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Abstract. Petri nets and statecharts can model concurrent systems in a succinct way. While translations from
statecharts to Petri nets exist, a well-defined translation from Petri nets to statecharts is lacking. Such a trans-
lation should map an input net to a corresponding statechart, having a structure and behaviour similar to that
of the input net. Since statecharts can only model a restricted form of concurrency, not every Petri net has a
corresponding statechart. We identify a class of Petri nets, called statechartable nets, that can be translated to
corresponding statecharts. Statechartable Petri nets are structurally defined using the novel notion of an area.
We also define a structural translation that maps each statechartable Petri net to a corresponding statechart. The
translation is proven sound and complete for statechartable Petri nets.
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1. Introduction

While finite state machines are a popular technique for modelling the control flow of simple systems, it has long
been recognised that for complex concurrent systems more powerful techniques are needed. Petri nets and state-
charts are two visual formalisms that extend finite state machines with constructs for modelling concurrency in
a succinct way. Petri nets were introduced by Petri [Pet62], and have found their way in practical applications
like manufacturing, workflow modelling and performance analysis [Mur89, RR98]. Statecharts were introduced
by Harel [Har87] for use in the structured analysis method STATEMATE [HN96]. They have also been adopted in
several object-oriented methods and the UML notation [UMLO03b]. In practice, both formalisms are used side
by side. For instance, UML [UMLO03b] uses besides statecharts activity diagrams, which have been inspired by
Petri nets.

Given this widespread usage of Petri nets and statecharts, it is useful to have well-defined translations between
these two formalisms. While translations from statecharts to Petri nets exist, for instance [Ham05, HMP* (2,
SSHO1], well-defined translations for the reverse direction are lacking. To fill this gap, this paper defines a formal,
structural translation from Petri nets to statecharts.

To introduce the translation, Fig. 1 shows a Petri net (a) and its statechart translation (b). (The syntax of
Petri nets and statecharts is explained in Sect. 2.) The containment relation between statechart nodes in (b) is
visualised as an AND/OR tree in (c¢). The translation constructs a statechart whose structure resembles the input
net. Corresponding syntactic constructs in both models carry the same label. Note that composite statechart
nodes, like A1 and O1, do not correspond to any Petri net construct.
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Fig. 1. Example Petri net (a), corresponding statechart with similar structure and behaviour (b) and its AND/OR tree (c)

The key difficulty of the translation is therefore defining the statechart composite nodes as well as the AND/OR
tree, both of which have no counterpart in Petri net syntax. Moreover, composite node must be defined in such
a way that the behaviour of the resulting statechart is similar to that of the input net. The translation defined
in this paper constructs statecharts whose behaviour is similar to that of the input nets. Still, the translation is
structural: it maps Petri net syntax to statechart syntax, without using any Petri net analysis technique like place
invariants or reachability graphs.

Since statecharts can only model a restricted form of concurrency, not every Petri net can be translated to a
corresponding statechart with similar structure and behaviour (see Sect. 3). We identify a class of Petri nets, called
statechartable nets, that do have corresponding statechart translations. We structurally define statechartable nets
using the novel Petri net notion of area. Statechartable nets are a new subclass of Petri nets. We show that state-
chartable nets are exactly the class of nets for which the translation returns statecharts with similar structure and
behaviour.

Nevertheless, there are non-statechartable nets which do have a statechart translation with similar structure
and behaviour. This implies that the class of statechartable nets is not complete. However, statecharts correspond-
ing to non-statechartable nets are not likely to be drawn in practice, as we argue in Sect. 4.4, so this incompleteness
does not seem to be a severe limitation in practice.

In this paper, we only consider safe nets, i.e., each place can contain at most one token. Unsafe nets cannot
be translated to statecharts with similar structure and behaviour, as we explain in Sect. 3. Next, to simplify the
exposition, we do not consider transition labels for statecharts and Petri nets in the definition of the translation.
This implies we use a generic, abstract statechart semantics in which transitions are not triggered by events, but
are taken when their input nodes are in the current state. The translation defined in this paper can provide the
basis for more advanced translations that deal with events.

This paper is structured as follows. Section 2 provides background on Petri nets and statecharts. Section 3
relates Petri nets and statecharts, defining formally when a Petri net and a statechart correspond, i.e., when they
are structurally and behaviourally similar. We also explain that not every Petri net has a corresponding statecharts.
Section 4 structurally defines the class of statechartable nets, which are Petri nets that do have corresponding
statechart. Section 5 structurally defines the class of statecharts that correspond to statechartable nets. Section 6
defines a declarative translation from statechartable nets to corresponding statecharts. We prove that the trans-
lation is sound and complete for statechartable nets: each statechartable net translates into a corresponding
statechart with similar structure and behaviour, and the translation fails for non-statechartable nets. Section 7
presents related work. Section 8 winds up with conclusions and further work. The appendix contains formal
definitions of Petri nets and statecharts and the proofs of the theorems.
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2. Background

We informally present the basics of Petri nets and statecharts. Formal definitions can be found in Appendix A.

2.1. Petri nets

A Petri net (Place/Transition net) consists of places, represented by circles, transitions, represented by bars, and
directed arcs connecting places to transitions and vice versa. Places and transitions are called elements. Let z, y
be two elements. If there is an arc from z to y then z is input element of y and y is output element of y. For
instance, in Fig. 1a place p1 is input place of transition t1 while t1 is output transition of p1. The set of all input
elements of an element z is denoted ex and called the preset of . The set of all output elements of an element z is
denoted ze and called the postset of z. For example, in Fig. 1, for t1 we have ot1 = {p1} and t1e = {p2, p4, p7}.
We require that each transition has a non-empty preset and a non-empty postset.

Places belonging to the current state are marked with a token, visualised as a black dot. A state is also called
a marking. A transition ¢ is enabled in a state if all its input places have a token, so are in the state. In Fig. 1,
transition t1 is enabled. Upon firing, from each input place a token is removed, and to each output place a token is
added. This way, a new state (marking) is reached. In theory, a place can contain more than one token. However,
as explained in the introduction, we consider safe nets: in each marking each place contains at most one token.

Formally, a (marked) Petri net is a tuple (P, T, F', M) where P is the set of places, T is the set of transitions
suchthat PN T =@, F C (P x T)U(T x P)is the set of arcs, and M : P — N is the initial marking, which is a
bag of places; each place p € P contains in the initial state M (p) tokens. Standard definitions of Petri nets also
use weights on arcs, but since weights are only useful for unsafe nets, we do not consider these.

2.2. Statecharts

Statecharts extend finite state machines with composite state nodes and event broadcasting [Har87]. As explained
in the introduction, we do not focus on events, and therefore statechart transitions do not carry any label here.

Composite state nodes contain other state nodes. A composite node ¢ directly contains another node n if all
other nodes containing n contain c¢. For instance, in Fig. 1b composite node O4 directly contains p7 while A2
contains p7 but not directly.

There are two kinds of composite node: AND and OR. An AND node directly contains two or more orthog-
onal OR nodes, separated by dotted lines, which are active in parallel if the AND node is active. An OR node
directly contains nodes that are exclusive: one of them is active if the OR node is active. For instance, if in Fig. 1b
OR node O3 is active, either A1 or p6 is active. A node that is not composite is BASIC. All nodes in Fig. 1b that
are prefixed with p are BASIC.

The (direct) containment relation can be visualised as a rooted AND/OR tree. If composite node z directly
contains another node y, then z is parent of y in the tree. If composite node z indirectly contains another node v,
then z is ancestor of y in the tree. Leaves of the tree are the innermost (BASIC) nodes of the statechart. Internal
nodes of the tree are either AND nodes or OR nodes. For technical reasons, the root of the tree is always an OR
node. The root is never shown in a statechart diagram.

Similar to Petri nets, nodes in a statechart can be connected by transitions, which we call hyperedges from
now on to avoid confusion with transitions in a Petri net. Hyperedges can have input nodes (called source nodes)
and output nodes (called target nodes). A hyperedge can have a non-BASIC node as source or target node. For
hyperedge h, set source(h) denotes the set of source nodes of h while target(h) the set of target nodes. It is required
that each pair of nodes in source(h) and each pair of nodes in target(h) are orthogonal, that is, given two different
sources (targets), the smallest node containing both sources (targets) is an AND node. In Fig. 1b, p2 and p4 are
orthogonal since the smallest node containing both is AND node A1. We adopt the UML notation [UMLO03b]:
a hyperedge with a single source node and a single target node is visualised as a simple directed edge, while a
hyperedge having more than one source or target node is visualised as a bar having incoming and outgoing edges.
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A state C of a statechart, called a configuration, is a maximal set of nodes that the system can be in simul-
taneously. Configurations for the statechart in Fig. 1b are for example {p1, root} and {p3,p4,p7,01,02,03,
04,A1,A2,root}. Each configuration C has to satisfy the following three constraints:

e if a non-root node isin C, its parent is in C too,
e ifan AND nodeisin C, all its children are in C too,
e ifan OR nodeisin C, one of its children is in C too.

A hyperedge is enabled in configuration C if all its source nodes are in C'. However, the computation of the
state reached after taking the hyperedge is more involved than for Petri nets, since the next state has to satisfy
the configuration constraints. First, all nodes below the scope of & are left, so they are removed from the current
configuration. The scope of & is the smallest OR node that contains all the input and output nodes of A, i.e., all
other OR node that contain all the input and output nodes also contain the scope of h. The scope of hyperedge
t2 in Fig. 1b is O1 while the scope of t1 is root.

Next, the targets of 7 are added to the state. If the resulting state is not a configuration, then target(h) is not
complete. For instance, suppose we add to Fig. 1b a hyperedge h with source node p1 and target node A2. The
target set of h is incomplete, since {A2,root} is not a configuration, as it contains AND node A2, but not any
children of A2.

By computing the default completion of a partial configuration, it can be extended to a configuration. The
default completion of a partial configuration X, denoted dcomp(X), is the configuration Y that contains X
such that for each OR node 0 € Y, if Y does not contain any child of o, then Y contains the default node of
Y [PS91]. The default completion for X is unique. For instance, the default completion of {A2,root} is configu-
ration {p6,p7,03,04,A2,root}.

Formally, a statechart is a tuple (N, BN, AN, ON, H, source, target, child, default, r). Set N contains the
nodes, set H the hyperedges, where N N H =@. Set N is partitioned into a set BN of BASIC nodes, AN of AND
nodes, and ON of OR nodes. Functions source, target : H — P(N) specify for each hyperedge the non-empty
sets of input nodes and output nodes, respectively. Predicate child C N x N relates a node to its parent node,
0 (z, y) € child means z is child of y. The child predicate arranges the nodes in a tree of which the root is OR
node r and of which the leaves are BASIC nodes. Function default specifies for each OR node which child node
is entered by default when computing the default completion. The initial configuration is the default completion
of set {r}.

The standard definition of statecharts in the literature [Esh09a, HPSS87, PS91] is slightly different: it uses a
function that specifies for each node its type (instead of partitioning the set of nodes) and a function that specifies
for each node its set of child nodes (instead of a child predicate). The formalisation we use is equivalent and
considerably simplifies the definition of the translation in Sect. 6.

3. Correspondence between Petri nets and statecharts

When translating a Petri net to a statechart, the resulting statechart should be similar to the original Petri net.
To define similarity, we consider both the structural and the behavioural aspect of Petri nets and statecharts. We
use both kinds of similarity to define a correspondence relation between Petri nets and statecharts.

Structural similarity

A translation must map a Petri net to a structurally similar statechart, i.e., its syntactic structure must resemble
the net structure. To define this precisely, we first have to relate Petri net and statechart syntax; see Table 1. A
Petri net place corresponds to a statechart BASIC node while a Petri net transition corresponds to a statechart
hyperedge. However, composite (AND/OR) statechart nodes have no counterpart in Petri net syntax.

Definition 3.1 A Petri net and a statechart are structurally similar if there is an isomorphism f that maps each
place p to BASIC node f(p) and each transition ¢ to hyperedge f(¢) such that the flow relation F' is preserved
by the source and target functions, so (p, t) € F' if and only if f(p) € source(f(t)) and (¢, p) € F if and only

f(p) € target(f(t)).

The definition does not refer to markings and default nodes; these are referred to in the next definition.
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Table 1. Relating Petri net and statechart syntax

Petri net Statechart

Place BASIC node (BASIC state)

- AND node

_ OR node

Transition Hyperedge (compound transition)

Behavioural similarity

A translation from Petri nets to statecharts must preserve the behaviour of each input net [GK07], neither reduc-
ing nor adding behaviour. Otherwise, the behaviour specified in the original Petri net is changed in the statechart
as a side effect of applying the translation, allowing errors to creep in.

The behaviour of both Petri nets and statecharts is defined in terms of transition systems. States in the tran-
sition systems are markings (for Petri nets) or configurations (for statecharts). A state change represents firing a
transition (Petri nets) or taking a hyperedge (statecharts). Formal definitions are presented in the Appendix A.

Definition 3.2 A Petri net PN is behaviourally similar to a statechart SC if and only if the transition systems
TS(PN) and TS(SC) are isomorphic, where T'S(PN) denotes the transition system of PN and TS(SC) the
transition system of SC.

Correspondence

We use both similarity notions to define a correspondence relation between Petri nets and statecharts.

Definition 3.3 A Petri net corresponds to a statechart if the Petri net is structurally and behaviourally similar to
the statechart.

For example, the net in Fig. 1a corresponds to the statechart in Fig. 1b.

Not every Petri net has a corresponding statechart, for the following reason. Each configuration contains by
definition each BASIC node at most once. By definition of structural similarity, one BASIC node relates to one
place. Therefore, each configuration corresponds to a safe marking, in which each place is marked with at most
one token. Therefore only safe nets can be translated to corresponding statecharts. However, even some safe nets
do not have corresponding statecharts (for instance Fig. 2 in Sect. 4). The next section defines statechartable nets,
a subclass of Petri nets that do have corresponding statecharts.

A Petri net can correspond to multiple statecharts. If a Petri net and statechart correspond, composite nodes
can be inserted or removed in the statechart while preserving correspondence. For example, in the statechart in
Fig. 1b an OR node can be inserted that is child of OR node O1 and parent of BASIC node p3. The result-
ing statechart still corresponds to the net in Fig. la. The translation defined in Sect. 6 constructs a minimal
corresponding statechart for an input net.

Not every statechart has a corresponding Petri net, as we explain in Sect. 5. Next, a statechart can correspond
to at most one Petri net. If two Petri nets correspond to the same statechart, they have isomorphic structures by
Definition 3.1 and have identical initial markings by Definition 3.2 and are therefore equal.

4. Statechartable nets

We structurally define statechartable nets as a subclass of safe Petri nets. The translation defined in Sect. 6 maps
each statechartable net to a corresponding statechart.

We first introduce the novel Petri net notion of an area. Next, we introduce constraints on areas. We use these
constraints to define statechartable nets. Finally, we discuss the completeness and expressiveness of the class of
statechartable nets.
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Fig. 2. Petri net whose covers are not nestable

4.1. Areas
An area resembles a thread of control, as we explain below after presenting the definition and a few examples.

Definition 4.1 (Area) Let (P, T, F, M) be a Petri net. An area is a non-empty set X C P of places such that for
every transition ¢t € T,

e if area X contains all input places of ¢, then X contains all output places of ¢, so et C X = te C X, and
e if area X contains all output places of ¢, then X contains all input places of ¢, so te C X = et C X.

Combining these two if-clauses, we have that X is an area if and only if forevery t € T,et C X < te C X.

For the net in Fig. la, set {p2,p3} is an area: it contains all input and output places of t2, but for every
transition ¢ other than t2 it does not contain all input and all output places of ¢. As a negative example, set
{p3.p5.,p6} is not an area because it violates the area constraints for t2 and t3: it contains their output places but
not their input places p2 and p4. If these places are added, the set is an area.

An area resembles a thread of control that starts at a transition that has some output places in the area, but
not all, and ends at a transition that has some input places in the area, but not all. For instance, the thread of
control for the area {p2,p3} starts at t1 and ends at t3. Once started, an area does not need to synchronise with
other areas to make progress by firing transitions. Areas correspond to OR nodes, as the translation defined in
Sect. 6 will show.

In the sequel, we frequently use the minimal area that includes a given set of places. Let X be a non-empty set
of places. The minimal area for X, denoted minArea(X), is the smallest area that includes all places in X. The
minimal area for X is unique. For instance, for X = {p2} the minimal area is {p2,p3}, which is also a minimal
area for X = {p2, p3}. The minimal area for X = {p2, p7} is {p2,p3,p7}.

4.2. Constraints

Statechartable nets are defined in terms of three constraints on areas. Each constraint is illustrated with examples
nets that violate it. The presented example nets have no corresponding statecharts.

Nestable covers

An area can contain other areas. For instance, for the net in Fig. la the area {p2,p3,p4,p5,p6} contains areas
{p2,p3} and {p4,p5}. This resembles a subthread relation: the thread for {p2,p3,p4,p5,p6} spawns subthreads
for {p2,p3} and {p4.p5}, but these subthreads run in parallel and are independent, i.e., they do not need to
synchronise with each other to make progress by firing transitions. Two areas are in parallel if they are disjoint
and contain places that are either input or output places of the same transition ¢, for instance {p2,p3} and
{p4,p5} in Fig. | are started by t1.

However, the net in Fig. 2 has two parallel areas that do require cross-synchronisation: t2 can only fire after
t1 has fired. The net in Fig. 2 has no corresponding statechart, since statecharts cannot express cross-synchro-
nisation between parallel OR nodes. Therefore, we wish to define a constraint that rules out parallel areas that
cross-synchronise.
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Fig. 3. Petri nets with inconsistent areas

To define such a constraint, we first need to identify the set of places included (visited) in a set of parallel
areas (subthreads). Let X C P be a non-empty set of places that is not singleton. The cover of X is the union of
each minimal area of a strict, non-empty subsets of X:

cover(X)= U minArea(Y).
YgcYcX

For instance, for the net in Fig. 1a cover({p2, p4}) = {p2, p3, p4, p5}. Note that minArea({p2, p4}) = {p2, p3, p4,
p5, p6}, so cover does not yield an area.
The following constraint rules out parallel areas that cross-synchronise.

Definition 4.2 A Petri net PN has nestable covers if and only if for every X, Y C P such that X and Y are
non-singleton and preset or postset of some transitions, cover(X )N cover(Y') # @ implies cover(X) C cover(Y)
or cover(Y) C cover(X).

The net in Fig. 2 has no nestable covers: cover(t1e) = {p3, p5} and cover(et2) = {p2, p5} are not nestable. How-
ever, the net in Fig. 1a does have nestable covers, since cover(et4), which is {p2, p3, p4, p5, p6}, is a subset of
cover(t1e), which is the set of all places.

Consistent areas

In some nets, areas overlap that should be in parallel. For instance, in the nets in Fig. 3a, b, transition t1 starts
two parallel areas for p2 and p3, but due to t2 the area of p2 is included in (a) or equal to (b) the area of p3. The
problem in Fig. 3a, b is caused by the fact that the minimal areas of places p2 and p3 overlap. Requiring that
two distinct places in the same preset or postset should have disjoint minimal areas rules out the nets in Fig. 3a,
b, but is not sufficient in general, as illustrated by the example in Fig. 3c. The minimal areas of among others p2
and p6 are disjoint. However, the minimal areas of {p2,p3} and {p5,p6} do overlap, since both are equal to the
minimal area of p7. Due to t1, the minimal areas should be disjoint.
We define the following constraint that rules out nets such as the ones in Fig. 3.

Definition 4.3 A transition ¢ has consistent areas if and only if for every set X, Y C P such that X U Y C et or
XUY Cte, if X NY =@ then minArea(X) N minArea(Y)=@. A Petri net PN has consistent areas if and only
if each transition has consistent areas.

Configurable markings

Places marked in the initial marking M should be complete: their minimal area should include each place of the
net, to prevent that some parts of the net are not reachable from M. For instance, the marking in Fig. 4a is not
complete, since p3 and p4 are not in the minimal area induced by the initial marking.
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Fig. 4. Petri nets with non-configurable markings

Fig. 5. Non-statechartable net and corresponding statechart

Definition 4.4 Let (P, T, F, M) be a Petrinet and let Py = {p € P | M(p) = 1}. Marking M is complete if
and only if minArea(Pys)= P.

Still, we need a stronger constraint, since M can be over-complete: reducing M by removing tokens from
initial places then results in a complete marking. The Petri nets in Fig. 4b, ¢ have over-complete markings. In
both cases, if one token is removed, the resulting net still has a complete marking. In other words, a complete
marking should be minimal.

Definition 4.5 Let PN = (P, T, F, M) be a Petrinet. Marking M is configurable (or PN has a configurable initial
marking) if and only if M is complete and every submarking M’, so M’ = M, is not complete.

The translation in Sect. 6 ensures that a net with a configurable initial marking translates into a statechart whose
initial configuration corresponds to the initial marking.

4.3. Definition

‘We have defined three constraints on Petri nets: nestable covers, consistent areas and configurable markings. Each
constraint is illustrated with nets that violate the constraint but satisfy the other two constraints. The constraints
are therefore independent from each other, so each constraint is necessary.

Using these three constraints, we can now formally define statechartable nets.

Definition 4.6 (Statechartable net) A Petri net (P, T, F, M) is statechartable if and only if (P, T, F', M) has
nestable covers, consistent areas and a configurable initial marking.

In Sect. 6 we define a sound and complete translation from statechartable nets to corresponding statecharts.

4.4. Incompleteness

We have defined the class of statechartable nets. We show in Sect. 6 that each statechartable net has a corre-
sponding statechart. Naturally, there is also the class of Petri nets that have corresponding statecharts. This
class by definition includes statechartable nets, but the question is whether statechartable nets coincide with this
class. Phrased differently: if a Petri net has a corresponding statechart, is the net statechartable, so is the class of
statechartable nets complete?

The answer is negative: there are Petri nets that are not statechartable, yet do have a corresponding statechart.
Therefore, the class of statechartable nets is incomplete. For instance, the Petri net in Fig. 5 is not statechartable,
since the covers of non-singleton presets and postsets {p1,p2} and {p2,p3} are not nestable. A corresponding
statechart does exist, as shown in the same figure. Note that in the statechart the BASIC nodes p1 and p3 con-
tained inside OR node O1 are only connected by hyperedges that leave or enter O1. To further illustrate this,
Fig. 6 shows a statechartable net that is a slight extension of the net in Fig. 5: a transition has been added that
connects places p1 and p3.
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Fig. 7. Statechartable net with goto-like behaviour

This incompleteness does not imply that the class of statechartable nets is overly restrictive. For instance, each
non-statechartable net shown in Figs. 2, 3 and 4 has no corresponding statechart. Moreover, this incompleteness
does not seem to be a severe limitation in practice. A common though unwritten rule of thumb for designing
statecharts is to group only related (connected) BASIC nodes in an OR node, as can be inferred from the many
statechart examples in the literature, e.g. [Esh09a, Har87, HN96]. Therefore, statecharts corresponding to non-
statechartable nets do not occur in practice. A much more obvious translation for the Petri net in Fig. Sb is to
use statecharts with overlapping [HK92] and to construct a statechart with two overlapping AND nodes, one for
cover {p1,p2} and one for cover {p2,p3}. Extending the translation defined in Sect. 6 to construct statecharts
with overlapping is part of future work.

4.5. Expressiveness

This section already showed several examples of non-statechartable nets, while the main example of a statechar-
table net is presented in Fig. l1a. This example exhibits a high degree of (block-)structuredness, since it does not
contain choices or loops. In the corresponding statechart in Fig. 1b, no goto-like constructs are used: for example
OR nodes O1 and O2 each have a single entry and a single exit point. This may suggest that statechartable nets
are close to block-structured nets, each block having a single entry and a single exit point.

To counter this suggestion, we present another statechartable net in Fig. 7, modified from Fig. 1a. Transition
t7 leaves the loop headed by p4 in a goto-like way. The net is statechartable; the statechart constructed for this
example is similar to the one in Fig. 1b, where p8 becomes child of O2. The example shows that also complex,
unstructured nets that have a mixture of choices and loops can be statechartable.

Statechartable nets are a new class of nets that do not coincide with any of the existing classes. The most
closely related class are state machine decomposable nets [BAC92], which are also called state machine coverable
or S-coverable nets in the literature. A state machine decomposable net can be decomposed into state machines,
which are sequential nets not having any parallelism, so each transition has one input place and one output
place. If a state machine contains a place of the original net, it must contain all input and output transitions
of that place in the net too. For instance, in Fig. la, if a state machine component includes p2, it must also
contain t1 and t2. The net in Fig. 1a can be decomposed into three state machine components, one of which
contains elements p1,t1,p7. Elsewhere [Esh05] we have proven that the net underlying a statechart is always state
machine decomposable: for each maximal set of BASIC nodes in which each pair of nodes is non-orthogonal,
a state machine can be generated from the corresponding places. For instance, in Fig. 2 set {p1,p7} is maximal
non-orthogonal: each other BASIC node is not orthogonal to either p1 or p7. Each statechartable net is a state
machine decomposable net. However, there are many state machine decomposable nets, for instance the ones in
Figs. 2 and 5, that are not statechartable.
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5. Statecharts corresponding to statechartable nets

In the previous section we defined statechartable nets. In this section we define the class of statecharts that
correspond to statechartable nets.

Consider an arbitrary statechart that corresponds to a statechartable net. The statechart has the following
two syntactic features. First, due to behavioural similarity (Definition 3.2) the transition systems of the net and
the corresponding statechart are isomorphic. Take an arbitrary reachable marking M of the net and let C' be
the corresponding configuration of the corresponding statechart. Let h be a hyperedge that is enabled in C.
Hyperedge h must only leave and enter BASIC nodes that are in its source and target set; otherwise, the config-
uration reached after taking h in C' does not correspond to the marking reached by firing isomorphic transition
f~Y(h) in M. This implies that in the statechart no additional BASIC nodes are left or entered by taking h. This
corresponds to the Petri net locality principle [DJO1] that states that each transition can only consume tokens
from places in its preset and only produce tokens for places in its postset.

The following constraint characterises such a hyperedge. As explained in Sect. 2, a hyperedge h leaves and
enters BASIC nodes contained inside OR node scope(h). Hyperedge h is complete if and only if for each BASIC
node n € BN that is contained inside scope(h),

o if n & source(h), there is a BASIC source node s € source(h) such that n and s are not orthogonal,
o if n & target(h), there is a BASIC target node ¢ € target(h) such that n and ¢ are not orthogonal.

Recall from Sect. 2 that if two BASIC nodes n, n’ are not orthogonal, then no configuration can contain both n
and n’.

To illustrate this definition: in Fig. 1a all hyperedges are complete. If a hyperedge » would be inserted with
source(h) ={p4} and target(h) = {p7}, then h is not complete: if A is taken in a configuration that contains BASIC
nodes p3, p4, and p7, then all nodes below scope(h) = root, are left, including p3, and p6 (default of O3)isentered.

Second, BASIC nodes contained inside an OR node are weakly connected by hyperedges in the OR node: for
every pair of BASIC nodes that is contained in the OR node, there is an undirected path of hyperedges inside the
OR node that connect the BASIC nodes. So each hyperedge in the path does not leave or enter the OR node and
has some source or target node in common with its predecessor and successor in the path. For instance, in Fig. 1b
BASIC nodes p3 and p4 are connected by undirected path t4,t3. As explained in Sect. 4.4, this feature is specific
to statecharts corresponding to statechartable nets but is also a design heuristic for statecharts that is implicitly
used in practice. Formally, we call an OR node connected if and only if for every pair z, y of BASIC nodes
contained inside o there is a path of hyperedges A, h, .., h, from z to y, so x € source(h;) and y € target(h,)
and target(h;) N source(h;+1) # @ for 0 < i < n, such that for each hyperedge in the path its scope is either
contained in o or equal to o.

The next definition summarises both features.

Definition 5.1 (Complete and OR-connected statechart) Let SC = (N, BN, AN, ON, H, source, target, child,
default, r) be a statechart. If each hyperedge h € H is complete and each OR node o € ON is connected, then
statechart SC' is complete and OR-connected.

The next section presents a translation from statechartable nets to complete and OR-connected statecharts.

6. Translating statechartable nets to corresponding statecharts

The previous sections defined statechartable nets and their corresponding statecharts. This section defines a
declarative translation PNtoSC' from statechartable nets to corresponding statecharts, which are complete and
OR-connected. The translation is proven sound and complete for statechartable nets, i.e., PNtoSC constructs for
an input net a corresponding statechart if and only if the net is statechartable. Finally, we discuss a few alternative
translations.

6.1. Definition

To relate a statechartable net to a corresponding statechart, we have to use an isomorphism f on the syntax of
Petri net and statecharts according to Definition 3.1. To simplify the definition of the translation, we use the iden-
tify function = for f, so PNtoSC translates each Petrinet (P, T, F', M)into a statechart (N, BN, AN,ON, H,source,
target, child,default,r)such that BN = P, H = T and foreach hyperedge h € H, source(h) = ehand target(h) = he.
Moreover, N = BN U AN U ON. The main difficulty, therefore, is the definition of AND/OR nodes, so sets AN
and ON, relation child, function default, and the root node 7.
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op2 2 p3 o, minimal areas
o o1 = {p2,p3}
ONE 02 = {p4, p5}
p6 03 = {p27 p3a p47 p5a p6}
3 p5 04 = {p?}

o7 05 = P = {PL p27 p3a p47 p5a p6’ p7}

Fig. 8. Petri net of Fig. la (repeated) and its minimal areas for elements in P U T'

We define these elements of the statechart tuple in terms of areas. In the sequel, we use the following shorthands:
given a place p € P and transition ¢t € T, minArea(p) abbreviates minArea({p}) while minArea(t) abbreviates
minArea(et U te).

OR nodes

Each OR node is defined by an area, where each place in the area corresponds to a BASIC node inside the OR
node. However, not every area becomes an OR node: for example, for the net in Fig. 1a set {p2, p3, p7} is an
area, but the set does not correspond to any OR node. The closest OR node is O4, but this corresponds to area
{p2,p3.p4,p5,p6.p7}.

For each place p € P, an OR node minArea(p) is created, which acts as OR parent of BASIC node p in
the statechart AND/OR tree. For example, for the net in Fig. 1a, the OR parent of p2 is {p2, p3}. Furthermore,
for each transition ¢ € T an OR node minArea(t) is created. This OR node acts as scope of hyperedge ¢ in the
statechart translation. For example, the OR node for transition t2 in Fig. 1a becomes {p2, p3} while the OR node
for t4 becomes {p2, p3, p4, p5, p6}. Note that for area {p2, p3, p7}, there is no element ¢ € P U T such that
minArea(e) ={p2, p3, p7}.

Special area is the set P, which is the OR root node of the constructed AND/OR tree. If the Petri net is not
connected, then there is no element e € P U T that has P as minimal area, so P needs to be included separately.
For instance, the net in Fig. 4a has no element that generates minimal area P.

The set ON of OR nodes is therefore defined as the union of the set of the minimal areas created for each
element e € PU T and set {P}:

ON ={ minArea(e) | e PU T }U{P}.

Figure 8 shows the elements of set ON for the net in Fig. 1. Set o; corresponds to O1 in Fig. 1b,
set 0, to O2, etc. Note that different elements in P U T can share the same minimal areas, for instance
minArea(p1) = minArea(t1) = os.

AND nodes

Each AND node a € AN is defined as a set of minimal areas {z, 13, . ., z,}. Each minimal area z; in the set is
an OR node that is child of a. For instance, for Fig. 8a we can infer from the statechart in Fig. 1b that we need
to create an AND node {01, 02}, which specifies that o; and o, are executed in parallel.

Of course, the question is how to infer AND nodes from the structure of the Petri net. First, observe that
an AND node a needs to be constructed for each non-singleton set X that is preset or postset of a transition.
We use the set cover(X), defined in Sect. 4, to identify which areas have to become children of a. Set cover(X)
contains all BASIC nodes that have to be nested inside a. Each OR child o of a has to be a subset of cover(X),
to ensure that o does not contain a BASIC node that is not in cover(X). Furthermore, o has to be a strict subset
of cover(X), since an OR child of an AND node never contains all BASIC nodes inside the AND node. Next,
to allow AND nodes nested inside a, o must be maximal: there is no area o’ such that o C o’ C cover(X). For
the example in Fig. 8, the maximal areas that are subsets of cover(t1e) are o3 and o4. Thus, the constructed AND
node a = {03, 04}. Note that for example area o, is also a strict subset of cover(t1e), but is not maximal, since
01 C 03. Area o is child of AND node {01, 0,}, which is nested in a.

Next, we define a function andNode that takes a set Y of BASIC nodes and a set of OR nodes ON and returns
an AND node that contains exactly the BASIC nodes in Y':

andNode(Y,ON)={o0e€ ON | o C Y A theredoesnotexist o’ € ON:0oC o' C Y }.
If X is a non-singleton preset or postset, then andNode(cover(X), ON) is the desired AND node for X.
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{p1,p2,p3,p4,p5,p6,p7}
p1 {{p2,p3,p4,p5,p6}.{p7}}

{p2,p3,p4,p5,p6} {p7}

/N |

{{p2,p3}.{p4.p5}}  p6 p7
{p2,p3} {p4.p5}
p2 p3  p4 p5

Fig. 9. AND/OR tree constructed by PNtoSC for Fig. 1

If a Petri net is not connected, then P is not the minimal area of any place or transition. In that case, the
unconnected components should be grouped in an AND node that is child of root P. For instance, consider the
net in Fig. 4a with an additional token in p3: an AND node needs to be created that puts OR nodes {p1,p2}
and {p3,p4} in parallel. In that case, there is no non-singleton preset or postset that can be used to construct the
AND node. Instead, we invoke function andNode with as first parameter P. This defines an AND node of which
the children are the top-level (maximal) OR nodes of the unconnected components. For instance for the net in
Fig. 4a function andNode(P, ON) returns AND node {{p1,p2},{p3.p4}}.

To summatrise, the set AN of AND nodes is defined as:

AN ={ andNode(Y, ON) | there exists a non-singleton preset or postsetX such that ¥ = cover(X)
VvV Y = P and there is no element e € P U T such that minArea(e)=P }.

For the examPLE net in Fig. 8, set AN contains AND nodes {o;, 0;}, which corresponds to A1 in Fig. 1b,
and {os, 04}, which corresponds to A2.

The child relation

The child relation follows in a straightforward way from the definition of the nodes. A BASIC node n € BN is
child of area 0 € ON if and only if 0 = minArea(p). An OR node o € ON is child of an AND node a € AN if
and only if 0 € a. Defining the parent of an AND node a is more involved. Set | J, .,  contains all the BASIC
nodes that are contained in a. The minimal area of this set, so minArea(lJ,., *), is the OR parent of a. For
instance, the parent of AND node {01, 03} is 03 since minArea(o; U 03) = 03.

Relation child is defined as follows:

child = {(p,0) € P x ON | minArea(p)=o }
U {(0,a) e ON x AN | o€ a}

U {(a,o)eANxON | minArea(Ux) =0}.

rea

TrEa

The AND/OR tree shown in Fig. 9 visualises the child relation constructed by the translation for the net in
Fig. 1.

The default function

First, we observe that since the translation has to return a statechart corresponding to the input net, we have to
ensure that each hyperedge is complete (cf. Sect. 5). If & is complete, then default nodes are irrelevant when £ is
taken. That is, if h enters OR node o, so scope(h) contains o and o contains a target node of A, then the next
configuration never contains the default node of o when £ is taken. For instance, in Fig. 1b hyperedge t1 enters
OR node O83. The default node of O3, BASIC node p6, is irrelevant: if t1 is taken then the next configuration
does not include p6.
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(@) (b)

Fig. 10. Petri net and statechart that are structurally similar but have different initial states

Since default nodes are to be irrelevant, we can define an arbitrary, total function auzdefault : ON — BN U
AN, which assigns to each OR node one arbitrary child (by construction either a BASIC node or AND node)
as default node:

auzdefault ={n+— ¢; | n€ ON A ¢y € BN U AN A children(n)={ci, 2, .., cx }}

However, due behavioural similarity (Definition 3.2) the initial marking and the initial configuration of the state-
chart should correspond: each place in the initial marking should relate to a BASIC node in the configuration
and vice versa. The initial configuration is defined as the default completion of root node r, so dcomp({r}), which
is a set that contains default nodes. For each place p contained in the initial marking, the corresponding BASIC
node must act as default node of its OR parent in the statechart, to ensure that BASIC node p is included in
dcomp({r}). Moreover, if BASIC node p is nested inside an AND node y and y is child of an OR node z, then
y has to be the default node of z. To see why: the statechart in Fig. 10 has an initial configuration that contains
BASIC node p3, since the default node of root r is p3. But the initial marking of the net contains places p1 and
p2. In the statechart, the default node of r should be A to ensure that the default completion contains p1 and p2.

To define default nodes according to the initial marking, we use partial function initdefault : ON — BN U AN,
which assigns to each OR node z that contains one of the places p in the initial marking, as default node the
unique child y of = that either equals p or contains p. By definition of child, each OR node x has only BASIC
and AND children.

initdefault ={x +— y | € ON A ye AN UBN A (y,x) € child AdpeP: M(p)=1A (p,y) € child™*}

Relation child * denotes the reflexive-transitive closure of child: if (z, y) € child * then y contains x or x =y.
Note that therefore it is possible that y = p in the definition above. Since (y, ) € child and (p, y) € child * implies
(p, z) € child*, we do not need to test for (p, =) € child *. For the net in Fig. la, initdefault = {(r, p1)} while for
the net in Fig. 10, initdefault = {(r, A), (O1, p1), (02, p2)}.

The actual default function is total function auzdefault overridden with partial function initdefault:

default = auxdefault @ initdefault.
Thus, for OR nodes in the domain of initdefault the default nodes contain or equal BASIC nodes that correspond
to the places in the initial marking, while for the other OR nodes the default nodes are arbitrarily defined.

Root

The root is defined to be set P, which is an area. For the example in Fig. 8, set P equals area os, which corresponds
to root in Fig. 1b.

6.2. Correctness

We show the correctness of the translation PNtoSC by proving two theorems. The proofs can be found in
Appendix B.

In Sect. 4, we defined the class of statechartable nets. The first theorem shows that statechartable nets are
precisely the class of nets for which PNtoSC returns a corresponding statechart.

Theorem 6.1 Petri net (P, T, I, M) is statechartable if and only if tuple PNtoSC((P, T, F, M)) is a statechart
that corresponds to (P, T', F', M).
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According to the first theorem, translation PNtoSC fails if (P, T, F', M) is not a statechartable net: it then
either returns a tuple that is not a statechart (nets in Figs. 2 and 3) or returns a statechart that does not correspond
to (P, T, F, M) (nets in Fig. 4). Therefore, PNtoSC' is sound and complete for statechartable nets.

The second theorem shows that statecharts constructed by PNtoSC are complete and OR-connected.

Theorem 6.2 If Petri net (P, T, F', M) is statechartable then PNtoSC((P, T, F, M)) is a complete and OR-
connected statechart.

The reverse implication is not true. If (P, T', F, M) is not statechartable, then for nets with non-configurable
markings such as in Fig. 4 PNtoSC can still construct a complete and OR-connected statechart. But in that case
the statechart does not correspond to the input net.

6.3. Alternative translations

The translation constructs for an input net a minimal statechart, in which each constructed OR node does not have
another OR node as child, but only BASIC nodes and/or AND nodes. As mentioned in Sect. 3, each statechart
constructed by the translation can be extended to other statecharts that also correspond to the input net.

The translation has been defined declaratively. The translation can equivalently be defined in an operational
way using reduction rules on Petri nets. Such an operational translation is more efficient to compute and easier
to implement than the declarative translation, but more difficult to link to the definition of statechartable nets
than the declarative translation. In previous work [Esh09b], we defined and implemented an operational transla-
tion for a restricted form of statechartable nets. That operational translation has been implemented using model
transformation technology [VE10].

It is straightforward to define a reverse translation from complete and OR-connected statecharts to corre-
sponding statechartable nets. Places and transitions of the net are the BASIC nodes and hyperedges of the input
statechart, respectively. Using Definition 3.1 the flow relation can be easily derived. The initial marking contains
the places whose BASIC nodes are contained in the initial configuration of the statechart. Such a translation
would map the statechart in Fig. 1b to the Petri net in Fig. 1a. The translation PNtoSC' is much more intricate
since it needs to define AND and OR nodes, which have no counterpart in Petri net syntax.

7. Related work

Only a few papers consider translations from Petri nets to statecharts [RK97, SNK99]. The only published work
with a considerable amount of detail is a paper by Schnabel et al. [SNK99], who informally describe an interactive
method to translate a safe Petri net into a StateFlow statechart [Mat]. Since the paper is written in German, we
will describe their method elaborately.

The method consists of two main phases. In the first phase, the net is reduced by performing the following
two steps. First, each linear sequence of places is aggregated into a singe place. No formalisation is presented,
but from the text and the presented examples it becomes clear that each place in the sequence must have a single
input and a single output transition in the net. Next, in the resulting net, sets of places with the same input and
output transitions are aggregated into a single place, which represents an AND node. These steps are repeated
until the net can no longer be reduced.

In the second phase, the reduced net is mapped to a statechart by mapping each place invariant of the net to
a parallel OR node of the statechart. A place invariant is a set of places for which the sum of tokens contained
in these places remains constant during execution. Each place in an invariant maps to a BASIC node in the cor-
responding parallel node. Since the same place can occur in several place invariants, it can translate into several
BASIC nodes. Schnabel et al. outline some ways to prevent such duplications, but sometimes duplications can-
not be avoided. Finally, for each BASIC node representing an aggregate place constructed in the first phase, the
aggregated Petri net structure is inserted, which results in a statechart with additional nested states. To illustrate
this, Fig. 11b shows the statechart translation according to Schnabel et al. for the net in Fig. 11a.
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Fig. 11. Safe Petri net (a), skeleton of statechart translation according to Schnabel et al. [SNK99] (b), and statechart translation according
to PNtoSC (c)

Duplicated BASIC nodes in a statechart correspond to a single place in the Petri net. To ensure that the
behaviour of the input net resembles the behaviour of the statechart, duplicated nodes must be entered and left
simultaneously. To achieve this, Schnabel et al. make use of event synchronisation and auxiliary variables (not
shown in Fig. 11b). However, their solution is specific to StateFlow.

The translation of Schnabel et al. [SNK99] resembles ours to some extent but there are important differences.
We have formally defined our translation, proven its correctness, and characterised the class of Petri nets for
which the translation yields statecharts with equivalent behaviour, while Schnabel et al. [SNK99] only informally
present their approach, do not give a formal correctness proof, and do not explicitly characterise the class of nets
handled by their translation. Moreover, their translation is interactive, while ours is fully automatic. Finally, our
translation does not duplicate any nodes.

Next, there is some other related work which has a different scope than our paper. For UML 1.x activity
diagrams [UMLO3a], whose syntax resembles Petri net syntax, a balancedness constraint was defined to give
them a semantics in terms of UML statecharts. However, we are unaware of any translation from Petri nets (or
activity diagrams) to statecharts in which this constraint and the corresponding translation is formalised. A Petri
net has balanced forks and joins if each fork is eventually followed by a join, and fork-join pairs are properly
nested. (A fork is a transition with more than one output place, a join is a transition with more than one input
place.) For such nets, each place translates to a BASIC node, each Petri net transition to statechart transition,
and finally each fork-join pair to an AND node with corresponding OR children (see Fig. 12). Our translation
does not require input nets to be balanced (cf. Fig. 7), so it is more general.

Other related work has considered the relation between statecharts and Petri nets. Kishinevsky et al. [KCK*97]
define a Petrinet variant that incorporates some statechart features. The variant, called place chart net, uses hierar-
chy on places and preemptive transitions: a transition does not only empty its input places but also all descendant
places of the input places. However, the relation between place chart nets and Petri nets is not formally analysed.
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Fig. 12. Balanced Petri net and corresponding statechart

Drusinsky and Harel [DH94] show that a class of concurrency models that includes both statecharts and
Petri nets is more succinct than finite state machines. However, they do not explicitly make a distinction between
statecharts and Petri nets: these fall in the same class.

8. Conclusion

We have introduced statechartable nets, a subclass of safe Petri nets that can be translated to corresponding
(i.e. similar) statecharts. Statechartable nets have been structurally defined using the novel notion of an area.
We have shown that the class of statechartable nets is not complete, since some non-statechartable nets do have
corresponding statecharts. However, such statecharts are not likely to be drawn in practice, so this incompleteness
does not appear to be severe limitation in practice.

Next, we have defined a declarative, structural translation from statechartable nets to corresponding state-
charts. The translation uses areas to infer statechart AND and OR nodes, which have no counterpart in Petri net
syntax. The translation has been proven sound and complete for statechartable nets: it fails for non-statechartable
nets. Elsewhere [Esh09a] we have presented an operational translation that has been implemented using model
transformations [VE10].

We envision two specific applications of the translation. First, it can support the communication of a Petri
net design to designer and end-users only familiar with statecharts. In particular, it can facilitate the automated
exchange of models [Gra97, GK07, RK97] between different Petri net and statechart tools, thus enabling designers
to use both Petri net and statechart tools for their designs.

Second, the translation can be used to synthesise statecharts. For instance, several mappings from message
sequence charts to Petri nets exist [AB0S, Klu03]. Combining such a translation with the translation defined in
this paper, a statechart can be synthesised from a scenario-based specification. Approaches for synthesising a
statechart from a scenario-based specification [HK02, WS00] produce typically statecharts that are basically sets
of communicating sequential finite state machines, i.e., the only concurrency is at the top level of the statechart.
The translation defined in this paper can construct statecharts in which concurrency occurs at arbitrary levels.

There are several directions for further work. An interesting question is to precisely characterise the class
of Petri nets that correspond to statecharts. Another extension is to consider Petri nets with events or data, for
instance coloured Petri nets [Jen92], and statecharts with local variables and action statements as in STATE-
MATE [HN96] and UML [UMLO3b]. Defining such a translation can be complicated, since coloured Petri
nets use a functional programming language to express action statements, whereas statecharts use an imperative
programming language.

Another direction is to consider statecharts with overlapping [HK92], which generalise statecharts by allow-
ing the nodes to be arranged as a directed acyclic graph rather than a tree. In particular, it will be interesting to
analyse how the conditions in the definition of statechartable nets can be relaxed to characterise the class of nets
corresponding to statecharts with overlapping.
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A. Transition systems, Petri nets and statecharts

We recall definitions of the formalisms used in the paper: transition systems, Petri nets and statecharts. Read-
ers familiar with Petri nets and statecharts can skip this section. Formal definitions of Petri nets can be found
in [Mur89, Rei85] and of statecharts in [Esh09a, HPSS87, PS91], among others.

A.1. Transition systems

The execution semantics of both Petri nets and statecharts map into transition systems. A transition system is a
tuple (S, —, init) where S is a set of states, - C S x S the transition relation, and init € S is the initial state.

Let (S1, — 1, inity) and (S, — 2, inity) be two transition systems. An isomorphism is a bijective function
h : S} — S such that h(init;) = init, and (z, y) € — | if and only if (h(z), h(y)) € — ». Two transition systems
TS, = (S, =1, init)) and T'S; = (S, — 2, inity) are isomorphic if and only if they are related by an isomorphism.

A.2. Petri nets

Syntax. A Petrinet is directed, bipartite graph that consists of two types of nodes, places and transition. Places
are represented by circles, transitions by bars. Formally, a Petri net (place/transition net) is a tuple (P, T', F),
where

e P isa finite set of places,
e T is a finite set of transitions, P N T # @, and
e [C (P x T)U(T x P)is afinite set of arcs, the flow relation.

Standard definitions of Petri nets also use weights on arcs, but since statecharts lack weights, we do not consider
these here.

Given anelement e € PU T, its preset ec = { z | (z, e¢) € F }is the set of input places and transitions of e,
whereas its postset ce = { = | (e, z) € F }is defined as the set of output places and transitions of e. We require
that each transition has a non-empty preset and a non-empty postset. If a place is in the preset(postset) of ¢, then
it is input(output) to ¢. For each transition ¢ € T', we require that both e¢ and te are nonempty.

Semantics. The global state of a Petri net, called the marking, is a function M : P — IN that assigns to each place
the number of times it is active. Each single activation of a place is visualised by a black dot in the place, called a
token in Petri net terminology.

From a marking M another marking M’ can be reached by firing transitions. A transition ¢ can fire in a
marking M if and only if M enables ¢. Marking M enables transition ¢ if and only if all of ¢’s input places are
active, so for all p € ot : M(p) > 1. If ¢ fires in M, marking M’ is reached, written M[t)M’, where for every
p e P:

M(p)—1, ifpeet)\te
M(p)=< M(p)+1, ifpete)\et
M(p), otherwise.

A marking M’ is reachable from M if and only if there is a sequence of transitions ¢, t, .., t, such that
M][t])Mz[tz)M_@, .. Mn[tn>Mn+] where My =M and M,+1 = M.
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A marked Petri net is a tuple (P, T, F', M), where (P, T, F') is a Petri net and M the (initial) marking of
(P, T, F). Given a marked net (P, T, F, M), marking M’ is reachable if and only if M’ is reachable from M.
A marked net PN = (P, T, F', M) maps into a transition system T.S(PN) = (S, — , init) of which the states
are markings, the transitions represent firing of Petri net transitions, and the initial state is the initial marking:

S={M:P—IN | M isreachable}
- ={M,M)eSxS | AteT: M[t)yM'}
mit = M.

This transition system is usually called reachability graph or marking graph in Petri net terminology.

In a marked net (P, T, F,, M), the bound of a place p € P is the maximum number of tokens assigned to p
by any marking reachable from M. A marked Petri net is safe or 1-bounded if and only if every place has bound
of 1, i.e., no reachable marking puts more than one token in some place. As explained in the introduction, we
restrict ourselves to safe marked nets in this paper.

In the main text, we only consider and show marked Petri nets. When we refer to Petri nets in the main text,
we actually mean marked Petri nets.

A.3. Statecharts

Syntax. A statechart is hierarchical hypergraph [Har88], consisting of nodes arranged in a tree and directed
hyperedges. There are three types of nodes: BASIC, AND, and OR. BASIC nodes are leaves of the tree while
AND and OR node are internal. In the literature [Esh09a, HPSS87, PS91], often a function is used that specifies
for each node its type. Here we use a different but equivalent formalisation: nodes of the same type are grouped
in subsets. This different formalisation simplifies the definition of the declarative translation in Sect. 6. Further-
more, in the literature often a function is used that specifies for each node its set of child nodes in the tree. But
we use a binary relation on nodes that specifies the child-parent relation. Again, the formalisation is equivalent
and used to simplify the definition of the declarative translation.
Formally, a statechart is a tuple (N, BN, AN, ON, H, source, target, child, default, r), where

N is a set of nodes, which is partitioned into sets BN, AN, and ON,

BN is a finite set of BASIC nodes, which are not decomposed into other nodes,

AN is a finite set of AND nodes, which specify parallel decomposition,

ON is a finite set of (X)OR nodes, which specify exclusive-or decomposition,

H is a finite set of hyperedges, N N H = @,

source : H— P(N) is a function defining the non-empty set of source nodes for each hyperedge,

target : H— P(N) is a function defining the non-empty set of target nodes for each hyperedge,

child C N x N is a predicate that relates a child node to its parent node, so (n, n’) € child means n is
child of n’. We require that child arranges the nodes in N in a rooted tree, so every node in NV, except the
root, has one parent node, and every node is indirectly child of the root. We require z € BN if and only if
{y | (y,x) € child} = @, so only non-BASIC nodes have no children.

e default : ON — N is a function that identifies for each OR node n one of its children as the default node:
default(n) € children(n). As defined below in the semantics, if a hyperedge h enters n but does not explicitly
enter any of its children, then h enters default(n).

e 1 e N isthe root of the tree induced by child. For technical reasons, r is required to be an OR node.

e © o o o o o o

Next, we introduce some auxiliary definitions for the tree induced by child. For any node n € N, where
n # r, we denote by parent(n) the unique parent node of n in the tree, so (n, parent(n)) € child. We denote
by children(n) the set of children of n, so {n’ € N | (n/,n) € child}. Next, children * denotes the reflexive-
transitive closure of children, so children *(n) = |, children;(n), where childreng(n) = {n}and children;+i(n) =
Unvechitdren(n) childreni(n’). If n’ € children *(n), we say that n is ancestor of n’ and n’ is descendant of n. Note
that each node is ancestor and descendant of itself. Two nodes n, n’ are ancestrally related if either n is an ancestor
of n/ or n/ an ancestor of n.
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Semantics. Every global state of a statechart, called a configuration, must satisfy several constraints, defined
below. First, we introduce some auxiliary definitions. The lowest common ancestor of a set X C N of nodes,
written [ca(X), is the most nested node n € N that is an ancestor of every node in X:

X C children *(n)
vn' € N : X C children*(n') = n € children *(n')

Given a set X of nodes, lca™(X) is the most nested OR node that is ancestor of every node in X .

Two nodes n, n’ € N are orthogonal if and only if they are not ancestrally related and their Ica is an AND
node. A set X of nodes is consistent, written consistent(X), if and only if for every pair z, y € X, either x and y
are ancestrally related or z and y are orthogonal. For each hyperedge h, its source set and target set are required
to be consistent, so consistent(source(h)) and consistent(target(h)).

A configuration is a maximal consistent set of nodes: adding a node to a configuration would make it incon-
sistent. A configuration C satisfies the following properties, for every z € C"

o 1z € ON = |children(z)N C| =1
o 1z e AN = children(z) C C
o 1 # r = parent(z) € C.

A consistent set X can be turned into a configuration by computing the default completion D C N of set X.
For each non-root node, its parent is included in D. For each AND node, all children are added to D, while for
an OR node its default node is added to D, but only if none of its children is in X . Given a consistent set X of
nodes, the default completion dcomp(X) is the smallest set D such that:

XCD

if n € D and n € AN then children(n) C D

if n € D and n € ON and children(n) N X = @ then default(n) € D
if n € D and n # r then parent(n) € D.

From the definition follows immediately that if X is consistent, then dcomp(X) is a configuration.

The initial configuration is defined to be the default completion of root r.

A hyperedge h is enabled in configuration C' if all its source nodes are in C, so source(h) C C'. To define the
effects of taking an enabled hyperedge, we need some additional definitions. The scope of a hyperedge & is the
most nested OR node containing the sources and targets of h:

scope(h) = lea™ (source(h) U target(h)).

Upon taking h, all strict descendants of scope(h) will be left and the target nodes of h are all entered. However,
the resulting set X = C \ children™(scope(h)) U target(h) of nodes might not be a configuration, for instance if
target(n) contains a node n but not its parent below scope(h), or if target(h) contains composite node n but none
of n’s children. To turn set X into a configuration, the default completion of X is computed. Since target(h) is
consistent, the default completion of X is a configuration.

Thus, upon taking hyperedge h, the configuration C changes into C’, written C[h)C’, where

C" = dcomp((C \ children™ (scope(h))) U target(h)).

Given a statechart SC, configuration C is reachable if and only if there is a sequence of hyperedges leading
from the initial configuration decomp({r}) to C.
A statechart SC maps into a transition system 7.5(SC) = (S, —, init), where

S ={C C N | Cisaconfiguration and reachable }
- ={(C,CYeSxS | dhe H:ChC(C'}
init = dcomp({r}).
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B. Proofs

This section contains the proofs of Theorems 6.1 and 6.2.
Proof of Theorem 6.1. Let SC = (N, BN, AN, ON, H, source, target, child, default, r) be the tuple returned by
PNtoSC((P, T, F, M)). We do not prove that PN and SC are structurally similar, since this follows immediately
from the definition of PNtoSC', where the identity function = plays the role of f.

=: We prove that SC is a complete and OR-connected statechart and that PN and SC' are behaviourally
similar.

SC' is a statechart:

We prove that SC is a statechart by showing that the child predicate induces a tree, each hyperedge has
consistent source and target sets, and that the default relation is a function.

We show that the child predicate induces a tree, by proving (i) child* is acyclic, and (ii) each node not equal
to root P has a single parent. Since there is only one root node, this implies that the child relation induces a tree
on the set of nodes, of which the root is P.

(1) Suppose the child relation induces a cycle. From the definition of PNtoSC, it follows that if (n, n") € child
then every place p € P thatisdescendantof n, so(p, n) € child”, isalso descendant of n’, so (p, n') € child*.
Thus, if child* contains a cycle, then there must be an AND node @ € AN and OR node 0 € ON such that
(0, a) € child® and (a, o) € child”. Observe that (a, 0) € child” implies flatten(a) C o, and (o, a) € child”
implies that o C flatten(a). Thus, flatten(a) = o, so a = {o}. By definition of PNtoSC, there is a transition
with a preset or postset X C P such that |[X| > 1 and ¢ = andNode(X, ON). Let Y = X \ (o N X).
Since Y C X, by definition of cover, minArea(Y) C cover(X). Since a = {o}, minArea(Y) ¢ cover(X).
Therefore, minArea(Y) = cover(X). Since minArea(X \ Y) C cover(X), we have minArea(X \ Y) C
minArea(Y). But X N (X \ Y) = @. Thus, the transition of which X is preset or postset does not have
consistent areas, which contradicts the assumption. Therefore, child™ is acyclic.

(i) Given a node n € N. There are three cases:

e 1 € BN. By definition of ON, set minArea(n) € ON. Furthermore, minArea identifies a unique set, so n
has exactly one OR parent.

e n € AN. Since flatten is a function and minArea identifies a unique set, there is exactly one set ¥ =
minArea(flatten(n)). Next, we have to show that Y € ON. Let t € T be the transition with preset or pos-
tset X such that n = andNode(X, ON). By definition of area, minArea(X) = minArea(t). We show that
minArea(X) = minArea(flatten(a)), which proves the claim.

C: Take z € X. By definition of cover, minArea(xz) C cover(X). Since ¢t has consistent areas,

minArea(z) C cover(X). Therefore, x € flatten(X). So X C flatten(X). Consequently, minArea(X) C
minArea(flatten(X)).

D: Take xz € flatten(X). Then x € cover(X). By definition of cover, there exists Y C X such that z €
minArea(Y). Since minArea(Y) C minArea(X), z € minArea(X). Therefore, flatten(X) C minArea(X).
Next, by definition of minArea, minArea(flatten(X)) C minArea(X).

e n € ON.We show thatif n # P (so then n is not the root node), n has one parent.

— n has at least one parent: Since n # P, there is are two possibilities. (i) There is a transition ¢ such
that n C minArea(t) and there is no other transition ¢’ such that n C minArea(t’) C minArea(t).
So minArea(t) is the minimal area that strictly contains n. (There could also be a place p such that
minArea(p) is the minimal area that strictly contains n, but in that case p is the single input or single
output place of transition ¢.) Then ¢ has a preset or postset X such that X N n # §. By definition of
andNode, n € andNode(X, ON), so andNode(X, ON) is the AND parent of n. (ii) There is no element
e € P U T such that n C minArea(e). Then by definition of AN, an AND node is the parent of n.

— n has at most one parent: Suppose that n has two AND parents a;, @ € AN that are different, so
a1 # ay. By definition of AN, then there are two sets X, X, such that a; = andNode(X;, ON) and
a = andNode(X,, ON). Since a; and a, are different, cover(X;) # cover(X3) by definition of andNode.
For a contradiction, suppose cover(X;) C cover(X;). However, then during construction of a; the unique
OR parent of a; (see previous item) would be a child of a,. But then, since n € a; N a3, node n would
have only a; as parent, not a. So cover(X;) ¢ cover(X;). By similar reasoning, cover(X,) ¢ cover(Xy).
Due to n, cover(X)) N cover(Xy) # 0.

Therefore, cover(X;) and cover(X;) are not nestable, which contradicts the assumption. Therefore, n has
at most one parent.
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Next, we have to show that each hyperedge has consistent source and target sets. Take an arbitrary source
or target set X of some hyperedge h € H and suppose X is not consistent. Then there are two BASIC nodes
z1, 1 € X such that lca({z|, 12}) € ON. Let | = lca({z;, 1,}). By definition of PNtoSC there is an element
e € P U T such that minArea(e) = I. Then there are two disjoint directed paths from z; to e and from z, to
e. Since x1, 1, € minArea(e) C minArea(X), there are disjoint sets X; and X, such that z; € X; and 2, € X5
and X; U X, C X and minArea(X;) = minArea(e) = minArea(X;). However, then transition ¢ does not have
consistent areas, which contradicts the assumption. So set X is consistent.

Finally, we have to show that the default relation is a function. From the definition of auzdefault follows
immediately that auxdefault is a function. We therefore only show that initdefault is a function. For a contradic-
tion, suppose that there is an OR node o such that it has two default nodes according to initdefault, say x and y.
Then by definition of initdefault, there is a place p, that is descendant of z and M (p,) = 1. By similar reasoning,
there is a place p, that is descendant of y and M(p,) = 1. Moreover, 0 = minArea({ps, py}). If + = p, and
y = py then minArea(p,) = minArea(p,) = o, so M is not configurable since p, can be removed. Otherwise,
by definition of PNtoSC, for both z and y, there exist non-singleton preset or postset Z, and Z, such that
z = andNode(Z,, ON) and y = andNode(Z,, ON). Let Py = {p € P | M(p) = 1}. Since M is configurable,
minArea(Z, N Pyr) = o. But then p, can be removed from Py, so Py is not minimal and M is not configurable.
Therefore, initdefault and thus default is a function.

Behavioural similarity:

We have to prove that 7'S(SC) and T'S(PN) are isomorphic. We will show that bijective function g, as defined
below is an isomorphism. Function g relates configurations to markings and is defined as

g(C)={n— 1| ne C;NBN}U{n+— 0| ne BN\ C;}.

for each configuration C;.

First, we need to prove that g(dcomp({r})) = M. Let P,y = {p € P | M(p) = 1}. We will show p €
dcomp({r}) N BN < p € Pj;. From the definition of initdefault follows immediately that for each p € Py, p €
dcomp({r}). The reverse implication we prove by contradiction. Suppose there is a p € dcomp({r}) N BN such
that p ¢ Pys. Let o be the most nested OR node containing p but not any of the BASIC nodes in Pj;. Since
p € dcomp({r}) and Py, C dcomp({r}), the parent of o is an AND node and none of the BASIC descendants
of o are in P);. But then by definition of minArea, minArea(P);) does not contain any of the BASIC nodes
contained in o. So minArea(Pyr) C P and thus M is not configurable, which contradicts the assumption. So
p € dcomp({r}) N BN < p € Py,.

Next, we need to prove that (C, C’) € — g¢ if and only if (¢(C), g(C’') € — pn, Where = go and — py
are the transition relations of the transition systems of SC and PN, respectively. This can be proven using
C[h)C" & g(C)[h)g(C"), which follows immediately from the fact that each hyperedge 4 is complete, so C[h)C’
implies (C'\ C")N BN = source(h) and (C’ \ C)N BN = target(h).

<: We prove that (P, T, F', M) is statechartable.

Nestable covers:

For a contradiction, suppose two covers are not nestable, so there are non-singleton sets X, ¥ C P such that
X and Y are preset or postset of some transitions in 7', cover(X) N cover(Y) # @ and cover(X) € cover(Y)
and cover(Y) & cover(X). Since cover(X) and cover(Y') overlap, there is a place p € cover(X) N cover(Y).
By construction, the AND nodes created for cover(X) and cover(Y') are different, but both are ancestor of p.
Since cover(X) & cover(Y) and cover(Y) & cover(X), the AND nodes created for cover(X) and cover(Y) are
not ancestrally related. So BASIC node p has two ancestors which are not ancestrally related themselves. This
contradicts the tree property. So PN has nestable covers.

Consistent areas:

Take a set S C BN such that there is a hyperedge h with source(h) = S or target(h) = S. Let a be the least
common ancestor of S. Since S is consistent, a is an AND node.

For any subset 5" C S, define ONg' as the set of OR nodes that contain any nodein S’, are descendant of a, and
are maximal, soif o1, 0 € ONg then o; & 0, and 0, ¢ 0. Since child induces a tree, this means that for any pair of
nodes o1, 0 € ONg/, 01 N oy = @. By definition of PNtoSC and ONg, for every o € ONg/, minArea(oNS’) = o.
Since all OR nodes in ONg are pairwise disjoint, minArea(S’) = J,.o Ny minArea(o N S") = flatten(ONg),
where auxiliary function flatten : P(N)— N takes as input a set of subsets of nodes and returns the union of the
subsets:

flatten(Xs) = U X.

XeXs
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Now take two disjoint subsets X, Y C S. Since X and Y are disjoint, also ONx and ONy are disjoint. Con-
sequently, flatten(ONx) = minArea(X) and flatten(ONy) = minArea(Y') are disjoint too, for any transition A
with preset or postset S. Thus (P, T, F', M) has consistent areas.

Configurable initial marking:

Let Pyy = {p e P | M(p) = 1}. Since TS(SC) and TS(PN) are isomorphic and PNtoSC is structure-
preserving, Py = dcomp({root}) N BN. Since dcomp({r}) is a configuration, set P,; of BASIC nodes is maximal
consistent: consistent(Py;) and for each BASIC node n € BN \ Py, = consistent(Py; U {n}).

We first prove minArea(Py;) = P. For a contradiction, suppose minArea(Py;) C P. Let o € ON be the
smallest area such that minArea(Py;) C o C P. Since minArea(Pys) C o, either (i) there is a transition ¢ such
that et U te C o yet ot U te & minArea(Pys)or (i1) o = P and there is no transition ¢’ such that o C minArea(t’).
For (i), then there is a place p € of U te such that p ¢ minArea(Pys). However, by definition of PNtoSC BASIC
node p is consistent with all BASIC nodes in P,,. For (ii), then there is a place p that is not connected to any of
the places in P,;. The statechart then contains a top-level AND node of which one OR child contains BASIC
node p and none of the nodes in P,;. Therefore, in the statechart p is consistent with all BASIC node in Pj,;.
From both (i) and (ii) follows that for SC, P, is not maximal consistent for BASIC nodes (since p can be added),
which is a contradiction. Therefore, minArea(Pyr) = P.

Next, we show that P); is minimal. For a contradiction, take a subset X C Pj; and suppose minArea(X) = P.
Take a place p € Py \ X. Since P,y is (maximal) consistent, BASIC node p is consistent with each BASIC node in
Py;. Let a be the most nested AND ancestor of BASIC node p, so each AND node that contains p also contains
a. Each BASIC node n € X is either contained in a or orthogonal to a. If each BASIC node n € X is orthogonal
to a, then all BASIC nodes contained in a are not in minArea(X) by definition of minArea, which contradicts
that minArea(X) = P. Therefore, there is a BASIC node n € X that is contained in a and n is consistent with p.
Since minArea(X) = P and p ¢ X, by definition of minArea the OR child o of a that contains p has to contain
at least one other place y of X. Since « is the most nested AND node containing p, the least common ancestor
of p and y is 0. But then P, is not consistent (since it contains both p and y) and there is a contradiction. So
P, 1s minimal.

Since minArea(Py;) = P and Py, is minimal, initial marking M is configurable. ]
Proof of Theorem 6.2. Let (P, T, F, M) be a statechartable net. From Theorem 6.1 follows that SC =
PNtoSC((P, T, F', M)) is a statechart.

To show that SC' is a complete and OR-connected statechart, it suffices to show that (i) each hyperedge is
complete and (ii) each OR node is connected. (i) follows directly from the definition of set AN by PNtoSC.
(i1) follows from the fact that statechartable nets have nestable covers: if an OR node is unconnected, then the

unconnected parts are contained in unnestable covers. O

References

[ABOS] Ameedeen MA, Bordbar B (2008) A model driven approach to represent sequence diagrams as free choice Petri nets. In: Proc.
EDOC 2008. IEEE Computer Society, pp 213-221

[BAC92] Bernardinello L, de Cindio F (1992) A survey of basic net models and modular net classes. In: Rozenberg G (ed) Advances in
Petri nets 1992. Lecture notes in computer science, vol 609. Springer, Berlin, pp 304-351

[DH%4] Drusinsky D, Harel D (1994) On the power of bounded concurrency I: finite automata. J ACM 41(3):517-539

[DJO1] Desel J, Juhas G (2001) What is a Petri net? Informal answers for the informed reader. In: Ehrig H, Juhas G, Padberg J, and
Rozenberg G (eds) Unifying Petri nets. Lecture notes in computer science, vol 2128. Springer, Berlin, pp 1-27

[Esh05] Eshuis R (2005) On nets with structured concurrency. Beta Working Paper Series, WP 155, Eindhoven University of Technology

[Esh09a] Eshuis R (2009) Reconciling statechart semantics. Sci Comput Program 74(3):65-99

[Esh09b] Eshuis R (2009) Translating safe Petri nets to statecharts in a structure-preserving way. In: Cavalcanti A, Dams D (eds) FM
2009. Lecture notes in computer science, vol 5850. Springer, Berlin, pp 239-255

[GKO07] Grumberg O, Katz S (2007) Veritech: a framework for translating among model description notations. STTT 9(2):119-132

[Gra97] Grahlmann B (1997) The PEP tool. In Grumberg O (ed) Proc. CAV ’97. Lecture notes in computer science, vol 1254. Springer,

Berlin, pp 440-443
[HamO5] Hammal Y (2005) A formal semantics of UML statecharts by means of timed Petri nets. In: Wang F (ed) Proc. FORTE 2005.
Lecture notes in computer science, vol 3731. Springer, Berlin, pp 38-52

[Har87] Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231-274

[Har88] Harel D (1988) On visual formalisms. Commun ACM 31(5):514-530

[HK92] Harel D, Kahana C-A (1992) On statecharts with overlapping. ACM Trans Softw Eng Methodol 1(4):399-421

[HK02] Harel D, Kugler H (2002) Synthesizing state-based object systems from LSC specifications. Int J Found Comput Sci 13(1):5-51

[HMP*02]  Huszerl G, Majzik I, Pataricza A, Kosmidis K, Dal Cin M (2002) Quantitative analysis of UML statechart models of depend-
able systems. Comput J 45(3):260-277
[HNO96] Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw Eng Methodol 5(4):293-333



Statechartable Petri nets 681

[HPSS87]
[Jen92]

[KCK*97]

[KIu03]

[Mat]
[Mur89]
[Pet62]
[PS91]

[Rei85]
[RK97]

[RR9S]
[SNK99]
[SSHO1]
[UMLO03a]
[UMLO03b]

[VE10]

[WS00]

Harel D, Pnueli A, Schmidt JP, Sherman S (1987) On the formal semantics of statecharts. In: Proceedings of the second IEEE
symposium on logic in computation. IEEE, pp 54-64

Jensen K (1992) Coloured Petri nets. Basic concepts, analysis methods and practical use. In: EATCS monographs on theoretical
computer Science. Springer, Berlin

Kishinevsky M, Cortadella J, Kondratyev A, Lavagno L, Taubin A, Yakovlev A (1997) Coupling asynchrony and interrupts:
place chart nets. In: Azéma P, Balbo G (eds) Proc ICATPN 1997. Lecture notes in computer science, vol 1248. Springer, Berlin,
pp 328-347

Kluge O (2003) Modelling a railway crossing with message sequence charts and Petri nets. In: Ehrig H, Reisig W, Rozenberg G,
Weber H (eds) Petri Net technology for communication-based systems. Lecture notes in computer science, vol 2472. Springer,
Berlin, pp 197-218

The Mathworks. Stateflow user’s guide. http://www.mathworks.com

Murata T (1989) Petri nets: properties, analysis, and applications. In: Proc IEEE 77(4):541-580

Petri CA (1962) Kommunikation mit Automaten. PhD thesis, Institut fiir instrumentelle Mathematik, Bonn

Pnueli A, Shalev M (1991) What is in a step: on the semantics of statecharts. In: Ito T, Meyer AR (eds) Theoretical aspects of
computer software. Lecture notes in computer science, vol 526. Springer, Berlin, pp 244-265

Reisig W (1985) Petri Nets: an introduction. In: EATCS monographs on theoretical computer science, vol 4. Springer, Berlin
Rausch M, Krogh B (1997) Transformations between different model forms in discrete event systems. In: Proc IEEE SMC
1997, vol 3, pp 2841-2846

Reisig W, Rozenberg G (eds) (1998) Lectures on Petri nets I: advances in Petri nets. In: Lecture notes in computer science, vol
1492. Springer, Berlin

Schnabel M, Nenninger G, Krebs V (1999) Konvertierung sicherer Petri-netze in statecharts (in German). Automatisierungs-
technik 47(12):571-580

Saldhana JA, Shatz SM, Hu Z (2001) Formalization of object behavior and interactions from UML models. Int J Softw Eng
Knowl Eng 11(6):643-673

UML Revision Taskforce. OMG UML specification v. 1.5. Object Management Group, 2003. OMG Document Number
formal/2003-03-01

UML Revision Taskforce. UML 2.0 superstructure specification. Object Management Group, 2003. OMG Document Number
ptc/03-07-06

Van Gorp P, Eshuis R (2010) Transforming process models: executable rewrite rules versus a formalized java program. In:
Petriu DC, Rouquette N, Haugen @ (eds) Proc MoDELS 2010. Lecture notes in computer science, vol 6395. Springer, Berlin,
pp 258-272

Whittle J, Schumann J (2000) Generating statechart designs from scenarios. In: Proc ICSE, pp 314-323

Received 2 February 2010

Revised 24 June 2011

Accepted 7 August 2011 by Jim Woodcock
Published online 24 September 2011


http://www.mathworks.com

	Statechartable Petri nets
	Abstract
	1 Introduction
	2 Background
	2.1 Petri nets
	2.2 Statecharts

	3 Correspondence between Petri nets and statecharts 
	4 Statechartable nets
	4.1 Areas
	4.2 Constraints
	4.3 Definition
	4.4 Incompleteness
	4.5 Expressiveness

	5 Statecharts corresponding to statechartable nets
	6 Translating statechartable nets to corresponding statecharts
	6.1 Definition
	6.2 Correctness
	6.3 Alternative translations

	7 Related work
	8 Conclusion
	Acknowledgements
	A Transition systems, Petri nets and statecharts
	A.1 Transition systems
	A.2 Petri nets
	A.3 Statecharts

	B Proofs
	References


