one while the number of integrand

bases is seven for triangle topology of renormalizable field theories [88]. However, for two-

loop amplitudes, the difference could be huge. As we will show later, for double-triangle

topology, there are only several master integrals, while the number of integrand bases is

about one hundred for renormalizable field theories [98]. Thus the determination of master

integrals for two-loop and higher-loop becomes necessary.

Although integrand bases can be determined systematically, the determination of mas-

ter integrals is far from being completely solved. It is our attempt in this paper to find an

efficient method to solve the problem.2 Noticing that in the unitarity method, the action

∆ in (1.2) is directly acting on the integrated results, thus if the left hand side ∆A can

be analytically integrated for arbitrary inputs, we can classify independent distinguishable

analytic structures from these results. Each structure should correspond to one master

integral.3 By this attempt we can determine master integrals.

In this paper, taking double-box topology and its daughter topologies as examples, we

generalize unitarity method to two-loop amplitudes and try to determine master integrals.

Different from the maximal unitarity method [80], we cut only four propagators (the prop-

agator with mixed loop momenta will not be touched). Comparing with maximal unitarity

cut where solutions for loop momenta are complex number in general, our cut conditions

guarantee the existence of real solutions for loop momenta, thus avoiding the affects from

spurious integrations.

1To not confuse two kinds of bases, we use “master integrals” to denote the independent bases after

integration.
2It is worth to notice that in reference [100], a very efficient way has been presented to count the number

of master integrals although explicit expressions of these bases can not be determined.
3It is possible that two different master integrals have the same analytic structure for all physical unitarity

cuts, but we do not consider this possibility in current paper. All our claims in this paper are true after

neglecting above ambiguity.
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This paper is organized as follows. In section 2 we review the one-loop unitarity

method and then generalize the scheme to two-loop. For two-loop, two sub-one-loop phase

space integrations should be evaluated. In section 3, we integrate the first sub-one-loop

integration of triangle topology. The result is used in section 4, where integration over

the second sub-one-loop of triangle topology is performed. Results obtained in this section

allow us to determine master integrals for the topology A212. Results in section 3 is

also used in section 5, where integration over the second sub-one-loop of box topology is

performed, and the result can be used to determine master integrals for topology A213. In

section 6, we briefly discuss master integrals of topology A313 since results are well known

for this topology. Finally, in section 7, a short conclusion is given.

Technical details of calculation are presented in appendix. In appendix A, some useful

formulae for phase space integration are summarized. In appendix B, the phase space

integration is done for one-loop bubble, one-loop triangle and one-loop box topologies. In

appendix C, details of an integration for topology A313 are discussed.

2 Setup

In this section, we present some general discussions about the calculation done in this paper.

Firstly, we review how to do the phase space integration in unitarity method illustrated

by one-loop example. Then we set up the framework in unitarity method for two-loop

topologies which are the starting point of this paper.

2.1 Phase space integration

The unitarity method has been successfully applied to one-loop amplitudes [42–72] . Here

we give a brief summary about the general (4− 2ǫ)-dimensional unitarity method [62–70],

which will be used later. Through this paper we use the metric ηµν = (+,−, . . . ,−) and

QCD convention for spinors, i.e., 2ki · kj ≡ 〈ki|kj〉 [kj |ki].
For one-loop, the action ∆ in (1.2) is realized by putting two internal propagators

on-shell. More explicitly, let us consider the following most general input4 with massless

internal propagators5

A(a)
n ≡

∫
d4−2ǫℓ̂I(a)

n =

∫
d4−2ǫℓ̂

(2ℓ̂ · T )a

ℓ̂2
∏n−1

i=1 (ℓ̂−Ki)2
, (2.1)

where the inner momentum is in (4−2ǫ)-dimensional space and all external momenta are in

pure 4D space for our regularization scheme. The unitarity cut with intermediate flowing

momentum K is given by putting ℓ̂2 and (ℓ̂−K)2 on-shell, and we get the expression

∆A(a)
n =

∫
d4−2ǫℓ̂

(2ℓ̂ · T )aδ(ℓ̂2)δ((ℓ̂−K)2)
∏n−2

i=1 (ℓ̂−Ki)2
. (2.2)

4The most general expression for numerator will be
∑

i

∏
j
(ℓ · Rij). For each term

∏n

j=1(ℓ · Rij), we

can construct (ℓ · R̃i)
n with R̃i =

∑n

j=1 yjRij . Thus if we know the result for numerator (ℓ · R̃i)
n, we can

expand it into the polynomial of yi and read out corresponding result for
∏n

j=1(ℓ ·Rij).
5For simplicity we consider the massless propagators, but massive propagators can be dealt similarly.
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With two delta-functions, the original (4−2ǫ)-dimensional integration is reduced to (2−2ǫ)-

dimensional integration. To carry out the remaining integration, we decompose ℓ̂ as ℓ̂ =

ℓ̃+ µ, where ℓ̃ is the pure 4D part while µ is the (−2ǫ)-dimensional part [62–64], then the

measure becomes
∫

d4−2ǫℓ̂δ(ℓ̂2)δ((ℓ̂−K)2)(•) =
∫

d−2ǫµ

∫
d4ℓ̃δ(ℓ̃2 − µ2)δ((ℓ̃−K)2 − µ2)(•) . (2.3)

Next, we split ℓ̃ into ℓ̃ = ℓ+ zK with ℓ2 = 0 to arrive

∫
d4ℓ̃δ(ℓ̃2 − µ2)δ((ℓ̃−K)2 − µ2)(•)

=

∫
dzd4ℓδ(ℓ2)(2ℓ ·K)δ(z2K2 + 2zℓ ·K − µ2)δ((1− 2z)K2 − 2ℓ ·K)(•) . (2.4)

Having the form (2.4), we can use the following well known result of spinor integra-

tion6 [101]. Define null momentum as ℓ = tλλ̃, then

∫
d4ℓδ+(ℓ2)(•) =

∫ +∞

0
tdt

∫
〈λ|dλ〉

[
λ̃|dλ̃

]
(•) . (2.5)

Substituting (2.5) back to (2.4), we can use remaining two delta-functions to fix t and z as

z =
1−

√
1− u

2
, t =

(1− 2z)K2

〈
λ|K|λ̃

] , u ≡ 4µ2

K2
. (2.6)

After above simplification, the integral (2.2) is transformed to the following spinor

form

∆A(a)
n =

∫
d−2ǫµ

∫
〈λ|dλ〉

[
λ̃|dλ̃

] (−)n−2[(1− 2z)K2]a−n+3
〈
λ|R|λ̃

]a

〈
λ|K|λ̃

]a−n+4∏n−2
i=1

〈
λ|Qi|λ̃

] , (2.7)

where

R ≡ T +
z(2K · T )
(1− 2z)K2

K , Qi ≡ Ki +
z(2K ·Ki)−K2

i

(1− 2z)K2
K . (2.8)

To deal with the integral like
∫
〈λ|dλ〉

[
λ̃|dλ̃

]
f(λ, λ̃) when f(λ, λ̃) is a rational function,

the first step is to find a function g(λ, λ̃) satisfying

∫
〈λ|dλ〉

[
λ̃|dλ̃

]
f(λ, λ̃) =

∫
〈λ|dλ〉

[
dλ̃| ∂

∂λ̃

]
g(λ, λ̃) . (2.9)

6For one-loop, we can take either positive light cone or negative light cone, where for negative light cone,

the t-integration will be
∫ 0

−∞
. For two-loop, it can happen that if we take positive light cone for ℓ1, then

we need to take negative light cone for ℓ2. However, the choice of light cone only gives an overall sign and

does not affect λ, λ̃ integration.
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With g(λ, λ̃), the integration is given algebraically by the sum of residues of holomorphic

pole in g(λ, λ̃) [55–57]. In appendix B, we summarize some general results of standard one-

loop integrations using above technique. It is worth to mention that for two-loop, f(λ, λ̃)

might not be rational function. We will discuss how to deal with it later.

We also want to remark that under the framework of (4 − 2ǫ)-dimensional unitarity

method, coefficient of each master integrals will be polynomial of µ2 (remembering the

splitting ℓ̂ = ℓ̃ + µ). There are two ways to handle it. For the first way, one can further

integrate
∫
d−2ǫµ (µ2)n to find coefficients depending on ǫ. For the second way, we just

keep µ2, but include the dimensional shifted master integrals [47, 102], such as

AD=(4−2ǫ)[(µ2)r] ≡
∫

d−2ǫµd4ℓ̃
(µ2)r

(ℓ̃2 − µ2)
∏n−1

i=1 ((ℓ−Ki)2 − µ2)
. (2.10)

This is equivalent to

AD=(4−2ǫ)[(µ2)r] = −ǫ(1− ǫ) . . . (r − 1− ǫ)AD=(4+2r−2ǫ)[1] . (2.11)

For one-loop, dimensional shifted master integrals are often used. In this paper we adapt

the similar strategy, i.e., keeping the µ-part and introducing the dimensional shifted

master integrals.

2.2 Generalizing to two-loop case

In this subsection, we set up unitarity method for two-loop amplitudes, particularly for the

attempt of determining master integrals.

The first problem is to decide which propagators should be cut. There are three kinds of

propagators: (1) propagators depending on ℓ̂1 only; (2) propagators depending on ℓ̂2 only;

(3) propagators depending on both ℓ̂1 and ℓ̂2. In principle, we can cut any propagators, but

for simplicity, in this paper we will cut propagators of the first two kinds. For our choice,

we cut two propagators of the first kind and two propagators of the second kind. With this

arrangement, for each loop it is exactly the familiar unitarity method in one-loop case.

Next we set up notation for two-loop integral. The two internal momenta are denoted

as ℓ̂1, ℓ̂2 in (4−2ǫ)-dimension, while all external momenta are in pure 4-dimension. We use

n1, n2, n12 to denote the number of each kind of propagators respectively. Then a general

integrand with massless propagators7 can be represented by8

I(a,b)
n1n12n2

≡ (2ℓ̂1 · T1)
a(2ℓ̂2 · T2)

b

[ℓ̂21
∏n1−1

i=1 (ℓ̂1 −K1i)2][ℓ̂22
∏n2−1

j=1 (ℓ̂2 −K2j)2][(ℓ̂1 + ℓ̂2)2
∏n12−1

t=1 (ℓ̂1 + ℓ̂2 −Kt)2]
.

(2.12)

The unitarity cut action ∆ is then given by9

∆A =

∫ 2∏

i=1

d4−2ǫℓ̂i

{
I(a,b)
n1n12n2

2∏

i=1

ℓ̂2i (ℓ̂i −KLi
)2

}
2∏

i=1

δ(ℓ̂2i )δ((ℓ̂i −KLi
)2) . (2.13)

7In this paper, we consider the massless case only. For inner propagators with masses, we will leave to

further projects.
8In this paper, we use I for integrand and A for integral.
9We have neglected some overall factors in the definition of integration since it does not matter for our

discussion.
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K1

K2
K34

L1
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I_{312}

K1
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L1 L2
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K3

K4

L1 L2
I_{202}

K12 K34

Figure 1. The unitarity cut of double box topology I313 as well as its seven daughter topologies.

The dashed red lines indicate cuts.

Note that for cases studied in this paper, the left cut momentum KL1 = K12 is the same to

the right cut momentum KL2 = K34 up to a sign, however we keep them independently so

that it is possible to formulate them to more general situations for further investigations.

With above setup, we take a well studied example [20, 80–86], i.e., the four-point two-

loop double-box (A313) integral as the target to apply the unitarity method and determine

master integrals. The integrand is given by

I(a,b)
313 =

(2ℓ̂1 · T1)
a(2ℓ̂2 · T2)

b

ℓ̂21(ℓ̂1 −K1)2(ℓ̂1 −K12)2ℓ̂22(ℓ̂2 −K4)2(ℓ̂2 −K34)2(ℓ̂1 + ℓ̂2)2
, (2.14)

and the four propagators to be cut are

ℓ̂21 , (ℓ̂1 −K12)
2 , ℓ̂22 , (ℓ̂2 −K34)

2 ,

where K12 +K34 = 0. With this choice of cuts, in order to completely understand the re-

sults, we also need to consider other topologies besides double-box. The other contributions

come from those topologies by pinching one or more un-cut propagators of double-box, as

shown in figure 1. There are three daughter topologies I213, I312, I303 by pinching one

propagator. There are also three daughter topologies I212, I302, I203 by pinching two prop-

agators. Finally there is only one daughter topology I202 by pinching three propagators.

Among them, I303, I203, I302, I202 are direct products of two one-loop topologies, thus their

signatures are well known (see appendix B). So in fact we need to examine two non-trivial

topologies I212, I213 (by symmetry I312 is equivalent to I213) together with the mother

topology I313. Integrand of these two additional topologies are given by

I(a,b)
212 =

(2ℓ̂1 · T1)
a(2ℓ̂2 · T2)

b

ℓ̂21(ℓ̂1 −K12)2ℓ̂22(ℓ̂2 −K34)2(ℓ̂1 + ℓ̂2)2
,

I(a,b)
213 =

(2ℓ̂1 · T1)
a(2ℓ̂2 · T2)

b

ℓ̂21(ℓ̂1 −K12)2ℓ̂22(ℓ̂2 −K4)2(ℓ̂2 −K34)2(ℓ̂1 + ℓ̂2)2
. (2.15)
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In the following sections, we will study I212, I213 and I313 one by one, and our basic

strategy will be to integrate one loop momentum ℓ̃1 first while keeping ℓ̃2 arbitrary. Then

we analyze the integration of ℓ̃2 based on the previous results.

Before ending this section, let us emphasize that in our framework, external momenta

Ki, i = 1, 2, 3, 4 are arbitrary, i.e., they can be massive as well as massless. With this

convention, it is also manifest that for I213 and I212 topologies, the momentum K12 is

massive. One exception is that for I313 topology, because of the complexity of computation

for general choice of Ki, we have restricted our discussions to the case K2
i = 0.

3 The ℓ̃1-part integration (n1 = 2)

In this section, we do the ℓ̃1 integration. Using the standard method for one-loop ampli-

tudes (reviewed in previous section as well as in appendix B) we get (see formula (2.12))

∆A(a,b)
n11n2

=

∫
d−2ǫµ1d

−2ǫµ2d
4ℓ̃2δ(ℓ̃

2
2 − µ2

2)δ(K
2
L2

− 2KL2 · ℓ̃2)
(2ℓ̃2 · T2)

b

∏n2−2
j=1 ((ℓ̃2 −K2j)2 − µ2

2)
∫

〈λ1|dλ1〉
[
λ̃1|dλ̃1

] (−)n1−2((1− 2z1)K
2
L1
)a−n1+2

〈
λ1|KL1 |λ̃1

]a−n1+3

〈
λ1|R1|λ̃1

]a
〈
λ1|W1|λ̃1

]∏n1−2
i=1

〈
λ1|Q1i|λ̃1

] , (3.1)

where various quantities are defined as

R1 ≡ T1 +
z12KL1 · T1

(1− 2z1)K2
L1

KL1 ,

Q1i ≡ K1i +
z1(2KL1 ·K1i)−K2

1i

(1− 2z1)K2
L1

KL1 ,

W1 ≡ ℓ̃2 +
(ℓ̃22 − µ2

2)− 2µ1 · µ2 + 2z1ℓ̃2 ·KL1

(1− 2z1)K2
L1

KL1 , (3.2)

with z1 = 1−
√
1−u1

2 and u1 =
4µ2

1

K2
L1

. The W1 comes from the mixed propagator (ℓ̂1 + ℓ̂2)
2.

Situations with non trivial topologies A313, A312, A213 and A212 are all included in the

formula (3.1).

Let us apply our general framework to the specific case n1 = 2. The general for-

mula (3.1) now becomes

∆A(a,b)
n11n2

∣∣∣
n1=2

=

∫
d−2ǫµ1d

−2ǫµ2d
4ℓ̃2δ(ℓ̃

2
2−µ2

2)δ(K
2
L2

−2KL2 · ℓ̃2)
(2ℓ̃2 · T2)

b

∏n2−2
j=1 ((ℓ̃2−K2j)2−µ2

2)

∫
〈λ1|dλ1〉

[
λ̃1|dλ̃1

] ((1− 2z1)K
2
L1
)a

〈
λ1|KL1 |λ̃1

]a+1

〈
λ1|R1|λ̃1

]a
〈
λ1|W1|λ̃1

] . (3.3)
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The second line is nothing but the standard one-loop triangle integration (see appendix B).

When a = 0, the integration gives the signature of triangle part. When a ≥ 1, the

integration can be decomposed into both triangle part and bubble part. We will evaluate

contributions from these two parts separately.

3.1 The contribution to triangle part

The triangle signature. Based on our general formula of the standard one-loop triangle

integration (B.8), the signature of the triangle part is

Stri ≡
1√

∆W1,KL1

ln



W1 ·KL1 −

√
(W1 ·KL1)

2 −W 2
1K

2
L1

W1 ·KL1 +
√
(W1 ·KL1)

2 −W 2
1K

2
L1


 . (3.4)

Imposing cut conditions for ℓ̃2, i.e., δ(ℓ̃
2
2 −µ2

2) and δ(K2
L2

− 2KL2 · ℓ̃2) we can simplify it to

Stri =
1

K2
L1

√
1−u2

ln

(
(4µ1 · µ2+K2

L1
)+
√

(1−u1)(1−u2)K
2
L1

(4µ1 · µ2+K2
L1
)−
√

(1−u1)(1−u2)K2
L1

)
=

1

t2K2
L1

ln
(s+ t1t2
s−t1t2

)
,

(3.5)

where we have introduced

s =
4µ1 · µ2 +K2

L1

K2
L1

, ti =
√
1− ui , ui =

4µ2
i

K2
Li

, i = 1, 2 . (3.6)

One can observe that the signature part does not depend on ℓ̃2. It is an important feature

which makes ∆A(a,b)
21n2

easier to be treated.

The coefficient C
(a)
3→3. Using (B.8) the expression is

C(a)
3→3 =

(−)a

a!∆a
W1,KL1

da

dτa

(
τ2W 2

1 + τ(4W 2
1 (R1 ·KL1)− 4(R1 ·W1)(W1 ·KL1)) +R2

1∆W1,KL1

+ (2R1 ·W1)
2K2

L1
+ (2R1 ·KL1)

2W 2
1 − (2R1 ·W1)(2R1 ·KL1)(2W1 ·KL1)

)a∣∣∣
τ→0

.

(3.7)

Again, using cut conditions δ(ℓ̃22 − µ2
2) and δ(K2

L2
− 2KL2 · ℓ̃2) we can do the following

replacement

ℓ̃2 →
(1− 2z2)K

2
L2〈

λ2|KL2 |λ̃2

] λ2λ̃2 + z2KL2 =
(1− 2z2)K

2
L1

−
〈
λ2|KL1 |λ̃2

]λ2λ̃2 − z2KL1 ,

where z2 = 1−t2
2 . Since all derivatives act on τ only, such replacement will not affect

the result. Some algebraic manipulation shows that the coefficients of different parts are
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given by

τ2 :
(s2 − t21t

2
2)K

2
L1

4t21
,

τ :
−t2K

2
L1

t1

〈
λ2|KL1 |λ̃2

]
(
t2(KL1 · T1)

〈
λ2|KL1 |λ̃2

]
+ s(−(KL1 · T1)

〈
λ2|KL1 |λ̃2

]

+K2
L1

〈
λ2|T1|λ̃2

]
)
)
,

τ0 :
t22(K

2
L1
)2

〈
λ2|KL1 |λ̃2

]2K
2
L1

〈
λ2|(T1 + y1KL1)|λ̃2

] 〈
λ2|(T1 + y2KL1)|λ̃2

]
, (3.8)

with

y1,2 =
−(2T1 ·KL1)±

√
(2T1 ·KL1)

2 − 4K2
L1
T 2
1

2K2
L1

. (3.9)

To get non-zero contribution from da

dτa
(•)
∣∣∣
τ→0

, we only need to take terms with τa power.

It means that terms with τ2 in (3.8) will always appear with terms τ0, therefore we can

regroup

{
τ2

(s2 − t21t
2
2)K

2
L1

4t21

}
+





t22(K
2
L1
)2

〈
λ2|KL1 |λ̃2

]2K
2
L1

〈
λ2|(T1 + y1KL1)|λ̃2

] 〈
λ2|(T1 + y2KL1)|λ̃2

]




to


τ

2
t2(s−t1t2)(K

2
L1
)2

2t1

〈
λ2|(T1+y1KL1)|λ̃2

]

〈
λ2|KL1 |λ̃2

]



+




t2(s+t1t2)(K

2
L1
)2

2t1

〈
λ2|(T1+y2KL1)|λ̃2

]

〈
λ2|KL1 |λ̃2

]



 .

Thus we can write

C(a)
3→3 =

(−)a(K2
L1
)a

a!(t1t2K2
L1
)a

da

dτa

〈
λ2|F|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a
∣∣∣
τ→0

,

where F is defined as

F = −τ

(
t2
KL1 · T1

K2
L1

KL1 + s
(
T1 −

(KL1 · T1)

K2
L1

KL1

))

+τ2
s− t1t2

2

(
T1 + y1KL1

)
+

s+ t1t2
2

(
T1 + y2KL1

)
. (3.10)

Putting all results together, the triangle part becomes

R(a)
3→3 =


 (−)a(K2

L1
)a

a!(t1t2K2
L1
)a

da

dτa

〈
λ2|F|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a
∣∣∣
τ→0


 1

t2K2
L1

ln
(s+ t1t2
s− t1t2

)
. (3.11)

To do the ℓ̃2-part integration, it is more convenient to use above form before taking the

derivative over τ .
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3.2 The contribution to bubble part

Again we use results given in appendix B.

The R3→2[i,m] term. Using (B.10), the typical term of triangle topology to bubble is

R3→2[i,m] =
(−)m+i(K2

L1
)i

i!(m+ 1)
√

∆(W1,KL1)
m+2i+2

di

dτ i
{(

(2R1 · P2 − τ 〈P1|R1|P2])
m+1

(−x2 〈P2|R1|P1]− x1τ
2 〈P1|R1|P2] + τ(x2(2R1 · P1) + x1(2R1 · P2)))

i
)

+ (−)m
(
(2R1 · P1 − τ 〈P2|R1|P1])

m+1

(−x2τ
2 〈P2|R1|P1]−x1 〈P1|R1|P2]+τ(x2(2R1 · P1)+x1(2R1 · P2)))

i
)} ∣∣∣

τ→0
,

(3.12)

where two null momenta P1, P2 are constructed as Pi = W1 + xiKL1 , with

x1 =
s+ t1t2
2t1

, x2 =
s− t1t2
2t2

.

Again, to get non-zero contribution, 〈P1|R1|P2] and 〈P2|R1|P1] should always appear in

pair. With a little calculations, one can see

〈P1|R1|P2] 〈P2|R1|P1] = T1T2 , Ti =


 t2K

2
L1〈

λ2|KL1 |λ̃2

]



〈
λ2|(T1 + yiKL1)|λ̃2

]
, (3.13)

where y1 and y2 are defined in (3.9). Thus we can take the following replacements

〈P1|R1|P2] → T1 , 〈P2|R1|P1] → T2 . (3.14)

After such replacements we obtain

R3→2[i,m] =
(−)m+i

(m+ 1)i!K2
L1
ti+1
2 tm+i+1

1

di

dτ i




〈
λ2|T1(−t1 − τt1) +KL1(−τt1y1 − (1− t1)

KL1
·T1

K2
L1

)|λ̃2

]m+1

〈
λ2|KL1 |λ̃2

]m+i+1

×
〈
λ2|T1(−x2t1 − x1τ

2t1 − sτ) +KL1(−x2t1y2 − x1t1τ
2y1 + τ(s− t2)

KL1 · T1

K2
L1

)|λ̃2

]i

+ (−)m

〈
λ2|T1(−t1 − τt1) +KL1(−τt1y2 + (1 + t1)

KL1
·T1

K2
L1

)|λ̃2

]m+1

〈
λ2|KL1 |λ̃2

]m+i+1

×
〈
λ2|T1(−x2t1τ

2−x1t1−sτ)+KL1(−x2t1τ
2y2−x1t1y1+τ(s−t2)

KL1 · T1

K2
L1

)|λ̃2

]i

∣∣∣
τ→0

.

(3.15)
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Above expression has the form
〈
λ2| • |λ̃2

] 〈
λ2| • |λ̃2

]
. In order to use the results given in

appendix B, we need to rewrite them by using

(A)m+1(B)i =
i!

(m+ 1 + i)!

dm+1

dτm+1
1

(τ1A+B)m+1+i
∣∣∣
τ1→0

.

So finally we have

R3→2[i,m] =
(−)m+i

(m+ 1)(m+ 1 + i)!K2
L1
ti+1
2 tm+i+1

1

{
di

dτ i
dm+1

dτm+1
1〈

λ2|G2|λ̃2

]m+i+1
+ (−)m

〈
λ2|G1|λ̃2

]m+i+1

〈
λ2|KL1 |λ̃2

]m+i+1





τ→0,τ1→0

, (3.16)

where we have defined

G1 = T1

{
−t1τ1 −

(s− t1t2)

2
τ2 − (s+ t1t2)

2
− τs− ττ1t1

}

+KL1

{
τ1
KL1 · T1

K2
L1

(1+t1)−τ2y2
(s−t1t2)

2
− (s+t1t2)

2
y1+τ

KL1 · T1

K2
L1

(s−t2)−ττ1t1y2

}
,

G2 = T1

{
−τ1t1 − ττ1t1 −

(s− t1t2)

2
− τ2

(s+ t1t2)

2
− sτ

}

+KL1

{
[−(1−t1)τ1+τ(s−t2)]

KL1 · T1

K2
L1

−ττ1t1y1−
(s−t1t2)

2
y2−τ2

(s+t1t2)

2
y1

}
.

(3.17)

3.3 The result for n1 = 2 after ℓ̃1-integration

Collecting results from triangle part and bubble part we obtain

∆A(a,b)
n11n2

∣∣∣
n1=2

=

∫
d−2ǫµ1d

−2ǫµ2

∫
d4ℓ̃2δ(ℓ̃

2
2 − µ2

2)δ(K
2
L2

−2KL2 · ℓ̃2)
(2ℓ̃2 · T2)

b(t1K
2
L1
)a

∏n2−2
j=1 ((ℓ̃2−K2j)2−µ2

2)



1

K2
L1
t2

ln

(
(s+ t1t2)

(s− t1t2)

)
(−)a(K2

L1
)a

a!(t1t2K2
L1
)a

da

dτa

〈
λ2|F|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a
∣∣∣
τ→0

(3.18)

+

a−1∑

i=0

(−)a−1

(a− i)a!K2
L1
ti+1
2 ta1

di

dτ i
da−i

dτa−i
1

〈
λ2|G2|λ̃2

]a
+ (−)a−1−i

〈
λ2|G1|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a
∣∣∣
τ→0,τ1→0



 ,

where s, t1, t2 are defined in (3.6), F in (3.10) and G1,G2 in (3.17).10 The trick here is that

instead of computing the operations da

dτa
(•)
∣∣∣
τ→0

and di

dτ i
da−i

dτa−i
1

(•)
∣∣∣
τ→0,τ1→0

, we will firstly

do the ℓ̃2-part integration.

10Do not confuse the t2 here with the t2-integration part of ℓ̃2 as reviewed in (2.5).
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For ℓ̃2-integration, after the t2-integration we are left with spinor integration given by11

∆A(a,b)
n11n2

∣∣∣
n1=2

=

∫
d−2ǫµ1d

−2ǫµ2

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

] (−)n2+1
〈
λ2|R2|λ̃2

]b

∏n2−2
j=1

〈
λ2|Q2j |λ̃2

] 〈
λ2|KL2

|λ̃2

]2+b−(n2−2)





(−)at
b−(n2−2)
2 (K2

L1
)a+b−(n2−2)

a!ta2
ln

(
(s+ t1t2)

(s− t1t2)

)
da

dτa

〈
λ2|F|λ̃2

]a

〈
λ2|KL1

|λ̃2

]a
∣∣∣
τ→0

(3.19)

+
a−1∑

i=0

(−)a−1(K2
L1
)a+b−(n2−2)t

b−(n2−2)
2

(a− i)a!ti2

di

dτ i
da−i

dτa−i
1

〈
λ2|G2|λ̃2

]a
+(−)a−1−i

〈
λ2|G1|λ̃2

]a

〈
λ2|KL1

|λ̃2

]a
∣∣∣
τ→0,τ1→0



 ,

where we have defined

R2 ≡ T2 +
z22KL2 · T2

(1− 2z2)K2
L2

KL2 , Q2j ≡ K2j +
z2(2KL2 ·K2j)−K2

2j

(1− 2z2)K2
L2

KL2 . (3.20)

4 The master integrals of A212 topology

With results of previous section, it is possible to discuss the master integrals of A212 topol-

ogy in this section. To do so, we need to finish the spinor integration given in (3.19) with

n2 = 2, and attempt to identify the results. We will see that there are only (dimensional

shifted) scalar master integrals.

4.1 The λ2-integration for the case n2 = 2

For the case n2 = 2 the formula (3.19) becomes

∆A(a,b)
212 =

∫
d−2ǫµ1d

−2ǫµ2

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

] (−)
〈
λ2|R2|λ̃2

]b

〈
λ2|KL2 |λ̃2

]2+b




(−)a(K2

L1
)a+btb2

a!ta2
ln

(
(s+ t1t2)

(s− t1t2)

)
da

dτa

〈
λ2|F|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a
∣∣∣
τ→0

(4.1)

+

a−1∑

i=0

(−)a−1(K2
L1
)a+btb2

(a−i)a!ti2

di

dτ i
da−i

dτa−i
1

〈
λ2|G2|λ̃2

]a
+(−)a−1−i

〈
λ2|G1|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a
∣∣∣
τ→0,τ1→0



 .

For our momentum configuration, KL1 = −KL2 , thus we can combine denominator to-

gether to get a simpler expression. Terms of integrand can be classified into two parts, and

we evaluate them one by one.

11There is an overall sign for t2-integration since the momentum conservation forces KL1
= −KL2

, i.e.,〈
λ2|KL2

|λ̃2

]
< 0.
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First part. The first part can be rewritten as

∫
d−2ǫµ1d

−2ǫµ2

(−)a+b+1(K2
L1
)a+btb2

a!ta2
ln

(
(s+ t1t2)

(s− t1t2)

)
da

dτa
a!

(a+ b)!

db

dτ̃ b

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

]
〈
λ2|τ̃R2 + F|λ̃2

]a+b

〈
λ2|KL2 |λ̃2

]a+b+2

∣∣∣
τ→0,τ̃→0

. (4.2)

The second line is the standard one-loop bubble integration, thus we can use the general

formulae in appendix B.

Second part. The second part can be rewritten as

∫
d−2ǫµ1d

−2ǫµ2

a−1∑

i=0

(−)a+b(K2
L1
)a+btb2

(a− i)(a+ b)!ti2

db

dτ̃ b
di

dτ i
da−i

dτa−i
1

(4.3)

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

]
〈
λ2|τ̃R2 + G2|λ̃2

]a+b

+ (−)a−1−i
〈
λ2|τ̃R2 + G1|λ̃2

]a+b

〈
λ2|KL1 |λ̃2

]a+b+2

∣∣∣
τ→0,τ1→0,τ̃→0

.

The second line is again the one-loop bubble integration. After finishing the integration

over λ2-part, we can take the derivative and the limit τ → 0, τ1 → 0, τ̃ → 0.

4.2 The result

Collecting all results together, we get an expression of the form

∆A(a,b)
212 =

∫
d−2ǫµ1d

−2ǫµ2

{
f
(a,b)
212→202S202 + f

(a,b)
212→212S212

}
, (4.4)

where we have defined

S202 = −t1t2 , S212 =
1

K2
L1

ln

(
s+ t1t2
s− t1t2

)
. (4.5)

Remind from appendix B that the signature of one-loop bubble is
∫
d−2ǫµ(−

√
1− u2),

thus the term S202 is the signature of topology A202 as the subscript indicates. For S212,

since the factor ln
(
s+t1t2
s−t1t2

)
can not be factorized to a form where µ1-part and µ2-part

are decoupled, it can not belong to the topology An10n2 . So it must be the signature of

topology A212.

It is worth to mention that in the form (4.4), the dependence of a, b is completely

encoded in the coefficients f
(a,b)
212→202 and f

(a,b)
212→212, while the signature (4.5) is universal.

However, it does not mean master integral is just given by a = b = 0. It could be true

only when coefficients f
(a,b)
212→202 and f

(a,b)
212→212 satisfying the following two conditions: (1)

they are polynomials of u1, u2 and s; (2) they are rational functions of external momentum

KL1 . More discussions will be given shortly after.
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Having above general discussions, now we list coefficients for various a, b:

Coefficients f212→212. Using expression given in appendix B, the analytic results for

some levels of a+ b are given by

• a+ b = 0, 1:

f
(0,0)
212→212 = 1 , f

(1,0)
212→212 = T1 ·KL1 , f

(0,1)
212→212 = −T2 ·KL1 . (4.6)

• a+ b = 2:

f
(1,1)
212→212 =

1

3

(
sK2

L1
(T1 · T2)− (3 + s)(KL1 · T1)(KL1 · T2)

)
,

f
(2,0)
212→212 =

1

3

(
(3 + (1− u1))(KL1 · T1)

2 − (1− u1)K
2
L1
T 2
1

)
,

f
(0,2)
212→212 =

1

3

(
(3 + (1− u2))(KL1 · T2)

2 − (1− u2)K
2
L1
T 2
2

)
. (4.7)

• a+ b = 3:

f
(1,2)
212→212 =

1

3

(
−2sK2

L1
(KL1 · T2)(T1 · T2) + (KL1 · T1)((3 + 2s+ (1− u2))(KL1 · T2)

2

−(1− u2)K
2
L1
T 2
2 )
)
,

f
(0,3)
212→212 = −(1 + (1− u2))(KL1 · T2)

3 + (1− u2)K
2
L1
(KL1 · T2)T

2
2 . (4.8)

• a+ b = 4:

f
(2,2)
212→212 =

1

15

{
2(−s(10 + 3s) + (1− u2)(1− u1))K

2
L1
(KL1 · T1)(KL1 · T2)(T1 · T2)

+ (KL1 · T1)
2((2s(10 + s) + 5(3 + (1− u1)) + (5 + (1− u1))(1− u2))(KL1 · T2)

2

+ (s2−(5+2(1−u1))(1−u2))K
2
L1
T 2
2 )+K2

L1
((s2−(1−u1)(5+2(1−u2)))(KL1 · T2)

2T 2
1

+K2
L1
((3s2 − (1− u1)(1− u2))(T1 · T2)

2 − (s2 − 2(1− u1)(1− u2))T
2
1 T

2
2 ))
}
. (4.9)

Coefficients f212→202.

• a = 0 or b = 0 : From our derivation, it can easily be seen that when a = 0 or b = 0, the

coefficient must be zero, i.e.,

f
(0,b)
212→202 = f

(a,0)
212→202 = 0 . (4.10)
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• Non-zero results:

f
(1,1)
212→202 =

2

3

(
T1 · T2 −

(KL1 · T1)(KL1 · T2)

K2
L1

)
,

f
(1,2)
212→202 =

4(KL1 · T2)((KL1 · T1)(KL1 · T2)−K2
L1
(T1 · T2))

3K2
L1

,

f
(1,3)
212→202 =

2((KL1 ·T1)(KL1 ·T2)−K2
L1
(T1 ·T2))((5+(1−u2))(KL1 ·T2)

2−(1−u2)K
2
L1
T 2
2 )

−5K2
L1

,

f
(2,2)
212→202 =

2

15K2
L1

{
−2(10 + 3s)K2

L1
(KL1 · T1)(KL1 · T2)(T1 · T2)

+(KL1 · T1)
2(2(10 + s)(KL1 · T2)

2 + sK2
L1
T 2
2 ) + sK2

L1
((KL1 · T2)

2T 2
1

+K2
L1
(3(T2 · T1)

2 − T 2
1 T

2
2 ))
}
. (4.11)

4.3 Classification of master integrals

Now we need to analyze above results in order to determine master integrals. Firstly,

noticing that f
(a,b)
212→212 and f

(a,b)
212→202 are polynomials of T1, T2, µ1 · µ2, µ

2
1, µ

2
2 as well as

rational functions of external momentum KL1 , thus we can write them more explicitly as

f
(a,b)
212→212 =

∑

κ0,κ1,κ2

f
(a,b)
212→212;µ1,...,µa;ν1,...,νb

Tµ1
1 . . . Tµa

1 T ν1
2 . . . T νb

2 (µ2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0 ,

f
(a,b)
212→202 =

∑

κ0,κ1,κ2

f
(a,b)
212→202;µ1,...,µa;ν1,...,νb

Tµ1
1 . . . Tµa

1 T ν1
2 . . . T νb

2 (µ2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0 ,

(4.12)

where the tensor coefficients f
(a,b)
212→212;µ1,...,µa;ν1,...,νb

are rational functions of external mo-

mentum KL1 only. Putting it back we get

∆A(a,b)
212

=
∑

κ0,κ1,κ2

f
(a,b)
212→202;µ1,...,µa;ν1,...,νb

Tµ1

1 . . . Tµa

1 T ν1

2 . . . T νb

2

∫
d−2ǫµ1d

−2ǫµ2(µ
2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0S202

+
∑

κ0,κ1,κ2

f
(a,b)
212→212;µ1,...,µa;ν1,...,νb

Tµ1

1 . . . Tµa

1 T ν1

2 . . . T νb

2

∫
d−2ǫµ1d

−2ǫµ2(µ
2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0S212 .

(4.13)

The above expansion leads us to define following dimensional shifted scalar master inte-

grals12

B(0,0)
202 [κ0, κ1, κ2] ≡

∫
d4−2ǫℓ̂1

∫
d4−2ǫℓ̂2

(µ2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0

ℓ̂21(ℓ̂1 −KL1)
2ℓ̂22(ℓ̂2 +KL1)

2
(4.14)

and

B(0,0)
212 [κ0, κ1, κ2] ≡

∫
d4−2ǫℓ̂1

∫
d4−2ǫℓ̂2

(µ2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0

ℓ̂21(ℓ̂1 −KL1)
2ℓ̂22(ℓ̂2 +KL1)

2(ℓ̂1 + ℓ̂2)2
. (4.15)

12As mentioned in the last paragraph of section 2, our all results and claims are valid when and only

when K2
L1

6= 0, i.e., KL1
is massive.
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An important observation is that in the definition of B(0,0)
202 [κ0, κ1, κ2], when κ0 6= 0, we

do have µ1 · µ2 in the numerator. Thus although there is no mixed propagator in the

denominator, it contains information from the mother topology A212 where ℓ̂1 and ℓ̂2
are mixed.

With above definition, we find the following reduction hinted by unitarity method13

A(a,b)
212 →

∑

κ0,κ1,κ2

f
(a,b)
212→202;µ1,...,µa;ν1,...,νb

Tµ1
1 . . . Tµa

1 T ν1
2 . . . T νb

2 B202[κ0, κ1, κ2]

+
∑

κ0,κ1,κ2

f
(a,b)
212→212;µ1,...,µa;ν1,...,νb

Tµ1
1 . . . Tµa

1 T ν1
2 . . . T νb

2 B212[κ0, κ1, κ2] . (4.16)

However, before claiming B212[κ0, κ1, κ2] are master integrals of the topology A212 studied

in this paper, we need to notice that in general Ti could have four independent choices in

4D, i.e., ei, i = 1, 2, 3, 4 as the momentum bases for Lorentz momenta. So if master integrals

have non-trivial dependence of Ti in the numerator, we should be careful to identify bases.

This happens to topologies A213 and A313. However, for the current topology A212, the

expressions B212[κ0, κ1, κ2] are scalar integrals, i.e., the numerator of master integrals does

not depend on any external momenta Ti.

Now we count the number of master integrals. For pure 4D case, we can take the limit

µ2
1, µ

2
2, µ1 ·µ2 → 0, thus there is only one master integral, with κi = 0, i = 0, 1, 2. In [98] it

is found that for planar double-triangle (i.e., the topology A212), the number of integrand

bases is 111 under the renormalizable conditions in pure 4D. For general (4−2ǫ)-dimension,

if we set constraint
∑

i=0,1,2 κi ≤ 3 (i.e., the sum of the power of ℓ1, ℓ2 in the numerator

is less than or equal to 6) for well-behaved quantum field theories, the number of master

integrals is 20.

5 The master integrals of A213 topology

Encouraged by the results in previous section, in this section we determine the master

integrals of A213 topology. As it will be shown shortly after, new features will appear.

5.1 λ2-integration for the case n2 = 3

For n2 = 3 the general formula (3.19) becomes (for simplicity, we will drop “τi → 0” from

now on)

∆A(a,b)
213 =

∫
d−2ǫµ1d

−2ǫµ2

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

]
〈
λ2|R2|λ̃2

]b

〈
λ2|Q2|λ̃2

] 〈
λ2|KL2 |λ̃2

]b+1




(−)atb−1

2 (K2
L1
)a+b−1

a!ta2
ln

(
s+ t1t2
s− t1t2

)
da

dτa

〈
λ2|F|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a (5.1)

+
a−1∑

i=0

(−)a−1(K2
L1
)a+b−1tb−1

2

(a− i)a!ti2

di

dτ i
da−i

dτa−i
1

〈
λ2|G2|λ̃2

]a
+ (−)a−1−i

〈
λ2|G1|λ̃2

]a
〈
λ2|KL1 |λ̃2

]a



 .

13For some topologies, such as A112, since they are not detectable by our choice of unitarity cuts, we can

not find their coefficients.
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Again, using KL1 = −KL2 we can simplify the denominator. There are also two parts we

need to compute.

First part. The first part of remaining integration can be rewritten as

∫
d−2ǫµ1d

−2ǫµ2

(−)a+b+1tb−1
2 (K2

L1
)a+b−1

(a+ b)!ta2
ln

(
(s+ t1t2)

(s− t1t2)

)
da

dτa
db

dτ̃ b

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

]
〈
λ2|τ̃R2 + F|λ̃2

]a+b

〈
λ2|Q2|λ̃2

] 〈
λ2|KL1 |λ̃2

]a+b+1
. (5.2)

The second line is the standard one-loop triangle integration. The one-loop triangle can

be reduced to triangle part and bubble part, thus they can be interpreted as contributions

from topologies A213 and A212.

Second part. The second part can be written as

∫
d−2ǫµ1d

−2ǫµ2

a−1∑

i=0

(−)a+b(K2
L1
)a+b−1tb−1

2

(a− i)(a+ b)!ti2

di

dτ i
da−i

dτa−i
1

db

dτ̃ b

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

]
〈
λ2|τ̃R2 + G2|λ̃2

]a+b

+ (−)a−1−i
〈
λ2|τ̃R2 + G1|λ̃2

]a+b

〈
λ2|Q2|λ̃2

] 〈
λ2|KL1 |λ̃2

]a+b+1
. (5.3)

The second line is again the standard triangle integration which contain contributions from

topologies A203 and A202.

5.2 Overview of results

Collecting all results together, we get an expression of the form

∆A(a,b)
213 =

∫
d−2ǫµ1d

−2ǫµ2

{
f
(a,b)
213→213S213+f

(a,b)
213→212S212+f

(a,b)
213→203S203+f

(a,b)
213→202S202

}
,

(5.4)

where S202 and S212 have been defined in (4.5) and two new signatures are

S203 =
t1

2
√

(K4 ·KL1)
2 −K2

L1
K2

4

ln



K2

4 +K4 ·KL1 − t2

√
(K4 ·KL1)

2 −K2
L1
K2

4

K2
4 +K4 ·KL1 + t2

√
(K4 ·KL1)

2 −K2
L1
K2

4


 ,

S213 =
− ln

(
s+t1t2
s−t1t2

)

2t2K2
L1

√
(K4 ·KL1)

2 −K2
L1
K2

4

ln



K2

4 +K4 ·KL1 − t2

√
(K4 ·KL1)

2 −K2
L1
K2

4

K2
4 +K4 ·KL1 + t2

√
(K4 ·KL1)

2 −K2
L1
K2

4


 .

(5.5)

There are a few remarks for expression (5.4). Firstly it is easy to see that the signature

S203 is the direct product of signatures of one-loop bubble and one-loop triangle. Secondly

there are two logarithms in the signature S213: one depends on both µ1, µ2 and the other
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only depends on µ2. Pictorially, the first logarithm is related to the mixed propagator

(ℓ1 + ℓ2)
2 while the second logarithm is related to the right hand side sub-triangle.

Thirdly, all dependence of a, b are inside coefficients f while signatures are universal.

However, unlike in the expression (4.4) where coefficients f are all rational functions of

external momenta and polynomials of s, u1, u2, here we find that the coefficients f are in

general not polynomials of s, u1, u2. In fact, factor t2 =
√
1− u2 will appear in denomina-

tors. Such behavior can not be explained by dimensional shifted master integral. Instead,

we must regard it as the signature of new master integral. Because of such complexity,

when talking about the signature of a master integral for A213 topology, we should treat

all coefficients together in a list {f (a,b)
213→213, f

(a,b)
213→212, f

(a,b)
213→203, f

(a,b)
213→202} as a single object.

More explicitly we will write the expression (5.4) as

∆A(a,b)
213 ≡ {f (a,b)

213→213, f
(a,b)
213→212, f

(a,b)
213→203, f

(a,b)
213→202} . (5.6)

The reduction of ∆A(a,b)
213 is to write it as the linear combination

∑
iCi{ai1, ai2, ai3, ai4}

where {ai1, ai2, ai3, ai4} is the signature of i-th master integral. In this notation, we can

rewrite the signatures of previously discussed master integrals as

∆A(0,0)
212 = {0, 1, 0, 0} , ∆A(0,0)

203 = {0, 0, 1, 0} , ∆A(0,0)
202 = {0, 0, 0, 1} . (5.7)

Having above general remarks, now we present explicit results.

5.3 The result of a = 0

We list results for a = 0 with various b. Noticing that a = 0 implies f
(0,b)
213→203 = 0 and

f
(0,b)
213→202 = 0, we will focus on the first two coefficients only.

The case b = 0. It is easy to see that

∆A(0,0)
213 = {1, 0, 0, 0} . (5.8)

Since it can not be written as the linear combination of three master integrals in (5.7),

it must indicate a new master integral. In other words, A(0,0)
213 is an master integral with

signature (5.8).

The case b = 1. The result is

∆A(0,1)
213 =

{
(K2

4 +K4 ·KL1)(K4 · T2)K
2
L1

−K2
4 (K4 ·KL1 +K2

L1
)(KL1 · T2)

K2
4K

2
L1

− (K4 ·KL1)
2

,

(K4 ·KL1)(T2 ·KL1)−K2
L1
(K4 · T2)

K2
4K

2
L1

− (K4 ·KL1)
2

, 0, 0

}
. (5.9)

Thus, at least for our choice of unitarity cuts, ∆A(0,1)
213 can be written as the linear combi-

nation of signatures ∆A(0,0)
213 and ∆A(0,0)

212 with rational coefficients of external momenta.
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For other b’s. We have calculated cases b = 2 and b = 3. Again we find that ∆A(0,b)
213

can be written as linear combinations of signatures ∆A(0,0)
213 and ∆A(0,0)

212 , with coefficients

being rational functions of external momenta and polynomials of s, u1, u2. The explicit

expressions are too long to write down here. When s, u1, u2 appear in the results, we

should include dimensional shifted master integrals too.

5.4 The result of a = 1

In this case a non-trivial phenomenon appears, and we will show how to explain it.

The case b = 0. Calculation yields

f
(1,0)
213→213 =

s

t22
f
(1,0)
213→213;s1

+ f
(1,0)
213→213;s0

, (5.10)

where

f
(1,0)
213→213;s1

=
(K2

4 +K4 ·KL1)[(K4 · T1)K
2
L1

− (K4 ·KL1)(KL1 · T1)]

(K2
4K

2
L1

− (K4 ·KL1)
2)

,

f
(1,0)
213→213;s0

= KL1 · T1 .

Although the s0-part can be explained by the signature ∆A(0,0)
213 , the s1-part with factor

s
t22

can not because the appearance of t22 = (1 − u2) in the denominator. Thus factor s
t22

indicates a new master integral.

Besides f
(1,0)
213→213, other coefficients are given by

f
(1,0)
213→212 =

s[−K2
L1
(K4 · T1) + (K4 ·KL1)(T1 ·KL1)]

t22(−K2
4K

2
L1

+ (K4 ·KL1)
2)

,

f
(1,0)
213→203 =

−2(K2
4 +K4 ·KL1)[K

2
L1
(K4 · T1)− (K4 ·KL1)(T1 ·KL1)]

t22K
2
L1
(K2

4K
2
L1

− (K4 ·KL1)
2)

,

f
(1,0)
213→202 =

2[−K2
L1
(K4 · T1) + (K4 ·KL1)(T1 ·KL1)]

t22K
2
L1
(−K2

4K
2
L1

+ (K4 ·KL1)
2)

. (5.11)

Again, because of the factor 1
t22
, they can not be explained by signatures (5.7). Thus we

have the first non-trivial example of signatures where all four components are non-zero

∆A(1,0)
213 = {f (1,0)

213→213, f
(1,0)
213→212, f

(1,0)
213→203, f

(1,0)
213→202} . (5.12)

The case b = 1. All coefficients {f (1,1)
213→213, f

(1,1)
213→212, f

(1,1)
213→203, f

(1,1)
213→202} have 1

t22
depen-

dence. However, all these 1
t22

factors can be absorbed into ∆A(1,0)
213 . More explicitly, we

found the following decomposition

∆A(1,1)
213 = a11→00∆A(0,0)

213 + a11→10∆A(1,0)
213 + b11→00∆A(0,0)

212 + d11→00∆A(0,0)
202 , (5.13)

where
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a11→10 =
(1− u2)K

2
L1
((K4 ·KL1

)2 −K2
4K

2
L1
)Σ1 + (K2

4 +K4 ·KL1
)Σ2

2(K2
4 +K4 ·KL1

)((K4 ·KL1
)2 −K2

4K
2
L1
)[(K4 · T1)K2

L1
− (K4 ·KL1

)(T1 ·KL1
)]
,

a11→00 =
(KL1

· T1)[−(K4 · T2)K
2
L1
(K2

4 +K4 ·KL1
) +K2

4 (K4 ·KL1
+K2

L1
)(KL1

· T2)]

((K4 ·KL1
)2 −K2

4K
2
L1
)

− (KL1
· T1)a11→10 ,

b11→00 =
1

2(K4 ·KL1
+K2

4 )(−(K4 ·KL1
)2 +K2

4K
2
L1
)

{
2(K4 ·KL1

+K2
4 )KL1

· T1

(−K2
L1
(K4 ·T2)+(K4 ·KL1

)(KL1
·T2))+sK2

L1
(KL1

·T1(K4 ·KL1
(K4 ·T2)−K2

4 (KL1
·T2))

+K4 · T1(−K2
L1
(K4 · T2) +K4 ·KL1

(KL1
· T2) + T1 · T2(−(K4 ·KL1

)2 +K2
4K

2
L1
))
}
,

d11→00 =
KL1

·T1(K4 ·KL1
(K4 ·T2)−K2

4 (KL1
·T2))+K4 ·T1(−K2

L1
(K4 ·T2)+K4 ·KL1

(KL1
·T2))

(K4 ·KL1
+K2

4 )(−(K4 ·KL1
)2+K2

4K
2
L1
)

+
T1 · T2

(K4 ·KL1
+K2

4 )
,

with

Σ1 = (KL1
· T1)(−(K4 ·KL1

)(K4 · T2) +K2
4 (KL1

· T2)) +K4 · T1((K4 · T2)K
2
L1

− (K4 ·KL1
)(T2 ·KL1

)) + ((K4 ·KL1
)2 −K2

4K
2
L1
)T1 · T2 ,

Σ2 = (K2
4 )

2K2
L1
(−(KL1

· T1)(KL1
· T2) +K2

L1
(T1 · T2)) + (K4 ·KL1

)K2
L1
[K4 · T1(−3(K4 · T2)K

2
L1

+ (K4 ·KL1
)(KL1

· T2)) +K4 ·KL1
(3(K4 · T2)(KL1

· T1)− (K4 ·KL1
)(T1 · T2))]

+K2
4 (K4 · T1K

2
L1
(−3K4 · T2K

2
L1

+ (3K4 ·KL1
+ 2K2

L1
)KL1

· T2) + (K4 ·KL1
)

((KL1
· T1)(3K

2
L1
(K4 · T2 −KL1

· T2)− 2(K4 ·KL1
)(KL1

· T2))

+K2
L1
(−K4 ·KL1

+K2
L1
)T1 · T2) .

Since above four coefficients are rational functions of external momenta and polynomials

of u2, we can claim that A(1,1)
213 is not a master integral at least for our choice of unita-

rity cuts.

There are some details we want to remark. The coefficient a11→00 is a polynomial of T1

and T2 with degree one while coefficient a11→10 is a polynomial of T2 with degree one but

rational function of T1. More accurately, both the denominator and the numerator of a11→10

are polynomials of T1 with degree one. It is against the intuition since T1 should not appear

in the denominator. However, this subtlety is resolved if one notice that the first component

f
(1,0)
213→213;s1

of ∆A(1,0)
213 contains exactly the same factor [−(K4 ·T1)K

2
L1

+(K4 ·KL1)(KL1 ·T1)]

in its numerator, so it cancels the same factor in denominator of a11→10.

The case b = 2. The whole expression is too long to write down, thus we present only

the general feature. Again although all coefficients contain factor 1
t22
, the whole result can

be expanded like the one (5.13) with coefficients as rational functions of external momenta

and polynomials of s, u1, u2. Thus A(1,2)
213 is not a new master integral.

5.5 The result of a = 2

We will encounter similar phenomenon as in the case a = 1. To get rid of tedious expres-

sions, we will present only the main features.
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The case b = 0. The coefficient f
(2,0)
213→213 has the following form

f
(2,0)
213→213 =

s2

t42
g0;1 +

s2

t22
g0;2 +

s

t22
g0;3 +

1

t22
g0;4 + g0;5 , (5.14)

where g0;i’s are polynomials of u1 and rational functions of external momenta (similar for

all other coefficients such as h, i, j in this subsection). The appearance of g0;1-part and

g0;4-part can not be counted by signatures ∆A(0,0)
213 and ∆A(1,0)

213 , thus we should take A(2,0)
213

as a new master integral. For other coefficients, we have

f
(2,0)
213→212 =

s2

t42
h0;1 +

s

t22
h0;2 +

1

t22
h0;3 ,

f
(2,0)
213→203 =

s

t42
i0;1 +

s

t22
i0;2 +

1

t22
i0;3 ,

f
(2,0)
213→202 =

s

t42
j0;1 +

1

t22
j0;2 . (5.15)

The signature of the new master integral can be represented by

∆A(2,0)
213 = {f (2,0)

213→213, f
(2,0)
213→212, f

(2,0)
213→203, f

(2,0)
213→202} . (5.16)

The case of b = 1. The behavior of various coefficients are

f
(2,1)
213→213 =

s2

t42
g1;1 +

s2(g1;2;0 + t22g1;2;1)

t22
+

s(g1;3;0 + t22g1;3;1)

t22
+

1

t22
g1;4 + g1;5 ,

f
(2,1)
213→212 =

s2(h1;1;0 + t22h1;1;1)

t42
+

s

t22
h1;2 +

1

t22
(h1;3;0 + t22h1;3;1) ,

f
(2,1)
213→203 =

s

t42
i1;1 +

s

t22
i1;2 +

1

t22
(i1;3;0 + t22i1;3;1) ,

f
(2,1)
213→202 =

s(j1;1;0 + t22j1;1;1)

t42
+

1

t22
j1;2 , (5.17)

where the integer n in g1;m;n denotes the power of t22, and similar for h, i, j.

We found the following expansion

∆A(2,1)
213 = a21→20∆A(2,0)

213 + a21→10∆A(1,0)
213 + a21→00∆A(0,0)

213 + b21→00∆A(0,0)
212

+c21→00∆A(0,0)
203 + d21→00∆A(0,0)

202 , (5.18)

where coefficients are rational functions of external momenta and polynomials of s, u1, u2.

Thus A(2,1)
213 is not a new master integral.

5.6 Classification of master integrals

With above results, we can classify the master integrals of A213 topology. Before doing

so, we want to emphasize that in our calculations, momenta K3,K4 can be massive or

massless, while KL1 = −K3 −K4 is massive.
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Having shown that coefficients such as a21→00 are polynomials of µ1 · µ2, µ
2
1, µ

2
2 and

rational functions of external momenta, we can expand them, for example

a21→00 =
∑

κ0,κ1,κ2

a
(a,b)
21→00(µ

2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0 , (5.19)

where the tensor coefficients a are rational functions of external momenta. This expansion

leads us to define the following dimensional shifted integrals

B213;a[κ0, κ1, κ2;T1]≡
∫

d4−2ǫℓ̂1

∫
d4−2ǫℓ̂2

(µ2
1)

κ1(µ2
2)

κ2(µ1 · µ2)
κ0(ℓ̂1 · T1)

a

ℓ̂21(ℓ̂1−KL1)
2ℓ̂22(ℓ̂2−K4)2(ℓ̂2+KL1)

2(ℓ̂1+ℓ̂2)2
.

(5.20)

Unlike the scalar basis B212[κ0, κ1, κ2] for A212 topology, the basis B213;a[κ0, κ1, κ2]

depends on T1 explicitly. Since T1 is a 4-dimensional Lorentz vector, there are four in-

dependent choices and we need to clarify if different choice of T1 gives new independent

master integrals.

To discuss this problem we expand T1 =
∑4

i=1 xiei. The momentum bases ei are

constructed as follows. UsingK4,KL1 we can construct two null momenta Pi = K4+wiKL1

with wi =
−K4·KL1

±
√

(KL1
·K4)2−K2

4K
2
L1

K2
L1

, thus the momentum bases can be taken as

e1 = K4 , e2 = KL1 , e3 = |P1〉 |P2] , e4 = |P2〉 |P1] . (5.21)

The case a = 0. For a = 0, since T1 does not appear, only scalar integral exist. Thus

the independent master integrals are B213;0[κ0, κ1, κ2].

The case a = 1. We set T1 = ei for i = 1, 2, 3, 4 in the expressions f
(1,0)
213→213, f

(1,0)
213→212,

f
(1,0)
213→203, f

(1,0)
213→202, and found that:

• (1) For T1 = e3 or T1 = e4 we have

{f (1,0)
213→213, f

(1,0)
213→212, f

(1,0)
213→203, f

(1,0)
213→202} = {0, 0, 0, 0} . (5.22)

It can be shown that T1 = e3,4 are spurious and the integrations are zero.

• (2) For T1 = KL1 , we find

{f (1,0)
213→213, f

(1,0)
213→212, f

(1,0)
213→203, f

(1,0)
213→202} = {K2

L1
, 0, 0, 0} . (5.23)

It is, in fact, equivalent to expressions B213;0[κ0, κ1, κ2] and does not give new master

integrals.

• (3) For T1 = K4, we find
{
f
(1,0)
213→213, f

(1,0)
213→212, f

(1,0)
213→203, f

(1,0)
213→202

}

=

{
−s(K2

4 +K4 ·KL1) + t22K4 ·KL1

t22
,
s

t22
,−2(K2

4 +K4 ·KL1)

t22K
2
L1

,
2

t22K
2
L1

}
, (5.24)

which is the true new master integral.
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Conclusion: for a = 1, the master integrals are given by B213;1[κ0, κ1, κ2;K4].

The case a = 2. There are ten possible combinations (ℓ̂1 · ei)(ℓ̂1 · ej). With the explicit

result we found that

• (1) For the following six combinations

(ei, ej) = (e3, e3) , (e4, e4) , (e1, e3) , (e2, e3) , (e1, e4) , (e2, e4) , (5.25)

the coefficients are {0, 0, 0, 0}. In fact, integrations for these six cases are zero.

• (2) For (ei, ej) = (e2, e2) the list of coefficients is {2(K2
L1
)2, 0, 0, 0}. It is equivalent

to the expressions B213;0[κ0, κ1, κ2]. Therefore it does not give new master integrals.

• (3) For (ei, ej) = (e1, e2) the list of coefficients is

2K2
L1

{
−s(K2

4 +K4 ·KL1) + t22K4 ·KL1

t22
,
s

t22
,−2(K2

4 +K4 ·KL1)

t22K
2
L1

,
2

t22K
2
L1

}
, (5.26)

which is proportional to (5.24) by a factor 2K2
L1
. Therefore it can be reduced to

expressions B213;1[κ0, κ1, κ2], and dose not give new master integrals.

• (4) For (ei, ej) = (e1, e1) and (ei, ej) = (e3, e4) the list is non-trivial. However, it can

be checked that

{f (2,0)
213→213, f

(2,0)
213→212, f

(2,0)
213→203, f

(2,0)
213→202}|(ei,ej)=(e1,e1) (5.27)

= {f (2,0)
213→213, f

(2,0)
213→212, f

(2,0)
213→203, f

(2,0)
213→202}|(ei,ej)=(e3,e4)

+ 2(K4 ·KL1){f
(1,0)
213→213, f

(1,0)
213→212, f

(1,0)
213→203, f

(1,0)
213→202}

+ ((t21 − 1)(K4 ·KL1)
2 − t21K

2
4K

2
L1
){f (0,0)

213→213, f
(0,0)
213→212, f

(0,0)
213→203, f

(0,0)
213→202} .

Thus we can take either one (but only one of them) as the master integral. We choose

the combination (ei, ej) = (e1, e1) to be a new master integral.

Conclusion: for a = 2, master integrals can be chosen as B213;2[κ0, κ1, κ2;K4].

For general a. Although we have not done explicit calculations for a ≥ 3, we expect for

each a there are new integrals B213;a[κ0, κ1, κ2;K4].

The number of master integrals. To finish this section, let us count the number of

master integrals. For pure 4D, we just need to set µ1 · µ2, µ
2
1, µ

2
2 to zero. In this case, the

factor 1
tn2

→ 1. In other words, there is only one master integral

∫
d4−2ǫℓ̂1

∫
d4−2ǫℓ̂2

1

ℓ̂21(ℓ̂1 −KL1)
2ℓ̂22(ℓ̂2 −K4)2(ℓ̂2 +KL1)

2(ℓ̂1 + ℓ̂2)2
. (5.28)

It is useful to compare it with about 70 elements in the integrand bases found in [98] under

renormalizable conditions.
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For general (4 − 2ǫ)-dimension, renormalizable conditions can be roughly given by

2κ1 + a ≤ 3, κ2 ≤ 2. Under these two conditions, we find 48 master integrals.14

6 The integral basis of A313 topology

In this section we turn to the topology A313. This topology has been extensively studied

by various methods, such as IBP method [20] and maximum unitarity cut method [80–86],

and master integrals have been determined [20]. To determine these master integrals using

our method, we need to integrate the following expression

∆A(a,b)
313 =

∫
d−2ǫµ1d

−2ǫµ2

∫
d4ℓ̃2 δ(ℓ̃22 − µ2

2)δ(K
2
L2

− 2KL2 · ℓ̃2)
(2ℓ̃2 · T2)

b

((ℓ̃2 −K4)2 − µ2
2)

∫
〈λ1|dλ1〉

[
λ̃1|dλ̃1

] −((1− 2z1)K
2
L1
)a−1

〈
λ1|KL1 |λ̃1

]a

〈
λ1|R1|λ̃1

]a
〈
λ1|W1|λ̃1

] 〈
λ1|Q1|λ̃1

] , (6.1)

with KL1 = K1 + K2. For general situation, the integration is very complicated and we

postpone it to future study. In this paper, we take the following simplification. Firstly we

take all out-going momenta K2
i = 0 (i = 1, . . . , 4) (unlike the topologies A212 and A213

where Ki can be massive or massless). Secondly, based on the known results of master

integrals, we focus on the specific case a = 0 and T2 = K1.

In order to make expressions compact we define some new parameters as15

s ≡ s12 , m ≡ s14 − s13
s12

, χ ≡ s14
s12

=
m− 1

2
. (6.2)

For physical unitarity cut, momentum configuration requires s12 > 0, s13 < 0 and s14 < 0.

So we have

−1 < m < 1 , − 1 < χ < 0 (6.3)

by momentum conservation s12 + s13 + s14 = 0. Furthermore, we define the regularization

parameters γi as

γ ≡ 1 + ν1 · ν2√
1− ν21

√
1− ν22

, γi ≡
1√

1− ν2i

, i = 1, 2 , (6.4)

where the dimensionless extra-dimensional vector νi is defined as νi ≡ 2µi/
√
s , i = 1, 2.

14From explicit expressions of (5.10), especially the coefficient f
(1,0)

213→213;s1
, one can see that putting

T1 = K4, f
(1,0)

213→213;s1
is not zero no matter K4 is massive or massless. Based on this observation, we believe

that our counting of the number of master integrals is independent of K4,K3.
15It is worth to notice that s in this section is different from s in (3.6) of section 3.
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Under the simplification a = 0, the integration over λ1-part is trivial. Using (B.21) in

appendix B we can get

∆A(0,b)
313 =

∫
dµi

∫
〈λ2|dλ2〉

[
λ̃2|dλ̃2

] γ1
s2

(
− s

γ2

)b−1

〈
λ2|R2|λ̃2

]b

〈
λ2|Q2|λ̃2

] 〈
λ2|KL1 |λ̃2

]b+1

1√
〈λ2|K̃1|λ̃2]

2

〈λ2|KL1
|λ̃2]

2 − β2

4

ln




〈λ2|K̃1|λ̃2]
〈λ2|KL1

|λ̃2]
+

√
〈λ2|K̃1|λ̃2]

2

〈λ2|KL1
|λ̃2]

2 − β2

4

〈λ2|K̃1|λ̃2]
〈λ2|KL1

|λ̃2]
−
√

〈λ2|K̃1|λ̃2]
2

〈λ2|KL1
|λ̃2]

2 − β2

4




, (6.5)

where

β2 = (γ2 − 1)(γ2 − 1) .

An important feature is that the signature after λ1-integration depends on ℓ2 explicitly,

which is different from the signature in (3.5). Because of this, the integration over λ2

becomes very complicated. One way to overcome is to use

1

b
log

a+ b

a− b
=

∫ 1

0
dx

(
1

a+ xb
+

1

a− xb

)
=

∫ 1

0
dx

2a

a2 − x2b2
. (6.6)

Thus the logarithmic part in (6.5) becomes rational function of ℓ2 and we can use the same

strategy as in previous sections. However, for the current simple situation, we can use

another method. After expanding the spinor variables as

|λ2〉 = |k2〉+ z |k1〉 ,
∣∣∣λ̃2

]
= |k2] + z |k1] , 〈λ2|dλ2〉

[
λ̃2|dλ̃2

]
= −sdzdz , (6.7)

the integration becomes an integration over complex plane

∆A(0,b)
313 =

∫
dµi

∫
|dzdz̄|(•) =

∫
dµi

∫ +∞

0
rdr

∫ 2π

0
dθ(•) , z = reiθ . (6.8)

θ-integration. The θ-dependent part of (6.5) is given by

∫ 2π

0
dθ

(
〈K2|R2|K2] + r2 〈K1|R2|K1] + reiθ 〈K1|R2|K2] + re−iθ 〈K2|R2|K1]

)b

(s24 − t̃2s12) + r2(s14 − t̃2s12) + reiθ 〈K1|K4|K2] + re−iθ 〈K2|K4|K1]
, (6.9)

with t̃2 = γ2−1
2 . Setting x = eiθ the integral becomes a circle contour integration with

radius one

∮

|x|=1
dx

(
x 〈K2|R2|K2] + xr2 〈K1|R2|K1] + rx2 〈K1|R2|K2] + r 〈K2|R2|K1]

)b

ixb
(
x(s24 − t̃2s12) + xr2(s14 − t̃2s12) + rx2 〈K1|K4|K2] + r 〈K2|K4|K1]

) .

(6.10)
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There are three poles in total. The first one is x = 0 when b 6= 0 for general R2. The other

two are roots of the quadratic polynomial in denominator

x1,2 =
−
(
s24 − s14 + (r2 + 1)(s14 − t̃2s12)

)
±

√
∆

2r 〈K1|K4|K2]
, (6.11)

where

∆ =
(
− s12 + (r2 + 1)(s14 − t̃2s12)

)2
+ 4s12s14(r

2 + 1)(1 + t̃2) . (6.12)

It is easy to check that |x1x2| = 1. Thus one root is inside the integration contour and the

other is outside. The kinematic conditions s12 > 0, s24 < 0, s14 < 0 ensure that x1 is the

one inside. The residue at the pole x1 is

1

i
√
∆

(
〈K2|R2|K2] + r2 〈K1|R2|K1] + rx 〈K1|R2|K2] + rx−1 〈K2|R2|K1]

)b
x=x1

. (6.13)

The case (T2 = K1). Under our simplification, we set T2 = K1, thus 〈K1|R2|K2] = 0

and 〈K2|R2|K1] = 0. Because of this, there is no pole at x = 0 in (6.10). Thus after the

θ-integration, (6.5) is reduced to

∆A(0,b)
313 =

∫
dµi

γ1
2s2

(
− s

γ2

)b−1 ∫ +∞

0
dr2

1√(
α−1
2 + 1

(1+r2)

)2
− β2

4


ln

(
α−1
2 + 1

1+r2

)
+

√(
α−1
2 + 1

1+r2

)2
− β2

4

(
α−1
2 + 1

1+r2

)
−
√(

α−1
2 + 1

1+r2

)2
− β2

4




1

1 + r2

(
γ2 − 1

2
+

1

1 + r2

)b

1√(
(r2 + 1)

(
χ− γ2−1

2

)
− 1
)2

+ 4(r2 + 1)χ
(
1 + γ2−1

2

) , (6.14)

in which

α = γγ1 , β =
√
(γ2 − 1)(γ21 − 1) .

Defining u = 1−r2

1+r2
we arrive

∆A(0,b)
313 =

∫
dµi

γ1
2s2

(− s

2γ2
)b−1

∫ +1

−1
du

(u+ γ2)
b

√
(u+mγ2)2 + (1−m2)(γ22 − 1)

1√
(u+ α)2 − β2

ln
(u+ α) +

√
(u+ α)2 − β2

(u+ α)−
√

(u+ α)2 − β2
. (6.15)

An important observation from (6.15) is that D(0,b)
313 /(γ1γ2) has the symmetry γ ↔ γ1 as

well as the symmetry γ2 ↔ γ1 for b = 0 by the topology.
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Since we use the dimensional shifted bases, the µi part is kept and we will focus on

D(0,b)
313 after the u-integration, i.e.,

∆A(0,b)
313 ≡

∫
dµi D(0,b)

313 . (6.16)

We found it hard to integrate over u and get analytic results. However, in the general

(4− 2ǫ)-dimensional framework, we can treat µ2
i and µ1 · µ2 as small parameters and take

series expansion around µ2
i → 0. It is equivalent to taking the series expansion around

γi → 1. The details of calculation can be found in appendix C. Up to the leading order,

result for a = 0, b = 0 is given by

D(0,0)
313 =

1

s3 2χ

[
ln
(−2χ

γ−1

)
ln
( −2χ

γ1−1

)
+ln

(−2χ

γ−1

)
ln
( −2χ

γ2−1

)
+ln

( −2χ

γ1−1

)
ln
( −2χ

γ2−1

)

+ 2Li2(1 + χ)− π2

3

]
. (6.17)

An important check for the result (6.17) is that it has the S3 permutation symmetry among

γ1, γ2, γ. The terms ln(−χ) and Li2(1 + χ) do not show up for topologies A212 and A213,

thus they belong to the signature of A313. For b = 1, the result is

D(0,1)
313 = χ sD(0,0)

313 +D(0,0)
312 − 1

s2
ln
( −2χ

γ − 1

)
ln
( −2χ

γ1 − 1

)
. (6.18)

The extra term − 1
s2

ln
(
−2χ
γ−1

)
ln
(

−2χ
γ1−1

)
in (6.18) indicates that comparing to D(0,0)

313 , D(0,1)
313

should be taken as a new master integral. For b = 2, the result is

D(0,2)
313 = χ sD(0,1)

313 +
2χ+ 1

s
D(0,0)

202 − 2χ+ 1

2
D(0,0)

212 − 2χ+ 1

2
D(0,0)

302 − 2χ

s
ln(−χ) . (6.19)

For this result, there are a few things we want to discuss. Firstly, the same coefficient −2χ+1
2

appears for D(0,0)
212 and D(0,0)

302 , which is the consequence of symmetry γ ↔ γ1 in (6.15).

Secondly, the appearance of term ln(−χ) is quite intriguing. There are several possible

interpretations:

• Under the general (4 − 2ǫ)-dimensional framework, D(0,2)
313 could be considered as a

new master integral.

• From the result in [20], A(0,2)
313 can be written as linear combinations of master integrals

A(0,0)
313 and A(0,1)

313 . However, the coefficients depend on ǫ. Then ǫ∆A(0,0)
313 and ǫ∆A(0,1)

313

could contribute to finite terms, such as ln(−χ), under the unitarity cut.

• In fact, ln
(

−2χ
γi−1

)
is the result given by unitarity cut channel K12 of one-loop massless

box (K1,K2,K3,K4) up to zero-order of (γi − 1). It may indicate some connection

with one-loop box diagram.
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Finally for b = 3 we found

D(0,3)
313 = χ2 s2D(0,1)

313 +
(5
2
χ2 + χ− 1

4

)
D(0,0)

202 − s
(3
2
χ2 +

1

2
χ− 1

4

)(
D(0,0)

212 +D(0,0)
302

)

− 3χ2 ln(−χ) . (6.20)

It is obvious that D(0,3)
313 can be written as linear combination of D(0,i)

313 , i = 0, 1, 2 (as well

as lower topologies) with rational functions of χ, s.

7 Conclusion

In this paper we applied the unitarity method to two-loop diagrams to determine their

master integrals. Two propagators for each loop are cut while mixed propagators are

untouched. Integrations for the reduced phase space have been done in the spinor form

analytically. Based on these results, analytical structures have been identified and master

integrals have been determined.

To demonstrate, we applied our method to investigate the double-box topology and

its daughters, with appropriate choice of cut momenta and kinematic region. For the A212

topology with KL1 massive, we found that there is only one scalar master integral for the

pure 4D case, while for general (4− 2ǫ)-dimension, if we use the dimensional shifted bases,

there are 20 scalar master integrals under good renormalizability conditions. For the A213

topology withKL1 massive (K3,K4 can be massive or massless), there is also only one scalar

master integral for the pure 4D case, but for the (4−2ǫ)-dimension, scalar master integrals

are not enough even considering the dimensional shifted bases. We found that there are 48

dimensional-shifted master integrals for renoramalizable theories. For the A313 topology,

it is difficult to get an exact expression for general (4− 2ǫ)-dimension case. Thus we only

considered a specific case A(0,b)
313 with T2 = K1 and K2

i = 0, i = 1, 2, 3, 4. We presented

results to the zeroth-order and found three master integrals for general (4− 2ǫ)-dimension

if we do not allow coefficients depending on ǫ.

Based on the method demonstrated in this paper, several possible directions can be

done in the future. Firstly, for the A313 topology, the exact result for the specific case a = 0

is still missing. The general value of a should also be considered. Secondly, topologies

discussed in this paper are not the most general cases. The most general configurations

are those that each vertex has external momenta attached as well as massive propagators.

Results of these more general cases are necessary. Thirdly, to obtain a complete set of

master integrals, we need to investigate other topologies classified in [98]. Finally, besides

determining master integrals, the unitarity method is also powerful for finding rational

coefficients of bases in the reduction. We expect that, after the complete set of master

integrals being obtained, such method can be useful for practical two-loop calculations.16

A Some useful formulae

In this section, we present some useful formulae appearing in various calculations in

the paper.

16See also a very interesting new method [103].
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Total derivative. For the holomorphic anomaly method, it is important to write an

expression into the total derivative form. Here we list results for two typical inputs:

[ℓ|dℓ] [η|ℓ]n

〈ℓ|P |ℓ]n+2 = [dℓ|∂ℓ]
(

1

(n+ 1) 〈ℓ|P |η]
[η|ℓ]n+1

〈ℓ|P |ℓ]n+1

)
, (A.1)

and

[ℓ|dℓ]
〈ℓ|P |ℓ] 〈ℓ|Q|ℓ] =

1

〈ℓ|PQ|ℓ〉 [dℓ|∂ℓ] ln
(〈ℓ|P |ℓ]
〈ℓ|Q|ℓ]

)
. (A.2)

Pole of 〈ℓ|QK|ℓ〉. In the calculation, we will meet pole of the form 〈ℓ|QK|ℓ〉 frequently.
It contains two poles and we need to separate them. If both Q,K are massless we can

write it as 〈ℓ|Q〉 [Q|K] 〈K|ℓ〉. If at least one of them is massive, for example K, we can

construct two massless momenta as Pi = Q+ xiK, i = 1, 2, where

x1,2 =
−2Q ·K ±

√
∆

2K2
, ∆ = (2Q ·K)2 − 4Q2K2 . (A.3)

Using this we have

〈ℓ|QK|ℓ〉 = 〈ℓ|P1〉 [P1|P2] 〈ℓ|P2〉
(x1 − x2)

, (A.4)

and

Q =
x1P2 − x2P1

x1 − x2
, K =

P1 − P2

x1 − x2
, 2P1 · P2 =

−∆

K2
,

x1x2 =
Q2

K2
, x1 + x2 =

−2Q ·K
K2

, x1 − x2 =

√
∆

K2
. (A.5)

Residue of high order pole. Poles we met are often not single poles. To read out

residues of poles with high order we can do as follows. Using the expression

1

〈ℓ (η − τs)〉n =
dn−1

dτn−1

(
1

(n− 1)! 〈ℓ s〉n−1

1

〈ℓ (η − τs)〉

) ∣∣∣
τ→0

(A.6)

with arbitrary auxiliary spinor |s〉, the residue of function 1
〈ℓ η〉n

N(|ℓ〉,|ℓ])
D(|ℓ〉,|ℓ]) is then given by

dn−1

dτn−1

(
1

(n− 1)! 〈η s〉n−1

N(|η − τs〉 , |η])
D(|η − τs〉 , |η])

) ∣∣∣
τ→0

. (A.7)

It is very important to emphasize that the |ℓ] part has been set to |η], while the |ℓ〉 is

replaced by (|η〉 − τ |s〉) before taking the derivative.

Evaluation of 〈P1|R|P2]〈P2|S|P1]. We often encounter expression 〈P1|R|P2]〈P2|S|P1],

which can be evaluated as

〈P1|R|P2] 〈P2|S|P1] = tr

(
1− γ5

2
/P1 /R/P2/S

)

= 2(P1 ·R)(P2 · S) + 2(P1 · S)(P2 ·R)− 2(P1 · P2)(R · S)
−2iǫ(P1RP2S) , (A.8)

where ǫ(P1RP2S) denotes ǫµνρσP
µ
1 R

νP ρ
2 S

σ. To evaluate ǫ(P1RP2S)
2, a simple way is to

consider

〈P1|R|P2] 〈P2|S|P1] 〈P1|S|P2] 〈P2|R|P1] .
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B Standard one-loop integrations

In this section we list some standard one-loop results. We focus on the following standard

integral [65–70]

R(a)
n ≡

∫
〈λ|dλ〉

[
λ̃|dλ̃

]
〈
λ|R|λ̃

]a

〈
λ|K|λ̃

]a+4−n∏n−2
i=1

〈
λ|Qi|λ̃

] , (B.1)

which is the integration in (2.7). In our application, we only need cases n = 2, 3, 4.

B.1 The bubble integration

When n = 2, we have ∆A(a)
2 =

∫
d−2ǫµ[(1− 2z)K2]a+1R(a)

2 with

R(a)
2 =

∫
〈λ|dλ〉

[
λ̃|dλ̃

]
〈
λ|R|λ̃

]a

〈
λ|K|λ̃

]a+2

=

∫
〈λ|dλ〉

[
dλ̃| ∂

∂λ̃

]
1

(a+ 1) 〈λ|RK|λ〉

〈
λ|R|λ̃

]a+1

〈
λ|K|λ̃

]a+1 , (B.2)

where (A.1) has been used. For the pole 〈λ|RK|λ〉, we use the construction given in

appendix A to read out two poles 〈λ|P1〉 and 〈λ|P2〉 with Pi = R + xiK (see (A.3)). For

the first pole |λ〉 = |P1〉, the residue is

(x1 − x2)

(a+ 1)(−2P1 · P2)
(−x1)

a+1 ,

while for the second pole |λ〉 = |P2〉, the residue is

(x1 − x2)

(a+ 1)(2P1 · P2)
(−x2)

a+1 .

Putting them together we obtain

R(a)
2 =

1

(a+ 1)
√

∆R,K

((−x1)
a+1 − (−x2)

a+1) ,

∆A(a)
2 =

∫
d−2ǫµ[(1− 2z)K2]a+1R(a)

2 , (B.3)

where

∆R,K = (2R ·K)2 − 4R2K2 , x1 =
−2R ·K +

√
∆R,K

2K2
, x2 =

−2R ·K −
√
∆R,K

2K2
.

Let us give a few examples:

∆A(a=0)
2 =

∫
d−2ǫµ(−

√
1− u) ,

∆A(a=1)
2 =

∫
d−2ǫµ(−

√
1− u){K · T} ,

∆A(a=2)
2 =

∫
d−2ǫµ(−

√
1− u){(4− u)(K · T )2 + (−1 + u)K2T 2

3
} . (B.4)
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The case a = 0 gives the analytic signature Sbub=(−
√
1−u) for the one-loop scalar bubble

basis. For cases a = 1, 2, the part inside the curly bracket is indeed polynomial of u.

B.2 The triangle integration

For the case n = 3, we can split the integrand as follows

R(a)
3 =

∫
〈λ|dλ〉

[
λ̃|dλ̃

]
〈
λ|R|λ̃

]a

〈
λ|K|λ̃

]a+1 〈
λ|Q|λ̃

]

=

∫
〈λ|dλ〉

[
λ̃|dλ̃

]




( 〈λ|RQ|λ〉
〈λ|KQ|λ〉

)a 1〈
λ|K|λ̃

] 〈
λ|Q|λ̃

]

+
a−1∑

i=0

〈λ|RK|λ〉
〈λ|QK|λ〉

( 〈λ|RQ|λ〉
〈λ|KQ|λ〉

)i

〈
λ|R|λ̃

]a−1−i

〈
λ|K|λ̃

]a+1−i





. (B.5)

After the splitting, the first term inside the big bracket produces the signature of triangle,

while the second term produces the signature of bubble. Thus we have the following two

standard integrations.

B.2.1 Triangle-to-triangle part

For the first term, writing into total derivative we have

R(a)
3→3 =

∫
〈λ|dλ〉

[
dλ̃| ∂

∂λ̃

]
(−)a 〈λ|RQ|λ〉a

〈λ|QK|λ〉a+1 ln




〈
λ|Q|λ̃

]

〈
λ|K|λ̃

]


 . (B.6)

The pole is given by factor 〈λ|QK|λ〉a+1. Using results in appendix A, for the pole η = P1

with auxiliary spinor s = P2 the residue is

(−)a(x1 − x2)
a+1

[P1|P2]
a+1 ln (−x1)

da

dτa

(〈P1 − τP2|RQ|P1 − τP2〉a

a! 〈P1|P2〉2a+1

) ∣∣∣
τ→0

.

For the pole η = P2 with auxiliary spinor s = P1 the residue is

(−)a(x1 − x2)
a+1

[P1|P2]
a+1 ln (−x2)

da

dτa

(〈P2 − τP1|RQ|P2 − τP1〉a

a! 〈P2|P1〉2a+1

) ∣∣∣
τ→0

.

One can observe that the derivative part is in fact the same for both contributions after

taking the limit τ → 0. Thus the sum of two contributions is

(−)a(x1 − x2)
a+1 ln x1

x2

[P1|P2]
a+1 a! 〈P1|P2〉2a+1

da

dτa
〈P1 − τP2|RQ|P1 − τP2〉a

∣∣∣
τ→0

.

After some manipulation, we finally have

R(a)
3→3 = C(a)

3→3 Stri , (B.7)
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where Stri is the signature of triangle and C(a)
3→3 is the corresponding coefficient:

Stri ≡
1√
∆Q,K

ln

(
Q ·K −

√
(Q ·K)2 −Q2K2

Q ·K +
√
(Q ·K)2 −Q2K2

)
,

C(a)
3→3 =

(−)a

a!∆a
Q,K

da

dτa
(
+τ(4Q2(R ·K)− 4(R ·Q)(Q ·K)) + τ2(Q2) (B.8)

+(R2∆Q,K + (2R ·Q)2K2 + (2R ·K)2Q2 − (2R ·Q)(2R ·K)(2Q ·K))
)a |τ→0 .

The a = 0 case gives the result for standard scalar triangle and other a’s, give the corre-

sponding coefficients under the reduction. One can verify that the coefficients are indeed

rational functions.

B.2.2 Triangle-to-bubble part

The typical term in (B.5) for triangle-to-bubble part is

R3→2[i, n] ≡
∫

〈λ|dλ〉
[
λ̃|dλ̃

] 〈λ|RK|λ〉
〈λ|QK|λ〉

( 〈λ|RQ|λ〉
〈λ|KQ|λ〉

)i

〈
λ|R|λ̃

]n

〈
λ|K|λ̃

]n+2

=

∫
〈λ|dλ〉

[
dλ̃| ∂

∂λ̃

]
(−)i 〈λ|RQ|λ〉i

(n+ 1) 〈λ|QK|λ〉i+1

〈
λ|R|λ̃

]n+1

〈
λ|K|λ̃

]n+1 . (B.9)

The residue of pole 〈λ|QK|λ〉i+1 can be read out as in previous subsubsection and we get

R3→2[i, n] =
(−)n+i(K2)i

i!(n+ 1)
√
∆

n+2i+2

di

dτ i
{(

(2R · P2 − τ 〈P1|R|P2])
n+1 (B.10)

(−x2 〈P2|R|P1]− x1τ
2 〈P1|R|P2] + τ(x2(2R · P1) + x1(2R · P2)))

i
)

+ (−)n
(
(2R · P1 − τ 〈P2|R|P1])

n+1

(−x2τ
2 〈P2|R|P1]− x1 〈P1|R|P2] + τ(x2(2R · P1) + x1(2R · P2)))

i
)} ∣∣∣

τ→0
.

To get a Lorentz contracted form, we need to use the following key fact: to have non-

zero contribution, factors 〈P1|R|P2] and 〈P2|R|P1] should always appear in pair. Thus we

can transfer (B.10) to

R3→2[i, n] =
(−)n+i(K2)i

i!(n+ 1)
√
∆

n+2i+2

di

dτ i
{(

(2R · P2 − τ)n+1 (B.11)

(−x2 〈P2|R|P1] 〈P1|R|P2]− x1τ
2 + τ(x2(2R · P1) + x1(2R · P2)))

i
)

+ (−)n
(
(2R · P1 − τ)n+1

(−x2τ
2 − x1 〈P1|R|P2] 〈P2|R|P1] + τ(x2(2R · P1) + x1(2R · P2)))

i
)} ∣∣∣

τ→0
,

where

〈P2|R|P1] 〈P1|R|P2] =
R2∆

K2
+(2R·Q)2+(2R·K)2

Q2

K2
− (2R ·Q)(2R ·K)(2Q ·K)

K2
. (B.12)
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Thus the contribution for the triangle-to-bubble part is given by

R(a)
3→2 =

a−1∑

i=0

R3→2[i, a− 1− i] . (B.13)

Putting two parts together, we get

R(a)
3 = R(a)

3→3 +R(a)
3→2 . (B.14)

B.3 The box integration

The box integration is given by

R(a)
4 =

∫
〈λ|dλ〉

[
λ̃|dλ̃

]
〈
λ|R|λ̃

]a
〈
λ|K|λ̃

]a 〈
λ|Q1|λ̃

] 〈
λ|Q2|λ̃

] . (B.15)

After splitting, we have the part producing signatures of box and triangle

∫
〈λ|dλ〉

[
λ̃|dλ̃

]



−〈λ|RQ1|λ〉
〈λ|Q1Q2|λ〉

( 〈λ|RQ1|λ〉
〈λ|KQ1|λ〉

)a−1 1〈
λ|K|λ̃

] 〈
λ|Q1|λ̃

]

+
〈λ|RQ2|λ〉
〈λ|Q1Q2|λ〉

( 〈λ|RQ2|λ〉
〈λ|KQ2|λ〉

)a−1 1〈
λ|K|λ̃

] 〈
λ|Q2|λ̃

]



 , (B.16)

and the part producing the signature of bubble

∫
〈λ|dλ〉

[
λ̃|dλ̃

]




〈λ|RQ2|λ〉
〈λ|Q1Q2|λ〉

a−2∑

i=0

〈λ|RK|λ〉
〈λ|Q2K|λ〉

( 〈λ|RQ2|λ〉
〈λ|KQ2|λ〉

)i

〈
λ|R|λ̃

]a−2−i

〈
λ|K|λ̃

]a−i

+
−〈λ|RQ1|λ〉
〈λ|Q1Q2|λ〉

a−2∑

i=0

〈λ|RK|λ〉
〈λ|Q1K|λ〉

( 〈λ|RQ1|λ〉
〈λ|KQ1|λ〉

)i

〈
λ|R|λ̃

]a−2−i

〈
λ|K|λ̃

]a−i





.

(B.17)

Now we can evaluate various parts one by one.

B.3.1 The box-to-box part

This part comes from pole 〈λ|Q1Q2|λ〉 in (B.16). Using Q1 + xiQ2 to construct two null

momenta Pi, we get the residue

(x1 − x2)

[P1|P2] 〈P1|P2〉

( 〈P1|R|P2]

〈P1|K|P2]

)a

ln(−x1) +
−(x1 − x2)

[P1|P2] 〈P1|P2〉

( 〈P2|R|P1]

〈P2|K|P1]

)a

ln(−x2) ,

which can be written as

1

2

(x1 − x2)

[P1|P2] 〈P1|P2〉
ln

(
x1
x2

)[( 〈P1|R|P2]

〈P1|K|P2]

)a

+

( 〈P2|R|P1]

〈P2|K|P1]

)a]

+
1

2

(x1 − x2)

[P1|P2] 〈P1|P2〉
ln (x1x2)

[( 〈P1|R|P2]

〈P1|K|P2]

)a

−
( 〈P2|R|P1]

〈P2|K|P1]

)a]
. (B.18)
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Box part. The first term in (B.18) produces the signature of box

Sbox =
1√

(2Q1 ·Q2)2 − 4Q2
1Q

2
2

ln
Q1 ·Q2 −

√
(Q1 ·Q2)2 −Q2

1Q
2
2

Q1 ·Q2 +
√
(Q1 ·Q2)2 −Q2

1Q
2
2

, (B.19)

as well as the coefficient

C(a)
4→4 =

1

2

[( 〈P1|R|P2]

〈P1|K|P2]

)a

+

( 〈P2|R|P1]

〈P2|K|P1]

)a]
. (B.20)

Thus we have

R(a)
4→4 = C(a)

4→4 Sbox . (B.21)

It can be shown that there is a recursion relation

R(a+1)
4→4 =

T2

T1
R(a)

4→4 −
T3

T1
R(a−1)

4→4 , (B.22)

with

C(0)
4→4 = 1 , C(1)

4→4 =
T2

2T1
, (B.23)

where

T1 = 4

[
(Q1 ·K)2+

Q2
1

Q2
2

(Q2 ·K)2 − 2Q1 ·Q2

Q2
2

(Q1 ·K)(Q2 ·K)

]
+K2 ((2Q1 ·Q2)

2−4Q2
1Q

2
2)

Q2
2

,

T2 =
8(R ·K)((Q1 ·Q2)

2 −Q2
1Q

2
2)

Q2
2

+ 8(R ·Q1)(K ·Q1) + 8(R ·Q2)(K ·Q2)
Q2

1

Q2
2

− 8
(Q1 ·Q2)

Q2
2

((R ·Q1)(K ·Q2) + (R ·Q2)(K ·Q1)) ,

T3 = 4[(Q1 ·R)2 +
Q2

1

Q2
2

(Q2 ·R)2 − 2Q1 ·Q2

Q2
2

(Q1 ·R)(Q2 ·R)] +R2 ((2Q1 ·Q2)
2 − 4Q2

1Q
2
2)

Q2
2

.

Triangle part. The second term in (B.18) produces the signature of triangle. Using

ln(x1x2) = ln
Q2

1

Q2
2

= ln
Q2

1

K2
− ln

Q2
2

K2
,

the second term in (B.18) can be rewritten as

1

2
ln

Q2
1

K2

{
1

〈λ|Q1Q2|λ〉

( 〈λ|RQ1|λ〉
〈λ|KQ1|λ〉

)a}

Residue of 〈λ|Q1Q2|λ〉

+
1

2
ln

Q2
2

K2

{ −1

〈λ|Q1Q2|λ〉

( 〈λ|RQ2|λ〉
〈λ|KQ2|λ〉

)a}

Residue of 〈λ|Q1Q2|λ〉
. (B.24)

We will combine (B.24) with results in the next subsubsection to produce the complete

triangle part.
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B.3.2 The box-to-triangle part

Since Q1 and Q2 are symmetric, we will focus on the triangle constructed by K,Q1. The

contribution comes from the first term of (B.16). This term contains two kinds of poles:

〈λ|Q1Q2|λ〉 and 〈λ|KQ|λ〉. The contribution of pole 〈λ|Q1Q2|λ〉 has been evaluated in

previous subsubsection. For the second pole, after writing it into total derivative, it is
1

〈λ|KQ|λ〉a . Using Q1,K to construct two null momenta P1, P2, the residue is given by two

parts. The first part contains ln(x1x2) (which is nothing but ln
Q2

1
K2 ) and is given by

1

2
ln

Q2
1

K2

{
1

〈λ|Q1Q2|λ〉

( 〈λ|RQ1|λ〉
〈λ|KQ1|λ〉

)a}

Residue of 〈λ|KQ1|λ〉a
. (B.25)

It cancels the first term of (B.24), since the sum of all residues of a holomorphic function

is zero.17 The second part contains ln(x1/x2) which is the signature of triangle. The

contribution can be written as

R(a)
4→3(Q1) = C(a)

4→3(Q1) Stri(Q1,K) , (B.26)

where

Stri(Q1,K) =
1√

(2Q1 ·K)2 − 4Q2
1K

2
ln

Q1 ·K −
√
(Q1 ·K)2 −Q2

1K
2

Q1 ·K +
√
(Q1 ·K)2 −Q2

1K
2
,

and

C(a)
4→3(Q1) =

(−)a−1

(a− 1)!

(
K2

4((Q1 ·K)2 −K2Q2
1)

)a−1

(B.27)

{
da−1

dτa−1

(
(−τ2x2 〈P2|R|P1]− x1 〈P1|R|P2] + τ(x2 〈P1|R|P1] + x1 〈P2|R|P2]))

a

(−τ2x2 〈P2|Q2|P1]− x1 〈P1|Q2|P2] + τ(x2 〈P1|Q2|P1] + x1 〈P2|Q2|P2]))

)

+
da−1

dτa−1

(
(−x2 〈P2|R|P1]−x1τ

2 〈P1|R|P2]+τ(x2 〈P1|R|P1]+x1 〈P2|R|P2]))
a

(−x2 〈P2|Q2|P1]−x1τ2 〈P1|Q2|P2]+τ(x2 〈P1|Q2|P1]+x1 〈P2|Q2|P2]))

)}∣∣∣
τ→0

.

To write the spinor form to the Lorentz contracted form, we can take similar manipulation

as the one from (B.10) to (B.11). The result is

C(a)
4→3(Q1) =

(−)a−1

(a− 1)!

(
K2

4((Q1 ·K)2 −Q2
1K

2)

)a−1

(B.28)

da−1

dτa−1

2K2T6(K
2T7 +K2T5T6τ +Q2

1T6T7τ
2)
(
1 +

Q2
1

K2T6τ
2 + T4τ

)a

(Q2
1T6T7τ2 +K2(T7 + T5T6τ))2 − T 2

8 (K
2 −Q2

1T6τ2)2

∣∣∣
τ→0

,

where we have defined

T4 =
4(R ·K)Q2

1 − 4(R ·Q1)(K ·Q1)

K2
, T5 =

4(Q2 ·K)Q2
1 − 4(Q2 ·Q1)(K ·Q1)

K2
,

T6 =
R2∆

K2
+ 4(R ·Q1)

2 +
4Q2

1(R ·K)2

K2
− 8(R ·Q1)(R ·K)(Q1 ·K)

K2
,

T7 = 2(P1 ·Q2)(P2 ·R) + 2(P1 ·R)(Q2 · P2)− 2(P1 · P2)(Q2 ·R) ,

T8 =
4iǫ(Q1Q2KR)

√
(K ·Q1)2 −K2Q2

1

K2
.

It is worth to mention that T8 appears as T
2
8 , thus the Levi-Civita symbol has been removed.

17It is worth to notice that by power counting, infinity does not contribute residue.
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B.3.3 The box-to-bubble part

Having finished the computation of (B.16), we turn to the (B.17). The total result can be

expressed as

R(a)
4→2 =

a−2∑

i=0

R4→2(Q1)[i, a− 1− i] + {Q1 ↔ Q2} , (B.29)

where the typical term is

R4→2(Q1)[i,m] =





1

〈λ|Q1Q2|λ〉

( 〈λ|RQ1|λ〉
〈λ|KQ1|λ〉

)i+1 1

m

〈
λ|R|λ̃

]m
〈
λ|K|λ̃

]m





residue

. (B.30)

There are three poles for this part: 〈λ|Q1Q2|λ〉, 〈λ|Q1K|λ〉 and 〈λ|Q2K|λ〉. The contribu-

tion from 〈λ|Q1Q2|λ〉 is zero when summing up the two lines in (B.17). For the remaining

two poles, because of the symmetry Q1 ↔ Q2, we will focus on R4→2(Q1)[i,m] only.

We use Q1, K to construct two null momenta P1, P2 and get residue

R4→2(Q1)[i,m]

=
(−)i(K2)i

i!m(
√
∆)m+2i+1

di

dτ i

{
(τT4−τ2x2 〈P2|R|P1]−x1 〈P1|R|P2])

i+1(〈P1|R|P1]−τ 〈P2|R|P1])
m

τT5−τ2x2 〈P2|Q2|P1]−x1 〈P1|Q2|P2]

+(−)m+1 (τT4 − x2 〈P2|R|P1]− τ2x1 〈P1|R|P2])
i+1(〈P2|R|P2]− τ 〈P1|R|P2])

m

τT5 − x2 〈P2|Q2|P1]− τ2x1 〈P1|Q2|P2]

} ∣∣∣
τ→0

.

(B.31)

We can rewrite the expression to the following Lorentz contracted form

R4→2(Q1)[i, a]=
(−)i(K2)i

i!a(
√
∆)a+2i+1

di

dτ i




(τT4+τ2

Q2
1

K2T6+1)i+1(2Q1 ·R+2x1K ·R+τx1T6)
a

τT5+τ2
Q2

1
K2 (T7−T8)+

T7+T8
T6

+(−)a+1 (τT4 + τ2
Q2

1
K2T6 + 1)i+1(2Q1 ·R+ 2x2K ·R+ τx2T6)

a

τT5 + τ2
Q2

1
K2 (T7 + T8) +

T7−T8
T6



 . (B.32)

One can verify that T8 will appear as T
2
8 after summing R4→2(Q1)[i, a] and R4→2(Q2)[i, a],

thus the Levi-Civita symbol does not appear in the final result.

C The integration for topology A313

It is hard to get the explicit result for (6.15). In this appendix we develop a method to find

approximate expressions. Technically the case b = 0 is the most complicated one, while the

b ≥ 1 cases can be reduced to the case b = 0 plus some simple integration. Before working

out the integration case by case, we give two explicit integrations

∫ +1

−1

du√
(u+mγ2)2 + (1−m2)(γ22 − 1)

= ln
(γ2 + 1

γ2 − 1

)
, (C.1)
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and

∫ +1

−1

du√
(u+ α)2 − β2

ln
(u+ α) +

√
(u+ α)2 − β2

(u+ α)−
√
(u+ α)2 − β2

= ln
(γ + 1

γ − 1

)
ln
(γ1 + 1

γ1 − 1

)
, (C.2)

where we have used the conditions −1 < m < 1 and γi ≥ 1. These two results are useful

for our further discussion.

C.1 Pure 4D solution in the case b = 0

From (6.15) we get that D(0,0)
313 is

− γ1γ2
s3

∫ +1

−1
du

1√
(u+mγ2)2 + ξ2

1√
(u+ α)2 − β2

ln
(u+ α) +

√
(u+ α)2 − β2

(u+ α)−
√
(u+ α)2 − β2

, (C.3)

where ξ2 = (1 −m2)(γ22 − 1) is positive. In the pure 4D, ξ → 0, so we need to study the

limit behavior at ξ → 0. If we expand

f(u) ≡ 1√
(u+ α)2 − β2

ln
(u+ α) +

√
(u+ α)2 − β2

(u+ α)−
√

(u+ α)2 − β2
=

+∞∑

n=0

fnu
n (C.4)

in the region [−1,+1], where f(u) is positive and convergent uniformly, we will have (ig-

noring the factor (−γ1γ2/s
3))

D(0,0)
313 =

+∞∑

n=0

fn

n∑

k=0

Ck
n(−mγ2)

n−k

∫ mγ2+1

mγ2−1
du

uk√
u2 + ξ2

(C.5)

after shifting of u. Now we introduce a series of functions defined as

Hn(a, b) =

∫ b

0
dx

xn√
x2 + a2

, n ≥ 0 , (C.6)

with integer n. It is easy to figure out the answers

Hn=2m=
(−)man

2n
Cm

n ln
(√a2+b2+b

a

)
+
an

2n

m−1∑

k=0

(−)kCk
n

n−2k

[(√a2+b2+b

a

)n−2k

−
(√a2+b−b

a

)n−2k
]
,

Hn=2m+1=
an

2
√
π
Γ
(
− n

2

)
Γ
(n+1

2

)
+
an

2n

m∑

k=0

(−)kCk
n

n−2k

[(√a2+b2+b

a

)n−2k

+
(√a2+b2−b

a

)n−2k
]
.

For the limit a → 0, it is easy to see that only in the case n = 0 it is divergent and we have

lim
a→0

H0(a, b) = ln
(√a2 + b2 + b

a

)∣∣∣
a→0

, lim
a→0

Hn(a, b) =
bn

n
, n ≥ 1 . (C.7)

Using this observation the expression (C.5) can be separated into the divergent part and

the finite part. The divergent part is

+∞∑

n=0

fn(−mγ2)
n
(
H0(ξ,mγ2 + 1)−H0(ξ,mγ2 − 1)

)
= f(−mγ2) ln

(γ2 + 1

γ2 − 1

)
(C.8)
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by using the conditions γ2 > 1 and −1 < m < 1, where function f is defined in (C.4).

Under the 4D limit, the divergent term is

D(0,0)
313 |div =

1

s3
1

2χ
ln
(γ2 + 1

γ2 − 1

)[
2 ln(−χ) + ln

(γ + 1

γ − 1

)
+ ln

(γ1 + 1

γ1 − 1

)]
, (C.9)

where we have recovered the missing factor. If we consider D(0,0)
313 as a series of γ2, this is

just the first (divergent) term. The finite part of the expression (C.5) is

+∞∑

n=0

fn

n∑

k=1

Ck
n(−mγ2)

n−k
(
Hk(ξ,mγ2 + 1)−Hk(ξ,mγ2 − 1)

)
. (C.10)

Under the pure 4D limit, using (C.7) it becomes

+∞∑

n=0

fn

n∑

k=1

Ck
n

k
(−mγ2)

n−k
(
(mγ2 + 1)k + (mγ2 − 1)k

)
. (C.11)

We can use parameterizing method to sum up above awesome form. If we define

G(x) ≡
n∑

k=1

Ck
n

k
(−mγ2)

n−k
(
(mγ2 + x)k + (mγ2 − x)k

)
, (C.12)

then G(x) satisfies the differential equation

∂G

∂x
= g(x)− g(−x) , g(x) =

xn − ρn

x− ρ
, ρ ≡ −mγ2 . (C.13)

Obviously,

G(1)−G(0) =

∫ +1

0
dx g(x) +

∫ −1

0
dx g(x) , (C.14)

where G(1) is the result we want to find. To compute G(0), we define new function

G̃(0, x) = 2
n∑

k=1

Ck
n

k
(−mγ2)

n−k(mγ2 x)k , G̃(0, 1) = G(0), G̃(0, 0) = 0 . (C.15)

Using the same method, we can find the differential equation for G̃(0, x). After some

variable replacement we get

G(0) = G̃(0, 1) = 2

∫ 0

ρ

g(x) dx . (C.16)

Combining (C.14) with (C.16) and exchanging the integration and the summation

+∞∑

n=0

fn

∫
dx

xn − ρn

x− ρ
=

∫
dx

f(x)− f(ρ)

x− ρ
, (C.17)
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finally the finite term can be written as

D(0,0)
313 |finite =

−γ1γ2
s3

(∫ +1

ρ

+

∫ −1

ρ

)
dx

f(x)− f(ρ)

x− ρ
. (C.18)

Now we focus on the indefinite integration. If we change the integration variable as

cosh y ≡ α+ x

β
, cosh y± ≡ α± 1

β
, cosh y0 ≡

α−mγ2
β

, (C.19)

then
∫

dx
f(x)

x− ρ
=

2

β

∫
dy

y

cosh y − cosh y0
. (C.20)

After integration by parts it becomes

2

β sinh y0

[
− y2

2
+ y ln

1− e−(y0−y)

1− e−(y0+y)
+ Li2

(
e−(y0−y)

)
+ Li2

(
e−(y0+y)

)]
, (C.21)

in which Lis(z) is the polylogarithm. Combining with the other part, the whole indefinite

integral of (C.18) can be written as

F (y) ≡ 2

β sinh y0

[
Li2

(
e−(y0−y)

)
+ Li2

(
e−(y0+y)

)
− y2

2

− (y0 − y) ln
(
1− e−(y0−y)

)
− (y0 + y) ln

(
1− e−(y0+y)

)]
. (C.22)

Thus D(0,0)
313 |finite is given by F (y+) + F (y−) − 2F (y0) up to an overall factor. Above

calculations are done for pure 4D limit of γ2. After taking the pure 4D limit of γ1, γ we

finally reach

D(0,0)
313 =

1

s3 2χ

[
ln
(−2χ

γ−1

)
ln
( −2χ

γ1−1

)
+ln

(−2χ

γ−1

)
ln
( −2χ

γ2−1

)
+ln

( −2χ

γ1−1

)
ln
( −2χ

γ2−1

)

+ 2 Li2(1 + χ)− π2

3

]
, (C.23)

after combining with the divergent term (C.9).

C.2 Pure 4D solution in the case b ≥ 1

For the case b = 1 we can define a combination of (b = 1) and (b = 0) as

D(0,1)
313 − χ sD(0,0)

313 =
γ1
2s2

∫ +1

−1
du

u+mγ2√
(u+mγ2)2 + ξ2

f(u) , (C.24)

and again f(u) defined in (C.4). Since

∣∣∣ u+mγ2√
(u+mγ2)2 + ξ2

∣∣∣ ≤ 1 (C.25)
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and f(u) > 0 in the whole integration zone, using the result (C.2) we have

D(0,1)
313 − χ sD(0,0)

313 <
γ1
2s2

ln
(γ + 1

γ − 1

)
ln
(γ1 + 1

γ1 − 1

)
. (C.26)

It means that as a function of γ2, above combination is finite under the limit γ2 → 1.

Thus to our zero-order (i.e., the pure 4D case), we can just set γ2 = 1 before doing the

integration and get

D(0,1)
313 − χ sD(0,0)

313 =
γ1
2s2

∫ +1

−1
du

u+m

|u+m|f(u) =
γ1
2s2

(∫ +1

−m

+

∫ −1

−m

)
du f(u) . (C.27)

Taking the same integration variable replacement as in (C.19), this integral can be worked

out easily. Then in the limit γ2 → 1, D(0,1)
313 − χ sD(0,0)

313 is equal to

γ1
2s2

[
ln

γγ1 −m+ αm

(γ − 1)(γ1 − 1)
ln

γγ1 −m− αm

(γ − 1)(γ1 − 1)
+ln

γγ1 −m+ αm

(γ + 1)(γ1 − 1)
ln

γγ1 −m− αm

(γ + 1)(γ1 − 1)

]
, (C.28)

where

αm =
√
γ2 + γ21 +m2 − 2γγ1m− 1 . (C.29)

It is worth to point out that when we take m → 1, this result reduces to

γ1
2s2

ln
(γ + 1

γ − 1

)
ln
(γ1 + 1

γ1 − 1

)
, (C.30)

which is just the explicit result of D(0,0)
312 . To keep only zero-order results, we take γ, γ1 → 1

further in (C.28) and find that in the pure 4D

D(0,1)
313 = χ sD(0,0)

313 +D(0,0)
312 − 1

s2
ln
( −2χ

γ − 1

)
ln
( −2χ

γ1 − 1

)
. (C.31)

For the case b = 2, 3 we will not show the computation details again. The main point is

that in the first step, we choose a proper linear combination of D(0,b)
313 to make the integrand

having the form

(u+mγ2)
b

√
(u+mγ2)2 + ξ2

f(u) . (C.32)

For b = 2 we should choose the combination as

D(0,2)
313 − 2χ sD(0,1)

313 + χ2 s2D(0,0)
313 , (C.33)

and for b = 3 it is

D(0,3)
313 − 3χ sD(0,2)

313 + 3χ2 s2D(0,1)
313 − χ3 s3D(0,0)

313 . (C.34)

Then we can prove that these combinations are convergent at γ2 → 1 just as in the case

b = 1. Thus we can take γ2 = 1 before integrating those combinations. The second step
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is to integrate these dramatically simplified integrands. In this step the most efficient way

is to use the variable replacement in (C.19) and we can integrate quickly. For example in

the case b = 2, combination D(0,2)
313 − χ sD(0,1)

313 is given by

−γ1
2s

(
γ ln

(γ1 + 1

γ1 − 1

)
+ γ1 ln

(γ + 1

γ − 1

)
− 2αm ln

γγ1 −m+ αm

β
− 2m

)
, (C.35)

and the corresponding expressions for b = 3 are even longer. To find the approximate

results in the pure 4D, in the last step we take limit γ, γ1 → 1. Carrying out these steps,

finally we get

D(0,2)
313 = χ sD(0,1)

313 +
2χ+ 1

s
D(0,0)

202 − 2χ+ 1

2
D(0,0)

212 − 2χ+ 1

2
D(0,0)

302 − 2χ

s
ln(−χ) , (C.36)

D(0,3)
313 = χ2 s2D(0,1)

313 +
(5
2
χ2 + χ− 1

4

)
D(0,0)

202 −
(3
2
χ2 +

1

2
χ− 1

4

)(
sD(0,0)

212 + sD(0,0)
302

)

− 3χ2 ln(−χ) .
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