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1 Motivations

Dark matter (DM) with non-vanishing couplings to ordinary matter may be probed in

underground direct-detection experiments. Such couplings can arise from short-range in-

teractions with protons and neutrons, or via weak interactions with photons.

The latter are particularly relevant whenever the DM field X directly couples to mes-

sengers that carry electro-weak charges, but couple only very weakly to gluons, the stan-

dard model (SM) fermions, and the Higgs boson. In these scenarios, complex DM with

spin will generically acquire electro-magnetic dipole moments. These lead to very large

direct detection (DD) signatures, and have already been studied by many authors [1–6].

Here we are interested in the alternative scenarios with self-conjugate X (real scalar,

Majorana fermion, real vector, etc.) in which DD is controlled by the DM electro-magnetic

polarizability. We define the latter according to

δL ⊃ Cγ
Λ3
Oγ , Oγ = FµνF

µν XX, (1.1)
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with Fµν the photon field strength.1 For definiteness we assume X is a Majorana fermion,

but our results apply to self-conjugate DM of any spin. Strictly speaking, there is another

C and P invariant operator that contributes to the DM polarizability at leading order in

a momentum expansion. In the non-relativistic limit we may write it as FµαFναv
µvν XX,

where vµ is the DM 4-velocity. Note that one of the two DM velocities arises from a deriva-

tive on the DM field (if the DM is a boson, both of them). Therefore, the latter operator is

parametrically suppressed compared to Oγ when the scale of the charged mediator induc-

ing (1.1) is much heavier than the DM mass, but cannot be neglected when the two scales

approach each other. The important point for us is that both operators lead, up to small

velocity-suppressed corrections, to the same direct detection matrix element, so a distinc-

tion between the two is not relevant to our work. In fact, in the limit of small DM velocity

vµ → (1,
−→
0 ), and the second operator effectively reduces to F0iF0iXX. Analogously, be-

cause the photon field in Oγ dominantly couples to the zeroth component of the nucleon

current, FµνF
µν XX → F0iF0iXX. In the following we will denote the DM polarizability

by Oγ , but the reader should keep in mind that when discussing specific UV completions

with no large gap between the DM and the charged mediators masses another operator

might be present. In addition, there may be C and P violating operators involving the

Levi-Civita tensor, such as FµνF̃
µν XX and FµαF̃ναv

µvν XX.

Self-conjugate DM also couples to photons via the anapole operator XsµX∂νF
µν ,

with sµ the DM spin. This has lower dimensionality and generically dominates over Oγ
unless additional assumptions are made. Since the anapole violates separately C and P ,

while Oγ does not, a natural way to suppress its effects is to assume that the dark sector

approximately respects either C or P . Similarly, Õγ = εµναβFµνFαβiXγ
5X can dominate

over the anapole if the dark sector is approximately C/P invariant. We thus conclude that,

under reasonable and generic conditions, the couplings of self-conjugate DM to photons

are controlled by Oγ , Õγ .

Direct detection via DM polarizability was first studied in [2] in the limit in which

the interaction is described by a DM wave propagating in the electro-magnetic field of an

infinitely heavy target nucleus. Later, the authors of ref. [7] emphasized that DM scattering

for arbitrary masses proceeds via a photon loop, and estimated the rate using an effective

field theory for the nucleus. More recent work on the DD signatures of (1.1) can be found

in [8] and [9].

In this paper we present a detailed analysis of the DD signature induced by Oγ and

Õγ . After a qualitative discussion of the nucleon/target effective field theory (EFT) in

section 2, our main results for Oγ are presented in section 3. A numerical study in section 4

emphasizes the unique nature of the corresponding DD signature. A comparison between

our results and the existing literature is given in appendix A. The operator Õγ is discussed

in section 5. In section 6 we emphasize some important features that characterize UV

complete models with unsuppressed Oγ , Õγ , and comment on the coupling XXH†H. A

summary of our results is presented in section 7.

1At scales relevant to DD experiments, couplings to the intermediate W±, Z0 bosons effectively describe

short-range interactions between DM and nucleons.

– 2 –
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2 EFT at a qualitative level

We start with an analysis of Oγ , whereas Õγ will be discussed later on.

There are two types of direct detection signatures that (1.1) can lead to: an elastic

scattering XT → XT (here T stands for the target nuclei) or an inelastic process XT →
XTγ [7]. The first is numerically a loop effect. The latter process arises at tree-level, but

its rate is suppressed at least by a factor v24π/α ∼ 10−3 (v is the incoming DM velocity)

compared to the former, and is therefore completely negligible.

2.1 The nucleon Lagrangian

The rate for the elastic scattering XT → XT may be found exploiting the hierarchy

of scales

q . Q0 � mN � mT , (2.1)

with q the momentum transfer, 1/Q0 the radius of T , mN the nucleon mass, and mT the

target mass.

One first performs the RG evolution from the new physics scale ∼ Λ to the scale ∼ mc.

Here one finds that Oγ mixes with the quark mass operators Oq = qHqX2 at one loop,

and the latter with the gluon operator OG = αs
4πG

2
µνX

2 via an additional QCD loop. In

addition, one should take care of the top and bottom quark thresholds. Once this is done,

the EFT at leading order in q/mc reads
∑

i=γ,u,d,s,G
Ci
Λ3Oi where, up to O(1) numbers,

Cq,G(mc) ∼ Cq,G(Λ) +
α

π
Cγ(Λ), (2.2)

with α = e2/4π the fine structure constant. In section 6 we argue that the natural expec-

tation in realistic models is Cq,G(Λ) & α
πCγ(Λ), with Cq,G(Λ) ∼ α

πCγ(Λ) achievable under

reasonable conditions.

The Wilson coefficients Cq,G,γ(mc) can be calculated using standard perturbation the-

ory (see [8, 9] for a discussion of the case Cq,G(Λ) = 0). Alternatively, one can derive the

leading non-derivative interactions of X by simply observing that (1.1) renormalizes the

QED gauge coupling. By a formal redefinition (A, e)→ (Aeff , eeff), with

e2
eff(X) = e2

(
1 + 4Cγ

XX

Λ3
+O

(
X4/Λ6

))
, (2.3)

we can remove X from the Lagrangian (up to momentum-suppressed terms). The EFT at

the lower scale is now a function of eeff(X), whereas by gauge invariance eA = eeffAeff does

not depend on the DM. This trick for example implies

δLmt ⊃ −
∂ logmt

∂ logα
mttt 4Cγ(Λ)

XX

Λ3
, (2.4)

in agreement with an explicit loop analysis.

Next one should match the quark EFT onto a theory for the nucleons N = n, p. The

leading DM couplings now are:

δLmN =
∑

i=γ,p,n

Ci
Λ3
Oi +O(q/mN ), (2.5)

– 3 –
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with Oγ defined in (1.1), and ON = mNNNXX (N = p, n). It is understood that all

couplings and operators are renormalized at ∼ mN . The remainder O(q/mN ) also includes

the chiral corrections discussed in [10, 11].

Importantly, the coefficients Cp,n(mN ) receive, besides the familiar contributions from

Ou,d,s,G(mc) (see [12] for a recent NLO analysis), also a correction induced by Oγ(mc)

of order:

δCp,n(mN ) ∼ α

π
Cγ(mc). (2.6)

This latter RG effect can be seen, for example, proceeding along the lines discussed

around (2.3). (We emphasize that both proton and the neutron masses are corrected by

QED at 1-loop, so that Cn(mN ) is also affected despite the neutron has no net charge.) The

crucial difference compared to the RG evolution at higher scales is that now the analog of

eq. (2.4) is violated by non-negligible higher derivative operators of order m2
N/Λ

2
QCD ∼ 1.

In terms of a heavy baryon EFT these higher-derivative operators correspond to O(α)

corrections to the nucleon masses, and more generally the two-nucleon Lagrangian: their

main effect is a modification of the pion-nucleon coupling at the percent level. Unfortu-

nately, with our current knowledge of QCD we cannot determine the Wilson coefficients of

these operators, and thus Cp,n(mN ), with an accuracy better than O(1), even under the

assumption (unlikely, according to section 6) that Cq,G(Λ) = 0.

2.2 EFT for the target nucleus

To determine the scattering rate for the process XT → XT one can proceed in two equiv-

alent ways. The first is based on an EFT for the target nucleus defined at scales ∼ Q0,

and will be qualitatively discussed in this subsection. The second, which is the one we will

adopt in this paper, will be analyzed in section 3.

At scales µ . Q0 � mN the target nucleus T is effectively a point-like particle of mass

mT � Q0 and one should be allowed to use a heavy nucleus Lagrangian. Up to O(q/Q0),

the EFT at µ ∼ Q0 includes Oγ as well as the contact operator

α

4π
X2TT

[
Z2Q0 + Zmp + (A− Z)mn

]
, (2.7)

where we ignored numerical coefficients for simplicity. The contact operator mixes with Oγ
at one-loop under the RG, as seen from arguments completely analogous to those discussed

above. The terms of order Z,A also receive corrections from CN (mN ) in δLmN .

From (2.7) one immediately reads a short distance contribution to the amplitude for

XT → XT . There is also a correction coming from a UV-sensitive one-loop diagram

involving Oγ , which scales as the O(Z2) term in (2.7) [7]. The two contributions are

individually scheme-dependent; only their sum is physical. For example, using a mass-

independent renormalization scheme the loop diagram vanishes at q = 0, and the O(Z2)

effect comes dominantly from the counterterm (2.7).2

2The authors of [7] neglected the contact operator (2.7), or in other words assume a certain renormal-

ization scheme in which its coefficient vanishes. However, this is not necessarily the same scheme that the

authors used to regulate the 1-loop diagram. This introduces a spurious scheme-dependence and an O(1)

uncertainty in the amplitude.
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3 The 2-body process

The approach followed in section 2.2 is intuitive from a physical standpoint, but not very

convenient. One reason is that it depends on several unknown form-factors, even in the

optimistic (and unrealistic) case in which only Oγ is present at µ ∼ mN . More importantly,

though, it obscures the accuracy of the perturbative expansion. For example, are we allowed

to ignore QED vertex corrections to the one-loop diagram of [7]? These are naively of order

αZ2/4π, and apparently not negligible for heavy targets.

In this section we will approach the problem from the point of view of the “funda-

mental” nucleon EFT. In practice we take (2.5) as our starting point, derive a multi-body

effective theory for the nucleons, and finally take the appropriate nuclear matrix element.

Using this formalism all the unknowns will be encoded in measurable nuclear form fac-

tors. Furthermore, within this formalism the perturbative expansion becomes manifest.

For instance, an inspection of the O(αZ2/4π) “vertex corrections” mentioned above shows

that these are secretly a renormalization of the nuclear wave-function, and hence already

included in the nuclear potential.

3.1 The 2-proton form factor

We now want to calculate the amplitude for XT → XT from the nucleon Lagrangian (2.5).

The discussion in section 2.2 shows that this process receives contributions from the opera-

tors On,p in (2.5) as well as Oγ(mN ). The former may be treated using standard methods.

Our main focus here will be on Oγ . In section 4 we will study in detail the interplay

between all Wilson coefficients Cγ,p,n.

To proceed we formally write a multi-nucleon hamiltonian Htot = Hstrong + V , where

Hstrong contains the nuclear force and V one insertion of Oγ . At leading order in the weak

DM coupling and all orders in the nuclear force the amplitude for XT → XT is just the

Born approximation

〈Tf |V |Ti〉,

with the nuclear ground states |Ti,f 〉 understood as A-nucleon configurations dressed with

the nuclear force.

The dominant DM-nucleon interactions contributing to the potential V are described

by the diagrams shown in figure 1. The loop on the left vanishes for q = 0 in any mass-

independent renormalization scheme, which is the natural regulator in our EFT. Therefore,

only the 2-body process in the right of figure 1 is relevant at leading q/mN order.

The non-relativistic amplitude for the 2-proton process ppX → ppX is

M2(qi,qj) = δsis′iδsjs′jV0
qi · qj
q2
iq

2
j

(
1 +O

(
q2/m2

N

))
, V0 = −8

e2

Λ3
Cγ(mN ), (3.1)

where qi,j are the three-momentum transferred to the nucleons, whereas si,j,i′,j′ are spin

indices for the nucleons (the DM spin indices are not shown because they cancel out in the

cross section when summing and averaging over final and initial states). We did not add

the crossed diagram because it will be automatically included when convoluting M2 with
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Figure 1. Feynman diagrams for the 1-proton and 2-proton processes. Both diagrams contribute

to the contact DM-nuclei interaction, whereas the one on the right is also related in a scheme-

dependent way to the one-loop diagram of [7] (see appendix A for details).

the anti-symmetric nuclear wave function. Following [10, 11], we used a non-relativistic

normalization for the 1-particle states. In practice, this corresponds to divide the relativistic

amplitude by (2mN )2(2mX). With this convention, the formula (3.1) also applies to real

scalars (with Cγ a parameter with dimensions of a mass).

The DM-nucleon potential in “mixed coordinates” (spacial for the nucleons and Fourier

for X) reads:

Ṽij = −
∫

dqi
(2π)3

∫
dqj

(2π)3
e−iqi·xi−iqj ·xj (2π)3δ(3)(q + qi + qj)M2(qi,qj) (3.2)

= δsis′iδsjs′jV0e
+iq·Rf(q, r),

where R = (xi + xj)/2, r = xi − xj , and

f(q, r) =

∫
dk

(2π)3
e−ik·r

(
k− q

2

)
·
(
k + q

2

)(
k− q

2

)2 (
k + q

2

)2 (3.3)

=
1

4πr

∫ +1/2

−1/2
dy e

−qr
√

1
4
−y2

[(
1− qr

√
1

4
− y2

)
cos(yq · r)− (yq · r) sin(yq · r)

]

=
1

4πr

[
1− π

4
qr +

1

4
(qr)2 − 1

8
(q · r)2 +O

(
q3r3

)]
.

The term linear in q arises because the transition is mediated by a massless particle.

Because V =
∑

i<j Ṽij , we conclude that the amplitude for XT → XT , with the target

remaining in the ground state, is given by [10, 11]

〈Tf |
∑
i<j

Ṽij |Ti〉 =
∑
i<j

∫
dxi

∫
dxj Ṽij ⊗ ρ̂(2)(xi,xj) (3.4)

=
Z(Z − 1)

2

∫
dx1

∫
dx1 Ṽ12 ⊗ ρ̂(2)(x1,x2).

Here ρ̂(2)(xi,xj) is the (diagonal) 2-proton nuclear density matrix, the sum extends over

all proton pairs, and ⊗ indicates a contraction of the spin indices. In the second line we

used the fact that protons are indistinguishable. The factor Z(Z − 1) signifies that this

is truly a two-body effect, and as such it vanishes for Z = 1. The relevant spin-singlet

– 6 –
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quantity is the projection:

ρ(2)(xi,xj) ≡ (δsis′iδsjs′j )⊗ ρ̂
(2)(xi,xj) (3.5)

=

∫
dq1

(2π)3

∫
dq2

(2π)3
e−iq1·x1−iq2·x2F (2)(q1,q2).

Finally, employing eq. (3.3), and making a trivial coordinate transformation, we arrive

at an expression for the dominant, spin-independent part of the amplitude:

〈Tf |
∑
i<j

Ṽij |Ti〉 =
Z(Z − 1)

2
V0 Fpp(q), (3.6)

where we defined the 2-proton form factor3

Fpp(q) =

∫
dk

(2π)3

(
k− q

2

)
·
(
k + q

2

)(
k− q

2

)2 (
k + q

2

)2F (2)(−k + q/2,k + q/2). (3.7)

eqs. (3.6) and (3.7) are one of the main result of the present paper.

Note that the relative size between two-body and one-body contributions induced by

Op,n is ∼ ZQ0

mN
(see also eq. (2.7)), which is not negligible for heavy nuclei. On the other

hand, consistently with what done in (2.5) we can neglect corrections O(q2/m2
N ) to both

the one-body and two-body terms because of order Q2
0/m

2
N = few %.4

3.2 The role of proton-proton correlations

The 2-proton density F (2) appearing in (3.7) plays an important role in many nuclear reac-

tions, such as electro-disintegration processes, (e, e′N) and (e, e′NN), precision calculations

in muonic atoms, and neutrino-nucleus interactions.

In [10, 11, 13], the relevance of 2-body densities in DM detection has been pointed out,

although as a subleading effect in the chiral counting. In this paper we find another inter-

esting application for DM direct detection, where the two-body term plays a dominant role.

The exact form of F (2) is not known, but some of its basic properties can be qualita-

tively understood. Without loss of generality we write

F (2)(−k + q/2,k + q/2) = F (1)
p (−k + q/2)F (1)

p (k + q/2) + Fcorr(k,q), (3.8)

where F
(1)
p is the (one-proton) charge form factor, and Fcorr a measure of the correlation

between the two nucleons (protons in our case). From the normalization of the density

distributions follows that Fcorr(0, 0) = 0. In practice this means that one may neglect

the correlation when both |q|, |k| are much smaller than, say, the pion mass mπ. As

q2,k2 ∼ m2
π, nucleon-nucleon correlations become non-negligible and the approximation

3If we were to follow the conventions used in [10, 11] we would call this quantity Fγγ , because induced

by the exchange of two photons.
4This means that Z(Z−1) should truly be replaced by Z2 in eq. (3.6). We will do this in section 4 when

we will include the corrections from CN (mN ). For now we decided to keep Z(Z − 1) in (3.6) to emphasize

the 2-body nature of the amplitude.

– 7 –
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Fcorr = 0 is violated. At even larger momenta one anticipates a universal shape for F (2),

dominated by the repulsive pion exchange.

From this simple consideration follows that Fcorr cannot be ignored in general, because

the integral in (3.7) probes a regime where the correlation is presumably non-negligible. In

particular, Fcorr(k, 0) is likely to result in an overall O(1) correction in the nuclear matrix

element. To see this more explicitly, we take the following phenomenological expression for

the charge form factor

F pheno
p = e−q̄

2
, q̄ = |q|/Q0, (3.9)

and parametrize F (2) with

F (2),pheno = F pheno
p (−k + q/2)F pheno

p (k + q/2)

[
1 + c1

k2

Q2
0

+ c2
q2

Q2
0

+ c3
k · q
Q2

0

]
,

where ci are order one numbers (in general functions of A,Z) mimicking the effect of a

short distance correlation. The expression (3.7) can now be solve exactly:

F pheno
pp =

Q0

4
√

2π3/2
F

pheno
pp , (3.10)

F
pheno
pp =

Q2
0

4
e−q

2/2Q2
0

∫
dr e−r

2Q2
0/8f(q, r)

[(
1 +

3

4
c1

)
− 1

16
c1r

2Q2
0 + c2

q2

Q2
0

]
= e−q̄

2/2

[
1 +

1

4
c1 −

π3/2

2
√

2
q̄ +

(
5

3
− 5

12
c1 + c2

)
q̄2 +O(q̄3)

]
.

In the second line we used the expansion of f given in (3.3). As expected, we see that c1

changes the overall rate, whereas both c1,2 modify the momentum-dependence of the form

factor (c3 does not contribute for our choice of F (2),pheno). We will present a numerical

study in the next section. Interestingly, when ci → 0 the form factor F
pheno
pp reduces to

that derived in [7, 8]. This correspondence is elucidated in appendix A.

We conclude this section observing that the proton-proton correlation becomes para-

metrically small if one models the nuclear potential with a mean field approximation.

Indeed, in that case the nuclear wave-function is described by a single Slater determinant,

and it is a trivial exercise to show that Fcorr = O(1/Z) is entirely due to the Pauli exclusion

principle. (We also numerically verified this expectation using a shell model.) In reality the

mean field potential is no more than an intuitive picture of the nucleus, and Fcorr cannot

be neglected.

4 Signatures in direct detection experiments

The study of the DD signature induced by Oγ is complicated by two obvious hurdles.

First, we do not have a reliable estimate of the 2-proton form factor (3.7). Second, large

hadronic uncertainties make it impossible to precisely determine the actual relation among

the Wilson coefficients in (2.5) and the fundamental parameters.

We thus take a bottom-up, phenomenological approach. For the form factors we use the

phenomenological expressions given in (3.9) and (3.10). The spin-independent differential

– 8 –
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rate is then given by

dσT
dER

=
µ2
T

πEmax
R

(mN

Λ3
Cp

)2
{
fpp
fp

Q0

mN
Z2F

pheno
pp (q) +

[
Z +

fn
fp

(A− Z)

]
F pheno
p (q)

}2

,

(4.1)

with
fpp
fp

= 2

√
2

π
α
Cγ
Cp

Z − 1

Z
, fN = CN

mN

Λ3
. (4.2)

We simplified eq. (4.1) assuming that protons and neutrons have the same mass and 1-

particle densities. We use Q0 = 0.5(0.3 + 0.9A1/3)−1 GeV.

Now, the discussion in section 6 (see also section 2.1) suggests that, in generic theories

with unsuppressed Cγ , the natural expectation is CN/Cγ ∼ α/π, and hence fpp/fp, fn/fp =

O(1). In the following we will therefore treat these latter as independent parameters of

order unity. Because fpp already accounts for changes in the overall normalization of the

two-body effect, it makes sense to work with form factors that are normalized to one at

q = 0; for this reason we will set c1 = 0 and vary only c2 in our numerical analysis (c3

has no effect on (3.10)). Comparing to [8], our phenomenological 2-body form factor for

c1 → 0 reduces to F
pheno
pp → FRay(1 + c2q̄

2) (see appendix A).

4.1 Numerical analysis

The impact of the new form factor may be significant, both in the spectrum and the

total rate.

When both fpp/fp, fpp/fn have the same magnitude and sign, the new term fpp is

expected to dominate for heavy nuclei (at least as long as the form factors are positive and

non-vanishing). However, an opposite sign in either fpp/fp, fn/fp can generically result

in destructive interference among the various contributions to (4.1), and hence lead to

qualitatively new effects.5 Because of the different momentum-dependence of the form

factors, the suppression in dσT /dER will occur at a specific recoil energy. This energy is

a strong function of the parameters fpp/fp, fn/fp and the form factors, as well as of the

target, due to the peculiar dependence on A,Z.

To assess the effect of fpp/fp, fn/fp on the total rate, the relevant quantity to consider

is the number of events within a certain signal region ∆:

N∆ =
ρX
mX

Ex
∑

Target

NT

∫
∆
ds ηeff(s)

∫
dER p(ER, s)

∫
vmin(ER)

dv vflab(v,ve)
dσT
dER

.

(4.3)

Here ρX is the local DM density, Ex the detector exposure, NT the number of nuclear

targets (summed over all isotopes), ηeff(s)p(ER, s) the signal efficiency, and flab the DM

velocity distribution in the lab frame.

While for fpp = 0 the surface N∆ = const is defined by parallel lines fn ∝ fp, in the

more general case it becomes an ellipses. To see this one can focus on a single isotope, in

5This possibility has already been noticed in [8] for a particular set of fpp,p,n and a vanishing 2-proton

correlation (ci = 0).
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which case, denoting by 〈〉 the integrals in (4.3), it is clear that

N∆(fpp, fp, fn) = 〈
(
xF pp + yFp

)2〉
= 〈F 2

p 〉
(
y + x

〈F ppFp〉
〈F 2

p 〉

)2

+ 〈F 2
pp〉

(
1− 〈F ppFp〉

2

〈F 2
pp〉〈F 2

p 〉

)
x2, (4.4)

for x ∝ fpp/fp and y ∝ ( Z
A−Z + fn/fp). By the Cauchy-Schwarz inequality the last term is

always positive, implying that the isocurves must be ellipses.

We present our numerical results for three experiments: Xenon100, LUX and CDMS-

Ge in figures 2, 3. For the experimental details of the analysis we refer the reader to [13] and

references therein. The color coding is Xenon100 (red), LUX (green), CDMS-Ge (blue).

The impact of fpp is most conveniently discussed in terms of the ratio N∆/N
ref
∆ , where N ref

∆

is defined with fpp = 0, fn = fp. This is sometimes referred to as the “degradation plot”

in the literature.

In figure 2 we present degradation plots for fpp/fp = −1 (short dashed lines), fpp/fp =

0 (solid lines) and fpp/fp = 1 (long dashed lines). We consider the case of light DM,

mX = 10 GeV (left column), and mX = 100 GeV (right column). The top, center and

bottom plots correspond to variations of the parameter c2 (see our phenomenological two-

body form factor) from −1, 0, to +1.

For the case fpp/fp = 0 we find the familiar LO degradation plot (see for instance [14]

and references therein). By turning on non-zero values of fpp/fp, i.e. the two-body term,

the entire plot is shifter and the minimum increases. This can be qualitatively understood

looking at (4.4), from which we see that the minimum of the rate is always found at fpp = 0

(x = 0), and gets displaced when fpp 6= 0.

Importantly, for fpp 6= 0 the Xenon100 and LUX experiments (and more generally

other Xe-based detectors) observe different rates, despite having the same target nuclei.

The reason is that the rate depends on the integrals in (4.3), which are themselves functions

of the energy threshold and the associated efficiency. If DM is detected, in principle this

feature may be used to infer important information about the parameters fpp/fp, fn/fp.

However, figure 2 suggests that the difference between the rates at different experiments

significantly depends on the two-body form factor, so an accurate determination of F (2)

would be required to draw any conclusion on fpp/fp, fn/fp.

To better appreciate this, in figure 3 we show contour lines of N∆/N
ref
∆ = 0.01 (sim-

ilar contours are obtained for different values, as clear from figure 2) as a function of

fpp/fp, fn/fp. As anticipated, we see that the amount of overlap among the (green, red,

and blue) ellipses is critically sensitive to the two-body form factor.

In figure 3 we also observe a qualitative difference between light and heavy DM. For

light DM the ellipses are very elongated, while for heavier masses they are more circular

in shape. Again, this can be understood from (4.4). The astrophysical function in (4.3)

is more steeply falling for light DM, and this basically forces ER to acquire values close

the lowest bin. In the approximation that the integrand in (4.3) is a delta function in ER,

the last term in (4.4) is very small and the domain N∆/N
ref
∆ = const is determined by a
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Figure 2. Degradation plot (N∆/N
ref
∆ ) for fpp/fp = −1 (dotted lines) fpp/fp = 0 (solid) and

fpp/fp = 1 (dashed). Left column corresponds to mX = 10 GeV, and right column to mX =

100 GeV. Color coding: red (Xenon100), green (LUX), blue (CDMS-Ge). Note that for fpp = 0

the solid red and green lines exactly overlap.

line x ∝ y with an experiment-dependent slope. For heavier DM the recoil spectrum has

effectively a larger range and the second term in (4.4) becomes important.

The nature of a possible cancellation in the event rate is analogous to that invoked

in isospin-violating DM (see e.g [15, 16]), as it arises from fine-tuning parameters that are

naturally of the same order, but is qualitatively different for at least two reasons. First,

the cancellation depends on ER. Second, it involves two parameters — i.e. fn/fp, fpp/fp
— rather than one, so in principle it is possible to suppress dσT /dER in two experiments

simultaneously.
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Figure 3. Contour plots of N∆/N
ref
∆ = 0.01. The left column corresponds to mX = 10 GeV, the

right column to mX = 100 GeV. The upper, middle, and lower plots are obtained with the phe-

nomenological form factor F
pheno

pp defined in (3.10) with (c1, c2) = (0,−1)(0, 0), (0,+1), respectively.

Color coding: red (Xenon100), green (LUX), blue (CDMS-Ge).
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5 The 2-nucleon form factor for FµνF̃
µν

To study DM scattering induced by FµνF̃
µν one can proceed in complete analogy with the

Oγ operator: determine the non-relativistic amplitude for NNX → NNX and derive the

corresponding nucleon potential.

The crucial difference is that in the present case also neutrons contribute. The matrix

element 〈Tf |FµνF̃µν |Ti〉 is dominated by the coherent scattering of one of the two photons

on the proton charge, as in section 3.1, and the incoherent spin-dependent scattering of the

second photon on the nucleon magnetic moment.

The multi-nucleon potential can again be written as in section 3.1:

Ṽij = Ṽ0 eiq·R f̃ij(q, r), (5.1)

where now f̃ij depends non-trivially on the nucleon spin. Up to O(q2/m2
N ) we find:

f̃ij(q, r) = i

∫
d3k

(2π)3
e−ik·r

[
(k2)q− (k · q)k

]
· −→µ +

ij +
[
(q2)k− (k · q)q

]
·
−→µ−ij

2(
k− q

2

)2 (
k + q

2

)2 , (5.2)

where we defined −→µ ±ij = siµ
m
i ej ± sjµ

m
j ei, with si = σ/2 the nucleon spin operator, and

µm
i , ei the nucleon magnetic moment and electric charge. To keep our discussion general, we

did not specify the DM bilinear coupling to FµνF̃
µν . This model-dependent contribution

(generally momentum-dependent) is included in the coefficient Ṽ0. In other words, what

we want to discuss here is the nuclear matrix element 〈Tf |FµνF̃µν |Ti〉.
The nuclear form factor follows immediately from 〈Tf |

∑
i,j Ṽij |Ti〉. One of the nucleon

indices runs over the proton charge, and results in a single power of Z in the amplitude.

The remaining (spin-dependent) sum involves both neutrons and protons and is similar to

that found in ordinary spin-dependent interactions.

Similarly to Oγ , the RG evolution of Õγ will induce contact (spin-dependent) interac-

tions that reduce in the non-relativistic limit to the familiar 1-nucleon potential ∝ q · si.
The ratio between long and short distance contributions to the amplitude for XT → XT

scales as ZQ0/mN , as we found in section 3. An equivalent way to check this is to follow

a logic similar to that of section 2.2, and add to the (spin-dependent) DM-target contact

interaction a 1-loop diagram analogous to that evaluated in [7], but now with the nuclear

magnetic moment in one of the two γ − T vertices.

6 Realistic UV completions

In this section we briefly comment on possible UV completions of Oγ (Õγ). We take X

to be a Majorana fermion for simplicity, but keep in mind that our results generalize to

self-conjugate DM of any spin (baring naturalness issues in the case of scalar DM). Also, as

emphasized in the introduction, generic UV completions of the DM polarizability operator

will also contain vµvνFµαFνα.6 None of the results of this paper (nor of this section) are

affected by its presence.

6With a coefficient suppressed by the ratio mX/m∗ in the notation used in this section.
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6.1 New physics at the weak scale

The existing literature assumes that Oγ is generated in isolation at some high scale m∗ by

loops of some heavy mediator with electro-weak charges. However, generic field theories will

also induce a lower dimensional coupling to the Higgs mass operator H†H (and the quark

mass operator). More precisely, on the basis of simple dimensional analysis we expect that

when matching the UV completion at m∗ the effective Lagrangian will generically contain

— in addition to the DM polarizability — a contribution of order

δL ⊃ CH
m2
∗

Λ3
XXH†H, CH ∼

α

4π
Cγ , (6.1)

along with Cq ∼ α
4πCγ . In terms of the fundamental constituents, (6.1) arises from diagrams

similar to those leading to Oγ , where the Z0 lines are closed in a loop and external H-legs

are attached to it. We are here referring to a contribution at the matching scale m∗, not

to an RG effect below m∗.

Now, while CH is suppressed compared to Cγ at the cutoff, the latter contributes in

DD at one-loop order. A back of the envelop calculation tells us that the ratio between

the DM-nucleon cross section induced by Oγ and that of OH is parametrically suppressed

by (mh/m∗)
4. Numerically, the coupling Oγ will be relevant (i.e. fpp/fp ∼ 1) only if the

electro-weak charged mediators have masses m∗ below a few hundred GeV. This holds

irrespective of the actual magnitude of the signal, and is a priori independent from the

usual WIMP miracle and arguments based on the naturalness of the SM: generic models in

which fpp/fp ∼ 1 will have new physics accessible at colliders. The strongest constraint on

the messenger mass scale in these scenarios come from direct searches at LEP and the LHC,

and for relatively short lived particles are compatible with new physics at the weak scale.7

The situation is unchanged in UV-complete models for Õγ , since XXH†H is allowed

by all relevant symmetries.

It should be clear that, in analogy with the more familiar hierarchy problem, one can

evade the natural expectation (6.1) by fine-tuning, or invoking Supersymmetry and/or

Higgs compositeness at scales� m∗. In this sense we claim that a UV completion for (1.1)

at the weak scale is generic, but not strictly necessary.

6.2 Large DD rates and suppressed indirect signatures

Much can be learnt about possible UV completions by making a rough estimate of the DD

rate generated by Oγ .

First of all, in a healthy theory (1.1) will be generated at one-loop level

Cγ
Λ3

= e2 g2
∗

16π2

mX

m4
∗
, (6.2)

7For a broad perspective on the current bounds, see for instance [17, 18]. An explicit analysis of some

model relevant to our discussion was presented in [19, 20]. The results of these papers are relevant to our

scenario, even though in some of those models Oγ is not relevant to DD experiments.
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with g∗ a typical coupling (the power of mX is expected if mX � m∗). Using the results

of section 3 we estimate a nucleon-DM cross section (on Xe) of order

σN ∼ 8
(α
π

)2
(
µNQ0

Cγ
Λ3

)2 Z4

A2
(6.3)

∼ 6× 10−46 cm2
( g∗

4π

)4
(

100 GeV

m∗

)8 ( mX

100 GeV

)2
(for Xe)

with µN the reduced DM-nucleon mass, and 1/Q0 ∼ A1/3 fm a measure of the radius of

the target nuclei. Together with the collider bounds mentioned at the end of the previous

section, this estimate strongly disfavors DM detection in forthcoming DD experiments.

This is even more true for Õγ , which has a much lower rate.

However, this estimate fails if the heavy messengers interact with DM primarily via a

light scalar. Consider first Oγ and postulate the dark sector couples to a light dilaton φ of

mass mφ � mX ,m∗. In this case the high energy theory contains a (loop-order) coupling

F 2
µνφ and, provided the trilinear XXφ is unsuppressed (typically of order g∗mX/m∗), Oγ

will be dominated by the tree-level exchange of φ. For φ heavier than ∼ 100 MeV the

rate (6.3) receives an enhancement of ∼ (m2
∗/m

2
φ)2. Now nucleon cross sections of order

10−44 cm2 become plausible for mX ,m∗ ∼ 100 GeV provided mφ/g∗ is in the few GeV

range. Still, natural considerations suggest m2
φ & e2m2

∗/16π2, from which follows that

σN s significantly larger than a few times 10−44 cm2(100 GeV/m∗)
6 may be interpreted as

indirect signature of an unnaturally light scalar.

It is hard to imagine a mechanism to enhance the rate of Õγ up to similar values. Even

if we add an axion a with mass m2
a � q2 the cross section will be typically too small to

be detected. The reason is that the power of 1/q2 from the propagator is compensated by

a factor q · sDM from the axion-DM coupling, and q · sT from the axion-target coupling.

Yet, axion-mediated DM interactions can naturally suppress the “dangerous” DM-Higgs

coupling of the previous subsection, and typically have fpp/fp ∼ 1.

An obvious question is whether indirect gamma-ray signatures of, say Oγ , can be

relevant. Importantly, for mφ � mX the s-channel exchange of φ will lead to:

〈σγγv〉 ∼ v2 e
4

π

(
g2
∗

16π2

)2
m2
X

m4
∗
. (6.4)

Because of the much larger momentum flowing in the φ propagator, the result is a factor

∼ (mφ/mX)4 smaller than that obtained assuming that the same scale suppressing Oγ in

DD experiments also controls indirect signals. Indirect detection rates close to the current

sensitivities are still possible (see for instance [21]), especially for scalar DM that does not

suffer from the velocity suppression in (6.4).

7 Conclusions

We presented a detailed analysis of the DD signature induced by the DM polarizability

operator Oγ , see eq. (1.1), and derived the associated nuclear form factor as a function
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of the 2-nucleon density. The relevance of 2-body densities was previously pointed out

in [10, 11], but in those cases the effect was subleading in the chiral expansion and for

generic choices of the parameters. To the best of our knowledge, Oγ provides the first

known example of DM scattering dominated by a 2-body nuclear form factor. The long

range force mediated by the photon is key to our result.

The multi-body nature of the interaction implies that the scattering rate varies sig-

nificantly from experiment to experiment, and that DD experiments with the same target

nuclei are expected to measure different rates. The presence of destructive interference in a

non-negligible portion of the parameter space makes these scenarios especially interesting

in light of current anomalies.

DM scattering via FµνF̃
µν was also discussed. The novel feature here is that the 2-body

interaction actually describes an example of coherent and simultaneously spin-dependent

DM scattering.

One expects FµνF
µν and FµνF̃

µν to be important to DD experiments in a large class

of models with self-conjugate DM. We showed that realistic scenarios in which these

operators are relevant to DM detection have new physics at scales accessible at colliders.

Furthermore, large DD rates are indirect evidence of exotic light scalars, and are typically

accompanied by suppressed gamma-ray signatures.
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A Comparison with previous work

It is instructive to compare our approach to an EFT of the nucleus. There are several dia-

grams contributing to XT → XT in this latter formalism, and their sum should reproduce

our result (3.4). In particular, one contribution comes from a 1-loop process analogous

to the left diagram in fig 1, with the external lines understood as ground state nucleus

whereas the internal solid line as all possible virtual states allowed by the symmetries. We

would like to show that these diagrams correctly reproduce the structure of (3.4)–(3.6), as

expected.

To see this note that the 1-loop diagrams can be formally written as∫
d4l

(2π)4

l2 − q2/4[(
l + q

2

)2
+ iε

] [(
l − q

2

)2
+ iε

]〈Tf |J0GJ0|Ti〉, (A.1)

where G = 1/(E−Hstrong+iε) the multi-nucleon propagator including all possible insertions

of the strong interactions, E the energy of the intermediate state, and J0 the zeroth

component of the proton electro-magnetic current. Plugging in a complete set, the above
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expression becomes∫
d4l

(2π)4

l2 − q2/4[(
l + q

2

)2
+ iε

] [(
l − q

2

)2
+ iε

]∑
n

〈Tf |J0
(
l + q

2

)
|n〉〈n|J0

(
l − q

2

)
|Ti〉

l0 −∆mn + iε
, (A.2)

where ∆mn is the difference between the mass of |n〉 and the nuclear ground state. Inter-

mediate states with ∆mn & Q0 ∼ 100 MeV decouple and are not relevant. On the other

hand, those with ∆mn � Q0 cannot be neglected. One can verify that the integral in

l0 is dominated by scales of order Q0. Therefore, replacing l0 − ∆mn with l0 results in

a small O(∆mn/Q0) error. Ignoring the latter, we find that the sum in (A.2) reduces to
1

l0+iε
〈Tf |J0J0|Ti〉. Performing the integral in l0 using the residue theorem we obtain an

expression completely analogous to (3.6), as promised.

The latter diagram has been considered by Weiner and Yavin for |n〉 = |T 〉 [7]. Our

expression (3.6) reduces to their result if we ignore proton-proton correlations, i.e. let

F (2) → F
(1)
p F

(1)
p , which effectively parametrizes the contribution of the virtual excited

states |n〉 6= |T 〉. Indeed it is readily seen that (A.2) formally becomes eq. (A7) of [7] when

|n〉〈n| = 1 and Z � 1.8

Direct detection mediated by Oγ was also discussed in [8] and [9]. There the RG

evolution down to µ ∼ mc was studied in some detail, and an approximate expression for

the DM couplings to nucleons was derived. However, our discussion in section 2.1 suggests

that this last step is plagued by O(1) uncertainties arising from the RG evolution down to

µ ∼ mN , which forced us to treat Cp,n(mN ) as “free” parameters. As in [7], the authors

of [8, 9] did not include proton-proton correlations. In particular, when ci = 0 the form

factor F
pheno
pp defined in eq. (3.10) reduces to the quantity FRay introduced in [8]. In general

we find:

F
pheno
pp =

[
1 +

1

4
c1

(
1− q̄ d

dq̄
− q̄2

)
+ c2q̄

2

]
FRay(q̄), (A.3)

where

FRay(q̄) = 1− π3/2

2
√

2
q̄ +

7

6
q̄2 − 71

360
q̄4 +

319

8400
q̄6 − 5419

846720
q̄8 +

22369

23950080
q̄10 +O

(
q̄12
)
.

An expansion for F
pheno
pp up to O(q2) is given in (3.10).

8To see this more explicitly one should redefine the velocity of the target in order to remove the redundant

variable p̃, and neglect q0 ∼ q2/2mT � q2/Q0 in eq. (A7) of [7].
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