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Abstract: The idea of “Natural SUSY”, understood as a supersymmetric scenario where

the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric phe-

nomenology. In this paper, we re-examine this issue in the context of the MSSM including

several improvements, such as the mixing of the fine-tuning conditions for different soft

terms and the presence of potential extra fine-tunings that must be combined with the

electroweak one. We give tables and plots that allow to easily evaluate the fine-tuning and

the corresponding naturalness bounds for any theoretical model defined at any high-energy

(HE) scale. Then, we analyze in detail the complete fine-tuning bounds for the uncon-

strained MSSM, defined at any HE scale. We show that Natural SUSY does not demand

light stops. Actually, an average stop mass below 800 GeV is disfavored, though one of the

stops might be very light. Regarding phenomenology, the most stringent upper bound from

naturalness is the one on the gluino mass, which typically sets the present level fine-tuning

at O(1%). However, this result presents a strong dependence on the HE scale. E.g. if

the latter is 107 GeV the level of fine-tuning is ∼ four times less severe. Finally, the most

robust result of Natural SUSY is by far that Higgsinos should be rather light, certainly

below 700 GeV for a fine-tuning of O(1%) or milder. Incidentally, this upper bound is not

far from ' 1 TeV, which is the value required if dark matter is made of Higgsinos.
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1 Introduction

The idea of “Natural SUSY” has become very popular in the last times, especially as a

framework that justifies that e.g. the stops should be light (much lighter than the other

squarks), say mt̃
<∼ 600 GeV. This is an attractive scenario since it gives theoretical support

to searches for light stops and other particles at the LHC, a hot subject from the theoretical

and the experimental points of view.

In a few words, the idea is to lie in a region of the minimal supersymmetric Standard

Model (MSSM) parameter-space where the electroweak breaking is not fine-tuned (or not
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too much fine-tuned). This is reasonable since, as it is usually argued, the main phe-

nomenological virtue of supersymmetry (SUSY) is precisely to avoid the huge fine-tuning

associated to the hierarchy problem.

Then, the main argument is in brief the following: “Stops produce the main radiative

contributions to the Higgs potential, in particular to the Higgs mass-parameter m2. To

avoid fine-tunings these contributions should be reasonably small, not much larger than

m2 itself. Since they are proportional to the stop masses, the latter cannot be too large”.

Other supersymmetric particles, like gluinos, are also constrained by the same reason; in

particular the gluino mass is bounded from above due to its important contribution to

the running of the stop masses, which implies a significant 2-loop contribution to m2. In

addition, Higgsinos should be light, as their masses are controlled by the µ−parameter,

which contributes to m2. These statements sound reasonable and have been often used to

quantify the “naturalness” upper bounds on stop masses, gluino masses, etc. Apart from

the theoretical arguments, the experiments at the LHC, ATLAS and CMS, performed a

large number of SUSY searches, covering a significant part of the parameter space [1–8].

From the point of view of Natural SUSY models, the most interesting bounds are those

for stops, gluinos and Higgsinos. The lower limits from direct production of stops reach

as far as 650 GeV [9], but they are sensitive to the stop details, in particular the mass

difference between the stop and the lightest supersymmetric particle (LSP). Much lighter

stops are still allowed by the current experimental bounds once certain conditions on their

decays are fulfilled [10–12]. Concerning the gluino, the current experimental bounds have

a strong dependence on the masses of the light squarks. Assuming that the stops are the

only squarks lighter than the gluino (as suggested by the very “Natural SUSY” rationale),

the latter decays through a chain g̃ → tt̄χ̃0
1, and the lower limit reaches mg̃

<∼ 1.4 TeV [13].

Again, with some additional assumptions on the decay chains this limit can be somewhat

relaxed. Finally, the µ parameter is the least constrained at the LHC. Because of the low

electroweak production cross-section and the large model dependence, it is entirely possible

to have Higgsinos just above the current LEP limit, µ & 95 GeV [14, 15]. On the other

hand, the LEP limit is rather model independent, even if the Higgsino is the LSP with three

almost mass degenerate states around 100 GeV. All these bounds are relevant to establish

the present degree of fine-tuning in different SUSY scenarios.

Another important experimental ingredient in connection with Natural SUSY is the

physics of the Higgs boson [16, 17]. In particular, the Higgs mass plays a prominent role in

naturalness arguments. According to the most recent analyses, mh = 125.36±0.41 GeV [18]

(ATLAS) and mh = 125.03 ± 0.30 GeV [19] (CMS). It is interesting to note that the

current measurements are already more accurate than the theoretical predictions, which

have a ∼ 2 − 3 GeV uncertainty [20–22]. Furthermore, all observed Higgs properties are

remarkably close to the SM predictions [23], which, within the SUSY context, points to

the decoupling limit [24].

In this paper, we revisit the arguments leading to the previous Natural SUSY sce-

nario, showing that some of them are weak or incomplete. In section 2, we review the

“standard” Natural SUSY scenario, pointing out some weaknesses in the usual evaluation

of its electroweak fine-tuning, i.e. the tuning to get the correct electroweak scale. We also
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address the existence of two potential extra fine-tunings that cannot be ignored in the

discussion, namely the tuning to get mh = mexp
h when stops are too light and the tuning

to get a large tan β. In section 3, we discuss the electroweak fine-tuning of the MSSM,

showing its statistical meaning and its generic expression for any theoretical framework.

We give in the appendix tables and plots that allow to easily evaluate the fine-tuning for

any theoretical model within the framework of the MSSM, at any value of the high-energy

scale. In section 4, we describe our method to rigorously extract bounds on the initial

(high-energy) parameters and on the supersymmetric spectrum, from the fine-tuning con-

ditions. In section 5, we apply this method to obtain the numerical values of the various

naturalness bounds for the unconstrained MSSM, defined at arbitrary high-energy scale, in

a systematic way. In section 6, we evaluate the impact of the potential extra fine-tunings

mentioned above, discussing also the correlation between soft terms that the experimental

Higgs mass imposes in the MSSM and its consequences for the electroweak fine-tuning.

Finally, in section 7 we present the summary and conclusions of the paper, outlining the

main characteristics of Natural SUSY and their level of robustness against changes in the

theoretical framework or the high-energy scale at which the soft parameters appear.

2 The Natural SUSY scenario. A critical review

2.1 The “standard” Natural SUSY

Naturalness arguments have been used since long ago [25] to constrain from above super-

symmetric masses.1 Already in the LHC era, they were re-visited in ref. [76] to formulate

the so-called Natural SUSY scenario. For the purpose of later discussion, we summarize in

this subsection the argument of ref. [76], which have been invoked in many papers.

Assuming that the extra (supersymmetric) Higgs states are heavy enough, the Higgs

potential can be written in the Standard Model (SM) way

V = m2|H|2 + λ|H|4 , (2.1)

where the SM-like Higgs doublet, H, is a linear combination of the two supersymmetric

Higgs doublets, H ∼ sinβHu+ cosβHd. Then, the absence of fine-tuning can be expressed

as the requirement of not-too-large contributions to the Higss mass parameter, m2. Since

the physical Higgs mass is m2
h = 2|m2|, a sound measure of the fine-tuning is2 [51]

∆̃ =

∣∣∣∣δm2

m2

∣∣∣∣ =
2δm2

m2
h

. (2.2)

For large tan β, the value of m2 is given by m2 = |µ|2 + m2
Hu

, so one immediately notes

that both µ and mHu should be not-too-large in order to avoid fine-tuning (as has been

well-known since many years ago). For the µ−parameter this implies

µ <∼ 200 GeV
( mh

120 GeV

)(∆̃−1

20%

)−1/2

. (2.3)

1For a partial list of references on naturalness in SUSY, see [26–57] (before LHC) and [58–75].
2This measure produces similar results to the somewhat standard parametrization of the fine-tuning,

see eq. (3.4) below.
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This sets a constraint on Higgsino masses. Constraints for other particles come from the

radiative corrections to m2
Hu

. The most important contribution comes from the stops.

Following ref. [76]

δm2
Hu |stop = − 3

8π2
y2
t

(
m2
Q3

+m2
U3

+ |At|2
)

log

(
Λ

TeV

)
, (2.4)

where Λ denotes the scale of the transmission of SUSY breaking to the observable sector and

the 1-loop leading-log (LL) approximation was used to integrate the renormalization-group

equation (RGE). Then, the above soft parameters m2
Q3

, m2
U3

and At are to be understood

at low-energy, and thus they control the stop spectrum. This sets an upper bound on the

stop masses. In particular one has

√
m2
t̃1

+m2
t̃2
. 600 GeV

sinβ

(1 + x2)1/2

(
log (Λ/TeV)

3

)−1/2
(

∆̃−1

20%

)−1/2

, (2.5)

where x = At/
√
m2
t̃1

+m2
t̃2

. Eq. (2.5) imposes a bound on the lightest stop. Besides the

stops, the most important contribution to mHu is the gluino one, due to its large 1-loop

RG correction to the stop masses. Again, in the 1-loop LL approximation used in ref. [76],

one gets

δm2
Hu |gluino ' −

2

π2
y2
t

(
αs
π

)
|M3|2 log2

(
Λ

TeV

)
, (2.6)

where M3 is the gluino mass. From the previous equation,

M3 . 900 GeV sin β

(
log (Λ/TeV)

3

)−1( mh

120 GeV

)(
∆̃−1

20%

)−1/2

. (2.7)

Altogether, the summary of the minimal requirements for a natural SUSY spectrum,

as given in ref. [76], is:

• two stops and one (left-handed) sbottom, both below 500 − 700 GeV.

• two Higgsinos, i.e., one chargino and two neutralinos below 200 − 350 GeV. In the

absence of other [lighter] chargino/neutralinos, their spectrum is quasi-degenerate.

• a not too heavy gluino, below 900 GeV − 1.5 TeV.

In the next subsections we point out the weak points of the above arguments that

support the ‘standard” Natural SUSY scenario. Part of those points have been addressed

in the literature after ref. [76] (see ref. [77] for a recent and sound presentation of the

naturalness issue in SUSY and references therein.)

2.2 The dependence on the initial parameters

The one-loop LL approximation used to write eqs. (2.5), (2.6), from which the naturalness

bounds were obtained, is too simplistic in two different aspects.
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First, it is not accurate enough since the top Yukawa-coupling, yt, and the strong

coupling, αs, are large and vary a lot along the RG running. As a result, the soft masses

evolve greatly and cannot be considered as constant, even as a rough estimate. This effect

can be incorporated by integrating numerically the RGE, which corresponds to summing

the leading-logs at all orders [78–81].

Second, and even more important, the physical squark, gluino and electroweakino

masses are not initial parameters, but rather a low-energy consequence of the initial pa-

rameters at the high-energy scale. This means that one should evaluate the cancellations

required among those initial parameters in order to get the correct electroweak scale. This

entails two complications. First, there is not one-to-one correspondence between the initial

parameters and the physical quantities, since the former get mixed along their coupled

RGEs. Consequently, it is not possible in general to determine individual upper bounds

on the physical masses, not even on the initial parameters. Instead, one should expect to

obtain contour-surfaces with equal degree of fine-tuning in the parameter-space and, sim-

ilarly, in the “space” of the possible supersymmetric spectra. The second complication is

that the results depend (sometimes critically) on what one considers as initial parameters.

The most dramatic example of the last statements is the dependence of m2
Hu

on the

stop masses in the constrained MSSM (CMSSM). In the CMSSM one assumes universality

of scalar masses at the GUT scale, MX . This is a perfectly reasonable assumption that

takes place in well-motivated theoretical scenarios, such as minimal supergravity. Then

one has to evaluate the impact of the initial parameters on m2
Hu

, and see whether or not

the requirement of no-fine-tuning implies necessarily light stops. A most relevant analytic

study concerning this issue is the well-known work by Feng et al. [54], where they studied

the focus point [35, 54, 55] region of the CMSSM . In the generic MSSM, the (1-loop) RG

evolution of a shift in the initial values of m2
Hu
,m2

U3
,m2

Q3
reads

d

dt

 δm2
Hu

δm2
U3

δm2
Q3

 =
y2
t

8π2

 3 3 3

2 2 2

1 1 1


 δm2

Hu

δm2
U3

δm2
Q3

 , (2.8)

where t ≡ lnQ, with Q the renormalization-scale, and yt is the top Yukawa coupling.

Hence, starting with the CMSSM universal condition at MX : m2
Hu

= m2
U3

= m2
Q3

= m2
0,

one finds

δm2
Hu =

δm2
0

2

{
3 exp

[∫ t

0

6y2
t

8π2
dt′
]
− 1

}
. (2.9)

Provided tan β is large enough, exp
[

6
8π2

∫ t
0 y

2
t dt
′
]
' 1/3 for the integration between MX

and the electroweak scale, so the value of m2
Hu

depends very little (in the CMSSM) on the

initial scalar mass, m0. However, the average stop mass is given by (see eq. (4.21) below)

m2
t̃
' 2.97M2

3 + 0.50m2
0 + · · · , (2.10)

where M3 is the gluino mass at MX . Therefore, if the stops are heavy because m0 is large,

this does not imply fine-tuning. This is a clear counter-example to the need of having light

stops to ensure naturalness.
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From the previous discussion it turns out that the most rigorous way to analyze the fine-

tuning is to determine the full dependence of the electroweak scale (and other potentially

fine-tuned quantities) on the initial parameters, and then derive the regions of constant fine-

tuning in the parameter space. These regions can be (non-trivially) translated into constant

fine-tuning regions in the space of possible physical spectra. This goal is enormously

simplified if one determines in the first place the analytical dependence of low-energy

quantities on the high-energy initial parameters, a task which will be carefully addressed

in subsection 3.3.

2.3 Fine-tunings left aside

In a MSSM scenario, there are two implicit potential fine-tunings that have to be taken into

account to evaluate the global degree of fine-tuning. They stem from the need of having a

physical Higgs mass consistent with mexp
h ' 125 GeV and from the requirement of rather

large tan β. Let us comment on them in order.

Fine-tuning to get mexp
h ' 125 GeV. As is well known, the tree-level Higgs mass in

the MSSM is given by (m2
h)tree−level = M2

Z cos2 2β, so radiative corrections are needed in

order to reconcile it with the experimental value. A simplified expression of such correc-

tions [82–84], useful for the sake of the discussion, is

δm2
h =

3GF√
2π2

m4
t

(
log

(
m2
t̃

m2
t

)
+
X2
t

m2
t̃

(
1− X2

t

12m2
t̃

))
+ · · · , (2.11)

with mt̃ the average stop mass and Xt = At − µ cotβ. The Xt-contribution arises from

the threshold corrections to the quartic coupling at the stop scale. This correction is

maximized for Xt =
√

6mt̃ (Xt ' 2mt̃ when higher orders are included). Notice that if

the threshold correction were not present one would need heavy stops (of about 3 TeV

once higher order corrections are included) for large tan β (and much heavier as tan β

decreases, see ref. [85, 86]); which is inconsistent with the requirements of Natural SUSY

in its original formulation. However, taking Xt close to the “maximal” value, it is possible

to obtain the correct Higgs mass with rather light stops, even in the 500− 700 GeV range;

a fact frequently invoked in the literature to reconcile the Higgs mass with Natural SUSY.

On the other side, requiring Xt ∼ maximal, amounts also to a certain fine-tuning if

one needs to lie close to such value with great precision. The precision (and thus the fine-

tuning) required depends in turn on the values of tan β and the stop masses. Therefore,

when analyzing the naturalness issue one should take into account, besides the fine-tuning

associated with the electroweak breaking, the one associated with the precise value required

for Xt. In subsection 6.1 we will discuss the size of this fine-tuning in further detail.

Fine-tuning to get large tan β. The value of tan β ≡ 〈Hu〉/〈Hd〉 is given, at tree

level, by

2

tanβ
' sin 2β =

2Bµ

m2
Hd

+m2
Hu

+ 2µ2
=

2Bµ

m2
A

, (2.12)
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where mA is the mass of the pseudoscalar Higgs state; all the quantities above are under-

stood to be evaluated at the low-scale. Clearly, in order to get large tan β one needs small

Bµ at low-energy. However, even starting with vanishing B at MX one gets a large radia-

tive correction due to the RG running. Consequently, very large values of tan β are very

fine-tuned,3 as they require a cancellation between the initial value of B and the radiative

contributions. On the other hand, moderately large values may be non-fined-tuned, de-

pending on the size of the RG contribution to Bµ and the value of mA. Hence, a complete

analysis of the MSSM naturalness has to address this potential source of fine-tuning.

3 The electroweak fine-tuning of the MSSM

In the MSSM, the vacuum expectation value of the Higgs, v2/2 = |〈Hu〉|2 + |〈Hd〉|2, is

given, at tree-level, by the minimization relation

−1

8
(g2 + g′2)v2 = −M

2
Z

2
= µ2 −

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
. (3.1)

As is well known, the value of tan β must be rather large, so that the tree-level Higgs

mass, (m2
h)tree−level = M2

Z cos2 2β, is as large as possible, ' M2
Z ; otherwise, the radiative

corrections needed to reconcile the Higgs mass with its experimental value, would imply

gigantic stop masses [85, 86] (see subsection 2.3 above) and thus an extremely fine-tuned

scenario. Notice here that the focus-point regime is not useful to cure such fine-tuning

since it only works if tan β is rather large and stop masses are not huge.

Therefore, for Natural SUSY the limit of large tan β is the relevant one. Then, the

relation (3.1) gets simplified

−1

8
(g2 + g′2)v2 = −M

2
Z

2
= µ2 +m2

Hu . (3.2)

The two terms on the r.h.s. have opposite signs and their absolute values are typically much

larger than M2
Z , hence the potential fine-tuning associated to the electroweak breaking.

It is well-known that the radiative corrections to the Higgs potential reduce the fine-

tuning [26]. This effect can be honestly included taking into account that the effective

quartic coupling of the SM-like Higgs runs from its initial value at the SUSY threshold,4

λ(Qthreshold) = 1
8(g2 +g′2), until its final value at the electroweak scale, λ(QEW ). The effect

of this running is equivalent to include the radiative contributions to the Higgs quartic cou-

pling in the effective potential, which increase the tree-level Higgs mass, (m2
h)tree−level =

2λ(Qthreshold)v2 = M2
Z , up to the experimental one, m2

h = 2λ(QEW )v2. Therefore, re-

placing λtree−level by the radiatively-corrected quartic coupling is equivalent to replace

M2
Z → m2

h in eq. (3.2) above, i.e.

−m
2
h

2
= µ2 +m2

Hu , (3.3)

3The existence of this fine-tuning was first observed in ref. [87, 88] and has been discussed, from the

Bayesian point of view in ref. [89].
4A convenient choice of the SUSY-threshold is the average stop mass, since the 1-loop correction to

the Higgs potential is dominated by the stop contribution. Hence, choosing Qthreshold ' mt̃, the 1-loop

correction is minimized and the Higgs potential is well approximated by the tree-level form.

– 7 –
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which is the expression from which we will evaluate the electroweak fine-tuning in the

MSSM. As mentioned above, the radiative corrections slightly alleviate this fine-tuning,

since mh > MZ .

3.1 The measure of the fine-tuning

It is a common practice to quantify the amount of fine-tuning using the parametrization

first proposed by Ellis et al. [90] and Barbieri and Giudice [25], which in our case reads

∂m2
h

∂θi
= ∆θi

m2
h

θi
, ∆ ≡ Max |∆θi | , (3.4)

where θi is an independent parameter that defines the model under consideration and ∆θi

is the fine-tuning parameter associated to it. Typically θi are the initial (high-energy)

values of the soft terms and the µ parameter. Nevertheless, for specific scenarios of SUSY

breaking and transmission to the observable sector, the initial parameters might be par-

ticular theoretical parameters that define the scenario and hence determine the soft terms,

e.g. a Goldstino angle in scenarios of moduli-dominated SUSY breaking. We will comment

further on this issue in subsection 3.2.

It is worth to briefly comment on the statistical meaning of ∆θi . In ref. [28] it was

argued that (the maximum of all) |∆θi | represents the inverse of the probability of a cancel-

lation among terms of a given size to obtain a result which is |∆θi | times smaller. This can

be intuitively seen as follows. Expanding m2
h(θi) around a point in the parameter space

that gives the desired cancellation, say {θ0
i }, up to first order in the parameters, one finds

that only a small neighborhood δθi ∼ θ0
i /∆θi around this point gives a value of m2

h smaller

or equal to the experimental value [28]. Therefore, if one assumes that θi could reason-

ably have taken any value of the order of magnitude of θ0
i , then only for a small fraction∣∣δθi/θ0

i

∣∣ ∼ ∆−1
θi

of this region one gets m2
h
<∼ (mexp

h )2, hence the rough probabilistic mean-

ing of ∆θi . Note that the value of ∆ can be interpreted as the inverse of the p-value to get

the correct value of m2
h. If θ is the parameter that gives the maximum ∆ parameter, then5

p−value '
∣∣∣∣δθθ0

∣∣∣∣ ≡ ∆−1 . (3.5)

It is noteworthy that for the previous arguments it was implicitly assumed that the possible

values of a θi−parameter are distributed, with approximately flat probability, in the [0, θ0
i ]

range. In a Bayesian language, the prior on the parameters was assumed to be flat, within

the mentioned range. If the assumptions are different (either because the allowed ranges of

some parameters are restricted by theoretical consistency or experimental data, or because

the priors are not flat), then the probabilistic interpretation has to be consistently modified.

These issues become more transparent using a Bayesian approach.

5Notice that in the particular case when θ0 minimizes the value of mh, then ∂mh/∂θ|θ=θ0 = 0. This lack

of sensitivity at first order when θ0 is close to an stationary point, would seemingly imply no fine-tuning,

according to the “standard criterion”. However, from the above discussion, it is clear that in this case the

expansion at first order is meaningless; one should start at second order, and then it becomes clear that

the fine-tuning is really very high since only when θ is close to θ0, one gets m2
h
<∼ (mexp

h )2. In order words,

the associated p-value would be very small.

– 8 –
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In a Bayesian analysis, the goal is to generate a map of the relative probability of

the different regions of the parameter space of the model under consideration (MSSM

in our case), using all the available (theoretical and experimental) information. This is

the so-called posterior probability, p(θi|data), where ‘data’ stands for all the experimental

information and θi represent the various parameters of the model. The posterior is given

by the Bayes’ Theorem

p(θi|data) = p(data|θi) p(θi)
1

p(data)
, (3.6)

where p(data|θi) is the likelihood (sometimes denoted by L), i.e. the probability density of

observing the given data if nature has chosen to be at the {θi} point of the parameter space

(this is the quantity used in frequentist approaches); p(θi) is the prior, i.e. the “theoretical”

probability density that we assign a priori to the point in the parameter space; and, finally,

p(data) is a normalization factor which plays no role unless one wishes to compare different

classes of models.

For the sake of concreteness, let us focus on a particular parameter defining the MSSM,

namely the µ−parameter.6 Now, instead of solving µ in terms of MZ and the other

supersymmetric parameters using the minimization conditions (as usual), one can (actually

should) treat M exp
Z , i.e. the electroweak scale, as experimental data on a similar footing with

the other observables, entering the total likelihood, L. Approximating the MZ likelihood

as a Dirac delta,

p(data|M1,M2, · · · , µ) ' δ(MZ −M exp
Z ) Lrest , (3.7)

where Lrest is the likelihood associated to all the physical observables except MZ , one can

marginalize the µ−parameter

p(M1,M2, · · · | data) =

∫
dµ p(M1,M2, · · · , µ|data)

∝ Lrest

∣∣∣∣ dµdMZ

∣∣∣∣
µZ

p(M1,M2, · · · , µZ) , (3.8)

where we have used eqs. (3.6), (3.7). Here µZ is the value of µ that reproduces M exp
Z for the

given values of {M1,M2, · · · }, and p(M1,M2, · · · , µ) is the prior in the initial parameters

(still undefined). Note that the above Jacobian factor in eq. (3.8) can be written as7∣∣∣∣ dµdMZ

∣∣∣∣
µZ

∝
∣∣∣∣ µ∆µ

∣∣∣∣
µZ

, (3.9)

where the constant factors are absorbed in the global normalization factor of eq. (3.6). The

important point is that the relative probability density of a point in the MSSM parameter

6Of course, one can take here another parameter and the argument goes the same (actually, in some

theoretical scenarios µ may be not an initial parameter). On the other hand, µ is a convenient choice since

it is the parameter usually solved in terms of MZ in phenomenological analyses.
7Notice that the dependence of MZ on µ is through eq. (3.3), which determines the Higgs VEV. Thus

dM2
Z

dµ
∝ dm2

h
dµ

.
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space is multiplied by ∆−1
µ , which is consistent with the above probabilistic interpretation

of ∆ [45, 89, 91, 92]. Actually, the equivalence is exact if one assumes that the prior in

the parameters is factorizable, i.e. p(M1,M2, · · · , µ) = p(M1)p(M2) · · · p(µ), and p(µZ) ∝
1/µZ , so that the numerator in the r.h.s. of (3.9) is canceled when plugged in eq. (3.8).

This assumption can be realized in two different ways. First, if µ has a flat prior with range

∼ [0, µZ ], then the normalization of the µ−prior goes like ∝ 1/µZ . This is exactly the kind

of implicit assumption discussed above. Alternatively, if µ has a logarithmically flat prior,

then p(µ) ∝ 1/µ, with the same result (this is probably the most sensible prior to adopt

since it means that all magnitudes of the SUSY parameters are equally probable).

In summary, the standard measure of the fine-tuning (3.4) is reasonable and can be

rigorously justified using Bayesian methods. In consequence, we will use it throughout the

paper. Nevertheless, it should be kept in mind that the previous Bayesian analysis also

provides the implicit assumptions for its validity. If a particular theoretical model does not

fulfill them, the standard criterion is inappropriate and should be consistently modified.

3.2 Generic expression for the fine-tuning

Clearly, in order to use the standard measure of the fine-tuning (3.4) it is necessary to write

the r.h.s. of the minimization equation (3.3) in terms of the initial parameters. This in turn

implies to write the low-energy values of m2
Hu

and µ in terms of the initial, high-energy, soft-

terms and µ−term (for specific SUSY constructions, these parameters should themselves

be expressed in terms of the genuine initial parameters of the model). Low-energy (LE)

and high-energy (HE) parameters are related by the RG equations, which normally have to

be integrated numerically. However, it is extremely convenient to express this dependence

in an exact, analytical way. Fortunately, this can be straightforwardly done, since the

dimensional and analytical consistency dictates the form of the dependence,

m2
Hu(LE) = cM2

3
M2

3 + cM2
2
M2

2 + cM2
1
M2

1 + cA2
t
A2
t + cAtM3AtM3 + cM3M2M3M2 + · · ·

· · ·+ cm2
Hu
m2
Hu + cm2

Q3
m2
Q3

+ cm2
U3
m2
U3

+ · · · (3.10)

µ(LE) = cµµ , (3.11)

where Mi are the SU(3) × SU(2) × U(1)Y gaugino masses, At is the top trilinear scalar

coupling; and mHu ,mQ3 ,mU3 are the masses of the Hu−Higgs, the third-generation squark

doublet and the stop singlet respectively, all of them understood at the HE scale. The

numerical coefficients, cM2
3
, cM2

2
, . . . are obtained by fitting the result of the numerical

integration of the RGEs to eqs. (3.10), (3.11), a task that we perform carefully in the

subsection 3.3.

The above equations (3.10), (3.11) replace the one-loop LL expressions (2.4), (2.6)

used in the standard Natural-SUSY treatment. If one considers the initial values of the

soft parameters and µ as the independent parameters that define the MSSM, then one can

easily extract the associated fine-tuning by applying eq. (3.4) to (3.3), and replacing m2
Hu

by the expression (3.10). Note that the above definition of ∆, eq. (3.4), is actually not

very different from the definition (2.2) used in ref. [76]; actually they are identical for the

parameters that enter as a single term in the sum of eq. (3.10), e.g. m2
Ũ3

. Nevertheless,
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eq. (3.4) differs from eq. (2.2) when the parameter enters in several terms, e.g. M3.8 On

the other hand, the definition (3.4), besides being statistically more meaningful, allows to

study scenarios where the initial parameters are not soft masses.

From eqs. (3.3), (3.10), (3.11)) it is easy to derive the ∆−parameters (3.4) for any

MSSM scenario. A common practice is to consider the (HE) soft terms and the µ−term

as the independent parameters, say

Θα =
{
µ,M3,M2,M1, At,m

2
Hu ,m

2
Hd
,m2

U3
,m2

Q3
, · · ·

}
, (3.12)

which is equivalent to the so-called “Unconstrained MSSM”.9 Then one easily com-

putes ∆Θα

∆Θα =
Θα

m2
h

∂m2
h

∂Θα
= −2

Θα

m2
h

∂m2
Hu

∂Θα
. (3.13)

E.g. ∆M3 is given by

∆M3 = −2
M3

m2
h

(
2cM2

3
M3 + cAtM3At + cM3M2M2 + · · ·

)
. (3.14)

The identification
∂m2

h
∂Θα
' −2

∂m2
Hu

∂Θα
in eq. (3.13) comes from eq. (3.3) and thus is valid for

all the parameters except µ, for which we simply have

∆µ =
µ

m2
h

∂m2
h

∂µ
= −4c2

µ

µ2

m2
h

= −4

(
µ(LE)

m2
h

)2

. (3.15)

Besides, the term proportional to m2
Hd

in eq. (3.1), which was subsequently neglected, can

give relatively important contributions to ∆m2
Hd

if tan β is not too large (<∼ 10), namely

∆m2
Hd

' −2
m2
Hd

m2
h

(
cm2

Hd

− c′m2
Hd

(tan2 β − 1)−1

)
, (3.16)

where c′
m2
Hd

' 1 denotes the c−coefficient of m2
Hd

in the expression of the LE value of m2
Hd

itself, see table 3 in appendix. In any case, the contribution of m2
Hd

to the fine-tuning is

always marginal.

Note that for any other theoretical scenario, the ∆s associated with the genuine initial

parameters, say θi, can be written in terms of ∆Θα using the chain rule

∆θi ≡
∂ lnm2

h

∂ ln θi
=
∑
α

∆Θα

∂ ln Θα

∂ ln θi
=

θi
m2
h

∑
α

∂m2
h

∂Θα

∂Θα

∂θi
. (3.17)

8Indeed, if eq. (2.2) was refined to incorporate the M3−dependent contributions to m2, e.g. through

their impact in the stop mixing, the result would be very similar to that of eq. (3.4).
9The name “Unconstrained MSSM” could be a bit misleading in this context, since it would seem to

imply that one is not doing any assumptions about the soft terms. But there is in fact an assumption, namely

that they are not correlated. Note in particular that although the parameter space of the Unconstrained

MSSM includes any MSSM, e.g. the “Constrained MSSM”, the calculation of the fine-tuning for the latter

requires to take into account a specific correlation between various soft-terms. Still, we are showing in this

section that the results for the Unconstrained MSSM allow to easily evaluate the fine-tuning in any other

MSSM scenario.
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Finally, in order to obtain fine-tuning bounds on the parameters of the model we demand

|∆θi | <∼ ∆max, where ∆max is the maximum amount of fine-tuning one is willing to ac-

cept. E.g.

∆max = 100 , (3.18)

represents a fine-tuning of ∼ 1%.

3.3 The fit to the low-energy quantities

Fits of the kind of eq. (3.10) can be found in the literature, see e.g. [93, 94]. However,

though useful, they should be refined in several ways in order to perform a precise fine-

tuning analysis. The most important improvement is a careful treatment of the various

threshold scales. In particular, the initial MSSM parameters (i.e. the soft terms and the

µ−parameter) are defined at a high-energy (HE) scale, which is usually identified as MX ,

i.e. the scale at which the gauge couplings unify. Although this is a reasonable assumption,

it is convenient to consider the HE scale as an unknown; e.g. in gauge-mediated scenarios

it can be in principle any scale. The low-energy (LE) scale at which one sets the SUSY

threshold and the supersymmetric spectrum is computed, is also model-dependent. A

reasonable choice is to take MLE as the averaged stop masses. As discussed above, at this

scale the 1-loop corrections to the effective potential are minimized, so that the potential is

well approximated by the tree-level expression; thus eq. (3.10) should be understood at this

scale. Nevertheless, in many fits from the literature MLE is identified with MZ . Finally,

some parameters are inputs at MZ , e.g. the gauge couplings, while others, like the soft

B−parameter (the coefficient of the bilinear Higgs coupling), have to be evaluated in order

to reproduce the correct electroweak breaking with the value of tan β chosen. Similarly,

the value of the top Yukawa-coupling has to be settled at high energy in such a way that

it reproduces the value of the top mass at the electroweak scale (which is below the LE

scale). All this requires to divide the RG-running into two segments, [MEW, MLE] and

[MLE, MHE]. Besides this refinement, we have integrated the RG-equations at two-loop

order, using SARAH 4.1.0 [95].

The results of the fits for all the LE quantities for tan β = 10 and MHE = MX are given

in appendix, tables 3, 4, 5, 6, 7, 8, and 9 . The value quoted for each c−coefficient has been

evaluated at MLE = 1 TeV. The dependence of the c−coefficients on MLE is logarithmic

and can be well approximated by

ci(MLE) ' ci(1 TeV) + bi ln
MLE

1 TeV
. (3.19)

The value of the bi coefficients is also given in tables 3–9 (for MHE = MX). Certainly,

the value of MLE ∼ mt̃ is itself a (complicated) function of the initial soft parameters.

Nevertheless, it is typically dominated by the (RG) gluino contribution, MLE ∼ mt̃ ∼√
3|M3| for MHE = MX . This represents an additional dependence of m2

Hu
on M3, which

should be taken into account when computing ∆M3 . Actually, this effect diminishes the

fine-tuning associated to M3 (which is among the most important ones) because the impact

of an increase of M3 in the value of m2
Hu

becomes (slightly) compensated by the increase
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of the LE scale and the consequent decrease of the cM2
3

coefficient in eq. (3.10). We have

incorporated this fact in the computations of the fine-tuning.

Let us now turn to the dependence of the fine-tuning on the high-energy scale, MHE.

The absolute values of all the c−coefficients in the fits decrease with MHE, except perhaps

the coefficient that multiplies the parameter under consideration (e.g. cm2
Hu

in eq. (3.10)).

In the limit MHE → MLE the latter becomes 1, and the others go to zero. Obviously, the

fine-tuning decreases as MHE decreases. The actual dependence of the c−coefficients on

MHE has to do with the loop-order at which it arises. If it does at one-loop, the dependence

is logarithmic-like, e.g. for cM2
2

in eq. (3.10); if it does at two-loop, the dependence goes

like ∼ (logMHE)2, e.g. for cM2
3
. These dependences are shown in figures 4, 5, 6, 7 and 8.

In summary, with the help of tables 3–9 and Figs 4–8 it is straightforward to evaluate

the fine-tuning parameters of any MSSM scenario.

4 The naturalness bounds

4.1 Bounds on the initial (high-energy) parameters

Let us explore further the size and structure of the fine-tuning, and the corre-

sponding bounds on the initial parameters, in the unconstrained MSSM, i.e. tak-

ing as initial parameters the HE values of the soft terms and the µ-term: Θα ={
µ,M3,M2,M1, At,m

2
Hu
,m2

Hd
,m2

U3
,m2

Q3
, · · ·

}
. This is interesting by itself, and, as dis-

cussed above, it can be considered as the first step to compute the fine-tuning in any

theoretical scenario. For any of those parameters we demand

|∆Θα | <∼ ∆max , (4.1)

where ∆Θα are given by eq. (3.13). Now, for the parameters that appear just once in

eqs. (3.10), (3.11) the corresponding naturalness bound (4.1) is trivial and has the form of

an upper limit on the parameter size. For dimensional reasons this is exactly the case for

dimension-two parameters in mass units, e.g. for the squared stop masses∣∣∣∆m2
Q3

∣∣∣ =

∣∣∣∣∣−2
m2
Q3

m2
h

cm2
Q3

∣∣∣∣∣ <∼ ∆max −→ m2
Q3

<∼ 1.36 ∆max m2
h (4.2)

∣∣∣∆m2
U3

∣∣∣ =

∣∣∣∣∣−2
m2
U3

m2
h

cm2
U3

∣∣∣∣∣ <∼ ∆max −→ m2
t̃R

<∼ 1.72 ∆max m2
h , (4.3)

where we have plugged , cmQ3
= −0.367, cmU3

= −0.29, which correspond to MHE = MX

and MLE = 1 TeV, see table 3. For ∆max = 100, we get mQ3
<∼ 1.46 TeV, mU3

<∼ 1.64 TeV,

substantially higher than the usual quoted bounds [77]. This is mainly due to the refined

RG analysis and the use of the radiatively upgraded expression eq. (3.3), rather than

eq. (3.2), to evaluate the fine-tuning. We stress that these are the bounds on the high-

energy soft masses, the bounds on the physical masses will be worked out in subsection 4.3.

The naturalness bounds for the other (HE) dimension-two parameters (m2
D3

, m2
Q1,2

, m2
U1,2

,

m2
D1,2

, m2
L3

, . . . ) have a form similar to eqs. (4.2), (4.3) and are also higher than usually

quoted. Due to its peculiar RGE, this is also the case of the µ−parameter, see eq. (3.15).
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On the other hand, for dimension-one parameters (except µ) the naturalness

bounds (4.1) appear mixed. In particular, this is the case for the bounds associated to

M3,M2, At. From eqs. (3.13) and (3.10)

|∆M3 | =
1

m2
h

∣∣6.41M2
3 − 0.57AtM3 + 0.27M3M2

∣∣ <∼ ∆max (4.4)

|∆M2 | =
1

m2
h

∣∣−0.81M2
2 − 0.14AtM2 + 0.27M3M2

∣∣ <∼ ∆max (4.5)

|∆At | =
1

m2
h

∣∣0.44A2
t − 0.57AtM3 − 0.14AtM2

∣∣ <∼ ∆max , (4.6)

where, again, we have plugged the values of the c−coefficients corresponding to MHE = MX

and MLE = 1 TeV. Other parameters, like M1, Ab, get also mixed with them in the bounds,

but their coefficients are much smaller, so we have neglected them. We show in figure 1

the region in the {M2,M3, At} space that fulfills the inequalities for ∆max = 100. The

figure is close to a prism. Their faces are given by the following approximate solution to

eqs. (4.4)–(4.6)

Mmax
3 ' ± mh

√
∆max

6.41
+

1

12.82
(0.57At − 0.27M2) (4.7)

Mmax
2 ' ± mh

√
∆max

0.81
+

1

1.62
(0.27M3 − 0.14At) (4.8)

Amax
t ' ± mh

√
∆max

0.44
+

1

0.88
(0.57M3 + 0.14M2) , (4.9)

where the superscript “max” denotes the, positive and negative, values of the parame-

ter that saturate inequalities (4.4)–(4.6). Thus eqs. (4.7)–(4.9) represent the naturalness

bounds to M3,M2, At. Each individual bound depends on the values of the other param-

eters due to the presence of the mixed terms. Depending on the relative signs of the soft

terms, the bounds can be larger or smaller than those obtained when neglecting the mixed

terms. However, the presence of the latter stretches each individual absolute upper bound

in a non-negligible way, by doing an appropriate choice of the other soft terms (compatible

with their own fine-tuning condition).

A generic, approximate, expression for the absolute upper bound on a dimension-one

parameter, i.e. Mi (Mi = M3,M2,M1, At, Ab . . .) can be obtained by replacing the other

dimension-one parameters,Mj 6=i, by the values that saturate their zeroth-order fine-tuning

bounds, ±Mmax
j ' mh

√
∆max/4|cM2

j
|, with the appropriate sign; namely

|Mi| <
mh

2

√
∆max

|cM2
i
|

1 +
∑
j 6=i

1

4

|cMiMj |√
|cM2

i
cM2

j
|

 . (4.10)

In practice, in order to obtain the absolute upper bounds on M3,M2, At we have

ignored the presence of additional parameters (M1, Ab, · · · ) in (4.10). Its inclusion would

stretch even further the absolute bounds, but quite slightly and artificially since this would

imply a certain conspiracy between soft parameters. As a matter of fact, even playing just
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Figure 1. Region in the {M2,M3, At} space that fulfills eqs. (4.4)–(4.6) for ∆max = 100 (axes

units: TeVs). For other values, a
√

∆max/100 scaling factor has to be applied.

with the three parameters which show a sizeable correlation, i.e. {M3,M2, At}, implies a

certain degree of conspiracy to get the maximum value quoted in (4.10). This means that

the bound (4.10) is conservative. A more restrictive and rigorous bound can be obtained by

demanding that the addition in quadrature of the ∆i parameters never exceeds the reference

value, ∆max. In any case, since the fine-tuning conditions of M3,M2, At are correlated, as

shown in eqs. (4.4)–(4.6), the most meaningful approach is to determine the regions of the

parameter space simultaneously consistent with all the fine-tuning conditions. This will

be done in detail in section 6.2 below. The numerical modification of eqs. (4.4)–(4.9) for

different values of MLE, MHE can be straightforwardly obtained from table 3 and figure 4.

Choosing ∆max = 100, eqs. (4.7)–(4.9) give |M3| <∼ 610 GeV, |M2| <∼ 1630 GeV, |At| <∼
2430 GeV. The limit on M3 is similar to the one found by Feng [77], although this is

in part a coincidence. In ref. [77] it was chosen M2
3 , rather than M3, as an independent

parameter; which reduces the associated ∆M3 by a factor of 2. So, their bound on M3

was increased (quite artificially in our opinion) by
√

2. On the other hand, in ref. [77] the

RG running was not done in two steps, but simply running all the way from MX till MZ .

Furthermore, they did not consider the mixed terms of eq. (4.4). And finally they used

eq. (3.2) instead of eq. (3.3) to evaluate the fine-tuning. It turns out that, all together,

these three approximations increase the estimate of the fine tuning, thus decreasing the

upper bound on M3 by a factor which happens to be ∼ 1/
√

2.

Actually, for the particular case of the M3−parameter this is not the end of the story.

As discussed in subsection 3.2, the cM2
3

coefficient has a dependence on MLE approximately

given by eq. (3.19). Since MLE ' mt̃ and typically m2
t̃
' 1

2(c
(Q3)

M2
3

+ c
(U3)

M2
3

)2M2
3 , where c

(Q3)

M2
3

,

c
(U3)

M2
3

are the coefficients of M2
3 in the LE expression of m2

Q3
, m2

U3
(given in table 4 and
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figures 5, 6 for any HE scale), one has an additional contribution to the computation of

∆M3 in eq. (3.13). The corresponding correction to Mmax
3 can be estimated by expanding

the new inequality around the previous value of Mmax
3 . We find

δMmax
3 ' 1

2

bM3

|cM2
3
|


√

1
2

(
c

(Q3)

M2
3

+ c
(U3)

M2
3

)
Mmax

3

1 TeV
− 1

2

 Mmax
3 , (4.11)

where we have neglected subdominant terms.10 For MHE = MX and MLE = 1 TeV one

has cM2
3
' −1.6, c

(Q3)

M2
3

+ c
(U3)

M2
3
' 6, so the previous correction becomes

δMmax
3 ' 2.06Mmax

3 − 0.6 TeV

10 TeV
Mmax

3 , (4.12)

This increases further Mmax
3 from 610 GeV to ∼ 660 GeV, i.e. mg̃

<∼ 1440 GeV which is

about the present experimental lower limit on the gluino mass. Recall that this bound

has been obtained assuming ∆max = 100, thus we conclude that the unconstrained MSSM

is fine-tuned at about 1%. We emphasize that these results have been obtained in the

framework of the “unconstrained MSSM”, so that M3,M2, At are treated as independent,

non-theoretically-correlated, parameters; and under the assumption MHE = MX .

4.2 Correlations between the soft terms

Using the chain rule (3.17) one can easily evaluate the fine-tuning bounds when the initial

soft terms are related in any way determined by the theoretical framework chosen. For

instance, it is reasonable to assume that the soft masses at HE come from the same source,

and therefore they are related, even if they are not equal. E.g. suppose that at HE

{
m2
Hu ,m

2
Q3
,m2

U3

}
= {aHu , aQ3 , aU3}m2

0 . (4.13)

Then, plugging eq. (3.10) into eq. (3.17) one immediately derives the fine-tuning condition

for m2
0 ∣∣∣∆m2

0

∣∣∣ =

∣∣∣∣−2
m2

0

m2
h

(
cm2

Hu
aHu + cm2

Q3
aQ3 + cm2

U3
aU3

)∣∣∣∣ <∼ ∆max , (4.14)

which entails an upper bound on m2
0, and hence on the stop masses at high energy. E.g.

m2
U3

<∼
1

2

∣∣∣∣∣∣ ∆max

−0.29 + 0.631
aHu
aU3
− 0.367

aQ3
aU3

∣∣∣∣∣∣m2
h , (4.15)

where we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX (table 3

). This bound can be compared with the bound for the unconstrained MSSM, eq. (4.3).

10Note that this correction is applicable as long as MHE is large (>∼ 1010 GeV); otherwise, it is quite small,

the stop mass is not determined anymore by M3.
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Depending on the relative values between the as , the bound on m2
U3

gets increased (the

usual case) or decreased. For the universal case, aHu = aQ3 = aU3 , one gets mU3
<∼√

∆max 550 GeV, which allows for quite heavy stops with very little fine-tuning.

The same game can be played with the gaugino masses and the trilinear couplings.

E.g. suppose that

{M1,M2,M3, At} = {a1, a2, a3, at}M1/2 . (4.16)

Then, the fine-tuning condition for M1/2 reads
∣∣∣∆M1/2

∣∣∣ <∼ ∆max, with

∆M1/2
= −4

M2
1/2

m2
h

(
cM2

3
a2

3 + cM2
2
a2

2 + cA2
t
a2
t + cM3M2a3a2 + cM3Ata3at + cM2Ata2at

)
.

(4.17)

E.g. the bound on M3 becomes

M2
3

<∼
a2

3

4

∣∣∣∣ ∆max

1.6a2
3 − 0.203a2

2 + 0.109a2
t + 0.134a3a2 − 0.285a3at − 0.068a2at

∣∣∣∣m2
h (4.18)

where, once more, we have used the c−coefficients corresponding to MLE = 1 TeV, MHE =

MX . For the universal case, a3 = a2 = at, the bound on M3 becomes similar to that of

the unconstrained MSSM. However, for other combinations the bound can be much larger.

E.g. for a2
a3

= 3.16,−2.50 and at = 0 the denominator would cancel.11 This represents a

different kind of focus-point, in this case for gauginos.

Other correlations between the soft parameters and the appearance of alternative focus-

point regimes can be explored in a similar way starting at any HE scale, by using the tables

and figures of the appendix. See refs. [74, 75] for recent work on this subject.

4.3 Bounds on the supersymmetric spectrum

So far, in this section we have explained in detail how to extract the naturalness limits on

the initial (HE) soft terms and µ−term in generic MSSM scenarios. The next step is to

translate those bounds into limits on the physical supersymmetric spectrum. Therefore,

one has to go back from the high-energy scale to low-energy one, using the RG equations.

Once more, this can be immediately done using the analytical expressions discussed in

subsection 3.3 and the appendix for any value of the HE and the LE scales.

Unfortunately, there is no a one-to-one correspondence between the physical masses,

and the soft-parameters and µ−term at high-energy. The only approximate exception are

the gaugino and Higgsino masses. Namely, from tables 7, 9

Mg̃ 'M3(MLE) ' 2.22M3

MW̃ 'M2(MLE) ' 0.81M2

MB̃ 'M1(MLE) ' 0.43M1

MH̃ ' µ(MLE) ' 1.002µ , (4.19)

11See [60, 61, 66] for some studies about non-universal gaugino masses and fine-tuning.
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where the above numbers correspond to MLE = 1 TeV, MHE = MX . Of course, these

are not yet the physical masses, except, approximately, for the gluino. For a more precise

calculation of the physical (pole) gluino mass, we must incorporate radiative corrections

which depend on the size of the squark masses and that can be rather significant for more

than one squark generation with mq̃ �M3 [96]. The other gauginos and the Higgsinos get

mixed in the chargino and neutralino mass matrices. However, since we are considering

upper limits on these masses, the mixing entries in those matrices are subdominant and

do not appreciably affect the bounds. On the other hand, as discussed in subsection 4.1,

the naturalness limits on (the HE values of)M3, M2 are more involved than for other

parameters, since the respective fine-tuning inequalities get mixed with each other and

with At. Using the (MLE = 1 TeV, MHE = MX) limits on M3,M2,M1, µ obtained for the

unconstrained MSSM (see sects. 4.1 and 5) one gets Mg̃
<∼ 1440 GeV, MW̃

<∼ 1300 GeV,

MB̃
<∼ 3370 GeV and MH̃

<∼ 627 GeV.

On the contrary, the physical masses of the sparticles, m2
t̃1

, m2
t̃2

, m2
Q1,2

m2
U1,2

, m2
D1,2

,

m2
H± , etc., are non-trivial combinations of the various initial soft terms and products of

them. The case of the stops is particularly important, since it is a common assumption

that Natural SUSY demands light stops. E.g. using MLE = 1 TeV, MHE = MX , we see

from table 3 that the values of m2
Q3

, m2
U3

at LE are given by:

m2
Q3

(MLE) = 3.191M2
3 + 0.333M2

2 + 0.871m2
Q̃3
− 0.095m2

Ũ3

−0.118m2
Hu + 0.072AtM3 + · · ·

m2
U3

(MLE) = 2.754M2
3 − 0.151M2

2 − 0.192m2
Q̃3

+ 0.706m2
Ũ3

−0.189m2
Hu + 0.159AtM3 + · · · (4.20)

These are not yet the physical stop masses. One has to take into account the top

contribution, m2
t , and the off-diagonal entries in the stop mass matrix, ∼ mtXt where

Xt = At + µ cotβ ' At. Finally, one has to extract the mass eigenvalues, m2
t̃1

and m2
t̃2

. A

representative, and easier to calculate, quantity is the average stop mass,

m2
t̃
≡ 1

2
(m2

t̃1
+m2

t̃2
) =

1

2
(m2

Q3
(MLE) +m2

U3
(MLE)) +m2

t

' (2.972M2
3 + 0.339m2

Q3
+ 0.305m2

U3
+ 0.091M2

2 − 0.154m2
Hu · · · ) +m2

t . (4.21)

The average stop mass is also an important quantity to evaluate the threshold correction

to the Higgs mass, and thus it plays an important role in the evaluation of the potential

fine-tuning associated to it, see eq. (2.11) and subsection 6.1. Setting M3, mQ3 , mU3 and

M2 at their upper bounds (and neglecting additional terms in the parenthesis of eq. (4.21))

one obtains an upper bound for mt̃, namely mt̃
<∼ 1.7 TeV. However this is somehow too

optimistic since it requires that all these HE parameters are simultaneously at their upper

bounds, which is unlikely. A way to deal with this problem is to slightly modify the fine-

tuning measure (3.4), in a (more restrictive) fashion, which counts all the contributions to

the fine-tuning. Namely, instead using ∆ ≡ Max |∆θi |, one defines ∆ ≡ {∑i |∆θi |2}1/2,

which, as has been argued [97], it is a more meaningful quantity. If the fine-tuning is
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dominated by one of the HE parameters (which is the usual case) both definitions are

equivalent, but if there are several parameters contributing substantially to the fine-tuning,

the second definition is more sensible (and restrictive). Then it is easy to show that the

maximum value of m2
t̃

subject to the condition ∆ ≤ ∆max, with ∆ defined in this modified

way, is

m2
t̃

=
[
2.9722(Mmax

3 )4 + 0.3392(mmax
Q3

)4

+0.3052(mmax
U3

)4 + 0.0912(Mmax
2 )4 + · · ·

]1/2
+m2

t

Using just the dominant terms appearing explicitly above, we get (for MHE = MX) mt̃ ≤
1320 GeV.

From these results it is clear that for the unconstrained MSSM, with MHE = MX , the

naturalness bound on the gluino mass is much more important for LHC detection than the

one on the stop masses. Next, we show the numerical values of the various naturalness

bounds in a systematic way.

5 Results for the unconstrained MSSM

The unconstrained MSSM, where the soft-terms and µ−term at the HE scale are taken

as the independent parameters, has been already considered in the previous subsections

as a guide to discuss the various naturalness bounds. However, we have so far restricted

ourselves to the case MLE = 1 TeV, MHE = MX . It is interesting to show the limits, both

on the initial parameters and on the supersymmetric spectrum, for other choices of MHE.

Following the procedure explained in subsections 4.1 and 4.3, we have computed the fine-

tuning constraints for three representative values of MHE, namely MHE = 2 × 1016 GeV,

1010 GeV and 104 GeV, keeping MLE = 1 TeV. Using the plots shown in the appendix the

reader can evaluate the bounds for any other choice of MHE.

The absolute upper bounds on the most relevant HE parameters, obtained from

eq. (4.10), with the additional correction (4.11) for M3, are shown in table 1. Similarly,

the corresponding bounds on supersymmetric masses at low energy, evaluated as in subsec-

tion 4.3, are shown in table 2. All the bounds have been obtained by setting ∆max = 100,

they simply scale as
√

∆max/100.

From the previous tables we can notice some generic facts.

• Taking into account the present and future LHC limits, the upper bound on the

gluino mass is typically the most stringent one, being at the reach of the LHC (for

∆max = 100), unless the high-energy scale is rather low. On the other hand, the

gluino bound is the most sensitive one to the value of MHE, since it is a two-loop

effect. For MHE ' 107 GeV, it is as already beyond the future LHC limit (∼ 2.5 TeV,

see e.g. [98]) and it increases rapidly as MHE approaches the electroweak scale.

• The upper bound on the wino mass, MW̃ , is similar to the gluino one. Note here

that (unless MHE is quite small) the weight of M2
2 in the value of m2

Hu
(MLE) is

– 19 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
0

MMHE
= 2× 1016 MMHE

= 1010 MMHE
= 104

Mmax
3 (MHE) 660 1 162 5 376

Mmax
2 (MHE) 1 646 1 750 3 500

Mmax
1 (MHE) 8 002 6 100 11 048

Amax
t (MHE) 2 504 2 227 3 094

mmax
Hu

(MHE) 1 038 1 046 913

mmax
Hd

(MHE) 6 945 14 472 9 784

µmax(MHE) 624 640 630

mmax
Q3

(MHE) 1 458 1 687 3 527

mmax
U3

(MHE) 1 640 1 828 3 710

mmax
D3

(MHE) 5 682 7 812 20 277

mmax
Q1,2

(MHE) 5 601 7 693 19 288

mmax
U1,2

(MHE) 3 818 5 254 13 975

mmax
D1,2

(MHE) 5 613 7 722 19 764

mmax
L1,2,3

(MHE) 5 557 7 664 20 278

mmax
E1,2,3

(MHE) 5 524 7 607 20 278

Table 1. Upper bounds on some of the initial (HE) soft terms and µ−term for three different

values of MHE, in the unconstrained MSSM scenario. All quantities are given in GeV units.

MHE = 2× 1016 MHE = 1010 MHE = 104

Mmax
g̃ 1 440 1 890 5 860

Mmax
W̃

1 303 1 550 3 435

Mmax
B̃

3 368 4 237 10 565

Mmax
H̃

627 627 627

mmax
t̃

1 320 1 590 3 190

mmax
H0 7 252 14 510 9 900

Table 2. Upper bounds on some of the physical masses for three different values of MHE, in the

unconstrained MSSM scenario. All quantities are given in GeV units.

certainly smaller than that of M2
3 ; but this effect is compensated, when computing

the physical masses, by the large increase of M3 when running from MHE to MLE

(see figures 1, 4). On the other hand, the bound on MW̃ is much less restrictive than

the one on Mg̃, given the LHC discovery potential. The upper bound on the bino, as

expected, is quite mild and always beyond the reach of the next LHC run. This is

just a consequence of the little impact that M1 has on m2
Hu

(LE).
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• Concerning electroweakinos, the most relevant upper bounds are those on Higgsinos,

MH̃ . Not only they are the strongest ones (hopefully at the reach of the LHC for

∆max = 100), but also, by far, the most stable of all bounds. This is a consequence of

the fact that µ runs proportional to itself, so their fine-tuning parameter is insensitive

to HE scale, see eq. (3.15). Apart from that, the running of µ is very little. It is worth-

mentioning that for ∆max = 100 the upper bound on MH̃ is not far from MH̃ ' 1 TeV,

which is the value required if dark matter is made of Higgsinos [99, 100].

• The upper bounds on stops are not as stringent as the gluino one unless MHE is pretty

close to the electroweak scale, in which case none of them is relevant. In general, it

is not justified to say that Natural SUSY prefers light stops, close to the LHC limits.

Actually, for ∆max = 100 the upper bounds on stops are beyond the LHC reach [98].

Taking lighter stops does not really improve the fine-tuning since there are other

contributions to it which are dominant, in particular the gluino one.

• Given the present LHC limits, the contribution of the gluino to the m2
Hu

is bigger than

that of stops, then it is not useful to have light stops. This conclusion is reinforced

when other aspects are considered, see subsection 6.1 below. Unless MHE is very

small, the gluino mass sets the level of EW fine-tuning of the unconstrained MSSM,

which is O(1%).

If MLE becomes close to the electroweak scale, the supersymmetric fine-tuning be-

comes much less severe. This fact is strengthened by the fact that additional soft

dimension-4 Higgs operators may start to become relevant, increasing the tree-level

Higgs mass and thus decreasing further the fine-tuning. These aspects were noted in

ref. [101–103].

• Concerning the squarks of the first two generations and all the generations of sleptons,

their bounds are, as expected, far beyond the reach of the LHC; the reason being

that their contribution to m2
Hu

is very small.

• Lastly, we can see the large upper bounds on m2
Hd

. When MLE is very large, its

contribution to the fine-tuning is very small. However, for low values of MLE, the term

proportional to m2
Hd

(tan2 β − 1)−1 (neglected for simplicity in expr. (3.3)) actually

becomes the dominant one, causing a larger impact of m2
Hd

on the EW fine-tuning

and, as consequence, decreasing the respective upper bound. This can be seen from

table (1), where the bound on mHd gets lower for MLE = 104 GeV. Being the largest

bounds as compared to the ones of µ and m2
Hu

, the term m2
Hd

dominates the bounds

on the masses of the heavy Higgses (see table 2).

6 Impact of other potential fine-tunings of the MSSM

6.1 Fine-tuning to get mexp
h ' 125 GeV

From the results of the previous section it is clear that, concerning naturalness, little is

gained by going to light stops, say < 800 GeV. Actually, such light stops could entail,
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Figure 2. The Higgs boson mass, mh, as a function of the third generation squark masses, mQ3
=

mU3
. The black-solid line is for mQ3

= 500 GeV, blue-dashed for mQ3
= 1000 GeV, and green-

dotted for mQ3 = 2000 GeV. The red horizontal lines denote mh = 125 ± 2 GeV band. The Higgs

boson mass has been calculated using FeynHiggs 2.10.1 [21, 104–107].

as already mentioned in section 2.3, an additional fine-tuning since the condition mexp
h '

125 GeV may require the threshold contribution to the Higgs mass to be maximal with

high accuracy. The relevant equation is

m2
h = (m2

h)tree−level + δradm
2
h + δthrm

2
h , (6.1)

where δradm
2
h (δthrm

2
h) is the radiative (threshold) contribution to m2

h, approximately given

by the Xt−independent (dependent) part of eq. (2.11). We recall that for moderately large

tanβ one can approximate Xt = At(MLE) − µ cotβ ' At(MLE). Figure 2 shows the

dependence of mh vs At(MLE) for different values of the (LE) soft stop-masses, taken

as degenerate for simplicity, mQ3 = mU3 = 500, 1000, 2000 GeV. If the stops are light,

∼ 500 GeV, the correct value of the Higgs boson mass, mh = 125± 2 GeV (the uncertainty

is mainly due to the theoretical calculation), requires At(MLE) to be precisely fine-tuned12

at ±1000 GeV. On the other hand, if the stop masses are ∼ 1000 or 2000 GeV, a broad

range of values is allowed, At(MLE) = ±(2000± 1000) GeV, which entails no fine-tuning.

We emphasize that this potential fine-tuning is independent of the one required to

obtain the correct electroweak scale, which has been analyzed in the previous section.

Therefore, if both fine-tunings are present we should combine them, i.e. multiply the two

small probabilities of getting both the correct electroweak scale and the correct Higgs mass.

This requires to quantify the fine-tuning associated to the Higgs mass in a fashion which

has similar statistical meaning as the measure used for the electroweak fine-tuning. Taking

into account the discussion of subsection 3.1, we adopt here a fine-tuning measure that

is also consistent with an interpretation in terms of p-value. In particular, if the stops

12Note that in this case the “standard criterion” to evaluate the fine-tuning, i.e. ∆ = ∂ logmh/∂ logAt
is not applicable (indeed, one would conclude from it that there is no fine-tuning at all), since At is close

to an stationary point, see footnote 5.
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are light, the fine-tuning is well reflected by the p−value of getting mh as large as mexp
h

or larger

p− value =

∫
mh≥mexp

h

dmh P(mh) . (6.2)

Here P(mh) is the probability of a Higgs mass value, given by

P(mh) =

∣∣∣∣ dXt

dmh

∣∣∣∣P(Xt(mh)) , (6.3)

where P(Xt) is the probability distribution of Xt−values.13 The final step is to assume

a shape for P(Xt). Note here that Xt ' At(MLE) is a low-energy quantity, so it is not

much sense to adopt a prior for it. Strictly speaking, the prior should be assumed for the

initial, high-energy parameters that determine the value of At(MLE), (i.e. At,M3,M2), in a

similar fashion as the one followed to establish the electroweak fine-tuning in the previous

sections. Nevertheless, it is clear from figure 2 that, roughly speaking, for mt̃ & 1000 GeV

and any sensible theoretical scenario for the soft terms, the p−value will be ∼ 20% or larger,

which means that there is not really a fine-tuning associated to mh ' 125 GeV. Living in

this range, the only important fine-tuning is the one associated to the electroweak scale.

On the other hand, if stops are very light, both fine-tunings should be simultaneously

considered. Then, one should multiply the ∆electroweak parameter by the inverse of the

above p-value, which necessarily leads to a per-mil (or even more severe) global fine-tuning.

So, interestingly, if the average stop mass is light, say <∼ 800 GeV, the situation is typically

more fine-tuned than for heavier stops, ∼ O(1 TeV).

6.2 The Higgs mass and the parameter space selected by naturalness

On the other hand, even if there is no fine-tuning to get the experimental Higgs mass,

the requirement mh = mexp
h implies a balance between δradm

2
h and δthrm

2
h in eq. (6.1),

which in turn implies a correlation between the initial parameters, especially M3 (the

main responsible for the size of the stop masses) and At. This correlation has non-trivial

consequences for the electroweak fine-tuning.

To see this, consider ∆M3 , which is usually the most significant fine-tuning parameter.

As discussed in subsection 4.1, ∆M3 is a function, not only of M3, but also of M2 and At.

E.g. for MHE = MX ,MLE = 1 TeV, ∆M3 is given by eq. (3.14), where one can note that it

will get partially suppressed as long as M3 and At are of the same sign. Therefore, fixing

M3 > 0 one would expect the lowest electroweak fine-tuning for At > 0. On the other

side, it is evident from table 8 that the RG running pushes such At towards rather low and

possibly negative values. However, low values of At at LE are in conflict with the measured

Higgs boson mass, as can be seen in figure 2. This will result in a tension between low fine

tuning of the electroweak scale and the Higgs mass.

This situation is depicted in figure 3 where we show the contours of constant Higgs

boson mass (black) and fine tuning (red), together in the (high-energy) M3–At plane, for

13For many values of mh, there are four Xt solutions, so P(mh) is the sum of four terms, corresponding

to those solutions.
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different choices of MHE. For simplicity we have chosen M2 = M3 and m2
Q3

= m2
U3

= 0 at

HE. Note here that, unless the HE stop masses are very large, their LE values are essentially

determined by M3 (unless MHE is small), so the results of the figures are quite general.

The fine-tuning shown corresponds to the largest ∆ among the parameters. Usually it

is given by ∆M3 , especially when there is a significant amount of running, although for

large |At| it may be given by ∆At (then the red lines get horizontal in the plots). As

expected from the above discussion, when the fine-tuning is dominated by ∆M3 , it tends

to be lower for At > 0; however, mh ∼ 125 GeV prefers At < 0. For MHE = 2 · 1016 GeV

(upper-left panel of figure 3), the Higgs boson mass requires At ∼ −2000 GeV, resulting in

a large fine tuning, ∆ ∼ 250. Moreover, M3 is required to be larger than ∼ 750 GeV which

implies that the gluino mass should be (at least) slightly above current exclusion limits. Of

course larger values of M3 result in a more severe fine-tuning, as is clear from the figure.

The tension between different low energy requirements is clearly visible in the upper-right

panel, MHE = 1010 GeV, where the correct Higgs mass is obtained for At ∼ −1500 GeV

with ∆ ∼ 100 or even smaller, which corresponds to M3 ∼ 900 GeV and, again, a physical

gluino mass just above the current exclusion limits. Once more, higher values of the gluino

mass imply higher fine-tuning, but the increase is not as dramatic as for MHE = 2·1016 GeV.

On the other hand, for positive At a much higher value is required, At ∼ 3000 GeV, which

results in a significant increase in fine tuning due to At, namely ∆At ∼ 300. Only for a very

low choice of the high-energy scale, MHE = 104 GeV, the positive At is preferred. In this

case the fine-tuning gets substantially smaller, ∆ . 50. The result is rather independent of

M3 which only enters at 2-loops in the Higgs mass and has a very limited impact on other

SUSY parameters due to RGE running.

We can therefore conclude that, unless the scale of SUSY breaking transmission is

quite low, the least fine-tuned scenarios (i.e. the most “natural” ones) generically demand

negative At , a requirement driven by the measured Higgs mass. The corresponding fine-

tuning is O(100), with gluinos only slightly heavier than the current limits, promising

interesting discovery prospects at the second run of the LHC with increased center-of-

mass energy.

6.3 Fine-tuning to get large tan β

As pointed out in subsection 2.3, a large value of tan β generically requires a small value of

Bµ at low energy, which requires a cancellation between the initial value and the radiative

contribution from the RG-running. Here, we quantify this fine-tuning and discuss its

consequences.

From eq. (2.12), we can write, for tan β � 1,

tanβ '
m2
Hd

+m2
Hu

+ 2µ2

Bµ
=
m2
A

Bµ
, (6.4)

where mA is the mass of the pseudoscalar Higgs and all the quantities are understood

at the low-energy (LE) scale. As discussed in subsection 2.3, the fine-tuning to get large

tanβ can be reasonable quantified using the standard criterion. Namely, for any initial
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Figure 3. Contours of constant Higgs boson mass (black, contours for mh = 120, 123, 125, 127 GeV)

and fine tuning (red), eq. (3.13), in the M3–At plane. We have chosen M2 = M3 andm2
Q3

= m2
U3

= 0

at HE. From left to right to bottom, MHE = 2 · 1016, 1010, 104 GeV. The unphysical region with

tachyonic stops is shaded in gray.

parameter of the theory, θ, we define the associated fine-tuning, ∆
(tanβ)
θ

∆
(tanβ)
θ =

θ

tanβ

d tanβ

dθ
=

θ

m2
A

[
dm2

A

dθ
− tanβ

d(Bµ)

dθ

]
, (6.5)

where we have used eq. (6.4). For large tan β, ∆
(tanβ)
θ is normally dominated by the second

term within brackets in (6.5)∣∣∣∆(tanβ)
θ

∣∣∣ ' tanβ

∣∣∣∣ θm2
A

d(Bµ)

dθ

∣∣∣∣ . (6.6)

The next step is to express the LE value of Bµ in terms of the initial (HE) parameters.

E.g. assuming MHE = MX , MLE = 1 TeV, from table 9

Bµ(LE) ' Bµ+ 0.46M3µ− 0.35M2µ− 0.34Atµ− 0.03M1µ+ · · · (6.7)
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where the quantities on the r.h.s. are at the HE scale. Then, the corresponding fine-tuning

∆s for the relevant parameters,14 B,M3,M2, At, read∣∣∣∆(tanβ)
{B,M3,M2,At}

∣∣∣ ' tanβ

∣∣∣∣ µm2
A

{B, 0.46M3, 0.35M2, 0.34At }
∣∣∣∣ (6.8)

where we recall that r.h.s. parameters at the HE-scale. Going to particular models, one

clearly expects some of the {µB, µM3, µM2, µAt} quantities to be of the order of m2
A.

Indeed, the HE value of B could be zero, but M3,M2 cannot. This means that a certain

fine-tuning, ∆(tanβ) >∼ 5−10 occurs if tan β >∼ 15−30. Since this fine-tuning has a different

nature from the electroweak one (discussed in detail in the previous sections), and given the

probabilistic meaning of the fine-tuning parameters, this implies that the two ∆s have to

be multiplied, ∆ = ∆(EW)∆
(tanβ)
θ , which generically results in an exaggerated fine-tuning

(> 500 − 1000). Notice that these conclusions are alleviated if the HE scale is smaller,

since the numerical coefficients in (6.7) decrease. On the other hand, for ∆(tanβ) <∼ 5

there is no really fine-cancellation to get the value of tan β and one can ignore the ∆(tanβ)

fine-tuning factor.

The conclusion is that very large tan β, say tan β >∼ 15− 30, implies a high fine-tuning

price, unless the special characteristics of the model lead to a small r.h.s. in (6.6), e.g. if

m2
A is abnormally large.

Let us conclude this section pointing out that for tan β >∼ 30 the impact of the bottom

and tau Yukawa couplings in the RGEs become non-negligible, so the previous numerical

values would be modified, but the general conclusion would be the same.

7 Summary and conclusions: the most robust predictions of a Natural

SUSY scenario

The idea of “Natural SUSY”, understood as a supersymmetric (MSSM) scenario where

the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric

phenomenology, since, as usually argued, the main phenomenological virtue of SUSY is

precisely to avoid the huge fine-tuning associated to the hierarchy problem. Much work

has been done in the literature to quantify the fine-tuning of a generic MSSM and to extract

the features of Natural SUSY. However, these analyses often ignore relevant aspects, such

as the “mixing” of the fine-tuning conditions or the presence of other potential fine-tunings.

In this paper, we have addressed the supersymmetric fine-tuning in a comprehensive

way, including the discussion of the measure of the fine-tuning and its probabilistic meaning,

the mixing of the fine-tuning conditions, the method to extract fine-tuning bounds on the

initial parameters and the low energy supersymmetric spectrum, as well as the role played

by extra potential fine-tunings. We have given tables and plots that allow to easily evaluate

the fine-tuning and the corresponding naturalness bounds for any theoretical model defined

at any high-energy (HE) scale. Finally, we have analyzed in detail the complete fine-tuning

bounds for the unconstrained MSSM, defined at any HE scale, including the impact that

the experimental Higgs mass imposes on the soft terms.

14Note that ∆
(tan β)
µ ' 1.
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From the results of the previous sections, we summarize below the most important

implications of fine-tuning in the MSSM; or, in other words, the characteristics of a Natural-

SUSY scenario.

1. For the evaluation of the fine-tuning it is crucial to define: i) the initial (independent)

parameters of the theoretical set up, ii) the high-energy (HE) scale at which they are

defined and iii) the criterion to quantify the fine-tuning.

We have seen that the ‘standard’ fine-tuning criterion (3.4) normally has a sound

statistical meaning, though one should be careful about the implicit assumptions of

the prior for the initial parameters hold (if not, the standard criterion has to be

consistently modified). Besides, we have provided tables and plots (see appendix )

that allow to straightforwardly evaluate the fine-tuning for any theoretical set up at

any HE-scale.

2. Concerning the electroweak fine-tuning of the MSSM (i.e. the one required to get the

correct electroweak scale), the most robust result is by far that Higgsinos should be

rather light, certainly below 700 GeV for ∆ < 100, i.e. to avoid a fine-tuning stronger

than 1% (all the bounds on masses scale as
√

∆max). This result is enormously

stable against changes in the HE scale since the µ−parameter runs proportional

to itself (besides running very little from HE to LE). The only way it could be

substantially relaxed would be that the µ−parameter were theoretically related to

the soft masses in such a way that there occurred a cancellation at LE between µ2

and m2
Hu

(see eq. (3.3)). This is difficult to conceive and, certainly, it is not realized

in the known theoretical SUSY frameworks. Incidentally, this upper bound is not far

from MH̃ ' 1 TeV, which is the value required if dark matter is made of Higgsinos.

3. The most stringent naturalness upper bound, from the phenomenological point of

view, is the one on the gluino mass. If MHE ' MX one gets Mg̃
<∼ 1.5 TeV for

∆max = 100, i.e. just around the corner at the LHC. In other words, the gluino mass

typically sets the level of the electroweak fine-tuning of the MSSM, which at present

is O(1%).

However, this limit is not as robust as the one on Higgsinos. First, it presents a strong

dependence on the HE-scale (due to the two-loop dependence of the electroweak scale

on the gluino mass). Actually, for MHE
<∼ 107 GeV and ∆max = 100 the upper bound

on Mg̃ (about 2.7 TeV) goes beyond the present LHC reach. In addition, it could

be relaxed if the initial soft parameters (e.g. the gaugino masses) are theoretically

related in a favorable way.

4. The upper limit on the wino mass, MW̃ , is slightly smaller than the gluino one, but

less relevant for LHC phenomenology. It also has a similar degree of robustness,

though it is less dependent on MHE. The upper bound on the bino mass, MB̃ is

weaker and beyond the LHC reach.

5. A remarkable conclusion is that light stop masses are not really a generic requirement

of Natural SUSY. Actually, stops could be well beyond the LHC limits without
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driving the electroweak fine-tuning of the MSSM beyond 1%. Even more, in some

scenarios, like universal scalar masses with MHE = MX , stops above 1.5 TeV are

consistent with a quite mild fine-tuning of ∼ 10%. Hence, the upper bounds on stops

are neither stringent nor stable under changes of the theoretical scenario.

In contrast, as mentioned above, the gluino mass is required to be light with much

more generality, although its impact on the fine-tuning depends crucially on the size

of MHE (it is maximum for MHE = MX). Consequently, the electroweak scale is

typically fine-tuned at 1% in most cases, and having light stops does not help, since

the electroweak fine-tuning stems from a single cancellation between terms, essentially

between the ones proportional to M2
3 and µ2 in eq. (3.3).

6. In addition to the conventional fine-tuning to get the correct electroweak scale, there

are two potential extra fine-tunings, namely the tuning of the threshold correction to

get mh = mexp
h when stops are too light, and the tuning of Bµ (at low energy) to get

a large tan β. It is convenient to avoid these additional fine-tunings, otherwise they

have to be combined with (i.e. multiplied by) the electroweak fine-tuning, normally

resulting in a gigantic global fine-tuning. Typically, this requires a not-too-light

average stop mass, i.e. mt̃
>∼ 800 GeV; and not-too-large tan β, i.e. tan β <∼ 15 − 30.

The precise conditions to avoid these tunings are discussed in section 6. Note that

a small average stop mass is disfavored, but the mass of the lightest stop could be

light or very light.

7. Unless the high-energy scale is quite low, the less fine-tuned scenarios generically

demand negative At , a requirement driven by the measured Higgs mass. The cor-

responding fine-tuning is O(100), with gluinos only slightly heavier than the current

limits, which offers interesting prospects for the second run of the LHC.

8. Lastly, the fine-tuning bounds on all the sleptons, the first two generations of squarks

and the heavy Higgs states, are, as expected, far beyond the reach of LHC. This is

a consequence of the little effect these parameters have on the value of m2
Hu

at low

energy.
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A Low-energy running coefficients at 2 loops

We compile in this appendix the coefficients of the functional forms that exactly fit the low-

energy (LE) parameters in terms of the high-energy (HE) ones. Namely, for dimension-two

parameters, say M2

M2(LE) = cM2
3
M2

3 + cM2
2
M2

2 + cM2
1
M2

1 + cA2
t
A2
t + cAtM3AtM3 + cM3M2M3M2 + · · ·

· · ·+ cm2
Hu
m2
Hu + cm2

Q3
m2
Q3

+ cm2
U3
m2
U3

+ · · · (A.1)

where the r.h.s. parameters are understood at the HE scale. Similarly, for dimension-one

parameters, say M, we have

M(LE) = cM3M3 + cM2M2 + cM1M1 + cAtAt + · · · (A.2)

In tables 3–9 we list the values of the above c−coefficients for each LE soft term and

for the LE µ−parameter. These values correspond to the choice MHE = MX , MLE = 1 TeV

and tan β = 10.

The dependence on tan β is very small provided it 5 <∼ tanβ <∼ 30. If tan β <∼ 5 the

top Yukawa coupling becomes larger, affecting the entire set of RGEs. Likewise, for larger

values of tan β >∼ 30 the effect of the bottom and tau Yukawa couplings start to be non-

negligible. Notice however tan β <∼ 5 implies extremely heavy stops, so that the radiative

correction to the Higgs mass is large enough to reproduce mh ' 125 GeV. This amounts

to an enormous fine-tuning. Analogously, for tan β >∼ 30 the tuning required to get large

tanβ usually raises the global fine-tuning up to unreasonable levels, see section 2.3.

The dependence of the c−coefficients on MLE is logarithmic and can be well approxi-

mated by

ci(MLE) ' ci(1 TeV) + bi ln
MLE

1 TeV
. (A.3)

The value of the bi coefficients is also given in tables 3–9 .

Finally, the dependence of the c−coefficients (and bM2
3
) on MHE is shown in fig-

ures 4, 5, 6, 7 and 8.
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m2
Hu

(MLE) m2
Hd

(MLE)

HE ci bi ci bi

M2
3 −1.603 0.381 −0.056 0.016

m2
Hu

0.631 0.019 0.025 −0.001

m2
Q3

−0.367 0.018 0.015 —

m2
U3

−0.290 0.017 −0.051 0.001

AtM3 0.285 −0.024 −0.002 0.001

M2
2 0.203 0.006 0.410 −0.016

M2M3 −0.134 0.021 −0.016 0.003

A2
t −0.109 −0.006 — —

AtM2 0.068 — −0.002 —

m2
U1,2

0.054 −0.001 −0.052 0.001

m2
Hd

0.026 −0.001 0.961 0.001

m2
E1,2

−0.026 0.001 0.025 −0.001

m2
E3

−0.026 0.001 0.023 −0.001

m2
L1,2

0.025 −0.001 −0.027 0.001

m2
L3

0.025 −0.001 −0.029 0.001

m2
Q1,2

−0.025 — 0.024 —

m2
D1,2

−0.025 — 0.026 −0.001

m2
D3

−0.024 — 0.016 —

M1M3 −0.020 0.002 −0.001 —

AtM1 0.012 — — —

M2
1 0.006 0.002 0.033 —

M1M2 −0.005 — −0.001 —

AbM3 −0.002 — 0.022 −0.005

A2
b 0.001 — −0.009 0.001

AbM2 — — 0.006 −0.001

A2
τ — — −0.003 —

AτM2 — — 0.002 —

AbAt — — 0.001 —

AτM1 — — 0.001 —

Table 3. ci and bi coefficients for the Higgs boson squared soft masses derived for tan β = 10,

where ‘–’ stands for HE parameters with ci, bi < 0.001. MLE is set at 1 TeV. For further details see

eqs. (A.1)–(A.3).
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m2
Q3

(MLE) m2
U3

(MLE) m2
D3

(MLE)

HE ci bi ci bi ci bi

M2
3 3.191 −0.563 2.754 −0.462 3.678 −0.672

m2
Q3

0.871 0.007 −0.192 0.013 −0.029 0.002

M2
2 0.333 −0.008 −0.151 0.017 −0.010 0.002

m2
Hu

−0.118 0.006 −0.189 0.011 −0.015 —

m2
U3

−0.095 0.005 0.706 0.011 0.032 —

M2M3 −0.084 0.015 −0.100 0.018 −0.026 0.007

AtM3 0.072 −0.003 0.159 −0.010 −0.010 0.003

A2
t −0.034 −0.002 −0.070 −0.004 0.001 —

AtM2 0.020 — 0.047 — −0.001 —

m2
Q1,2

−0.017 0.001 0.030 — −0.025 0.002

m2
D3

−0.015 0.001 0.032 — 0.973 0.001

m2
U1,2

0.014 — −0.073 0.002 0.031 —

m2
D1,2

−0.012 0.001 0.032 — −0.021 0.001

M1M3 −0.009 0.001 −0.018 0.002 −0.004 0.001

m2
E1,2,3

−0.009 — 0.034 −0.001 −0.017 —

m2
L1,2,3

0.008 — −0.034 0.001 0.017 —

AbM3 0.006 −0.001 −0.001 — 0.014 −0.003

M2
1 −0.006 0.001 0.041 0.001 0.014 —

m2
Hd

0.005 — −0.034 0.001 0.011 —

AtM1 0.004 — 0.007 — — —

A2
b −0.003 — — — −0.006 0.001

M1M2 −0.002 — −0.003 — — —

AbM2 0.002 — — — 0.004 −0.001

AbAt 0.001 — — — 0.001 —

Table 4. As table 3, for the squared soft masses of the third family squarks.
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m2
Q1

(MLE) m2
U1

(MLE) m2
D1

(MLE)

HE ci bi ci bi ci bi

M2
3 3.672 −0.674 3.702 −0.680 3.708 −0.681

m2
Q1

0.982 0.001 0.028 — −0.025 0.002

M2
2 0.403 −0.015 −0.005 0.001 −0.005 0.001

M2M3 −0.046 0.009 −0.022 0.006 −0.021 0.006

m2
Q2

−0.018 0.001 0.028 — −0.025 0.002

m2
Q3

−0.017 0.001 0.029 — −0.023 0.001

m2
U3

0.015 — −0.072 0.002 0.032 —

m2
U1

0.014 — 0.927 0.002 0.031 —

m2
U2

0.014 — −0.073 0.002 0.031 —

m2
D2

−0.012 0.001 0.031 — −0.021 0.001

m2
D1

−0.012 0.001 0.031 — 0.979 0.001

m2
D3

−0.012 0.001 0.031 — −0.021 0.001

m2
E1,2,3

−0.009 — 0.034 −0.001 −0.017 —

AtM3 −0.008 0.002 −0.008 0.002 −0.008 0.002

m2
Hu

−0.008 — 0.035 −0.001 −0.016 —

m2
Hd

0.008 — −0.034 0.001 0.017 —

m2
L1,2,3

0.008 — −0.034 0.001 0.017 —

M1M3 −0.003 0.001 −0.006 0.001 −0.004 0.001

M2
1 0.003 — 0.059 −0.001 0.014 —

AtM2 −0.001 — — — — —

A2
t 0.001 — 0.001 — — —

Table 5. As table 3, for the squared soft masses of the first family squarks. Second generation

squarks is degenerated with the first family.
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m2
L3

(MLE) m2
E3

(MLE) m2
L1

(MLE) m2
E1

(MLE)

HE ci bi ci bi ci bi ci bi

m2
L3

0.971 0.001 0.045 −0.001 −0.027 0.001 0.051 −0.001

M2
2 0.416 −0.017 −0.004 — 0.418 −0.018 — —

m2
U1,2

−0.052 0.001 0.104 −0.002 −0.052 0.001 0.104 −0.002

m2
U3

−0.051 0.001 0.103 −0.002 −0.051 0.001 0.103 −0.002

M2
1 0.034 — 0.136 −0.002 0.034 — 0.137 −0.002

m2
Hd

−0.029 0.001 0.045 −0.001 −0.026 0.001 0.051 −0.001

m2
L1

−0.027 0.001 0.051 −0.001 0.973 0.001 0.051 −0.001

m2
L2

−0.027 0.001 0.051 −0.001 −0.027 0.001 0.051 −0.001

m2
D1,2,3

0.026 −0.001 −0.052 0.001 0.026 −0.001 −0.052 0.001

m2
E1

0.025 −0.001 −0.052 0.001 0.025 −0.001 0.948 0.001

m2
E2

0.025 −0.001 −0.052 0.001 0.025 −0.001 −0.052 0.001

m2
Hu

0.025 — −0.051 0.001 0.025 — −0.051 0.001

m2
Q3

0.024 — −0.052 0.001 0.024 — −0.052 0.001

m2
Q1,2

0.024 — −0.053 0.001 0.024 — −0.053 0.001

m2
E3

0.023 −0.001 0.942 0.001 0.025 −0.001 −0.052 0.001

M2M3 −0.009 0.001 0.001 — −0.009 0.001 0.001 —

M2
3 −0.007 0.001 −0.001 — −0.007 0.001 −0.001 —

A2
τ −0.003 — −0.006 — — — — —

AτM2 0.002 — 0.003 — — — — —

AtM2 −0.001 — — — −0.001 — — —

M1M2 −0.001 — −0.001 — −0.001 — — —

AτM1 0.001 — 0.001 — — — — —

M1M3 — — −0.002 — — — −0.002 —

AtM3 — — −0.001 — — — −0.001 —

Table 6. As table 3, for the squared soft masses of the third and first family sleptons. Second

generation sleptons is degenerated with the first family.
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M3(MLE) M2(MLE) M1(MLE)

HE ci bi ci bi ci bi

M3 2.224 −0.160 −0.024 0.004 −0.009 0.001

M2 −0.009 0.001 0.806 0.011 −0.001 —

At −0.003 — −0.002 — −0.001 —

M1 −0.001 — — — 0.431 0.012

Table 7. As table 3, for the gaugino masses.

At(MLE) Ab(MLE) Aτ (MLE)

HE ci bi ci bi ci bi

M3 −1.438 0.148 −2.129 0.277 0.017 −0.003

At 0.325 0.035 −0.106 0.005 0.001 —

M2 −0.237 −0.005 −0.413 0.016 −0.460 0.022

M1 −0.032 −0.002 −0.030 — −0.145 0.003

Ab −0.002 — 0.981 0.002 −0.010 0.001

Aτ — — −0.003 — 0.988 —

Table 8. As table 3, for the trilinear scalar couplings.

µ(MLE)

HE ci bi

µ 1.002 0.013

Bµ(MLE)

HE ci bi

Bµ 1.002 0.013

M3µ 0.456 −0.080

M2µ −0.354 0.004

Atµ −0.343 0.013

M1µ −0.030 −0.001

Abµ −0.009 0.001

Aτµ −0.003 —

Table 9. Left, ci and bi coefficients for the µ−parameter. Right, ci and bi coefficients for Bµ.
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Figure 4. m2
Hu

(MLE) coefficients dependence on the HE scale, for MLE = 1 TeV and tan β = 10 .

For further details, see eqs. (A.1)–(A.3).
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Figure 5. As figure 3, for m2
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(MLE).
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