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Abstract We consider certain families of automorphic representations over
number fields arising from the principle of functoriality of Langlands. Let G
be a reductive group over a number field F* which admits discrete series rep-
resentations at infinity. Let *G = G x Gal(F/F) be the associated L-group
andr: G — GL(d, C) acontinuous homomorphism which is irreducible and
does not factor through Gal(F / F). The families under consideration consist of
discrete automorphic representations of G (A r) of given weight and level and
we let either the weight or the level grow to infinity. We establish a quantitative
Plancherel and a quantitative Sato—Tate equidistribution theorem for the Satake
parameters of these families. This generalizes earlier results in the subject,
notably of Sarnak (Prog Math 70:321-331, 1987) and Serre (J Am Math Soc
10(1):75-102, 1997). As an application we study the distribution of the low-
lying zeros of the associated family of L-functions L(s, 7, r), assuming from
the principle of functoriality that these L-functions are automorphic. We find
that the distribution of the 1-level densities coincides with the distribution of
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the 1-level densities of eigenvalues of one of the unitary, symplectic and orthog-
onal ensembles, in accordance with the Katz—Sarnak heuristics. We provide a
criterion based on the Frobenius—Schur indicator to determine this symmetry
type. If r is not isomorphic to its dual »¥ then the symmetry type is unitary. Oth-
erwise there is a bilinear form on C¢ which realizes the isomorphism between
r and rV. If the bilinear form is symmetric (resp. alternating) then r is real
(resp. quaternionic) and the symmetry type is symplectic (resp. orthogonal).

Mathematics Subject Classification 11F55 - 11F67 - 11F70 - 11F72 -
11F75 - 14L15 - 20G30 - 22E30 - 22E35
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1 Introduction

The non-trivial zeros of automorphic L-functions are of central significance
in modern number theory. Problems on individual zeros, such as the Riemann
hypothesis (GRH), are elusive. There is however a theory of the statistical
distribution of zeros in families. The subject has a long and rich history. A
unifying modern viewpoint is that of a comparison with a suitably chosen
model of random matrices: the Katz—Sarnak heuristics. There are both theoretical
and numerical evidences for this comparison. Comprehensive results in the
function field case [59] have suggested an analogous picture in the number field
case as explained in [60]. In alarge number of cases, and with high accuracy, the
distribution of zeros of automorphic L-functions coincide with the distribution
of eigenvalues of random matrices. See [37,85] for numerical investigations
and conjectures and see [40,49,50,53,68,82,84] and the references therein for
theoretical results.
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Sato—Tate theorem for families 3

The concept of families is central to modern investigations in number theory.
We want to study in the present paper certain families of automorphic rep-
resentations over number fields in a very general context. The families under
consideration are obtained from the discrete spectrum by imposing constraints
on the local components at archimedean and non-archimedean places and by
applying Langlands global functoriality principle.

Our main result is a Sato—Tate equidistribution theorem for these families
(Theorem 1.3). As an application of this main result we can give some evidence
towards the Katz—Sarnak heuristics [60] in general and establish a criterion
for the random matrix model attached to families, i.e. for the symmetry type.

1.1 Sato-Tate theorem for families

The original Sato—Tate conjecture is about an elliptic curve E, assumed to be
defined over Q for simplicity. The number of points in E(IF,) for almost all
primes p (with good reduction) gives rise to an angle 6, between — and 7.
The conjecture, proved in [7], asserts that if £ does not admit complex mul-
tiplication then {6, } are equidistributed according to the measure % sin? 0d6.
In the context of motives a generalization of the Sato—Tate conjecture was
formulated by Serre [96].

To speak of the automorphic version of the Sato—Tate conjecture, let G be a
connected split reductive group over Q with trivial center and 7 an automorphic
representation of G(A). Here G is assumed to be split for simplicity (however
we stress that our results are valid without even assuming that G is quasi-
split; see Sect. 5 below for details). The triviality of center is not serious as it
essentially amounts to fixing central character. Let 7' be a maximal split torus
of G. Denote by T its dual torus and €2 the Weyl group. As 7 = ®/ 7, is
unramified at almost all places p, the Satake isomorphism identifies 77, with a
point on T / §2. The automorphic Sato—Tate conjecture should be a prediction
about the equidistribution of 7, on 1 T / 2 with respect to a natural measure
(supported on a compact subset of T / 2). It seems nontrivial to specify this
measure in general. The authors do not know how to do it without invoking the
(conjectural) global L-parameter for 7. The automorphic Sato—Tate conjecture
is known in the limited cases of (the restriction of scalars of) GL; and GL,
[6,7]. In an ideal world the conjecture should be closely related to Langlands
functoriality.

In this paper we consider the Sato—Tate conjecture for a family of automor-
phic representations, which is easier to state and prove but still very illuminat-
ing. Our working definition of a family {F} };>1 is that each Fj consists of all
automorphic representations 7 of G(A) of level Ny with 7w, cohomological
of weight &, where Ny € Z>1 and & is an irreducible algebraic representation
of G, such that either
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4 S. W. Shin, N. Templier

(1) (evel aspect) & is fixed, and Ny — 0o as k — oo or
(2) (weight aspect) Ny is fixed, and m (&) — oo as k — oo,

where m (§;) € R>( should be thought of as the minimal distance of the highest
weight of & to root hyperplanes. (See Sect. 6.4 below for the precise defini-
tion.) Note that each Fj has finite cardinality and |F;| — oo as k — oo. (For
a technical reason Fy is actually allowed to be a multi-set. Namely the same
representation can appear multiple times, for instance more than its automor-
phic multiplicity.) In principle we could let & and Ny vary simultaneously but
decided not to do so in the current paper in favor of transparency of arguments.
For instance families of type (i) and (ii) require somewhat different ingredients
of proof in establishing the Sato—Tate theorem for families, and the argument
would be easier to understand if we separate them. It should be possible to
treat the mixed case (where both Ny and & vary) by combining techniques in
the two cases (1) and (i1).

Let ﬁ be the maximal compact subtorus of the complex torus T.The quo-
tient 7, / Qis equipped with a measure 75T, to be called the Sato-Tate measure,
coming from the Haar measure on a maximal compact subgroup of G (of which
T, is a maximal torus). The following is a rough version of our result on the
Sato—Tate conjecture for a family.

Theorem 1.1 Suppose that G(R) has discrete series representations. Let
{Fi}k>1 be afamily in the level aspect (resp. weight aspect) as above. Let { p}
be a strictly increasing sequence of primes such that Ny, (resp. &) grows faster

1 1
than any polynomial in py in the sense that O8 Pk 08Pk 0)
lo log m (&)

as k — oo. Assume that the members of Fi are unramified at py for every
k. Then the Satake parameters {mp, : m € Filk>1 are equidistributed with
respect to [T

— 0 (resp.

To put things in perspective, we observe that there are three kinds of statistics
about the Satake parameters of {m,, : m € Fi}r>1 depending on how the
arguments vary.

(i) Sato—Tate: Fy is fixed (and a singleton) and py — oc.
(i1) Sato-Tate for a family: |F| — oo and py — oo.
(iii) Plancherel: |F;| — oo and py is a fixed prime.

The Sato—Tate conjecture in its original form is about equidistribution in case
(i) whereas our Theorem 1.1 is concerned with case (ii). The last item is marked
as Plancherel since the Satake parameters are expected to be equidistributed
with respect to the Plancherel measure (again supported on 7./ €2) in case (iii).
This has been shown to be true under the assumption that G (R) admits discrete
series in [99]. We derive Theorem 1.1 from an error estimate (depending on
k) on the difference between the Plancherel distribution at p and the actual
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Sato—Tate theorem for families 5

distribution of the Satake parameters at py in F. This estimate (see Theorem
1.3 below) refines the main result of [99] and is far more difficult to prove in
that several nontrivial bounds in harmonic analysis on reductive groups need
to be justified.

1.2 Families of L-functions

An application of Theorem 1.1 is to families of L-functions. We are able to
verify to some extent the heuristics of Katz and Sarnak [60] and determine the
symmetry type, see Sect. 1.3 below. In this subsection we define the relevant
families of L-functions and record some of their properties.

Let r: “G — GL(d, C) be a continuous L-homomorphism. We assume
the Langlands functoriality principle: for all ¥ € F there exists an isobaric
automorphic representation I1 = r,r of GL(d, A) which is the functorial lift
of the automorphic representation 7 of G(A), see Sect. 4.3 for a review of the
concept of isobaric representations and Sect. 10 for the precise statement of
the hypothesis. This hypothesis is only used in Theorem 1.5, Sects. 11 and 12.
By the strong multiplicity one theorem IT is uniquely determined by all but
finitely many of its local factors I1, = r,m,.

To an automorphic representation IT on GL(d, A) we associate its princi-
pal L-function L(s, IT). By definition L(s, w,r) = L(s, [1). By the theory
of Rankin—Selberg integrals or by the integral representations of Godement—
Jacquet, L(s, IT) has good analytic properties: analytic continuation, func-
tional equation, growth in vertical strips. In particular we know the exis-
tence and some properties of its non-trivial zeros, such as the Weyl’s law
(Sect. 4.4).

We denote by i = r«Fi the set of all such [T = r,m for m € F. Since the
strong multiplicity one theorem implies that IT is uniquely determined by its
L-function L(s, IT). We simply refer to § = r,.F as a family of L-functions.

In general there are many ways to construct interesting families of L-
functions. In a recent manuscript [87], Sarnak attempts to sort out these con-
structions into a comprehensive framework and proposes' a working definition
(see also [67]). The families of L-functions under consideration in the present
paper fit well into that framework. Indeed they are harmonic families in the sense
that their construction involves inputs from local and global harmonic analysis.
Other types of families include geometric families constructed as Hasse—Weil
L-functions of arithmetic varieties and Galois families associated to families
of Galois representations.

1 Sarnak and the authors gave a more refined and updated framework in [89] while our paper
was under review.

@ Springer



6 S. W. Shin, N. Templier

1.3 Criterion for the symmetry type

Katz and Sarnak [60] predict that one can associate a symmetry type to a family
of L-functions. By definition the symmetry type is the random matrix model
which is conjectured to govern the distribution of the zeros. There is a long
and rich history for the introduction of this concept.

Hilbert and Pdlya suggested that there might be a spectral interpretation of
the zeros of the Riemann zeta function. Nowadays strong evidence for the spec-
tral nature of the zeros of L-functions comes from the function field case: zeros
are eigenvalues of the Frobenius acting on cohomology. This is exemplified by
the equidistribution theorem of Deligne and the results of Katz and Sarnak [59]
on the distribution of the low-lying eigenvalues in geometric families.

In the number field case the first major result towards a spectral interpretation
is the pair correlation of high zeros of the Riemann zeta function by Mont-
gomery. Developments then include Odlyzko’s extensive numerical study and
the determination of the n-level correlation by Hejhal and Rudnick and Sar-
nak [86]. The number field analogue of the Frobenius eigenvalue statistics
of [59] concerns the statistics of low-lying zeros.

More precisely [60] predicts that the low-lying zeros of families of L-
functions are distributed according to a determinantal point process associated
to a random matrix ensemble. This will be explained in more details in Sects.
1.5 and 1.6 below. We shall distinguish between the three determinantal point
processes associated to the unitary, symplectic and orthogonal ensembles.?
Accordingly the symmetry type associated to a family § is defined to be uni-
tary, symplectic or orthogonal (see Sect. 1.6 for typical results).

Before entering into the details of this theory in Sect. 1.5 below, we state
here our criterion for the symmetry type of the harmonic families . F defined
above. We recall in Sect. 6.8 the definition of the Frobenius—Schur indicator
s(r) € {—1, 0, 1} associated to an irreducible representation. We shall prove
that the symmetry type is determined by s(r). This is summarized in the
following which may be viewed as a refinement of the Katz—Sarnak heuristics.

Criterion 1.2 Let r: ©*G — GL(d, C) be a continuous L-homomorphism
which is irreducible and non-trivial when restricted to G. Consider the family
r«JF of automorphic L-functions of degree d as above.

(i) If r is not isomorphic to its dual rV then s(r) = 0 and the symmetry type
is unitary.

(ii) Otherwise there is a bilinear form on C¢ which realizes the isomorphism
between r and r". By Schur lemma it is unique up to scalar and is either
symmetric or alternating. If it is symmetric then r is real, s(r) = 1 and

2 In this paper we do not distinguish in the orthogonal ensemble between the O, SO(odd) and
SO(even) symmetries. We will return to this question in a subsequent work.

@ Springer



Sato—Tate theorem for families 7

the symmetry type is symplectic. If it is alternating then r is quaternionic,
s(r) = —1 and the symmetry type is orthogonal.

We note that the conditions that r be irreducible and non-trivial when restricted
to G are optimal. If » were trivial when restricted to G then L (s, , r) would be
constant and equal to a single Artin L-function and the low-lying zeros would
correspond to the eventual vanishing of this Artin L-function at the central
point (which is a different problem). Also the universality exhibited in our
criterion may be compared with the GUE universality of the high zeros of [86].

If r were reducible then the L-functions would factor as a product
L(s,m,r)L(s, T, r). Su[}l)ose that both r; and r, are irreducible and non-
trivial when restricted to G. If r| = r; then clearly the distribution of zeros
will be as before but with multiplicity two. If 7| 2 r» then we expect that the
zeros will follow the distribution of the independent superposition of the two
random matrix ensembles attached to r; and rp. In other words the zeros of
L(s, m, r1) are uncorrelated to the zeros of L(s, i, r2), and one could verify
this using the methods of this paper to some extent. In particular we expect no
repulsion between the respective sequences of zeros.

It would be interesting to study families of automorphic representations over
a function field k = F;(X) of a curve X. To our knowledge the Katz—Sarnak
heuristics for such families are not treated in the literature, except in the case
of G = G L(1) where harmonic families coincide with the geometric families
treated by Katz—Sarnak (e.g. Dirichlet L-series with quadratic character are
the geometric families of hyperelliptic curves in [59, §10]). Over function
fields our criterion has the following interpretation. We consider families of
automorphic representations 7 of G (Ay); for simplicity we suppose that each
automorphic representations = of G(Ay) in the family F is attached to an
irreducible ¢-adic representation p : Gal(k*?’ / k) — LG. Then ry7 is attached
to the Galois representation r o p, and corresponds to a constructible £-adic
sheaf F' of dimension d on the curve X. The zeros of the L-function L(s, 7, r)
are the eigenvalues of Frobenius on the first cohomology, more precisely the
numerator of the L-function L(s, 7, r) is

det(1 — ¢ —*Fr|H' (X, F)).

If s(r) = —1 [resp. s(r) = 1] then there is an alternating (resp. symmet-
ric) pairing on the sheaf F. The natural pairing on H'(X, F) induced by the
cup product is symmetric (resp. alternating) and invariant by the action of
Frobenius. Thus the zeros of L(s, i, r) are the eigenvalues of an orthogonal
(resp. symplectic) matrix. This is in agreement with the assertion (ii) of our
Criterion 1.2. We also note the related situation [58].

Known analogies between L-functions and their symmetries over number
fields and function fields are discussed in [60, §4]. Overall we would like
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8 S. W. Shin, N. Templier

propose Criterion 1.2 and its analogue for geometric families as an answer to
the question mark in the entry 6-A of Table 2 in [60].

1.4 Automorphic Plancherel density theorem with error bounds

We explain a more precise version of the theorem and method of proof for the
Sato—Tate theorem for families (Sect. 1.1). The key is to bound the error terms
when we approximate the distribution of local components of automorphic
representations in a family with the Plancherel measure.

For simplicity of exposition let us assume that G is a split reductive group
over (Q with trivial center as in Sect. 1.1. A crucial hypothesis is that G(R)
admits an R-anisotropic maximal torus [in which case G(R) admits discrete
series representations]. Let Agisc (G) denote the set of isomorphism classes of
discrete automorphic representations of G (A). We say that w € Agisc(G) has
level N and weight £ if 7 has a nonzero fixed vector under the adelic version
of the full level N congruence subgroup K(N) C G(A™®) and if 7o ® &
has nonzero Lie algebra cohomology. In this subsection we make a further
simplifying hypothesis that & has regular highest weight, in which case 7, as
above must be a discrete series representation. (In the main body of this paper,
the latter assumption on & is necessary only for the results in Sects. 9.6-9.8,
where more general test functions are considered)

Define F = F(N, &) to be the finite multi-set consisting of 7 € Agisc(G)
of level N and weight &, where each such 7 appears in F with multiplicity

ar(r) = dim@E@>®) k™) e 7.

This quantity naturally occurs as the dimension of the w-isotypical subspace
in the cohomology of the locally symmetric space for G of level N with coeffi-
cient defined by &. The main motivation for allowing 7 to appear ar(;r) times
is to enable us to compute the counting measure below with the trace formula.

Let p be a prime number. Write G(Q),)" for the unitary dual of irreducible
smooth representations of G(Q). The unramified (resp. unramified and tem-
pered) part of G(Qp)" is denoted G (Q),)""" [resp. G(Q,)""""**™P]. There is
a canonical isomorphism

G(@p) "™ = T/ Q. (1.1)

The unramified Hecke algebra of G(Q,) will be denoted H"(G(Q))). There
is a map from H"(G(Q))) to the space of continuous functions on 7,/ :

¢ +— ¢ determined by ¢ () = trm(¢), Vr € G(Q,)" e,

There are two natural measures supported on T\c / 2. The Plancherel measure

ﬁgl’ur, dependent on p, is defined on G(Q p)A’ur and naturally arises in local
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Sato—Tate theorem for families 9

harmonic analysis. The Sato—Tate measure 25T on T, ¢/ 2 is independent of p
and may be extended to G(Q), )"U by zero. Both Mpl “and ST assign volume

1to 7, / €2. There is yet another measure ﬁcoum on G(Qp,)"", which is the
averaged counting measure for the p—components of members of 7. Namely

1
~count .,
e 5, (1.2)
|f| reF

where 87, denotes the Dirac delta measure supported at 7. [Each 7 €
Adisc (G) contributes ar(;r) times to the above sum.] Our primary goal is

to bound the difference between ﬁg U and 71§ W Oum . [Note that our definition of
-count :

Wy, in the main body will be a little dlfferent from (1.2) but asymptotically
the same, see Remark 9.9.]

In order to quantify error bounds, we introduce a filtration {H"
(G p))g" Yiezs, On H"(G(Qp)) as a complex vector space. The filtration
is increasing, exhaustive and depends on a non-canonical choice. Roughly
speaking, H"' (G (Q p))<K is like the span of all monomials of degree < «
when H" (G (Q))) is identified with (a subalgebra of) a polynomial algebra.
Foreach &, itis possible to assign a positive integer m (§) in terms of the highest
weight of £. When we say that weight is going to infinity, it means that m (&)
grows to oo in the usual sense.

The main result on error bounds alluded to above is the following. (See
Theorems 9.16 and 9.19 for the precise statements and Remarks 9.18 and 9.21
for an explicit choice of constants.) A uniform bound on orbital integrals, cf.
(1.9) below, enters the proof of (ii) [but not (i)].

Theorem 1.3 Let F = F (N, &) be as above. Consider a prime p, an integer
k > 1, and a function ¢, € Hur(G(Qp))<K such that |¢p,| < 1 on G(Qp).

(1) (level aspect) Suppose that & remains fixed. There exist constants
Ay, By, Ciy > 0 depending only on G such that for any p, k, ¢, as
above and for any N coprime to p,

Acount(¢p) Apl ur(¢p) O(pAlV+BlVKN_C1V).
(ii) (weight aspect) Fix a level N. There exist constants Az, Bwt, Cwt > 0

and a lower bound ¢ > 0 depending only on G such that for any p > c,
K, ¢p as above with (p, N) = 1 and for any &,

AR ) = W™ @p) = O(p™HBm(g) =),

Let {Fx = F(Nk, &) }i>1 be either kind of family in Sect. 1.1, namely either
Ny — oo and & is fixed or Ni is fixed and & — oo. When applied to
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10 S. W. Shin, N. Templier

{Fi}k>1, Theorem 1.3 leads to the equidistribution results in the following
corollary [cf. cases (ii) and (iii) in the paragraph below Theorem 1.1]. Indeed,
(i) of the corollary is immediate. Part (ii) is easily derived from the fact that
/LI;} " weakly converges to 25T as p — oo. Although the unramified Hecke
algebra at p gives rise to only regular functions on the complex variety T. /<2,
it is not difficult to extend the results to continuous functions on T"c /2. (See

Sects. 9.6-9.8 for details.)

Corollary 1.4 Keep the notation of Theorem 1.3. Let (/5 be a continuous func-
tion on T, ¢/ 2. Inview of (1.1) ¢ can be extended by zero to a function qbp on
G(Qp)™' for each prime p.

(1) (Automorphic Plancherel density theorem [99])
lim 22, = 75" (@)
k—00

(i1) (Sato-Tate theorem for families) Let {pi}x>1 be a sequence of primes

1 1
tending to co. Suppose that O8 Pk — 0 (resp. 08Pk
log N log m (&)

o0 if & (resp. Ny) remains fixed as k varies. Then

—> 0)ask —

Jim @, (@p) = 1 (@).

Theorem 1.3 and Corollary 1.4 remain valid if any finite number of primes
are simultaneously considered in place of p or pi. Moreover (i) of the corol-
lary holds true for more general (and possibly ramified) test functions ap on
G(Qp)" thanks to Sauvageot’s density theorem. It would be interesting to
quantify the error bounds in this generality. Finally the above results should be
compared with the proposition 4 in [97] and the theorem 1 in [78] for modular
forms on GL(2). We also note [90] for Maass forms (which are not considered
in the the present paper).

1.5 Random matrices

We provide a brief account of the theory of random matrices. The reader will
find more details in Sect. 11.1 and extensive treatments in [59,74].

The Gaussian unitary ensemble and Gaussian orthogonal ensemble were
introduced by Wigner in the study of resonances of heavy nucleus. The
Gaussian symplectic ensemble was introduced later by Dyson together with
his circular ensembles. In this paper we are concerned with the ensembles
attached to compact Lie groups which are introduced by Katz—Sarnak and
occur in the statistics of L-functions. (See [39] for the precise classification of
these ensembles attached to different Riemannian symmetric spaces.)
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Sato—Tate theorem for families 11

One considers eigenvalues of matrices in compact groups G(N) of large
dimension endowed with the Haar probability measure. We have three sym-
metry types G = SO(even) (resp. G = U, G = USp); the notation says that
for all N > 1, the groups are G(N) = SO2N) [resp. G(N) = U(N) and
G(N) =USp(2N)].

For all matrices A € G(N) we have an associated sequence of normalized
angles

0< < <--- <9y <N. (1.3)

For example in the case G = U, the eigenvalues of A € U(N) are given by
e(%) = 2mUi/N for 1 < Jj < N. The normalization is such that the mean
spacing of the (¢;) in (1.3) is about one.

For each N > 1 these angles (1%;)1<;<n are correlated random variables (a
point process). By the Weyl integration formula their joint density is propor-

tional to
[1

B
)‘ dvi...doy. (1.4)
1<i<j<N

(7‘[(19,‘ — l?j)
n —
N

The parameter S is a measure of the repulsion between nearby eigenvalues.
We have that 8 = 1 (resp. B = 2, 8 = 4) for G = SO(even) (resp. G = U,
G = USp).

A fundamental result of Gaudin—Mehta and Dyson, which has been extended
to the above ensembles by Katz—Sarnak, is that when N — oo the distribution
of the angles (¥;)1<i<ny converges to a determinantal point process.3 The
kernel of the limiting point process when G = U is given by the Dyson sine

kernel .
K(x,y) = w, x,yeRy
w(x —y)

The kernel for G = SO(even) is K4 (x,y) = K(x,y) + K(—x, y) and the
kernel for G = USpis K_(x, y) = K(x,y) — K(—x, y).

In particular this means that there is a limiting 1-level density W (G) for the
angles (9;)1<i<ny as N — oo (see also Proposition 11.1). It is given by the
following formulas:

sin 2w x
W (SO(even))(x) = K+ (x,x) =1+ ,
27X

WU)(x) = K(x,x) =1, (1.5)
sin 27w x
WUSp)(x) = K_(x,x)=1—

2w x

3 For other values of B # 1,2, 4, the limiting statistics attached to (1.4) has been determined
recently by Valk6—Virdg in terms of the Brownian carousel.
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12 S. W. Shin, N. Templier

1.6 Low-lying zeros

We can now state more precisely our results on families of L-functions. Let
§ = rJF be a family of L-functions as defined above in Sects. 1.1-1.2.

For all IT € §; we denote by p; (IT), the zeros of the completed L-function
A(s, IT), where j € Z. We write p; (IT) = % + iy;(IT) and therefore —% <
Rey;(IT) < % for all j. By the functional equation A(% +iy,I1) =0if and
only if A(% + iy, 1) = 0. We do not assume the GRH that would further
imply y;(Pi) € R forall j.

In the case that IT is self-dual the zeros occur in complex pairs, namely
L(L +iy, 1) = 0if and only if A(} — iy, 1) = 0.

Following Iwaniec—Sarnak we associate an analytic conductor C($x) = 1 to
the family, see Sects. 4.2 and 11.5. We assume from now that the family is
in the weight aspect, so that for each £ > 1, all of I1 € §; share the same
archimedean factor I, and we can set C(§y) := C(I1x). (For families in
the level aspect we obtain similar results, see Sect. 11). Note that C(§x) — o0
and furthermore we shall make the assumption that log C (§x) =< logm (§x) as
k — oo.

For a given I1 € §; the number of zeros y;(IT) of bounded height
is x<log C(Sr). The low-lying zeros of A(s, I1) are those within distance
O(1/1og(C (§k)) to the central point; heuristically there are a bounded num-
ber of low-lying zeros for a given I1 € §x, although this can only be proved
on average over the family. For a technical reason related to the fact that
the explicit formula counts both the zeros and poles of A(s, IT) (Sect. 4.4),
we make an hypothesis on the occurrence of poles of A(s, IT) for IT € Ty,
see Hypothesis 11.2.

The statistics of low-lying zeros of the family are studied via the functional

D@ @) = %|§:Z:(”()ga&0, (1.6)

Medr Jj

where @ is a Paley—Wiener function. This is the 1-level density for the family
Sk- Choosing @ as a smooth approximation of the characteristic function of
an interval [a, b], the sum (1.6) should be thought as a weighted count of all
the zeros of the family lying in [a, b]:

2am__ () < b (jeZ.MeF)
logCGEo -7V SlogeG ST «-

We want to compare the asymptotic as k — oo with the limiting 1-level density
of normalized angles (1.3) of the random matrix ensembles described in Sect.
1.5 above.
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Sato—Tate theorem for families 13

Theorem 1.5 Let r: G :— GL(d, C) be a continuozs L-homomorphism
which is irreducible and non-trivial when restricted to G. There exists § > 0
depending on § such that the following holds. Let § = r.JF be a family of
L-functions in the weight aspect as in Sect. 1.2, assuming the functoriality
conjecture as in Hypothesis 10.1. Assume Hypothesis 11.2 concerning the
poles of A(s, IT) for I1 € . Then for all Paley-Wiener functions ® whose
Fourier transform ® has support in (=6, §):

(i) there is a limiting 1-level density for the low-lying zeros, namely there is
a density W (x) such that

o0

klim DGy, ) :/ O(x)W(x)dx;

—0o0

(ii) the density W (x) is determined by the Frobenius—Schur indicator of the
irreducible representation r. Precisely,

W(SO(even)), ifs(r) = —1,
W= 1W@), ifs(r)y=0, (1.7)
W (USp), ifs(ry=1.

The constant § > 0 depends on the family §, in other words it depends on
the group G, the L-morphism r: ©G — GL(d, C) and the limit of the ratio
log C(S1)
log m (&)
the exponents in the error term occurring in Theorem 1.3. Although we do not
attempt to do so in the present paper, it is interesting to produce a value of §
that is as large as possible, see [53] for the case of GL(2). This would require
sharp bounds for orbital integrals as can be seen from the outline below. A
specific problem would be to optimize the exponents a, b, e in (1.9). (In fact
we can achieve e = 1, see Sect. 1.7 below.)

Our proofs of Theorems 1.3 and 1.5 are effective in the sense that each con-
stant and each exponent in the statements of the estimates could, in principle,
be made explicit. Finally we note that, refining the work of E. Royer, Cogdell
and Michel [31] have studied the question of distribution of L-values at the
edge in the case of symmetric powers of GL(2) and noted in that context the
relevance of the indicator s(r).

. Its numerical value is directly related to the numerical values of

1.7 Outline of proofs
A wide range of methods are used in the proof. Among them are the Arthur-

Selberg trace formula, the analytic theory of L-functions, representation theory
and harmonic analysis on p-adic and real groups, and random matrix theory.
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14 S. W. Shin, N. Templier

The first main result of our paper is Theorem 1.3, proved in Sect. 9. We
already pointed out after stating the theorem that the Sato—Tate equidistribution
for families (Corollary 1.4) is derived from Theorem 1.3 and the fact that the
Plancherel measure tends to the Sato—Tate measure as the residue characteristic
is pushed to oo.

Let us outline the proof of the theorem. In fact we restrict our attention to
part (ii), as (i) is handled by a similar method and only simpler to deal with.
Thus we consider F with fixed level and weight &, where £ is regarded as a
variable. Our startmg point is to realize that for ¢, € C2°(G(Q,)), we may
interpret 2" ((l) p) in terms of the spectral side of the trace formula for G
evaluated agamst the function ¢,¢°*Pp € C°(G(A)) for a suitable ¢p>7
(depending on F and p; note that p is allowed to vary) and an Euler—Poincaré
function ¢« at 0o (depending on §). Applying the trace formula, which has a
simple form thanks to ¢, we get a geometric expansion for ,TIC]?”[‘,“ (¢p):

o oY (v,
ARGy = > >, oM ><¢;7)A§Lé). (1.8)

dim
McCG yeM(Q)/~ §
cusp.Levi R—¢j]

where a;w’y € C is a coefficient encoding a certain volume associated with
the connected centralizer of y in M and ¢}y is the constant term of ¢> along
(a parabolic subgroup associated with) M. The Plancherel formula identifies
the term for M = G and y = 1 with ﬁl;,l (ap), which basically dominates the
right hand side.

The proof of Theorem 1.3 (ii) boils down to bounding the other terms on
the right hand side of (1.8). Here is a rough explanation of how to analyze
each component there. The first summation is finite and controlled by G,
so we may as well look at the formula for each M. There are finitely many
conjugacy classes in the second summation for which the summand is nonzero.
The number of such conjugacy classes may be bounded by a power of p where
the exponent of p depends only on k (measuring the “complexity” of ¢, ). The
term a;w’y, when unraveled, involves a special value of some Artin L-function.

We establish a bound on the special value which suffices to deal with aﬁu’y.

The last term é‘{g;) can be estimated by using a character formula for the

stable discrete series character @1?,1()/ &) as well as the dimension formula

for &. It remains to take care of O, M(a% )(qb ). This turns out to be the most
difficult task since Theorem 1.3 asks for a bound that is uniform as the residue
characteristic varies.

We are led to prove that there exist a, b, e > 0, depending only on G, such
that for almost all ¢,
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Sato—Tate theorem for families 15

|0y @] < g DM () P2 1.9

for all semisimple y and all ¢, with ¢, € H"(M (Qq))<K and |¢4| < 1,
where DY (-) denotes the Weyl discriminant. The justification of (1.9) takes
up the whole of Sect. 7. The problem already appears to be deep for the unit
elements of unramified Hecke algebras in which case one can take k = 0.
(By a different argument based on arithmetic motivic integration, Cluckers,
Gordon, and Halupczok establish a stronger uniform bound with e = 1. This
work is presented in Appendix B.) At the (fixed) finite set of primes where wild
ramification occurs, the problem comes down to bounding the orbital integral

|0M(@" (¢g)| for fixed g and ¢,. It is deduced from the Shalika germ theory
that the orbital integral is bounded by a constant, if normalized by the Weyl
discriminant DY (y)!/2, as y runs over the set of semisimple elements. See
Appendix A by Kottwitz for details.

We continue with Theorem 1.5. The proof relies heavily on Theorem 1.3.
The connection between the two statements might not be immediately
apparent.

A standard procedure based on the explicit formula (see Sect. 4) expresses
the sum (1.6) over zeros of L-function as a sum over prime numbers of Satake
parameters. The details are to be found in Sect. 12, and the result is that
D (S, @) can be approximated by

feount 3y, (108P

prime p

Here ¢, € H"(G(Q p))<K is suitably chosen such that ap (mp) is a sum of
powers of the Satake parameters of .7 (see Sects. 2 and 3). The integer k may
be large but it depends only on r so should be considered as fixed. Also the
sum is over unramified primes. We have log C (Fy) =< log m (&) (see Sects. 10
and 11). We deduce that the sum is supported on those primes p < m(£;)4?
where A is a suitable constant and § is as in Theorem 1.5.

We apply Theorem 1.3 which has two components: the main term and
the error term. We begin with the main term which amounts to substituting
Apl’“r(q?p) for ﬁcf‘;}?}@ »)in (1.10). Unlike 752", this term is purely local, thus

simpler. Indeed Mp ur ) p») can be computed explicitly for low rank groups, see

e.g. [48] for all the relevant properties of the Plancherel measure. However we
want to establish Theorem 1.5 in general so we proceed differently.

Using certain uniform estimates by Kato [57], we can approximate
Apl o (¢ ) by amuch simpler expression that depends directly on the restriction
of r to G X Wq, . Then a pleasant computation using the Cebotarev equidis-

tribution theorem, Weyl’s unitary trick and the properties of the Frobenius—
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16 S. W. Shin, N. Templier

Schur indicator shows that the sum over primes of this main term contribute
%(’)CD(O) to (1.10). This exactly reflects the identities (1.7) in the statement
(i1) of Theorem 1.5.

We continue with the error term O ( pAWtJrBWt" m (&)~ ) which we need to
insert in (1.10). We can see the reasons why the proof of Theorem 1.5 requires
the full force of Theorem 1.3 and its error term: the polynomial control by
pAWtJrBWt" implies that the sum over primes is at most m(&)P? for some
D > 0; the power saving m (&)~ is exactly what is needed to beat m (&) P?
when § is chosen small enough.

1.8 Notation

We distinguish the letter F for families of automorphic representations on
general reductive groups and § = r,F for the families of automorphic repre-
sentations on GL(d).

Let us describe in words the significance of various constants occurring
in the main statements. We often use the convention to write multiplicative
constants in lowercase letters and constants in the exponents in uppercase or
greek letters.

e The exponent § from Lemma 2.6 is such that for all ¢ € H" (GL,) of degree
at most «, the pullback r*¢ is of degree at most < k.

e The exponent bg from Lemma 2.14 controls a bound for the constant term
|¢par(1)] for all Levi subgroups M and ¢ € H"(G) of degree at most «.

e The exponent 0 < 6 < % is a nontrivial bound towards Ramanujan-
Petersson for GL(d, A).

e The integer i > 1 in Corollary 6.9 is an upper-bound for the ramification of
the Galois group Gal(E/F).

e The constants Bz and cg in Lemma 8.4 and A3, B3 in Proposition 8.7 control
the number of rational conjugacy classes intersecting a small open compact
subgroup.

e Theintegerug > 1inLemma 8.11 is a uniform upper bound for the number
of G(F,)-conjugacy classes in a stable conjugacy class.

e Theinteger ng > 0is the minimum value for the dimension of the unipotent
radical of a proper parabolic subgroup of G over F.

e The constant ¢ > 0 is a bound for the number of connected components
70(Z(1,)") in Corollary 8.12.

e The exponents Ay, By, Ciy > 0 in Theorem 9.16 (see also Theorem 1.3)
and Awt, Bwt, Cwt > 0 1n Theorem 9.19.

e For families in the weight aspect, the constant > 0 which may be chosen
arbitrary small enters in the condition (11.5) that the dominant weights
attached to &; stay away from the walls.
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Sato—Tate theorem for families 17

e The exponent Cpole > 0 in the Hypothesis 11.2 concerning the density of
poles of L-functions.

e The exponents 0 < C; < C, control the analytic conductor C(§y) of the
families in the weight aspect [Inequality (11.7)] and 0 < C3 < C4 in the
level aspect (Hypothesis 11.4).

e The constant § > 0 in Theorem 11.5 controls the support of the Fourier
transform @ of the test function ®.

e The constant c(f) > 0 depending on the test function f is a uniform upper

bound for normalized orbital integrals D¢ (y)% O, (f) (Appendix A).

Several constants are attached directly to the group G such as the dimension
dg = dim G, the rank rg = 1k G, the order of the Weyl group wg = |€2|, the
degree s of the smallest extension of F over which G becomes split. Also in
Lemma 2.14 the constant bg gives a bound for the constant terms along Levi
subgroups. The constants ag, bg, eg in Theorem 7.3 gives a uniform bound
for certain orbital integrals. In general we have made effort to keep light and
consistent notation throughout the text.

In Sect. 6 we will choose a finite extension £/ F' which splits maximal tori of
subgroups of G. The degree sSGpl = [E: F] will be controlled by szpl < sgwe
(see Lemma 6.5), while the ramification of E/F will vary. I}n\ Sect. 5 we
consider the finite extension Fy/F such that Gal(F /F) acts on G through the
faithful action of Gal(F/F). For example if G is a non-split inner form of
a split group then F; = F. In Sect. 12 we consider a finite extension F/F|
such that the representation r factors through G »x Gal(F,/F). For a general
G, there might not be any direct relationship between the extensions £/ F and
Fy/Fi/F.

1.9 Structure of the paper

For a quick tour of our main results and the structure of our arguments, one
could start reading from Sect. 9 after familiarizing oneself with basic notation,
referring to earlier sections for further notation and basic facts as needed.
The first Sects. 2 and 3 are concerned with harmonic analysis on reduc-
tive groups over local fields, notably the Satake transform, L-groups and L-
morphisms, the properties of the Plancherel measure and the Macdonald for-
mula for the unramified spectrum. We establish bounds for truncated Hecke
algebras and for character traces that will play a role in subsequent chapters.
In Sect. 4 we recall various analytic properties of automorphic L-functions
on GL(d) and notably isobaric sums, bounds towards Ramanujan—Petersson
and the so-called explicit formula for the sum of the zeros. Section 5 intro-
duces the Sato—Tate measure for general groups and Sato—Tate equidistribution
for Satake parameters and for families. The next Sect. 6 gathers various back-
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18 S. W. Shin, N. Templier

ground materials on orbital integral, the Gross motive and Tamagawa measure,
discrete series characters and Euler—Poincaré functions, and Frobenius—Schur
indicator. We establish bounds for special values of the Gross motive which
will enter in the geometric side of the trace formula.

In Sect. 7 we establish a uniform bound for orbital integrals of the type (1.9).
In Sect. 8 we establish various bounds on conjugacy classes and level sub-
groups. How these estimates enter in the trace formula has been detailed in
the outline above.

Then we are ready in Sect. 9 to establish our main result, an automorphic
Plancherel theorem for families with error terms and its application to the Sato—
Tate theorem for families. The theorem is first proved for test functions on the
unitary dual coming from Hecke algebras by orchestrating all the previous
results in the trace formula. Then our result is improved to allow more general
test functions, either in the input to the Sato—Tate theorem or in the prescribed
local condition for the family, by means of Sauvageot’s density theorem.

The last three Sects. 10, 11 and 12 concern the application to low-lying
zeros. In complete generality we need to rely on Langlands global functoriality
and other hypothesis that we state precisely. These unproven assumptions are
within reach in the context of endoscopic transfer and we will return to it in
subsequent works.

Appendix A by Kottwitz establishes the boundedness of normalized orbital
integrals from the theory of Shalika germs. Appendix B by Cluckers—Gordon—
Halupczok establishes a strong form of (1.9) with e = 1 by using recent results
in arithmetic motivic integration.

2 Satake transforms
2.1 L-groups and L-morphisms

We are going to recall some definitions and facts from [9, §1, §2] and [62, §1].
Let F be a local or global field of characteristic O with an algebraic closure F,
which we fix. Let W denote the Weil group of F and set I' := Gal(F/F).
Let H and G be connected reductive groups over F. Let (§ , T, {Xo}acav) be
a splitting datum fixed by I', from which the L-group

LG =G x Wp

is constructed. An L-morphismn: “H — G is a continuous map commuting
with the canonical surjections “H — Wy and “G — W such that | gisa
morphism of complex Lie groups. A representation of G is by definition a
continuous homomorphism G — GL(V) for some C-vector space V with
dimV < oo such that r|z is a morphism of complex Lie groups. Clearly
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Sato—Tate theorem for families 19

giving a representation G — GL(V) is equivalent to giving an L-morphism
LG - LGL(V).

Let f: H — G be anormal morphism, which means that f(H) is a normal
subgroup of G. Then it gives rise to an L-morphism *G - LH as explained
in [9, 2.5]. In particular, there is a I'-equivariant map Z(G) — Z(H), which
is canonical (independent of the choice of splittings). Thus an exact sequence
of connected reductive groups over F

1->G > Gy—>Gy;—~> 1
gives rise to a ["-equivariant exact sequence of C-diagonalizable groups

1 — Z(@3) — Z(az) — Z(al) — 1.

2.2 Satake transform

From here throughout this section, let /' be a finite extension of Q, with integer
ring O and a uniformizer w. Set g := |O/w O|. Let G be an unramified group
over F' and B = T U be a Borel subgroup decomposed into the maximal torus
and the unipotent radical in B. Let A denote the maximal F-split torus in 7.
Write & (resp. @) for the set of all F-rational roots (resp. all roots over F)
and CIDJ; (resp. ®™) for the subset of positive roots. Choose a smooth reductive
model of G over O corresponding to a hyperspecial point on the apartment
for A. Set K := G(0O). Denote by X,(A)™ the subset of X,(A) meeting the
closed Weyl chamber determined by B, namely A € X, (A)™" if a(A) > O for
all ¢ € CIDF. Denote by QF (resp. 2) the F-rational Weyl group for (G, A)
(resp. the absolute Weyl group for (G, T')), and pf (resp. p) the half sum of
all positive roots in d>;§ (resp. ®1). A partial order < is defined on X,(A)
(resp. X(T)) such that u < A if A — p is a linear combination of F'-rational
positive coroots (resp. positive coroots) with nonnegative coefficients. The
same order extends to a partial order <g on X,(A) ®z R and X.(T) ®z R
defined analogously.

Let F" denote the maximal unramified extension of F. Let Fr denote the
geometric Frobenius element of Gal(F""/ F). Define W' to be the unramified
Weil group, namely the subgroup FrZ of Gal(F""/F). Since Gal(F/F) acts
on G through a finite quotient of Gal(F'"/F), one can make sense of X G :=
G x Wi

Throughout this section we write G, T, A for G(F), T(F), A(F) if
there is no confusion. Define H"(G) := CX(K\G/K) and H"(T) =
CX(T(F)/T(F) N K). The latter is canonically isomorphic to H" (A) :=
CX(A(F)/A(0)) via the inclusion A — T'. We can further identify
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20 S. W. Shin, N. Templier

HY(T) >~ H" (A) >~ C[X4(A)]

where the last C-algebra isomorphism matches A € X (A) with 1, () ank) €
H"(A). Let L € X4 (A). Write

1
w0 =1k € H"(G), = o > Lunyank) € HT (AP,

u}EQF

The sets {T)?}AGX*(A)Jr and {T;f‘}xex*(Aﬁ are bases for H" (G) and H" (A)$F
as C-vector spaces, respectively. Consider the map

HY(G) — HY(T), f+> (t > 83(1‘)1/2/ f(tu)du) 2.1)
U

composed with H" (7)) >~ H"(A) above. The composite map induces a C-
algebra isomorphism

SY: HY(G) > HY (A (2.2)

called the Satake isomorphism. We often write just S for S¢. We note that in
general S does not map rf to r/{“.

Another useful description of 7" (G) is through representations of - G".
(The latter notion is defined as in Sect. 2.1). Write (6 X Fr)ss—conj for the set

of G—conjugacy classes of semisimple elements in G x Fr. Consider the set
ch (LGur) = {trr: (G x Fr)ss—conj = C|r is a representation of LG“r} )

Define (C[ch(LG‘i)] to be the C-algebra generated by ch(*G™) in the space
of functions on (G X Fr)gs_conj. For each A € X «(A)T define the quotient

L ZweQF sgn(w)w (A + pF) 2.3)
o= ZweQF sgn(w)wpp '

which exists as an element of C[ X (A)]QF and is unique. (One may view x;
as the analogue in the disconnected case of the irreducible character of highest
weight A, cf. proof of Lemma 2.1 below.) Then {)x},cx,a)+ 1 a basis for
Cl[ X« (A)]QF as a C-vector space, cf. [57, p. 465]. (Another basis was given
by rf’s above.) There is a canonical C-algebra isomorphism

T : Clch(:G"™)] S H™(A)%F, (2.4)
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determined as follows (see [9, Prop 6. 7] for detail): for each irreducible r,
trr|7 is shown to factor through T — A (induced by A C T). Hence trr|7
can be viewed as an element of C[ X *(A)] = C[X4(A)], which can be seen to
be invariant under Q. Define 7 (tr r) to be the leter element.

Let ro be an irreducible representation of G of highest weight Ao €
X*(T)" = X,(T)*. The group W} acts on X*(T)*. Write Stab(rg) C W}
for the stabilizer subgroup for Ao, which has finite index (since a finite power

of Fr acts trivially on G and thus also on T). Put r := Ind-C G uStab(rg) and

A= Do ews/Sub(rg) ©A0 € Xi(A)T. Clearly r and A depend only on the
Wgt-orbit of Ag. Puti(Ag) := [Wg": Stab(ro)].

Lemma 2.1 (i) Suppose that r and A are obtained from ro and Ay as above.
Then

T(trr) = xy. (2.5)

(ii) In general for any irreducible representation r': “G" — GL4(C) such
that r'(W}") has relatively compact image, let ro be any irreducible sub-
representation of r'|g. Let r be obtained from rq as above. Then for some
¢ e C*with|¢| =1,

trr' =¢-trr.

Proof Let us prove (i). For any i > 1, let LG; denote the finite L- -group
G x Gal(F;/F) where F; is the degree i unramified extensmn of Fin F.

It is easy to see that r(Fr!*0)) is trivial and that r = IndA ’(Ao)ro. Then (2.5)
amounts to Kostant’s character formula for a disconnected group [61, Thm 7.5]
applied to LGMO). As for (i), let Ag and A be as in the paragraph preceding
the lemma. Let j > 1 be such that G becomes split over a degree j unramified
extension of F. (Recall that G is assumed to be unramified.) By twisting r’ by
a unitary character of W' one may assume that r’ factors through Lg j- Then

L
. . . Gj
both r and r’ factor through -G ;j and are irreducible constituents of Inda 1.

From this it is easy to deduce that 7 is a twist of by a finite character of W'
of order dividing j. Assertion (ii) follows. O

Each A € X,(A)™ determines s, , € C such that

S = 2. sl (2.6)

HEX4(A)T

where only finitely many s, ,, are nonzero. Infact Theorem 1.3 of [57] identifies
Sy, With KML(q_l) defined in (1.2) of that paper, cf. §4 of [48]. In particular
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sp,n # 0and sy, # Ounless u < A. The following information will be useful
in Sect. 2.7.

Lemma 2.2 Let), i € X+ (A)™T. Suppose that kst := w(A+pr)—(u+pr)
is nontrivial for all w € Q. For k € X, (A) let p(k) € Zxq be the number
of tuples (Ca)ov e(@Y)+ with cqv € Lo such that ) v cqv - " = k. Then

s3] < ¢ I2F|] max p(hxy w).
wer

Proof It is easy to see from the description of Kj M(q_l) in [57, (1.2)] that

K3 (g™ H| < 192F] max 2 (wh + pr) — (+ pr)i g™
weQF

The definition of 2 in [57, (1.1)] shows that 0 < P (x; ¢~ !) < pk)g~" if
K # 0. O

2.3 Truncated unramified Hecke algebras

Set n := dim7 and X.(T)r := X.(T) ®z R. Choose an R-basis B =
{e1, ..., en} of X, (T)R. Foreach A € X, (T)g, written as A = > =, a;(A)e;
for unique a; (A) € R, define

Al := max |a;(A)], |2l := max(|wA|g).
1<i< weR

<isn

When there is no danger of confusion, we will simply write | - |g or even | - |
instead of | - |, and similarly for || - ||g. It is clear that || - ||z is Q2-invariant
and that [A1 4+ A2 < |A1lg + |A2|p forall A1, Ay € X (T). When k € Zxo,
define

HY(G)SOB = {C—subspace of H"(G) generated by tf, re X (AT,

HMm<Kk 2.7)

It is simply written as H" (G)S* when the choice of 3 is clear.
Lemma 2.3 Let B and B’ be two R-bases of X, (T)r. Then there exist con-
stants c1, ¢2, B1, B2, B3, B4 > 0 such that for all . € X, (T)r,

(1) a1lrlg < [AB < c2lAlp,

(i) Bi|A|g < Az < Ba|A|g forall x € Xi(T)g,
(iii) B3lAllp < Ml < BalAllg forall » € X, (T)r and
@iv) Hur(G)gBIIK,B’ C Hur(G)gx,B c Hur(G)gB;IK,B’.
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Proof Let us verify (i). As the roles of B and B’ can be changed, it suffices
to prove the existence of ¢. For this, it suffices to take ¢z = supy s<l 1AlB
The latter is finite since | - | is a continuous function on the set of A such
that |A|p < 1, which is compact. Part (ii) is obtained by applying the lemma
to the bases B’ = wB for all w € Q. Let us check (iii). Let By, B, > 0 (resp.
B{, B}, > 0) be the constants of (ii) for the basis B (resp. B). Then

c1Bi(BY) Nals < ciBilAlp < Bildls < |5

and similarly [|Al|g < csz(Bi)_IHAH p. Finally (iv) immediately follows
from (iii). |

It is natural to wonder whether the definition of truncation in (2.7) changes
if a different basis {tf } or {x,.} is used. We assert that it changes very little
in a way that the effect on « is bounded by a k-independent constant. To
ease the statement define H}"(G)Q"B fori = 1 (resp. i = 2) to be the C-
subspace of H" (G) generated by S~ (‘L’}f‘) (resp. S~ (xp)) for A € X, (A)T
with ||A|lp < k.

Lemma 2.4 There exists a constant C > 1 such that for every k € Z>( and
foranyi,j € {@,1,2},

H?I(G)QK,B C Hljlr(G)<CK,B

Proof It is enough to prove the lemma for a particular choice of B by Lemma
2.3. So we may assume that 3 extends the set of simple coroots in ® by an
arbitrary basis of X, (Z(G))r. Again by Lemma 2.3 the proof will be done if
we show that each of the following generates the same C-subspace:

(i) the setof 7 for A € X,(A)T with ||z < «,
(i) the set of S~1(z)) for A € X, (A)T with |x|5 < &,
(iii) the set of S™1 () for A € X4 (A)t with |A|5 < k.

It suffices to show that the matrices representing the change of bases are “upper
triangular” in the sense that the (A, 1) entries are nonzero and (A, @) entries
are zero unless A > u. (Note that A > p implies |A|p > || by the choice of
B.) We have remarked below (2.3) that s;_,,’s have this property, accounting
for (i)<>(iii). For (ii)<>(iii) the desired property can be seen directly from (2.3)
by writing x; in terms of rlf’s. O

2.4 The case of GL,

The case G = GLy is considered in this subsection. Let A = T be the diagonal
maximal torus and B the group of upper triangular matrices. For 1 < i < d,
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take ¥; € X,(A) to be y — diag(1l,...,1,y,1,...,1) with y in the i-th
place. One can naturally identify X, (A) =~ Zd such that the images of Y; form
the standard basis of Z¢. Then Qp is isomorphic to .#;, the symmetric group
in d variables acting on {Y1, ..., Y} via permutation of indices. We have the
Satake isomorphism

S: H™(GLy) > H™(T)®F ~C[v, ..., v

For an alternative description let us introduce standard symmetric polynomials
X1, ..., Xg by the equation in a formal Z-variable (Z — Y1)...(Z — Yy3) =
z9—X,2%7 ' + .-+ (=1)?X4. Then

clvi, .. Y =c[x1,.... Xa1, X2].

Let k € Z>. Define H* (GL;)S*, or simply Hj", to be the preimage under
S of the C-vector space generated by

Z Y (1) 0(2) Ya(d) at,...,aq € [—k, k]
UEVd

The following is standard (cf. [48]).
Lemma 2.5 Letr € Z>i. Let A, := (r,0,0,...,0) € X.(A)*. Then
S+ +Y) = Z Chyop f;?
REXL (AT

HAy

for ¢y, € Cwith ¢y, 5, = q"V=D/2, where the sum runs over the set of

w € X4 (T)" such that u < A,. In particular,
ST+ + Y =g, o),

1 (2 2 1-d G
ST+ +Y)) =4 (T(z,o,...,O) + (1 - ‘I)T(l,1,o,...,0)) .

2.5 L-morphisms and unramified Hecke algebras

Assume that H and G are unramified groups over F. Let n: 'H — LG
be an unramified L-morphism, which means that it is inflated from some L-
morphism © HY — LG (the notion of L-morphism for the latter is defined as
in Sect. 2.1). There is a canonically induced map ch(!:G") — ch(F HY). Via
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(2.2) and (2.4), the latter map gives rise to a C-algebra map n*: H"(G) —
HY(H).
We apply the above discussion to an unramified representation

r:tG — GL4(C).
Viewing r as an L-morphism “G — LGL,, we obtain
r*: HY"(GLy) — H"(G).

Lemma 2.6 Let B be an R-basis of X (T)r. There exists a constant f > 0
(depending on B, d and r) such that for all k € Zso, r*(H"(GLy)S¥) C
Hur(G)gﬂk,B .

Proof Thanks to Lemma 2.3, it is enough to deal with a particular choice of B.
Choose B by extending the set A of simple coroots, and write B = AY ] By.
We begin by proving the following claim: let A1, 1> € X4(A)™ and expand
the convolution product

T)»l * flz Zakl A2 M

where only & € X,(A)™ such that u <g A1 + A; contribute (cf. [18, p. 148]).
Only finitely many terms are nonzero. Then the claim is that

il < |A1 + A2lg, whenever afsz = 0.

To check the claim, consider u = >,z ac()-eand A j+ir = D,z ac(A1+
A2) - e, where the coefficients are in R. The conditions u© <g A; + A, and
w € X4(T)Rr,+ imply that a.(u) = ar(A1 + A2) if e € By and 0 < a.(u) <
a.(M + L) if e € AY. Hence || < |A1 + A2|5.

We are ready to prove the lemma. It is explained in Lemma 2.4 and the
remark below it that there exists a constant 8; > 0 which is independent of k
such that every ¢ € H"(GL;)S can be written as a C-linear combination of

Z Y(fél)Y,ffz) Y;‘(id), ai,...,aq € [—Pik, Pikl.
Uefyd

Each element above can be rewritten in terms of the symmetric polynomials
) . Bk

X;’s of Sect. 2.4: first, X),'* times 2oesy Y;‘EI)Y;?Z) LY is a symmetric

polynomial of degree < 2;3 1k, which in turn is a polynomial in X1, ..., Xy

of degree < 2B1k. We conclude that every ¢ € H"(GLy)S* is in the span of

monomials
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X0 xP XD by, bg € [<2Bi, 2B1k]. (2.8)
For each 1 < i < d, write r*(X;) [resp. r*(X; 1] as a linear combination

of t/\ (resp. rf ) with nonzero coefficients. Define Bj to be the maximum
ij

among all possible |; ;| and |)L_ |. The above claim r*(Xb1 sz

zd) asin

(2.8) is in the C-span of ‘L'M satlsfylng

lnls < (1b1] + -+ - + |bal) fo < 2dBoBik.

So the above span contains 7*(¢) for ¢ € H"(GLy)S*. By Lemma 2.3 there
exists a constant By > 0 such that ||u|g < Ba|u|g for every u € X, (7).
Hence the lemma holds true with 8 := 2B>dfB1. O

The map r also induces a functorial transfer for unramified representations
re: It (G(F)) — It (GL4(F)) (2.9)

uniquely characterized by trr,(7)(¢) = trw(r*¢) for all 7 € Trr" (G (F))
and ¢ € H"(GL4(F)).

2.6 Partial Satake transform

Keep the assumption that G is unramified over F. Let P be an F-rational
parabolic subgroup of G with Levi M and unipotent radical N such that B =
TU is contained in P. Let Q7 (resp. Q7. F) denote the absolute (resp. F-
rational) Weyl group for (M, T). A partial Satake transform is defined as [cf.

(2.1)]
SY:H(G) — H™(M), f > (m > ap(m)1/2/ f(mn)dn)
N

It is well known that S¢ = S¥ o Sﬁ. More concretely, Sﬁ is the canonical
inclusion C[X4(A)]¥*M.F < C[X4(A)]?F if H (M) and H"(G) are iden-
tified with the source and the target via S¢ and S™, respectively. Since T is
a common maximal torus of M and G, an R-basis B of X, (T)gr determines
truncations on H" (M) and H" (G).

Lemma 2.7 For any k € Zo, S5 (H"(G)SB) C H (M)S<5,

Proof It is enough to note that |A||g,y < ||A]l,¢ for all A € X, (A), which
holds since the s-orbit of X is contained in the Q2-orbit of A. O

Remark 2.8 Letn: LM — LG be the embeddlng of [9, §3], well defined up
to G- -conjugacy. Then S} G coincides with n*: HY(G) — H™ (M) of Sect. 2.5
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2.7 Some explicit test functions

Assume that 7: LG = G x Wr — GL4(C) is an irreducible representation
arising from an unramified L-morphism *G" — £ GLY such that r(Wp) is
relatively compact. For later applications it is useful to study the particular
element r*(Y; + - - - + Yy) in H*"(G).

Lemma 2.9 Let g = r* (Y1 +--- + Yy). Then

() Suppose thatr: “G" — GL4(C) does not factor through Wi (or equiv-
alently that r| is not the trivial representation). Then

lp(1)] < [QF| max p(hxy, 0)-q .
weQF

(i1) Suppose that r|g is trivial. Then ¢ (1) = r(Fr).

Proof Let us do some preparation. By twisting » by an unramified unitary
character of Wr (viewed as a character of LG) we may assume that r =

Lg; . . . —~
Inda ’ro for some irreducible representation rg of G, cf. the proof of Lemma

2.1 (ii). Let A be the highest weight of r and define A € X,(A)™ as in the
paragraph preceding Lemma 2.1. The lemma tells us that S(¢) = {x) €
C[X (A% with || = 1.

In the case of (ii), r is just an unramified unitary character of Wr (with
d = 1), and it is easily seen that y, = 164, ¢ = r(Fr), and so ¢ (1) = r(Fr).
Let us put ourselves in the case (i) so that A # 0. Note that ¢ (1) is just the
coefficient of ‘L’(? when ¢ = ¢ S~ 1(x;) is written with respect to the basis
{rﬂG}. Such a coefficient equals ¢ - s) ¢ according to (2.6), so [¢(1)| = [sx 0l
Now Lemma 2.2 concludes the proof. [Observe that A %, 0 # 0 whenever
0#X1e X, (AT O

2.8 Examples in the split case

When G is split, it is easy to see that C[ch(:G")]is canonically identified with
C[Ch(G) which is generated by finite dimensional characters in the space of
functions on G. So we may use (C[ch(G)] in place of C[ch(*G")].

Example 2. ] 0 (When G = Sp,,,,n > 1)

Taker: G = S02,,4+1(C) — GL2n+1 (©) to be the standard representation.
Then

Y1+ -+ Youq1 = tr (Std) € C[ch(GLy;,41)]
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is mapped to tr (r) € C[ch(SO3,+1)] and
YE+ -+ Y5, = tr (Sym*(Std) — A*(Std)) € C[ch(GLy,11)]

is mapped to tr (r) € C[Ch(892n+1)]. Then Sym?(V) breaks into C and an
irreducible representation of G of highest weight (2,0, ..., 0) in the stan-
dard parametrization. When n > 1, A?(V) is irreducible of highest weight
(1,1,0,...,0). When n = 1, A>(V) ~ VV, i.e. isomorphic to (Std)". (See
[41, §19.5].) Let us systematically write A, for the irreducible representation
of SOy, 41 with highest weight A. Then

r*(Y1+ -+ Y1) =tr Ao,....0),
r* (le + -+ Y2n+1) =tr (C+ Apo,...00 — Aa,1,0,..,0)- (2.10)

fn 2.1f n = 1, the same is true if A 1,0,...,0) 1s replaced with A (). For
=1, 2, define

90 =87 (r (Y -+ V)

Then one computes

d)(l) . 172271 1
=q Kpao.....0 (@) K>

¢(2) =1k + ql_zanl«La,o,...,m(wv)K - q1—2n(q — D1k 0. 0@)k-

where u; is the cocharacter of a maximal torus given by X in the standard
parametrization. In particular, (V' (1) = 0 and @ (1) = 1.

Example Z.Q (When G = SOy, n > 2)

Take r: G = SO2,(C) — GL3,(C) to be the standard representation.
Similarly as before, Sym? (V) breaks into C and an irreducible representation
of G of highest weight (2,0, ...,0). When n > 1, A>(V) is irreducible of
highest weight (1, 1,0, ...,0). Whenn = 1, /\2(V) ~ C. (See [41, §19.5].)
The same formulas as (2.10) hold in this case. Defining

PO (,* (yli TR Yén)) , @2.11)

we can compute ¢V, ¢ and see that ¢V (1) = 0 and ¢ (1) = 1.

Example 2.12 (When G = SO»;,41)
Taker: G = Sp,,,(C) — GL,,(C) to be the standard representation. Then

Y1+ 4 Yy, = tr (Std) € C[ch(GL,)]
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is mapped to tr (r o Std) € C[ch(Sp2,)] and Then
Y2+ -4 Y5 =tr(Sym?(Std) — A%(Std)) € C[ch(GL3,)]

is mapped to tr (r o Std) € C[ch(Spln)]. If n > 2 then AZ(V) breaks into C
and an irreducible representation of G of highest weight (1, 1,0, ..., 0). (See
[41, §17.3].) We have

.....

r (Y12 +-ot Y22n+1) =tr (A@,0,..,00 — Aw,1,0,..,00 — O).

As in Example 2.10, A designates a highest weight representation (now of
Sp,,,). Define ¢»® asin (2.11). By a similar computation as above, ¢V (1) = 0,
¢ (1) = —1.

2.9 Bounds for truncated unramified Hecke algebras

Let F,G, A, T and K be as in Sect. 2.2. Throughout this subsection, an R-basis
B of X,(T)g will be fixed once and for all. Denote by p € X*(T) ®7, 5Z half
the sumof alle € d7.

Lemma 2.13 Forany p € X, (A), [Ku(w)K : K] < getratio.n,

Proof Let vol denote the volume for the Haar measure on G (F) such that
vol(K) = 1. Let I C K be an Iwahori subgroup of G(F). Then I = (I N
U)YINT)(INU). We follow the argument of [106, pp. 241-242], freely using
Waldspurger’s notation. Our /, U, U, and T will play the roles of his H, Uy,

Uo and My, respectively. For all m € ﬁg (in his notation), it is not hard to
verify that Cb() (m) = v, (m) = cpy(m) = 1. Then Waldspurger’s argument
shows

vol(K (@) K) < [K: 11? vol(I () I) < [K: IT12¢*™ vol(1)
K: I]q<p’“>.

Finally observe that [K: I] < |G(F,)| < g% (1 + é)’G < g%t (The
middle inequality is easily derived from Steinberg’s formula. cf. [47, (3.1)].)
O

The following lemma will play a role in studying the level aspect in Sect. 9.

Lemma 2.14 Let M be an F-rational Levi subgroup of G. There exists a
constant bg > 0 (depending only on G) such that for all k € Z-o and all
¢ € H(G)SB such that |p| < 1, we have |¢py(1)| = O(q96T761b6K) (the
implicit constant being independent of k and ¢), where we put ¢y := SA(,;[ (@).
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Proof When M = G, the lemma is obvious (with b = 0). Henceforth we
assume that M C G. In view of Lemma 2.3, it suffices to treat one R-basis .
Fix a Z-basis {e, ..., edim o} of X,(A), and choose any B which extends that
Z-basis. It is possible to write

o= Z ay - 1k u@)k
ll el <k
for |a,| < 1. Thus

<
el <k

(s (1)] = ‘/ ¢ (n)dn
N(F)

/ IKH(W)K(n)dn .
)

For each u, K u(w)K is partitioned into left K -cosets. On each coset y K,

/ 1, x(n)dn
N(F)

Hence, together with Lemma 2.13,

<vol(K NN(F)) = 1.

(DI < D [Ku@)K: K1< Y. glotratien,
Il el <k ll el <k

Write by for the maximum of |(p, ¢;)| fori = 1,...,dim A. Take bg
bodim A + 2dim A. If ||u| < « then p = S 8™ Age for ¢ €
with —x < a@; < k. Hence the right hand side is bounded by (2«
l)dimAqu+rG+bolcdimA < qu+rG+bGK since 2k + 1 < 22K < QZK-

o+ N1

An elementary matrix computation shows the bound below, which will be used
several times.

Lemma 2.15 Let s = diag(sy, ..., su) € GL,(F,) and u = (u,-j);?szl €

GL,,(F,). Define vmin (1) := min; j v(u;;) and similarly vmin (u . Then for
any eigenvalue A of su € GL,, (Fy),

v(h) € [vmin(u) + min v(s;), —vmin(u_l) -+ max v(s,-)i| .

Remark 2.16 The lemma will be typically applied when u € GL,, (O,) where
O, is the integer ring of F',. In this case vmin(u) = vmin(u_l) =0.
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Proof Let V be the underlying F,-vector space with standard basis fer, ...,
em). Let B = {i = (i,...,ij))|l <i; <--- <ij < m}. Then A/V has a
basis {e;; A -+ A ei }iij. We claim that

v(tr (sul AV V)) > - m1n v(si).

Let us verify this. Let (uj i )iire B; denote the matrix entries for the u-action on

AV with respect to the above basis. Observe that v(u; i) = j - Umin(u) for all
i,i’ € Bj. Then

v(tr (su| Al V) =v Z SiySiy -+ Sij - Ui
iGBj

= minv(s;Si, . . . Si; SUij) = - mlnv(sl) —i—mlnv(ul i)
1

> j(min v(s;) + Vmin(u)).

The coefficients of the characteristic polynomial for su € GL,, (F,) are given
by tr (su| A/ V) up to sign. The above claim and an elementary argument with
the Newton polygon show that any root A satisfies v(A) = vpin (1) +min; v(s;).
Finally, applying the argument so farto s~ and u~!, we obtain the upper bound
for v(A). O

As before, the smooth reductive model for G over O such that G(O) = K
will still be denoted G.

Lemma 2.17 Let E: G — GL,, be an embedding of algebraic groups over
O. Then there exists a G L, (O)-conjugate of 8 which maps A (a fixed maximal
split torus of G) into the diagonal maximal torus of GL,,.

Proof Note that the maximal F-split torus A naturally extend to A C G over
O, cf. [103, §3.5]. The representation of A on a free @-module of rank m
via E defines a weight decomposition of O™ into free O-modules. Choose
any refinement of the decomposition to write O™ = L| @& --- @ L, as the
direct sum of rank 1 free O-submodules. Let v; be an O-generator of L; for
1 < i < m. Conjugating E by the matrix representing the change of basis
from {vy, ..., v,} to the standard basis for O™, one can achieve that E(A)
lies in the diagonal maximal torus. O

Let y € G(F) be a semisimple element and choose a maximal torus 7}, of G
defined over F such that y € T, (F). Denote by ®(G, T, ) the set of roots for
T, inG.
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Lemma 2.18 Suppose that there exists an embedding of algebraic groups
E : G — GL,, over O. There exists a constant Bs > 0 such that for every
k € Zxo, every u € X4(A) satisfying ||u| < «, every semisimple y €
K p(w)K andeverya € ®,, (forany choice of T, as above), we have — Bsk <
v(x(y)) < Bsk. In particular, |1 — a(y)] < qB5".

Remark 2.19 Later E will be provided by Proposition 8.1.

Proof We may assume that E(A) is contained in the diagonal torus of GL,,,
denoted by T, thanks to Lemma 2.17. Write T for the maximal torus of G which
isthe centralizer of A sothat E(7") C T.We have a surjection X*(T) — X*(T)
induced by E. For each « in the set of roots ® (G, T), we fix alifta € X*(T)
once and for all. Set ¢ := maxyeo @G, 1) ll*lGL,, -

Let ¢ := max <1 I|1E o ullL,, where u € X, (A)Rr runs over elements
with |||l < 1. Then for any k € Zx, |||l < « implies ||E o u|lGL,, < c2k.
Hence E(u()) is a diagonal matrix in which each entry x satisfies —cokx <
v(x) < k.

We can write y = kju(w )k, for some ki, ky € G(O). Then E(y) =
ki E(u(w))k) for ki, k), € GL,,(O), and E(y) is conjugate to E(u(w))
ké(k/l)_l. It follows from Lemma 2.15 that for every eigenvalue A of E(y),
we have —coxk < v(A) < ook

Choose any T, as above. There exists an isomorphism 7" >~ T), over F
induced by a conjugation action ¢t — gfg~! given by some g € G(F). The
isomorphism is well defined only up to the Weyl group action but induces a
bijection from ® (G, T) onto ®(G, T,). Put T, := E(g)TE(g)~'. The con-
jugation by E(g) induces anisomorphism T ~ T, over F and a bijection from
®(GL,, T) onto ®(GL,,, T,). Leta, € ®(G, T) (resp.a,, € ®(GL,, T,))
denote the image of « (resp. &) under the bijections. By construction, the com-

position 7, >~ T ST~ T, coincides with the restriction of E to 7),. Hence
the induced map X*(T,) — X*(7,) maps @, to .
Using the isomorphisms T, (F) ~ T(F) ~ (FX)’", let (Aq,...,An) €

(F™)™ be the image of E(y) under the composition isomorphism. We may

write &, as a character (fx)m -~ F~ given by (1, ...,tyn) tfl Lt
withay, ..., ay, € Z such that —c; < a; < c¢p forevery 1 < i < m. We have

ay (y) =y (E(y)) = A7 .. A,

so v(ay(y)) = Z;"zl a;jv(A;). Hence —mcicoe < v(ay () < mejexk,
proving the first assertion of the lemma. From this the last assertion is obvious.
O

Remark 2.20 Suppose that F' runs over the completions of a number field F at
non-archimedean places v, that G over F comes from a fixed reductive group
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G over F, and that E comes from an embedding G <— G L, over the integer
ring of F (at least for every v where G is unramified). Then Bs of the lemma
can be chosen to be independent of v (and dependent only on the data over F).
This is easy to see from the proof.

3 Plancherel measure on the unramified spectrum
3.1 Basic setup and notation

Let F be a finite extension of Q. Suppose that G is unramified over F. Fix a
hyperspecial subgroup K of G. Recall the notation from the start of Sect. 2.2.
In particular 2 (resp. 2 r) denotes the Weyl group for (G, T%) [resp. (G, A)].
There is a natural Gal(F / F)-action on €, under which QCF/F) = Q. (See
[9, §6.1].) Since G is unramified, Gal (f/ F) factors through a finite unramified
Galois group. Thus there is a well-defined action of Fr on , and Q" = Q.

The unitary dual G(F)" of G(F), or simply G” if there is no danger of
ambiguity, is equipped with Fell topology. (This notation should not be con-
fused with the dual group 6). Let G denote the unramified spectrum in
G, and G™'"®™P jts tempered sub-spectrum. The Plancherel measure 7P’ on
G" is supported on the tempered spectrum G”©™P_ The restriction of /1P to
G™'" will be written as 7iP-Y". The latter is supported on G”""~**™P_Harish-
Chandra’s Plancherel formula (cf. [106]) tells us that /P! (a) = ¢ (1) for all
¢ € H(G(F)). In particular, AP () = ¢ (1) for all ¢ € HY (G(F)).

3.2 The unramified tempered spectrum

An unramified L-parameter Wi — LGYr is defined to be an L-morphism
L 5 LGur (Sect. 2.5) with H = {1}. Two such parameters ¢; and @, are
considered equivalentif ¢; = gg,g~! forsome g € G. Consider the following
sets:

(1) Irreducible unramified representations 7 of G (F') up to isomorphism.
(i1) Group homomorphisms x : T(F)/T(F) N K — C* up to Qp-action.
(iii) Unramified L-parameters ¢ : W' — LG up to equivalence.
(iv) Elements of (6 X Fr)ss—conjs this set was defined in Sect. 2.2.
(v) QF-orbits in T/(Fr — id)7 .
(vi) Qp-orbitsin A.
(viii) C-algebra morphisms 6 : H""(G) — C.

Let us describe canonical maps among them in some directions.

e (i) — (vii) Choose any 0 # v e =K. Define 0(¢) by O(¢p)v =
Jo ) (®)7(g)vds.
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e (ii) — (i) m is the unique unramified subquotient of n—indg((lf)) X.-

e (ii) <> (vi) Induced by Hom(T (F)/ T (F)NK, C*) >~ Hom(A(F)/A(F)N
K,C*)

~ Hom(X,(A), C*)~Hom(X*(A), C*)~X,(A) ®; C*~A (3.1

where the second isomorphism is induced by X,(A) — A(F) sending n
to u(w).

e (iii) — (iv) Take ¢(Fr).

e (v) — (iv) Induced by the inclusion 7 + ¢ x Fr from T to G x Fr.

e (V) — (vi) Induced by the surjection T — ;1\, which is the dual of A — T.
(Recall QF = Q)

e (vii) = (vi) Via S: HY(G) ~ C[X*(A)]®F, 6 determines an element of
[cf. (3.1)]

Qp\Hom(X*(A), C*) ~ Qp\A.

Lemma 3.1 Under the above maps, the sets corresponding to (i)—(vii) are in
bijection with each other.

Proof See §6, §7 and §10.4 of [9]. |

Let F’ be the finite unramified extension of F such that Gal(f/ F) acts on G
through the faithful action of Gal(F’/F). Write L G g JF = =G x Gal(F'/F).

Let K be a maximal compact subgroup of G which is Fr-invariant. Denote by
T (resp. A, ¢) the maximal compact subtorus of T (resp. A)

Lemma 3.2 The above bijections restrict to the bijections among the sets
consisting of the following objects.

(i); irreducible unramified tempered representations w of G(F) up to iso-

morphism.

(1), unitary group homomorphisms x: T(F)/T(F) N K — U(1) up to
Qp-action.

(iii), unramified L-parameters ¢: Wy — LGY with bounded image up to
equivalence.

(iv)t G- -conjugacy classes in K x Fr (viewed in G g JF)-

(iv)t K- -conjugacy classes in Kiq Fr (viewed in K x Gal(F'/F)).
), Q-orbits in T /(Fr — id)T..
(vi); Qp-orbitsin Ac.

[The boundedness in (iii); means that the projection of Im ¢ into LG pr JF IS
contained in a maximal compact subgroup of * G s /F-]
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Proof (i); <> (ii); is standard and (iii); <> (iv); is obvious. Also straightforward
is (i1); <>(vi); in view of (3.1).

Let us show that (v); <> (vi);. Choose a topological isomorphism of com-
plex tori T ~ ((Cx)d with d = dim 7. Using C* >~ U(1) x RZ,, we can
decompose T = T X Tnc such that Tnc is carried over to (Rxo)d under the
isomorphism. The decomposition of T is canonical in that it is preserved under
any automorphism of 7 T. By the same reasoning, there is a canonical decom-
posrtron A= A X Anc with A”C ~ (RX ydim A “The canonical surjection
T — A carries T onto A and TnC onto AnC [This reduces to the assertion
in the case of C*, namely that any maps U(l) — Rio and Rio — U(l)
induced by an algebraic map C* — C* of C-tori are trivial. This is easy to
check.] Therefore the isomorphism T "/ (Fr— id)T - Aof Lemma 3.2 induces
an isomorphism T, ¢/ (Fr — 1d)T — A (as well as Tnc/(Fr 1d)Tnc — Anc)

Next we show that (iv); <> (v);. It is clear that ¢ + ¢t x Fr maps (v); into
(iv);. Since (v); and (iv); are the subsets of (v) and (iv), which are in bijective
correspondence we deduce that (V), — (iv); is injective. To show surjectivity,
pickany k € K. There exists 1 € T such that the image of 7 in (iv) corresponds
under (iv) <> (v) to the G- -conjugacy class of k x Fr. It is enough to show that
we can choose 7 € T,.. Consider the subgroup T.(1) of

T/(Fr —id)T = T./(Fr —id)T, x Te/(Fr —id) T,

generated by T, ¢/ (Fr — id)T and the image of ¢. The isomorphism (iv)<>(v)
maps T (t) into (v); by the assumption on ¢. Since (v); form ‘a compact set,
the group T (1) must be contarned in a compact subset of T /(Fr — 1d)T
This forces the image of ¢ in Tnc/ (Fr —id) Tnc to be trivial. (Indeed, the latter
quotient is isomorphic as a topological group to a quotient of R4™ " modulo an
R-subspace via the exponential map. So any subgroup generated by a nontrivial
element is not contained in a compact set.) Therefore 7 can be chosen in T,.
It remains to verify that (iv);, (iv), and (v); are in bijection. Clearly (iv);
— (iv); is onto. As we have just seen that (iv); <> (V);, it suffices to observe
that (v); — (iv); is onto, which is a standard fact [for instance in the context
of the (twisted) Weyl integration formula for K x Fr]. O

3.3 Plancherel measure on the unramified spectrum

Lemma 3.2 provides a bijection GUHeMP ~ Q F\Xc, which is in fact a
topological isomorphism. The Plancherel measure 72P"" on G is supported
on GNP We would like to describe its pullback measure on A, to be

denoted ,ugl ULEMP Note that A is topologically isomorphic to T, /(Fr—id) T,.
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(This is induced by the natural surjection T’c —» Xc.) Fix a measure df on the
latter which is a push forward from a Haar measure on 7.

Proposition 3.3 The measure 5™ pulled back to T,./(Fr — id) T, is

det(1 — ad(¢ x Fr)|Lie (G)/Lie (TF"))
det(1 — g—'ad(t x Fr)|Lie (G)/Lie (TF"))

~pl,ur,temp ,—
ay D =cC-

for some constant C € C*, depending on the normalization of Haar measures.
Here t € T, is any lift of t. (The right hand side is independent of the choice

oft.)

Proof The formula is due to Macdonald [72]. For our purpose, it is more
convenient to follow the formulation as in the conjecture of [98, p. 281] (which
also discusses the general conjectural formula of the Plancherel measure due
to Langlands). By that conjecture (known in the unramified case),

L,oc7Y@®,r) LA,0(),r) _
" LO,0@(),r) LO,0-'q),r)

~pl,ur,temp — /
i ®H=C

where C’ € C* is a constant, o(7): T(F) — C* is the character corre-
sponding to 7 [via (ii) <> (v) of Lemma 3.1], and r: LT — GL(Lie (FU)) is
the adjoint representation. Here “U is the L-group of U (viewed in ©B). By
unraveling the local L-factors, obtain

det(1 — ad(t x Fr)|Lie (G)/Lie (T)) -

ap @ = = T
det(1 — g—'ad(¢ x Fr)|Lie (G)/Lie (T))

0 (3.2)
Finally, observe that det(1 — g ~*ad(¢ x Fr)|Lie (f) /Lie (?Fr)) is independent
of 7 (and t). Therefore the right hand sides are the same up to constant in (3.2)
and the proposition. O

Remark 3.4 Note that the choice of a Haar measure on G (F) determines the
measure ﬁgl’ur’temp. For example if the Haar measure on G (F') assigns volume

1 to K then G™U*MP has total volume 1 with respect to ﬁgl’ur’temp(f) as
implied by the Plancherel formula for 1. Hence the product C - dt.

4 Automorphic L-functions
According to Langlands conjectures, the most general L-functions should be

expressible as products of the principal L-functions L(s, IT) associated to
cuspidal automorphic representations IT of GL(d) over number fields (for
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varying d). The analytic properties and functional equation of such L-functions
were first established by Godement—Jacquet for general d > 1. This involves
the Godement—Jacquet integral representation. The other known methods are
the Rankin—Selberg integrals, the doubling method and the Langlands—Shahidi
method. The purpose of this section is to recall these analytic properties and
to set-up notation. More detailed discussions may be found in [32,55,75], [86,
§2] and [52, §5].

In this section and some of the later sections we use the following notation.

F is a number field, i.e. a finite extension of Q.

G is a connected reductive group over F (not assumed to be quasi-split).
Z = Z(G) is the center of G.

VF (resp. Vi°) is the set of all (resp. all finite) places of F.

Seo 1= VE\VP.

Agis tl(l)e maximal F'-split subtorus in the center of Resp /G, and Ag « :=
Ag(R)".

4.1 Automorphic forms

Let x: AG.co — C* be a continuous homomorphism. Denote by Lf( (G(F)
\G(AF)) the space of all functions f on G(Af) which are square-integrable
modulo Ag, ~ and satisfy f(gyz) = x(z) f(y)forallg € G(F),y € G(AF)
and z € Ag.- There is a spectral decomposition into discrete and continuous
parts

LE(G(FNG(AF)) = Liige, ® Lty Liise.y = D maise.x (0) - 7
s

where the last sum is a Hilbert direct sum running over the set of all irreducible
representations of G (A ) up to isomorphism. Write AR s, (G) for the set
of isomorphism classes of all irreducible representations 7 of G (A ) such that
Misc,y () > 0. Any m € ARgisc, 4 (G) is said to be a discrete automorphic
representation of G(Ar). If x is trivial (in particular if Ag oo = {1}) then we
write mgisc for mgise, y -

The above definitions allow a modest generalization. Let X be a closed
subgroup of Z(AFr) containing Ag o and w: Z(Ar) N Xg\Xcg — C* be
a continuous (quasi-)character. Then LLZU, Lgisc’w, Mdisc,» €t can be defined
analogously. In fact the Arthur-Selberg trace formula applies to this setting.
(See [4,Ch 3.1].)

For the rest of Sect. 4 we are concerned with G = GL(d). Take X5 =
Z(AF) so that w is a quasi-character of Z(F)\Z(AFr). Note that Ag .o =
Z(Fx)° inthis case. We denote by A,,(GL(d, F)) the space consisting of auto-
morphic functions on GL(d, F)\GL(d, A ) whichsatisty f(zg) = w(z) f(g)
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for all z € Z(Ar) and g € GL(d, Ar) (see Borel and Jacquet [10] for the
exact definition and the growth condition). We denote by Acusp,,(GL(d, F))
the subspace of cuspidal functions (i.e. the functions with vanishing period
against all nontrivial unipotent subgroups).

An automorphic representation IT of GL(d, Af) is by definition an irre-
ducible admissible representation of GL(d, Ar) which is a constituent of
the regular representation on A, (GL(d, F)). Then w is the central charac-
ter of Il. The subspace Acusp,w(GL(d , F)) decomposes discretely and an
irreducible component is a cuspidal automorphic representation. The notion
of cuspidal automorphic representations is the same if the space of cuspidal
functions in Lz)(GL(d , F)\GL(d, AFr)) is used in the definition in place of
Acusp,w(GL(d, F)), cf. [10, §4.6].

When o is unitary we can work with the completed space Li(GL(d , FO\
GL(d, AF)) of square-integrable functions modulo Z(A ) and with unitary
automorphic representations. Note that a cuspidal automorphic representation
is unitary if and only if its central character is unitary. We recall the Langlands
decomposition of LLZU(GL(d , F)\GL(d, AF)) into the cuspidal, residual and
continuous spectra. What will be important in the sequel is the notion of
isobaric representations which we review in Sect. 4.3.

In the context of L-functions, the functional equation involves the con-
tragredient representation I. An important fact is that the contragredient of a
unitary automorphic representation of GL(d, A r) is isomorphic to its complex
conjugate.

4.2 Principal L-functions

Let IT = ®,I1, be a cuspidal automorphic representation of GL(d, Ar) with
unitary central character. The principal L-function associated to IT is denoted

L(s, ) = H L(s, T1,).

veVy’
The Euler product is absolutely convergent when fe s > 1. The completed L-
function is denoted A (s, IT), the product now running over all places v € VF.

For each finite place v € V3°, the inverse of the local L-function L(s, IT,) is
a Dirichlet polynomial in g, of degree < d. Write

d
L. Ty =[] (1 - ai(Mug;®) "
i=1

Note that when IT, is unramified, «; (IT, ) is non-zero for all i and corresponds
to the eigenvalues of a semisimple conjugacy class in GL;(C) associated to
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I1,, but when IT, is ramified the Langlands parameters are more sophisticated
and we allow some (or even all of) of the «; (IT,) to be equal to zero. In this
way we have a convenient notation for all local L-factors.

For each archimedean v, the local L-function L(s, IT,) is a product of d
Gamma factors

d
L(s, ITy) = H Ly (s = ui(Iy)), 4.1

i=1

where I'r(s) := 7 %/?I"(s/2) and Tc(s) := 2(27) ~*T'(s). Note that I'¢c(s) =
I'r(s)'r(s + 1) by the doubling formula, so when v is complex, L(s, I1,) may
as well be expressed as a product of 2d I'r factors.

The completed L-function A (s, IT) := L(s, IT) Hvloo L(s, ITy) has the fol-
lowing analytic properties. It has a meromorphic continuation to the complex
plane. It is entire except when d = 1 and IT = |.|"” for some ¢ € R, in which
case L(s, IT) = ¢r(s + it) is (a shift of) the Dedekind zeta function of the
ground field F with simple poles at s = —if and s = 1 — iz. It is bounded in
vertical strips and satisfies the functional equation

AGs, TI) = e(s, IDA(1 — s, TT), 4.2)

where € (s, 1) is the epsilon factor and I is the contragredient automorphic
representation. The epsilon factor has the form

e(s, T) = e(M)g(M)2~" (4.3)

for some positive integer q(H) € Z>1 and root number € (IT) of modulus one.

Note that g(IT) = q(l'[) e(l'[) = €(I1) and for all v € Vr, L(s, Hv) =
L(s, IT,). For instance this follows from the fact [42] that s isomorphic
to the complex conjugate IT (obtained by taking the complex conjugate of all
forms in the vector space associated to the representation IT).

The conductor ¢ (IT) is the product over all finite places v € V" of the con-
ductor g (IT,) of IT,. Recall that ¢ (IT, ) equals one whenever I1, is unramified.
Itis convenient to introduce as well the conductor of admissible representations
at archimedean places. When v is real we let C(IT,) = H?ZI(Z + i (TTy)])
and when v is complex we let C(I1,) = H?ZI(Z + | i (T1,)]?). Then we let
C(IT) be the analytic conductor which is the product of all the local conductors

ca = [Jca,) ] ¢ = CMu)g(m).

v[oo vevy
Note that C(IT) > 2 always.
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Thereis 0 <0 < % such that
Me p; (M) <6, rtesp. log, le(I,)| < 6 (4.4)

for all archimedean v (resp. finite v) and 1 < i < d. When [T, is unramified
we ask for
|9t p; ()| < 6, resp. [log,, loi (TTy)|] < 6. (4.5)

The value 6 = % — 421_1 is admissible by an argument of Serre and Luo—

Rudnick—Sarnak based on the analytic properties of the Rankin—Selberg con-
volution L (s, IT x ﬁ). Note that for all v, the local L-functions L (s, IT,) are
entire on Mes > O and this contains the central line Ne s = %

The generalized Ramanujan conjecture asserts that all [T, are tempered
(see [88] and the references herein). This is equivalent to having € = 0 in the
inequalities (4.4) and (4.5). In particular we expect that when IT,, is unramified,
i (TTy)] = 1.

4.3 TIsobaric sums

We need to consider slightly more general L-functions associated to non-
cuspidal automorphic representations on GL(d, Ar). These L-functions are
products of the L-functions associated to cuspidal representations and studied
in the previous Sect. 4.2. Closely related to this construction it is useful to
introduce, following Langlands [70], the notion of isobaric sums of automor-
phic representations. The concept of isobaric representations is natural in the
context of L-functions and the Langlands functoriality conjectures.

Let IT be an irreducible automorphic representation of GL(d, Ar). Then a
theorem of Langlands [10] states that there are integers r > 1 andd;, ..., d, >
1 withd = d|+- - -+d, and cuspidal automorphic representations Iy, ..., I,
of GL(dy, AF),---,GL(d,, Ar) such that IT is a constituent of the induced
representation of [1; ®- - -Q I, (from the Levi subgroup GL(d;) x - - - x GL(d})
of GL(d)). A cuspidal representation is unitary when its central character is
unitary. When all of IT; are unitary then IT is unitary. But the converse is not
true: note that even if IT is unitary, the representation IT; need not be unitary
in general.

We recall the generalized strong multiplicity one theorem of Jacquet and
Shalika [54]. Suppose IT and IT" are irreducible automorphic representations of
GL(d, AF) such that IT, is isomorphic to [T/ for almostall v € V¢ (we say that
[T and IT’ are weakly equivalent) and suppose that IT (resp. 1) is a constituent
of the induced representation of IT; ® --- ® II, (resp. I1} ® --- ® IT)).
Then r = r’ and up to permutation the sets of cuspidal representations {1'[ j}

and {H/j} coincide. Note that this generalizes the strong multiplicity one
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theorem of Piatetski-Shapiro which corresponds to the case where IT and IT’
are cuspidal.

Conversely suppose Iy, ...,II, are cuspidal representations of
GL(d1, AF), ...,GL(d,, Ar). Then from the theory of Eisenstein series there
is a unique constituent of the induced representation of I1; ® - - - ® I, whose
local components coincide at each place v € Vg with the Langlands quotient
of the local induced representation [70, §2]. It is denoted I1y H - - - HH 1, and
called an isobaric representation (automorphic representations which are not
isobaric are called anomalous). The above results of Langlands and Jacquet—
Shalika may now be summarized by saying that an irreducible automorphic
representation of GL(d, AF) is weakly equivalent to a unique isobaric repre-
sentation.

We now turn to L-functions. The completed L-function associated to an
isobaric representation IT = ITy B - - - B I, is by definition

AGs, T = [ AGs, 1)),
j=1

All notation from the previous subsection will carry over to A (s, IT). Namely
we have the local L-factors L(s, I1,), the local Satake parameters «; (IT,) and
wui(ITy), the epsilon factor € (s, IT), the root number € (IT), the local conductors
q(I1,), C(I1,) and the analytic conductor C(IT). The Euler product converges
absolutely for Nfe s large enough.

One important difference concerns the bounds for local Satake parameters.
Even if we assume that IT has unitary central character the inequalities (4.4)
may not hold. We shall therefore require a stronger condition on IT.

Proposition 4.1 Let 1 be an isobaric representation of GL(d, Afr). Assume
that the archimedean component Il is tempered. Then the bounds towards
Ramanujan are satisfied. Namely there is a positive constant 0 < % such that
forall 1 <i < d and all archimedean (resp. non-archimedean) places v,

Ne w; (ITy) < 6, resp. logqv lee; (ITy)] < 6. (4.6)

Proof LetI1 = I1;H- - -EBII, be the isobaric decomposition with IT; cuspidal.
Then we will show that all IT; have unitary central character, which implies
Proposition 4.1.

By definition we have that Il is a Langlands quotient of the induced
representation of [1jso ® - - - ® I1,00. Since 14, is tempered, this implies that
all IT oo are tempered, and in particular have unitary central character. Then
the (global) central character of IT; is unitary as well. |
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Remark 4.2 In analogy with the local case, an isobaric representation I1; H
-- - T1, where all cuspidal representations IT; have unitary central character
is called “tempered” in [70]. This terminology is fully justified only under the
generalized Ramanujan conjecture for GL(d, Ar). To avoid confusion we use
the adjective “tempered” for [1 = ®,I1, only in the strong sense that the local
representations I, are tempered for all v € V.

Remark 4.3 In the proof of Proposition 4.1 we see the importance of the
notion of isobaric representations and Langlands quotients. For instance a
discrete series representation of GL(2, R) is a constituent (but not a Lang-
lands quotient) of an induced representation of a non-tempered character of
GL(1, R) x GL(1, R).

4.4 An explicit formula

Let IT be a unitary cuspidal representation of GL(d, Ar). Let p;(IT) denote
the zeros of A (s, IT) counted with multiplicities. These are also the non-trivial
zeros of L (s, IT). The method of Hadamard and de la Vallée Poussin general-
izes from the Riemann zeta function to automorphic L-functions, and implies
that 0 < Nep;(I1) < 1 for all j. There is a polynomial p(s) such that
p(s)A(s, IT) is entire and of order 1 (p(s) = 1 except when d = 1 and
IT= |.|”, in which case we choose p(s) = (s —it)(1 — it — s)).

The Hadamard factorization shows that there are a = a(I1) and b = b(I1)
such that

p(s)A(s, IT) = ¢*tbs (1 _ ;) o5/ Pi (M)
l;[ p;j(IT)

The product is absolutely convergent in compact subsets away from the zeros
pj(IT). The functional equation implies that

> e (pj(I)~1) = — e b(IT).
J

The number of zeros of bounded imaginary part is bounded above uni-
formly:

1{J, [3mp; (D] < 1}] < log C(IT).

Changing IT into IT ® |.|"" we have an analogous uniform estimate for the
number of zeros with {%m p;jIT) — T‘ < 1 (in particular this is <7 log T').
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Let N(T, 1) be the number of zeros with |3m p;(IT)| < T. Then the
following estimate holds uniformly in 7 > 1 (Weyl’s law):

N(T,II) = ; (d log (%) + log C(H)) + On(logT).

The error term could be made uniform in I, see [52, §5.3] for more
details.* The main term can be interpreted as the variation of the argument
of C (l'[)“/ 2L(s, [1~) along certain vertical segments.

We are going to discuss an explicit formula [see (4.8) below] expressing a
weighted sum over the zeros of A(s, IT) as a contour integral. It is a direct
consequence of the functional Eq. (4.2) and Cauchy formula. The explicit
formula is traditionally stated using the Dirichlet coefficients of the L-function
L (s, IT). For our purpose it is more convenient to maintain the Euler product
factorization.

Definte y;(IT) by p;(IT) = 5 + iy;(I1). We know that |[Smy;(ID)| < 1
and under the GRH, y;(IT) € R for all ;.

It is convenient to denote by % + ir;j(IT) the (eventual) poles of A(s, IT)
counted with multiplicity. We have seen that poles only occur when IT = |.|’
in which case the poles are simple and {rj(l'I)} = {t + li —t — %}

The above discussion applies with little change to isobaric representations.
If we also assume that 1, is tempered then we have seen in the proof of Propo-
sition 4.1 that [T = ITy B - - - B8 I1, with I1; unitary cuspidal representations
of GL(d;, A) for all 1 < i < r. In particular the bounds towards Ramanujan
apply and “Sm yj(l'[)‘ < % forall j.

Let ® be a Paley—Wiener function whose Fourier transform

+o0
D(y) = / D (x)e TV dx (4.7)

—00

has compact support. Note that & may be extended to an entire function
on C.

Proposition 4.4 Let I1 be an isobaric representation of GL(d, A) satisfying
the bounds towards Ramanujan (4.4). With notation as above and for o > %
the following identity holds

4 One should be aware that Theorem 5.8 in [52] does not apply directly to our setting because
it is valid under certain further assumptions on IT such as u; (IT,) being real for archimedean
places v.
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log ¢ (IT) ~
Z@(y,(m)—ZcD( () + =4 (0)

+ L [7[A 1+ +ir, IT) d( [0)
— —=+o+ir r—io
2 J_ool A \2

/

A (1
+— (5 +o +ir, H)CD(r + ia)}dr. (4.8)

There is an important remark about the explicit formula that we will use
frequently. Therefore we insert it here before going into the proof. The line
of integration in (4.8) is away from the zeros and poles because o > 1/2. In
particular the line of integration cannot be moved to o = 0 directly. But we
can do the following which is a natural way to produce the sum over primes.
First we replace A (s, IT) by its Euler product which is absolutely convergent
in the given region (Mes > 1). Then for each of the term we may move the
line of integration to o = 0 because we have seen that & (s I1,) has no pole
for Res > 6. Thus we have

© A (1
/_OOX(E—FJ—I—ir,H)CD(r—ia)dr

:Z/oo xL—/(l—l—irl'[)d)(r)dr 4.9)
S\t ' '

veVFr

The latter expression is convenient to use in practice. The integral in the right-
hand side of (4.9) is absolutely convergent because @ is rapidly decreasing
and the sum over v € VF is actually finite since the support of D is compact. >

Proof The first step is to work with the Mellin transform rather than the Fourier
transform. Namely we set

H(%-ﬁ-is) = <I>(s), s € C.

Note that H is an entire function which is rapidly decreasing on vertical strips.
This justifies all shifting of contours below.
We form the integral

A d
/ A mae
) A 2im

5 Note however that it is never allowed to switch the sum and integration symbols in (4.9).
This is because the L-function is evaluated at the center of the critical strip in which the Euler
product does not converge absolutely.
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/
We shift the contour to ie s = —1 crossing zeros and eventual poles of x

inside the critical strip. The sum over the zeros reads

> H(p;(I) = D & (y; (1)

J J

and the sum over the poles reads

= > ().

J

Note that since (s, IT) = e(l'[)q(l'[)%_s we have

/

%(s, M) = —logg(M), seC.

We obtain as consequence of the functional Eq. (4.2) that

/ A 6 T H (5) S —/ A mHd -5
(=1 A 5 g 2im N 2) A 5 g 2im

2iw

A < ds
:_/ (1ogq(n)+—(s, H))H(l s —.
©)) A

Now we observe that

/ a2~ L350
§)— = —

2) 2im 21

and also

[ Aemaoss =5 [“o(r-3) L rinma
o AT % Tag o o\ T 2T e

and

/ A/( ad o =L [Te( A/(z ir, Td
- s, — ST - =52 r+—\)—E-—1r r
2) A 2im 2 —00 2 A

! OOQD —|—3i A/(2—1-' Ihd
= — r+—)— r, r.
2 ) 2 ) AT
Since A(s, 1) = A(s, II) this concludes the proof of the proposition by col-
lecting all the terms above. Precisely this yields the formula when o = 3/2, and

then we can make o > 1/2 arbitrary by shifting the line of integration. m|
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We conclude this section with a couple of remarks on symmetries. The first
observation is that the functional equation implies that if p is a zero (resp.
pole) of A(s, IT) then so is 1 — p (reflexion across the central line). Thus the
set {y;(ID} (resp. {r;(IT)}) is invariant by the reflexion across the real axis
(namely y goes into ). Note that this is compatible with the GRH which
predicts that e p; (I1) = % and y; (IT) € R.

Assuming @ is real-valued the explicit formula is an identity between real
numbers. Indeed the Schwartz reflection principle gives ®(s) = ®(s) for all
s € C. Because of the above remark the sum over the zeros (resp. poles)
in (4.8) is a real; the integrand is real-valued as well for all r € (—o00, 00).

The situation when IT is self-dual occurs often in practice. The zeros y; (IT)
satisfy another symmetry which is the reflexion across the origin. Assuming I1
is cuspidal and non-trivial there is no pole. The explicit formula (4.8) simplifies
and may be written

ZCD J(I) = gq(n)q>(0)+ Z/ L ( +lrl'I)<I>(r)dr

veV

5 Sato-Tate equidistribution

Let G be a connected reductive group over a number field F' as in the previous
section. The choice of a Gal(F / F)-invariant sphttmg datum (B T {Xalae Av)
as in Sect. 2.1 induces a composite map Gal(F /F) — Out(G) < Aut(G)
with open kernel. Let Fy be the unique finite extension of F in F such that

Gal(F/F) — Gal(F|/F) < Aut(G).

5.1 Definition of the Sato—Tate measure

Set I'y := Gal(F,/F). Let K be a maximal compact subgroup of G which is
"1 -invariant. (It is not hard to see that sucha K exists, cf. [2].) Set Tc = TNK.
(The subscript ¢ stands for “compact” as it was in Sect. 3.3.) Denote by 2.
the Weyl group for (K, T;).

Let & € TI'y. Define 2. ¢ to be the subset of f-invariant elements of €.
Consider the topological quotient K, g of K x6 by the K -conjugacy equivalence
relation. Set ’f& g = T"c /(6 —1id) T}ANote tIElt the action of Q2. 4 on T"c induces
an action on 7; ¢. The inclusion 7, < K induces a canonical topological
isomorphism (cf. Lemma 3.2)

Ky =Teo/ Q. (5.1)
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The Haar measure on K (resp. on T, ¢) with total volume 1 is written as g
(resp. 7). Then pg on K x 6 induces the quotient measure [ ¢ (so that

for any continuous function f% on Kg and its pullback f on K, f fiu Kgs =
Py 6
f fig) thus also a measure KT, o O Tc0.

Definition 5.1 The 6-Sato-Tate measure ﬁST on 7\},9 /2.0 is the measure
transported from Kg ¥ via (5.1).

Lemma 5.2 Let iy ST denote the measure on T 6 pulled back from :“0 on

T. g/SZC o [so that f f,ue 0= f?ﬁg‘Tfor every Continuous f on TC70/QC79
and its pullback f]. Then

~ST

ng 0= DO(I)HT},@’

1
|Qc,9|

where D@/(\l‘) = det(1 — ad(r x 0)|Lie (I?)/Lie (YA"CG)) and t signifies a para-
meter on T, g.

Proof The twisted Weyl integration formula tells us that for a continuous
f: K — C,

/ fRpg = ; Dg (1) f(x_ltxe) ~dxdt.
|$2c01 J77% Rio\K

Notice that X, t¢ 1s the twisted centralizer group of ¢ in K (or, the centralizer
group of 76 in K). On the right hand side, u7 , is used for integration. When

f is a pullback from K u, the formula simplifies as

1
FOugs =5 [ Di0F0)-
/zg Ko 190l S fes
and the left hand side is equal to fﬁ , f@) MS’TO by definition. O

5.2 Limit of the Plancherel measure versus the Sato—Tate measure

Let 6,7 € T'y. Then clearly Qo = Q. .1, Ky = Koy | viak = 7(k)
and T, 5 ~ fc,rét*' via t > 7(t). Accordingly 725" and 73 are identified
with ﬁfgr_l and ﬁfgr_l, o> Tespectively.

Fix once and for all a set of representatives %’ (I") for conjugacy classes in
I'1. For 6 € €(I'1), denote by [0] its conjugacy class. For each finite place v
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such that G is unramified over F,,, the geometric Frobenius Fr, € Gal(F,"/ F,)
gives a well-defined conjugacy class [Fr,] in I'y. The set of all finite places v
of F where G is unramified is partitioned into

{(VEO)}oew )

such that v € Vr(0) if and only if [Fr,] = [6].

For each finite place v of F, the unitary dual of G(F,) and its Plancherel
measure are written as G/} and ﬁ%,’l Similarly adapt the notation of Sect. 3.1 by
appending the subscript v. Now fix6 € ¢’(I";) and suppose that G is unramified
at v and that v € Vg (6). We choose F <> F, such that Fr, has i image 6 in
"1 (rather than some other conjugate). This rigidifies the identification in the
second map below. (If Fr, maps to 07 ~! then the second map is twisted by 7.)

canomcal A

G(FU)A,ur,temp — T Fru/Qc Fr, = 1¢, G/Qc 6- (5-2)

By abuse of notation let i Apl ur,temp [a measure on G (F,)"""-*MP] also denote

the transported measure on ﬁ 0/ 2. Let C, denote the constant of Propo-
sition 3 3, which we normalize such that u Apl "OEMP has total volume 1. Note
that 1t :“9 also has total volume 1.

Proposition 5.3 Fix any 6 € €(I'1). As v — o0 in Vr(0), we have weak

L, ur, t ~
convergence Mg ur.temp ,bLgT as v — oQ.

Apl ur,temp

Proof 1t is enough to show that it — ﬁgTO on ’T\C ¢ as v tends to 00

in Vr(0). Consider the measure /,Lp ur emp =C, IABI Our eMP Tt is clear from
the formula of Proposition 3.3 that it Ap ! ur temp — //, Tasv — ocoin Vr(9). In
particular, the total volume of Mgl lur temp tendsto 1, hence C, — lasv — o0
in VF(6). We conclude that ﬁgla’ niemp ;’IgTO as desired. O

Remark 5.4 The above proposition was already noticed by Sarnak for G =
SL(n) in [90, §4].

5.3 The generalized Sato—Tate problem

Let 7 be a cuspidal® tempered automorphic representation of G (A r) satisfying

Hypothesis. The conjectural global L-parameter ¢, for 7 has Zariski dense
image in LGFI/F.

6 If 7 is not cuspidal then the hypothesis is never supposed to be satisfied.
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Of course this hypothesis is more philosophical than practical. The global
Langlands correspondence between (L-packets of) automorphic representa-
tions and global L-parameters of G(AF) is far from established. A funda-
mental problem here is that global L-parameters cannot be defined unless the
conjectural global Langlands group is defined. (Some substitutes have been
proposed by Arthur in the case of classical groups. The basic idea is that a
cuspidal automorphic representation of GL,, can be put in place of an irre-
ducible n-dimensional representation of the global Langlands group.) Never-
theless, the above hypothesis can often be replaced with another condition,
which should be equivalent but can be stated without reference to conjectural
objects. For instance, when 7 corresponds to a Hilbert modular form of weight
> 2 at all infinite places, one can use the hypothesis that it is not a CM form
(i.e. not an automorphic induction from a Hecke character over a CM field).

Let us state a general form of the Sato—Tate conjecture. Let ¢, denote the
cardinality of the residue field cardinality at a finite place v of F. Define
Vi@, 1)S :={v e Vp(O,7): qy < x} forx € Rxy.

Conjecture 5.5 Assume the above hypothesis. For each 6 € € (I'1), let
Vr(0, ) be the subset of v € Vg(0) such that m, is unramified. Then
{mv}vevr(0,7) are equidistributed according to ﬁgT. More precisely

1 ~ST
W Z 8]‘[1} — Mg as x — Q.

veVFE(0,1)S¥

The above conjecture is deemed plausible in that it is essentially a consequence
of the Langlands functoriality conjecture at least when G is (an inner form of)
a split group. Namely if we knew that the L-function L(s, , p) for any irre-
ducible representation “G — GL, were a cuspidal automorphic L-function
for GL, then the desired equidistribution is implied by Theorem 1 of [92,
AppA.2].

Remark 5.6 In general when the above hypothesis is dropped, it is likely that
7 comes from an automorphic representation on a smaller group than G. [If
¢n factors through an injective L-morphism Ly FJF —> Lg F/F then the
Langlands functoriality predicts that v arises from an automorphic represen-
tation of H(AF).] Suppose that the Zariski closure of Im (¢, ) in Lg F/F 18
isomorphic to L H F,/F for some connected reductive group H over F'. (In gen-
eral the Zariski closure may consist of finitely many copies of - H F/F-) Then
{mv}vevr0,7) should be equidistributed according to the Sato—Tate measure
belonging to H in order to be consistent with the functoriality conjecture.

One can also formulate a version of the conjecture where v runs over the set
of all finite places where m, are unramified by considering conjugacy classes
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in LG F/F rather than those in G x 6 for a fixed 6. For this let K7 denote
the quotient of K by the equivalence relation coming from the conjugation by
K x F1 Since K7 is isomorphic to a suitable quotlent of TC, the Haar measure
on K gives rise to a measure, to be denoted 25T, on the quotient of T.. Let
Vr(r)S (where x € R>1) denote the set of finite places of F such that T, are
unramified and g, < x. By writing v — 0o we mean that ¢, tends to infinity.

Conjecture 5.7 Assume the above hypothesis. Then as x — 00 the set
(my: v € VE(m)S') is equidistributed according to ZZS‘T. Namely

1

~ST

W Z 87-[” — U as x — Q.
VEVE (1) S

Remark 5.8 Unlike Conjecture 5.5 it is unnecessary to choose embeddings
F < F, torigidify (5.2) since the ambiguity in the rigidification is absorbed
in the conjugacy classes in -G F/F- The formulation of Conjecture 5.7 might
be more suitable than the previous one in the motivic setting where we would
not want to fix F < F,,. The interested reader may compare Conjecture 5.7
with the motivic Sato—Tate conjecture of [96, 13.5].

The next subsection will discuss the analogue of Conjecture 5.5 for auto-
morphic families. Conjecture 5.7 will not be considered any more in our paper.
It is enough to mention that the analogue of the latter conjecture for families
of algebraic varieties makes sense and appears to be interesting.

5.4 The Sato-Tate conjecture for families

The Sato—Tate conjecture has been proved for Hilbert modular forms in [6,7].
Analogous equidistribution theorems in the function field setting are due to
Deligne and Katz. (See [59, Thm9.2.6] for instance.) Despite these fantastic
developments, we have little unconditional theoretical evidence for the Sato—
Tate conjecture for general reductive groups over number fields. On the other
hand, it has been noticed that the analogue of the Sato—Tate conjecture for
families of automorphic representations is more amenable to attack. Indeed
there was some success in the case of holomorphic modular forms and Maass
forms [34, Thm2] and [53,83,97]. The conjecture has the following coarse
form, which should be thought of as a guiding principle rather than a rigorous
conjecture. Compare with some precise results in Sect. 9.7.

Heuristic 5.9 Let {Fi}i>1 be a “general” sequence of finite families of auto-
morphic representations of G(Afr) such that |F| — 00 as k — 00. Then
{my € Fi} are equidistributed according to ﬁg’T as k and v tend to infinity
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subject to the conditions that v € Vp(0) and that all members of Fi are
unramified at v.

We are not going to make precise what “general” means, but merely remark
that it should be the analogue of the condition that the hypothesis of Sect. 5.3
holds for the “generic fiber” of the family when the family has a geometric
meaning (see also [87]). In practice one would verify the conjecture for many
interesting families while simply ignoring the word “general”. Some relation
between k and v holds when taking limit: k£ needs to grow fast enough compared
to v (or more precisely |Fx| needs to grow fast enough compared to g,).

It is noteworthy that the unpleasant hypothesis of Sect. 5.3 can be avoided
for families. Also note that the temperedness assumption is often unnecessary
due to the fact that the Plancherel measure is supported on the tempered spec-
trum. This is an indication that most representations in a family are globally
tempered, which we will return to in a subsequent work.

Later we will verify the conjecture for many families in Sect. 9.7 as a
corollary to the automorphic Plancherel theorem proved earlier in Sect. 9. Our
families arise as the sets of all automorphic representations with increasing
level or weight, possibly with prescribed local conditions at finitely many fixed
places.

6 Background materials

This section collects background materials in the local and global contexts.
Sections 6.1 and 6.3 are concerned with p-adic groups while Sects. 6.4, 6.5 and
6.8 are with real and complex Lie groups. The rest is about global reductive
groups.

6.1 Orbital integrals and constant terms

We introduce some notation in the p-adic context.

e F is afinite extension of Q,, with integer ring O and multiplicative valua-
tion | - |.

G is a connected reductive group over F.

A is a maximal F-split torus of G, and put My := Zg(A).

K is a maximal compact subgroup of G corresponding to a special point
in the apartment for A.

e P = MN is a parabolic subgroup of G over F, with M and N its Levi
subgroup and unipotent radical, such that M D M.

y € G(F)isasemisimple element. (The case of a non-semisimple element
is not needed in this paper.)
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e [, is the neutral component of the centralizer of y in G. Then [, is a
connected reductive group over F.

e LG (resp. /uy) is a Haar measure on G (F) (resp. I, (F)).

° F% is the quotient measure on I, (F)\G(F’) induced by u¢ and u I -

e ¢ € CXX(G(F)).

° DG(y) =[], [1 —a(y)| for a semisimple y € G(F), where « runs over
the set of roots of G (with respect to any maximal torus in the connnected
centralizer of y in G) such that «(y) # 1. Let M be an F-rational Levi
subgroup of G. For a semisimple y € G(F), we define Dj(‘;,l(y) similarly
by further excluding those « in the set of roots of M.

Define the orbital integral

_ WG
09, 1. 1) :=/ by O
I, (F)\G(F) Kr,

When the context is clear, we use O, (¢) as a shorthand notation.

We recall the theory of constant terms (cf. [105, p. 236]). Choose Haar
measures g, Uy, AN, on K, M(F), N(F), respectively, such that ug =
wx my iy holds with respect to G(F) = KM (F)N (F). Define the (normal-
ized) constant term ¢y € C2°(M(F)) by

1/2

durtm) = %) [ [ gtk . 6.1)
NF) JK

Although the definition of ¢ s involves not only M but P, the following lemma
shows that the orbital integrals of ¢)s depend only on M by the density of
regular semisimple orbital integrals, justifying our notation.

Lemma 6.1 For all (G, M)-regular semisimple y € M(F),

Oy bu. iy iur,) = D ()20, ($. G, 111,).-

Proof [105,Lem 9]. (Although the lemma s stated for regular elements y € G,
it suffices to require y to be (G, M)-regular. See Lemma 8 of loc. cit.) O

It is standard that the definition and facts we have recollected above extend
to the adelic case. (Use [63, §§7-8], for instance). We will skip rewriting the
analogous definition in the adelic setting.

Now we restrict ourselves to the local unramified case. Suppose that G is
unramified over F'. Let B C P C G be Borel and parabolic subgroups defined
over F'. Write B = TU and P = MN where T and M are Levi subgroups
such that 7 C M and U and N are unipotent radicals.
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Lemma 6.2 Let ¢ € H"(G). Then SAC,’;(¢) = ¢u, in particular S¢(¢p) =
SM(S5i¢) = ¢r-.

Proof Straightforward from (2.1) and (6.1). O

6.2 Gross’s motives

Now let F be a finite extension of QQ (although Gross’s theory applies more
generally). Let G be a connected reductive group over F and consider its
quasi-split inner form G*. Let T™* be the centralizer of a maximal F-split torus
of G*. Denote by 2 the Weyl group for (G*, T*) over F. Set I' = Gal(F /F).
Gross [47] attaches to G an Artin—Tate motive

Mot = EP Motg.q(1 — d)
d>1

with coefficients in Q. Here (1 — d) denotes the Tate twist. The Artin motive
Motg.4 (denoted V; by Gross) may be thought of as a I'-representation on a
Q-vector space whose dimension is dim Mot 4. Define

L(Motg) := L(0, Motg)

to be the Artin L-value of L(s, Motg) at s = 0. We recall some properties of
Mot from Gross’s article.

Proposition 6.3 (i) Motg 4 is self-dual for each d > 1.

(ii) Zd>1 dim Motg 4 = rg = 1kG.

(iii) Zd>1(2d — 1) dim Motg 4 = dim G.

(iV) |Q| — Hd}l ddimMotGYd.

(vi) If T* splits over a finite extension E of F then the T-action on Motg
factors through Gal(E / F).

The Artin conductor f(Motg 4) is defined as follows. Let F’ be the fixed
field of the kernel of the Artin representation Gal (F /F) — GL(V,) associated
to Mot 4. For each finite place v of F, let w be any place of F’ above v. Let
I'(v); := Gal(F},/F,)i (i > 0) denote the i-th ramification subgroups. Set

[T ()il
[T (v)ol

Gy d) =D

1 EZ)()

dim (Va/ vy "), 6.2)

which is an integer independent of the choice of w. Write p, for the prime
ideal of OF corresponding to v. If v is unramified in E then f(G,,d) = 0.
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Thus the product makes sense in the following definition.

f(Motg q) 1= H p/ (God)

vfoo

Let E be the splitting field of 7* (which is an extension of F) and set sg) b=
[E: F].

Lemma 6.4 For every finite place v of F,
f(Gv, d) < (dlm MOtG,d) . (sgbl (1 + eFU/Q[, 10gp sgﬁ)l) _ 1) .

Proof Let F', w and V; be as in the preceding paragraph. Then F C F' C E.
Set s, := [F,,: F,] so that s, < sg’l. The case s, = 1 is obvious (in which
case f(Gy,d) = 0), so we may assume s, > 2. From (6.2) and Corollary 6.9
below,

f(Gy.d) <D dim (Vd/VdF(”)") < (dim V) (su(1 + ef, g, log,, sv) — 1).

i>0
]
Recall that wg = |2] is the cardinality of the absolute Weyl group. Let sg be
the degree of the smallest extension of F' over which G becomes split. The
following useful lemma implies in particular that sSGp : < wesG-
Lemma 6.5 [56, Lem 2.2] For any maximal torus T of G defined over F,

there exists a finite Galois extension E of F such that |E: F] < wgsg and T
splits over E.

6.3 Lemmas on ramification

This subsection is meant to provide an ingredient of proof (namely Corollary
6.9) for Lemma 6.4.

Fix aprime p. Let E and F be finite extensions of (Q, with uniformizers wg
and @, respectively. Normalize valuations vg: EX — Zand vp: F* — Z
such that vg(@wg) = vp(wp) = 1. Write eg/p € Z3; for the ramification
index and D g, for the different. For a nonzero principal ideal a of Of, we
define vg (a) to be vg(a) for any generator a of a. This is well defined.

Lemma 6.6 Let E be a totally ramified Galois extension of F with [E: F] =
p" forn > 0. Then

vE®@E/F) < p"(1+n-erpg,) — 1.
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Remark 6.7 Infactthe inequality is sharp. There are totally ramified extensions
E/F for which the above equality holds as shown by Ore. See also [95, §1]
for similar results.

Proof The lemma is trivial when n = 0. Next assume n = 1 but allow E/F
to be a non-Galois extension. Let f(x) = le:o aix' € Op[x] (with ap, =1
and vr(a;) > 1 fori < p) be the Eisenstein polynomial having @ g as a root.
By [94, 111.6, Cor 2], vg (D g/F) = ve(f'(wE)). The latter equals

p
. i—1 . . j—1 —1
VE (Zzaiwg )=]r<nil£p VE (laiwé )ng (pwg )zeE/Qp +p—1
i:l XX

This prepares us to tackle the case of arbitrary n. Choose a sequence of
subextensions £ = Fy D F| D --- D F, = F suchthat [F,,: Fyr1] = p
(where F, / F;+1 may not be a Galois extension). By above, vg,, (DF,, /F,., ) <
€F, /o, + p— 1for0 <m <n— 1. Hence

n—1 n—1
vVEDE/F) = Z VEDF,/Fpi) < Z p"(er,/0, +p—1

=np"er)g, + p" — 1.

Lemma 6.8 Let E be a finite Galois extension of F. Then
vE@p/F) < [E: FI(1 + epyq, log, [E: F1) — 1.

Proof Let E' (resp. E') be the maximal tame (resp. unramified) extension of
Fin E. Then vg: (D prjpur) = [E": E¥] — 1 by [94, 1I1.6, Prop 13]. Clearly
vgur (D pur/p) = 0. Together with Lemma 6.6, we obtain
vE(®DE/F) = vVE@E/p) + [E: ENvg (D pur)
<[E: E (1 +epryg, log,[E: E1)
—14+[E:E"N(E :E"™]—-1)
=[E: E"](1 + eF/q, log,[E: E']) — 1
< [E: F](1 +er/q, logp[E: F]) — 1.
O
Corollary 6.9 Let E be afinite Galois extension of F. Then the i th ramification

group Gal(E/F); is trivial fori = [E: F](1 + €F/Q, logp[E: F])—1.
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Proof In the notation of section IV.1 of [94], we have Gal(E/F),, = 1 by
definition if m = maxj.seGal(E/F) G (s). But the proposition 4 in that section
implies that m < vg(Dg/F), so Lemma 6.8 finishes the proof.

6.4 Stable discrete series characters

In Sects. 6.4 and 6.5 we specialize to the situation of real groups.

e G is a connected reductive group over R.

e AG.oo = Ag(R)? where Ag is the maximal split torus in the center of G.

e K is a maximal compact subgroup of G(R) and K, := Koo AG . 00-

e ¢(G) := L dimg G(R)/K., € Z>o.

e T is an R-elliptic maximal torus in G. (Assume that such a 7" exists.)

e B is a Borel subgroup of G over C containing 7.

e [, denotes the connected centralizer of y € G(R).

o O (resp. @) is the set of positive (resp. all) roots of T in G over C.

e Qis the Weyl group for (G, T) over C, and 2. is the compact Weyl group.

® p= %Zaedﬁ a.

e & is an irreducible finite dimensional algebraic representation of G (R).

e Lg € X*(T) is the B-dominant highest weight for &.

o m(§) := minycqp+ (A + p, ). We always have m(§) > 0.

o [1gisc(€) is the set of irreducible discrete series representations of G (R)
with the same infinitesimal character and the same central character as &.
[This is an L-packet for G (R).]

° Dgo(y) =[]y 11 —a(y)| for y € T(R), where « runs over elements of
® such that a(y) # 1. [If y is in the center of G(R), DS (y) = 1]

If M is a Levi subgroup of G over C containing T, the following are defined
in the obvious manner as above: <I>A+4, D, L1, PM Doﬂg. Define QM .= {w e
Q: a)_ICIDAJC[ C @7}, which is a set of representatives for /). For each
regular y € T (R), let us define (cf. [3, (4.4)])

oG (y.£) = (=)D D' P DY)V D Ox(y)
7 €Mgisc (§)

where ®; is the character function of 77 . It is known that the function CIDAG,, (v, &)
continuously extends to an $2y/-invariant function on 7 (R), thus also to a
function on M (R) which is invariant under M (R)-conjugation and supported
on elliptic elements ([3, Lem 4.2], cf. [45, Lem 4.1]). When M = G, simply
DG (y. &) = tré(y).

We would like to have an upper bound for |d>1(‘7/1(y, &)| that we will need in
Sect. 9.5. This is a refinement of [99, Lem 4.8].
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Lemma 6.10 (i) dim& = Haeq>+ f;r)m'

(i1) There exists a constant ¢ > 0 independent of & such that for every elliptic
y € GR) and &,

|tr&(y)l <(T<D§xy)‘”2
dim & m(E)® 1%

Proof Part (i) is the standard Weyl dimension formula. Let us prove (ii). The
formula right above the corollary 1.12 in [19] implies that

- (@ ', e + p)
t < DG 1/2 \w &, AT P)
e <DL 2 x D 1 :

o, pr,)
weQly ot€<l>,+y i

Note that their M is our I, and that |a(y)| = 1 for all « € ® and all elliptic
y € G(R). Hence by (i),

-1

HFS(V)| [loco+ (@ p)
weQly aeq)Jr (e, Py a€¢+\w_1<1>?_
_ (a, p) oH-|o]

ae¢ﬁ<a,p@>

O

Lemma 6.11 Assume that M is a Levi subgroup of G over R containing an
elliptic maximal torus. There exists a constant co > 0 independent of & such
that for every elliptic y € M(R),

|®5 (v, 5)! . DY (y)~1/2

d S |0+ ||t |
imé& mE) oY

Proof As the case M = G is already proved by Lemma 6.10 (ii), we assume
that M C G.Fixanelliptic maximal torus 77 C M. Since every elliptic element
has aconjugatein 7' (RR) and both sides of the inequality are conjugate-invariant,
it is enough to verify the lemma for y € T (R). In this proof we borrow some
notation and facts from [45, pp. 494-498] as well as [3, pp. 272-274]. For the
purpose of proving Lemma 6.11, we may restrict to y € ', corresponding
to a closed chamber for the root system of 7'(R) in G(R). (See page 497 of
[45] for the precise definition.) The proof of [45, Lem 4.1] shows that
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G 6 = D c@, 8 wE)(y)

weQM

where sjy is the irreducible representation of M (R) of highest weight w (& +
p) — py- We claim that there is a constant ¢; > 0 independent of £ such that

le(@, §)] < c1

for all w and &. The coefficients c(w, &) can be computed by rewriting the
right hand side of [3, (4.8)] as a linear combination of tr § Cﬁ” (y) using the Weyl
character formula. In order to verify the claim, it suffices to point out that

E(Q;rs o Rg) in Arthur’s (4.8) takes values in a finite set which is independent
of & (or T in Arthur’s notation). This is obvious: as Q;LM C ®Y and R; C o,
there are finitely many possibilities for Q;rs ; and R;.

Now by Lemma 6.10 (i),

dim&)  [lyeq (e p)
dimé "~ [lyeqy, (@ om)

[T (@retn™ <cm@ 1®1-1%00

+
acdH\ o},

with ¢2 = ([[cq+ (@, p))(HaecDL (a, p)~' > 0. According to Lemma
6.10 (ii), there exists a constant ¢3 > 0 such that

&M ()] DM (y)~1/2
— S G3 —
dimé) AR
m(§) 4

To conclude the proof, multiply the last two formulas. O

6.5 Euler—Poincaré functions

We continue to use the notation of Sect. 6.4. Let 775’ denote the Euler—Poincaré

measure on G(R)/Ag, (so that its induced measure on the compact inner
form has volume 1). There exists a unique Haar measure ME}: on G (R) which
is compatible with ﬁg and the standard Haar measure on Ag 0. Write wg for
the central character of £ on Ag, . Let H(a)_l) denote the set of irreducible
admissible representations of G(R) whose central characters on Ag « are
a)gl. Form € l'[(a)gl), define

Xep(T ® §) := D (—1)) dim H' (Lie G(R), K},. 7 ® ).
i20
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Clozel and Delorme [21] constructed a bi- K »-finite function ¢ € C*°(G(R))
which transforms under Ag, o by wg and is compactly supported modulo
AG .0, such that

Vr eIl (wgl) . tr (g, pnh) = xep(m ® ).

The following are well-known:

o xpp(m ® &) =Ounless 7 € H(wg 1) has the same infinitesimal character
as &Y.

o If té;le highest weight of & is regular then xgp(m ® &) # 0 if and only if
T e Hdisc(gv)-

o Ifr eIl (a)g]) is a discrete series and xgp(m ® &) # Othenm € Igisc(§Y)
and xpp(mr ® €) = (=196 More precisely, dim Hi(Lie G(R), K, ,m®
&) equals 1ifi = ¢(G) and O if not.

6.6 Canonical measures and Tamagawa measures

We return to the global setting so that F' and G are as in Sect. 6.2. Let G, :=
(Resr/G) xR, to which the contents of Sects. 6.4 and 6.5 apply. In particular
we have a measure ME}: on G (R). For each finite place v of F, define u{*" :=
A(Motév(l)) - lwg,| in the notation of [47] where |wg, | is the “canonical”
Haar measure on G(F,) as in §11 of that article. When G is unramified over
F,, the measure ;%" assigns volume 1 to a hyperspecial subgroup of G (Fy).

v
In particular,

can,EP .__ can EP
m =[] s x uk

v{oo

is a well-defined measure on G(Af).
Let 727 denote the Tamagawa measure on G (F)\G (Afr)/ AG.o0os SO that
its volume is the Tamagawa number (cf. [64, p. 629])

7(G) ;= "™ (G(F)\G(AF)/AG.c0)
= |mo(Z(G)FF/P) - | ker! (F, Z(G))| . (6.3)
The Tamagawa measure 1™ on G(Af) of [47] is compatible with 7z 2™
if G(F) and Ag o are equipped with the point-counting measure and the

Lebesgue measure, respectively. The ratio of two Haar measures on G(AF) is
computed as:
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Proposition 6.12 [47, 10.5]

'ucan,EP B L(Motg) - |2]/]92|
MTama - e(Goo)zrkRGoo

The following notion will be useful in that the Levi subgroups contributing
to the trace formula in Sect. 9 turn out to be the cuspidal ones.

Definition 6.13 We say that G is cuspidal if Go := Resp,@G satisfies the
condition that Ag, x@ R is the maximal split torus in the center of Go xg R.

Assume that G is cuspidal, so that G(R) /A, contains a maximal R-torus
which is anisotropic.

Corollary 6.14

ﬁcan,EP(G(F)\G(AF)/AG ) _ T(G) - L(Motg) - |2]|/192¢|
e (G (Foo) [ AG.00) e(G o) 21F UG

Proof 1t suffices to remark that the Euler—Poincare measure on a compact Lie
group has total volume 1, hence & ,u (G(Foo)/AG 00) = 1.

6.7 Bounds for Artin L-functions

For later use we estimate the L-value L(Motg) in Corollary 6.14.
Proposition 6.15 Let s > 1 and E be a Galois extension of F of degree
[E: F] <s.

(1) For all € > O there exists a constant ¢ = c(€, s, F) > 0 which depends
only on €, s and F such that the following holds: For all non-trivial
irreducible representations p of Gal(E/F),

cd; < L(1, p) < cdy.

(i) The same inequalities hold for the residue Ress—1Cg (s) of the Dedekind
zeta function of E.

(iii) There is a constant A1 = A(s, F) > 0 which depends only on s and F
such that for all faithful irreducible representation p of Gal(E/F),

g/ dim(p)
dE/F Nr/o(fp) < E//Flmp,

where dg/p = Npo(D g/F) is the relative discriminant of E/F; recall
that dg = dI[,;E: F]dE/F.
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Proof The assertion (ii) is Brauer—Siegel theorem [14, Theorem 2]. We also
note the implication (i) = (ii) which follows from the formula

¢e@s) =[] LG, p™™. 6.4)
P

where p ranges over all irreducible representations of Gal(E/ F).

The proof of assertion (i) is reduced to the 1-dimensional case by Brauer
induction as in [14]. In this reduction one uses the fact that if E'/F’ is a
subextension of E/F then the absolute discriminant dg of E’ divides the
absolute discriminant dg of E. Also we may assume that £’/ F’ is cyclic. For
a character xy of Gal(E’/F’) we have the convexity bound L(1, x) < cd¢,
(Landau). The lower bound for L(1, x) follows from (ii) and the product
formula (6.4).

In the assertion (iii) the right inequality follows from the discriminant-
conductor formula which implies that fglm(p ) |0 g/ F. The leftinequality follows
from local considerations. Let v be a finite place of F dividing D g f; since p is
faithful, its restriction to the inertia group above v is non-trivial and therefore v
divides f,. Since v(D g, r) is bounded above by a constant A (s, F') depending
onlyon[E: F] < sand F'by Lemma 6.8, wehave v(Dg,r) < Ajv(f,) which
concludes the proof. O

Corollary 6.16 For all integers R, D, s € Z>, and € > 0 there is a constant
ci =ci(e,R, D,s, F) > 0(depending on R, D, s, F and €) with the following
property

(i) Forany G such thatrg < R, dim G < D, Z(G) is F-anisotropic, and G
splits over a Galois extension of F of degree < s,
196 ) 1
ILMotg)| < e [ Nrjo(Motg.a)? 2%,
d=1

(i1) There is a constant Ayg = Axo(R, D, s, F) such that for any G as in (i),

ILMote) <ci [ e
veRam(G)

The choice Ayg = (D"Bﬂ max (1 + €F,/Q, log s) is admissible.
prime p
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Proof The functional equation for Mot reads

Loo(Mot % (1
L(Motg) = L(Mot;(1))e(Motg) - %
_ dg/2 d—1
where e Motg) = |AF| Hd>1 NF/Q(f(MOtG’d)) 2,

The (possibly reducible) Artin representation for Mot 4 factors through
Gal(E/F) with [E: F] < s by the assumption. Let A| = A (s, F) be as in
(iii) of Proposition 6.15. For all ¢ > 0, (i) of Proposition 6.15 implies that
there is a constant ¢ = c(e, s, F)) > 1 depending only on s and F such that

dim Mot
£ Motz (D)] < TT (eNejatiMotg €)™
d>1

< 9 [ [ NejofMotg a)<*17e.
d>1

Formula (7.7) of [47], the first equality below, leads to the following bound
sinceonly 1 < d < L@J can contribute in view of Proposition 6.3 (iii).

Loo (Mot (D) | _ 27 1FQre I ((d - 1)!)dimM°tG’d
L~ (Motg) il Q)4

< 2-1F (LMJ») .
2

Setci(R, D, s, F,€) = |Ap|P/?2-F:QIR (LDT_IJ!)R. Then we see that

dg+1
2

L ]
1
ILMote) < e [] Nreja(fMotg.a)) =2
d=1

dg+1
175

— ¢ 1—[ 1—[ : ql()d—%-i—e)-f(Gu,d).

veRam(G) d=1

This concludes the proof of (i).
According to Lemma 6.4, the exponent in the right hand side is bounded by

+1

D
df(Gy,d) < dimMOtG,d - (s(1 4+ €Fr,/Q, logs) — 1).
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(we have chosen € = %). The proof of (ii) is concluded by the fact that

ZdimMotG,d =rG < R,
d>1

see Proposition 6.3 (ii).

Corollary 6.17 Let G be a connected cuspidal reductive group over F with
anisotropic center. Then there exist constants co = c2(G, F) > 0 and
Ay(G, F) > 0depending only on G and F such that: for any cuspidal F-Levi
subgroup M of G and any semisimple y € M (F) which is elliptic in M (R),

)L(Mot,yM)‘gcz [T

veRam(If,”)

where I}i‘/[ denote the connected centralizer of y in M. The following choice
is admissible:

dg + Drgwgs
= (dc )'GWGSG max (1 +er,/qQ, log wgseg).-

Az
2 prime p

Proof According to Lemma 6.5, s;[zj < wgsg. Apply Corollary 6.16 for each
Y

I)ﬂ” with R = rg, D = dg and s = wgsg to deduce the first assertion,
which obviously implies the last assertion. Note that rkl)fv[ < rg and that
dim 1) < dg.

Instead of using the Brauer—Siegel theorem which is ineffective, we could
use the estimates by Zimmert [109] for the size of the regulator of number
fields. This yields an effective estimate for the constants ¢, and c¢3 above, at
the cost of enlarging the value of the exponents A; and A».

6.8 Frobenius—Schur indicator

The Frobenius—Schur indicator is an invariant associated to an irreducible
representation. It may take the three values 1, 0, —1. This subsection gathers
several well-known facts and recalls some familiar constructions.

The Frobenius—Schur indicator can be constructed in greater generality but
the following setting will suffice for our purpose. We will only consider finite
dimensional representations on vector spaces over C or R. The representations
are continuous (and unitary) from compact Lie groups or algebraic from linear
algebraic groups (these are in fact closely related by the classical “unitary trick”
of Hurwitz and Weyl).
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Let G be acompact Lie group and denote by u the Haar probability measure
on G. Let (V, r) be a continuous irreducible representation of G. Denote by
x(g) = Tr(r(g)) its character.

Definition 6.18 The Frobenius—Schur indicator of an irreducible representation
(V, r) of G is defined by

$(r) = /G X (&D)du(g).

We have that s(r) € {—1, 0, 1} always.

Remark 6.19 More generally if G is an arbitrary group but V is still finite
dimensional, then s (r) is defined as the multiplicity of the trivial representation
in the virtual representation on Sym?> V — A2V. This is consistent with the
above definition.

Remark 6.20 (i) Let (VY, r") be the dual representation of G in the dual V.
It is easily seen that s(r) = s(r").
(i) If G = G x Gy and r is the irreducible representation of G on V =
V1 ® V, where (V1, r1) and (V», rp) are irreducible representations of G
(resp. G2), then s(r) = s(r1)s(r2).

The classical theorem of Frobenius and Schur says that r is a real, complex or
quaternionic representation if and only if s(r) = 1, 0 or —1 respectively. We
elaborate on that dichotomy in the following three lemma.

Lemma 6.21 (Real representation) Let (V, r) be an irreducible representation
of G. The following assertions are equivalent:

@) s(r)=1;

(ii) r is self-dual and defined over R in the sense that V >~ Vo @g C for some
irreducible representation on a real vector space Vy. (Such an r is said
to be a real representation;)

(iii) r has aninvariant real structure. Namely there is a G-invariant anti-linear
map j : V — V which satisfies j* = 1.

(vi) r is self-dual and any bilinear form on V that realizes the isomorphism
r>~rY is symmetric;

(v) Sym? V contains the trivial representation (then the multiplicity is exactly
one).

We don’t repeat the proof here (see e.g. [93]) and only recall some of the
familiar constructions. We have a direct sum decomposition

VeV =Sym’V&A>V.
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The character of the representation V ® V is g — x(g)?. By Schur lemma the
trivial representation occurs in V ® V with multiplicity at most one. In other
words the subspace of invariant vectors of VY ® V'V is at most one. Note that
this subspace is identified with Homg (V, V) which is also the subspace of
invariant bilinear forms on V.

The character of the representation Sym? V (resp. A2V) is

1 1
5 (8)* + x(g%) resp. E(X(g)2 — x(g*).

From that the equivalence of (i) with (v) follows because the multiplicity of
the trivial representation in Sym? V (resp. A2V) is the mean of its character.
The equivalence of (iv) and (v) is clear because a bilinear form on V is an
element of V¥ ® V" and it is symmetric if and only if it belongs to Sym? V'V,

The equivalence of (ii) and (iii) follows from the fact that j is induced by
complex conjugation on Vy ®r C and conversely Vj is the subspace of fixed
points by j. Note that a real representation is isomorphic to its complex conju-
gate representation because j may be viewed equivalently as a G-isomorphism
V — V. Since V is unitary the complex conjugate representation 7 is isomor-
phic to the dual representation rY. In assertion (ii) one may note that the
endomorphism ring of Vj is isomorphic to R.

Lemma 6.22 (Complex representation) Let (V, r) be an irreducible represen-
tation of G. The following assertions are equivalent:

(1) s(r) =0;

(i) r is not self-dual;
(iii) r is not isomorphic to r; (such an r is called a complex representation;’)
@iv) V ® V does not contain the trivial representation.

We note that for a complex representation, the restriction Resc/r V' (obtained
by viewing V as a real vector space) is an irreducible real representation of
twice the dimension of V. Its endomorphism ring is isomorphic to C.

Lemma 6.23 (Quaternionic/symplectic representation) Let (V, r) be an irre-
ducible representation of G. The following assertions are equivalent:

G s(r)y =-1;
@i1) r is self-dual and cannot be defined over R.
(iii) r has an invariant quaternionic structure. Namely there is a G-invariant
anti-linearmap j : V. — V which satisfies j*> = —1. (Such anr is called
a quaternionic representation.)
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@iv) r is self-dual and the bilinear formon 'V that realizes the isomorphismr ~
rY is antisymmetric. (Such an r is said to be a symplectic representation, )
) /\2 V contains the trivial representation (the multiplicity is exactly one).

The equivalence of (iii) and (iv) again comes from the fact that V is uni-
tarizable (because G is a compact group). In that context the notion of sym-
plectic representation is identical to the notion of quaternionic representation.
Note that for a quaternionic representation, the restriction Resc/r V' is an irre-
ducible real representation of twice the dimension of V. Furthermore its ring
of endomorphisms is isomorphic to the quaternion algebra H. Indeed the endo-
morphism ring contains the (linear) action by i because V is a representation
over the complex numbers and together with j and k = i this is the standard
presentation of H.

From the above discussions we see that the Frobenius—Schur indicator can be
used to classify irreducible representations over the reals. The endomorphism
ring of an irreducible real representation is isomorphic to either R, C or H and
we have described a correspondence with associated complex representations.

7 A uniform bound on orbital integrals

This section is devoted to showing an apparently new result on the uniform
bound on orbital integrals evaluated at semisimple conjugacy classes and basis
elements of unramified Hecke algebras. Our bound is uniform in the finite
place v of a number field (over which the group is defined), the “size” of (the
support of) the basis element for the unramified Hecke algebra at v as well as
the conjugacy class at v.

The main result is Theorem 7.3, which is invoked in Sect. 9.5. The main
local input for Theorem 7.3 is Proposition 7.1. The technical heart in the proof
of the proposition is postponed to Sect. 7.3, which the reader may want to
skip in the first reading. In Appendix B we discuss an alternative approach to
Theorem 7.3 via motivic integration.

7.1 The main local result

We begin with a local assertion with a view toward Theorem 7.3 below. Let G
be a connected reductive group over a finite extension F' of (9, with a maximal
F-split torus A. As usual O, @, kr denote the integer ring, a uniformizer and
the residue field. Let G be the Chevalley group for G x ¢ F, defined over Z.
Let B and T be a Borel subgroup and a maximal torus of G such that B O T.
We assume that
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e G is unramified over F,
e charkr > wgsg and char kr does not divide the finitely many constants
in the Chevalley commutator relations [namely C;; of (7.34)].

(We assume charkr > wgsg to ensure that any maximal torus of G splits
over a finite tame extension, cf. Sect. 7.3 below. The latter assumption on
char k¢ depends only on G.) Fix a smooth reductive model over O so that
K := G(O) is a hyperspecial subgroup of G(F). Fix a Borel subgroup B of
G whose Levi factor is the centralizer of A in G. Denote by v: F* — Q the
discrete valuation normalized by v(zo) = 1 and by DS the Weyl discriminant
function, cf. (13.1) below. Set g, := |kF|.

Suppose that there exists a closed embedding of algebraic groups ZP! :
G — GL,, defined over O such that ?/(T) [resp. EP!(B)] lies in the group
of diagonal (resp. upper triangular) matrices. This assumption will be satisfied
by Lemma 2.17 and Proposition 8.1, or alternatively as explained at the start
of Sect. 7.4. The assumption may not be strictly necessary but is convenient
to have for some later arguments. In the setup of Sect. 7.2 such a %! will be
chosen globally over Z[1/Q] (i.e. away from a certain finite set of primes),
which gives rise to an embedding over O if v does not divide Q.

Proposition 7.1 There exist ag.y, bGg.v, €G.v = 0 (depending on F, G and
25PN such that

e for every semisimple y € G(F),
o forevery h € X4(A) and k € Z>q such that || 1| < k,

v+bG _
0<o0, (ffugm) <@ DOy 2 (1)

Remark 7.2 'We chose the notation ag , etc rather than ag, r etc in anticipating
the global setup of the next subsection where F' is the completion of a number
field at the place v.

Proof For simplicity we will omit the measures chosen to compute orbital
integrals when there is no danger of confusion. Let us argue by induction on
the semisimple rank 7 of G. In the rank zero case, namely when G is a torus,
the proposition is true since O, (rf )isequal to O or 1. Now assume thatr§ > 1
and that the proposition is known for all groups whose semisimple ranks are
less than 7. In the proof we write ag, bg, ec instead of ac.y, bg,v, €c,v for
simplicity.

Step 1. Reduce to the case where Z(G) is anisotropic.
Let Ag denote the maximal split torus in Z(G). Set G := G/Ag. The goal of
Step 1 is to show that if the proposition for G then it also holds for G. We have
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an exact sequence of algebraic groups over O: 1 - Ag - G — G — 1. By
taking F-points one obtains an exact sequence of groups

1 > Ag(F) »> G(F) »> G(F) — 1,

where the surjectivity is implied by Hilbert 90 for A¢. [In fact G(O) — G(0)
is surjective since it is surjective on kp-points and G — G is smooth, cf. [63,
p. 386], but we do not need this.] For any semisimple y € G(F), denote its
image in G(F) by 7. The connected centralizer of ¥ is denoted 77. There is
an exact sequence

1 - AG(F) = I,(F) — T7(F) — 1.

We see that G(F) — G(F) induces a bijection I,(F)\G(F) ~ I (F)\G(F)
Let A be a maximal F-split torus of G, and A be its image in G. For any
A € X4 (A), denote its image in X, (A) by A. Then

0g® (ef ugh nin) < 05 (e e ).

Indeed, this follows from the fact that I, (F)\G(F) ~ Tf(F )\E(F ) carries

can ME“
ng to u‘d“ As the proposition is assumed to hold for G, the right hand side
Iy [7

agtbgr agtbgr
qv

is bounded by ¢, Dé()/)_“’ﬁ/2 = - DY(y)~¢6/?. Hence the
proposition holds for G if we set ag = ag, b = bz and e = eg. This
finishes Step 1.

Step 2. When Z(G) is anisotropic.
The problem will be divided into three cases depending on y. In each case we
find a sufficient condition on ag, bg and e for (7.1) to be true.

Step 2-1. When y € Z(G)(F).
In this case the proposition holds for any ag, bg, eg = 0 since O (rA )=20
or 1 and DG(y) =1.

Step 2-2. When y is non-central and non-elliptic.

Then there exists a nontrivial split torus S C Z(/,)). Set M := Z;(S), which
is an F-rational Levi subgroup of G. Then I, C M C G. Note that y is
(G, M)-regular. Lemma 6.1 reads

07D Ak r@)k) = Dy (1)~ 2O (A sk m).- (7.2)

By conjugation we may assume without loss of generality that A (=) € M (F).
(To justify, find x € G(F) such that xMx~! contains A. Then A(w) €
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xM(F)x~"and O)//V’ = 0;‘%"__11 .) Moreover by conjugating A we may assume

that A is B N M-dominant. We can write

Akae)n = D cxplkyu@)ky- (7.3)
HERA

The ordering in the sum is relative to BN M. For any m = u(w@w), ¢, 1s equal
to

Akne)k)m(m) = 8p(m)'/? / 1K)k (mn)dn
N(F)
= glPP S (N (F)K N KM@)K).
Lemma 2.13 and the easy inequality (pp, 1) < (p, A) allow us to deduce that

0< ey < q“’”’“%‘é‘“([()»(w)[() < quG+rG+2<,o,x>_

v

The sum in (7.3) runs over the set of

1
=A— . with a, € —Z, >0
1% Z g - O Ay 5G Ao

acAt

such that u € (X*(T)r)". Here we need to explain §g: If © <g A then
A — p is a linear combination of positive coroots with nonnegative rational
coefficients. The denominators of such coefficients under the constraintc;, ,, #
0 are uniformly bounded, where the bound depends on the coroot datum. We
write §¢g for this bound.

The above condition on p and ||A|| < « imply thata, < k. We get, by using
the induction hypothesis for 0)/,” ,

0< O)I,VI(F)((IKA(ZU)K)M) < Z CA,MO}Z,W(IKMM(w)KM)

HERA
< D caugy e DM (pymens?
HERA
+ —_
g ((SG(K + 1))‘A |ng+I’G+2<,O,)L>qlL)1M+bMK X DM(J/) eym/2
< quic-l-rc(5GK+5G+1)+2(pJ»)+aM+bMKDM(V)—eM/Z_

Set
cG:=dc+rcc+ 1) +2(p, 1) <dg+rc@Bc+ 1)+ |0k,
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In view of (7.2) it suffices to find ag, bg, e = 0 such that

D/l(/;l(V)il/zDM(V)76M/2q3M+CG+(bM+”G5G)K < DG(y)feG/quL)lG+bgl<

or equivalently

D[?/I ()/)% DM()/) GoM < ng_aM_CG‘HbG_bM_rG(SG)K (7.4)

whenever a conjugate of y lies in KA(w)K . For each « € ®,

vl —a(y)) =20 if v(a(y)) = 0, (7.5)

vl —a(y)) =v(a(y)) =2 —bex ifv(a(y)) <0 '
where bz is the constant Bs (depending only on G and E and not on v) of
Lemma 2.18. Hence

Df/[(l/) = Z I—a(p)|y < q1|)¢\d>M|b5K/2
0[€¢\®M
a(y)#1

and likewise DM (y) < ql|,¢M 1b2k/2 " (We divide the exponents by 2 because
it cannot happen simultaneously that v(x(y)) < 0 and v(a_l(y)) < 0.
Therefore condition (7.4) on ag, bg, eg is implied by the two conditions

ec = max(l, ey), (7.6)

e — 1|\ Pylbgx e — ey | Pylbzk
2 2 2 2
< ag —ay — (dg +rgc + 1) + DT k) + (b — bu — r6dc)«.
1.7)

There are only finitely many Levi subgroups M (up to conjugation) giving rise
to the triples (ays, by, ey ). It is elementary to observe that (7.7) holds as long
as ag and b are sufficiently large while e has any fixed value such that (7.6)
holds. We will impose another condition on ag, bg, e in Step 2-3.

Step 2-3. When y is noncentral and elliptic in G.
This case is essentially going to be worked out in Sect. 7.3. Let Z1, Zo > O be
as in Lemma 7.9 below. By (7.11) and Corollary 7.11 below, (7.1) will hold if

q;G(dG—’_l)qi—i_Z]KDG()/)_Zz < qgc+bGKDG()/)_€G/2. (78)
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We have DC(y) < ¢\¥1"2*/? thanks to (7.5) (cf. Step 2-2). So (7.8) (is not

equivalent to but) is implied by the combination of the following two inequal-
ities:

7+ %G > 0. (7.9)

K e
rG(dG+1)+1+Z1K+|¢|bg§(—22+g) < ag + bgk. (7.10)

The latter two will hold true, for instance, if eg has any fixed value greater
than or equal to 2Z, and if ag and bg are sufficiently large. (We will see in
Sect. 7.3 below that Z; and Z; are independent of A, y and «.)

Now that we are done with analyzing three different cases, we finish Step
2. For this we use the induction on semisimple ranks (to ensure the existence
of ays, by and ey in Step 2-2) to find ag, bg, eg = 0 which satisfy the
conditions described at the ends of Step 2-2 and Step 2-3. We are done with
the proof of Proposition 7.1.

7.2 A global consequence

Here we switch to a global setup. Let F be a number field. For a finite place v
of F, let k(v) denote the residue field and put g, := |k(v)|.

G is a connected reductive group over F.

Ram(G) is the set of finite places v of F such that G is ramified at F,,.

G is the Chevalley group for G Xy F, and B, T are as in Sect. 7.1.

g%l G — GL,,, fixed once and for all, is a closed embedding defined
over Z[1/R] for a large enough integer R such that E5P'(T) [resp. 2P!(B)]
lies in the group of diagonal (resp. upper triangular) matrices of GL,,,. The
choice of R depends only on G and Z*P'. (We defer to Sect. 7.4 more details
and the explanation that there exists such a 2%!.)

e Spad is the set of finite places v such that either v € Ram(G), char k(v) <
wgsg, char k(v) divides R, or char k(v) divides at least one of the constants
for the Chevalley commutator relations for G, cf. (7.34) below.

Examining the dependence of various constants in Proposition 7.1 leads to the
following main result of this section. For each finite place v ¢ Sp,q, denote by
A, amaximal F,-split torus of G xf F,.

Theorem 7.3 There exist ag, bg > 0 and eg > 1 (depending on F, G and
25PY such that

e for every finite v ¢ Spad,
e for every semisimple y € G(F,),
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o forevery A € Xy (Ay) and k € Zx>q such that ||A|| < «k,

0.< OF® (e, uglh. u§lh,) < gio "o - DY ()~
Remark 7.4 It is worth drawing a comparison between the above theorem and
Theorem 13.1 proved by Kottwitz. In the latter the test function (in the full
Hecke algebra) and the base p-adic field are fixed whereas the main point of
the former is to allow the test function (in the unramified Hecke algebra) and
the place v to vary. The two theorems are complementary to each other and
will play a crucial role in the proof of Theorem 9.19.

Remark 7.5 In an informal communication Kottwitz and Ngd pointed out that
there might be yet another approach based on a geometric argument involving
affine Springer fibers, as in [46, §15], which might lead to a streamlined and
conceptual proof, as well as optimized values of the constants ag and bg.
Appendix B provides an important step in that direction, see Theorem 14.7
which implies that the constants are transferable from finite characteristic to
characteristic zero.

Proof Since the case of tori is clear, we may assume that rgs > 1.Letf €
% (I'1). (Recall the definition of I'y and %’ (I'1) from Sects. 5.1 and 5.2.) Our
strategy is to find ag ¢, bG.0, ec.p = 0 which satisfy the requirements (7.7),
(7.9), and (7.10) on ag v, bG.v, €G.v at all v € VF(0)\Spad. As for (7.7), we
inductively find apr g, bar.o, epmr.o = 0 for all local Levi subgroups M of G as
will be explained below.

We would like to explain an inductive choice of ays g, byr.o, epmro = 0 fora
fixed 6. To do so we ought to clarify what Levi subgroups M of G we consider.
Let A denote the set of B-positive simple roots for (G, T). Via an identification
G xr F ~ G x7 F we may view A as the set of simple roots for G equipped
with an action by I'1, cf. [9, §1.3]. Note that Frob, acts as & € I'; on A for
all v € VF(0)\Spag. According to [9, §3.2], the 6-stable subsets of A are in
bijection with G (F,)-conjugacy classes of F,-parabolic subgroups of G. For
each v € VF(0)\Sbad, fix a Borel subgroup B, of G over F, containing the
centralizer T, of A, in G so that the following are in a canonical bijection with
one another.

e (-stable subsets T of A
e parabolic subgroups P, of G containing B,

Denote by Py, the parabolic subgroup corresponding to Y and by M~ ,
its Levi subgroup containing 7;. Here is an important observation. The con-
stants Z1, Z> (see Remark 7.10 below) and the inequalities (7.7), (7.9), and
(7.10) to be satisfied by ap,v, by v, €my,v depend only on 6 and not on
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v € VF(0)\Sbad- (We consider the case where G and M of those inequalities
are M~y and a F,-Levi subgroup of M~, respectively.) Hence we will write
am.0, bmy.0, emy,0 = 0 for these constants. What we need to do is to define
them inductively according to the semisimple rank of M such that (7.7), (7.9),
and (7.10) hold true. In particular the desired ag ¢, bg.6, €G.o Will be obtained
and the proof will be finished (by returning to the first paragraph in the current
proof).

Now the inductive choice of apsy .6, by .6, €My 0 1S €asy to make once the
choice of apg,6, bmg.0, €Mmq,0 has been made for all 2 C Y. Indeed, we may
choose ey, 9 € Z>1 to fulfill (7.9) and then choose auyq 6, bug,o to be large
enough to verify (7.7) and (7.10). Notice that Zy, Z,, Z3 of (7.10) (which
are constructed in Lemma 7.9 below) depend only on the group-theoretic
information of M~ (such as the dimension, rank, affine root data, §57,, of M~
as well as an embedding of the Chevalley form of M~ into G L, coming from
2P but not on v, cf. Remark 7.10.

In view of Theorem 13.1 and other observations in harmonic analysis, a
natural question is whether it is possible to achieve e = 1. This is a deep
and difficult question which is of independent interest. It was a pleasant sur-
prise to the authors that the theory of arithmetic motivic integration provides a
solution. A precise theorem due to Cluckers, Gordon, and Halupczok is stated
in Theorem 14.1 below. It is worth remarking that their method of proof is
significantly different from that of this section and also that they make use
of Theorem 13.1, the local boundedness theorem. Finally it would be inter-
esting to ask about the analogue in the case of twisted or weighted orbital
integrals. Such a result would be useful in the more general situation than the
one considered in this paper.

7.3 The noncentral elliptic case

The objective of this subsection is to establish Corollary 7.11, which was
used in Step 2-3 of the proof of Proposition 7.1 above. Since the proof is quite
complicated let us guide the reader. The basic idea, going back to Langlands, is
to interpret the orbital integral 0)(,; ) (rf ) in question as the number of points
in the building fixed “up to A” under the action of y. The set of such points,
denoted Xfr(y, 1) below, is finite since y is elliptic. Then it is shown that
every point of X r(y, A) is within a certain distance from a certain apartment,
after enlarging the ground field F to a finite extension. We exploit this to
bound X r(y, A) by a ball of an explicit radius in the building. By counting
the number of points in the ball (which is of course much more tractable than
counting | X (y, A)|) we arrive at the desired bound on the orbital integral. The
proof presented here is inspired by the beautiful exposition of [66, §§3-5] but
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uses brute force and crude bounds at several places. We defer some technical
lemmas and their proofs to Sect. 7.4 below and refer to them in this subsection
but there is no circular logic since no results of this subsection are used in Sect.
7.4.

Throughout this subsection the notation of Sect. 7.1 is adopted and y is
assumed to be noncentral and elliptic in G(F). (However y need not be
regular.) We assume Z(G) to be anisotropic over F' as we did in Step 2 of
the proof of Proposition 7.1. Then I,,(F') is a compact group, on which the
Euler-Poincare measure u];yp assigns total volume 1. Our aim is to bound

OS(F) g p@)k> HG s ,ui";‘“). It follows from [47, Thm 5.5] (for the equality)
and Proposition 6.3 that

EP _
K, _ Hd>1 det (1 — Frob, qff ! |(M0t1y,d)lv)
my" |HI(F, )|
dim Mot
<[I(1+q )"
d>1
(dim I, +1)/2\ KLy AN re(dg1)
<(1+a ) < (1+4af)" <q; NCARY

Thus we may as well bound OyG (F)(l Ku(@)K> hges ,ul;zyp).
Let T, be an elliptic maximal torus of /,, defined over F containing y. By
Lemma 6.5, there exists a Galois extension F’/F with

[F': F]1 < wgsg (7.12)

such that 7), is a split torus over F’. Hence I, and G are split groups over F’.
Note that F’ is a tame extension of F' under the assumption that char kp >
wgse. Let A’ be a split maximal torus of G over F’ suchthat A xp F' C A'.
Since F’-split maximal tori are conjugate over F’, we find

y € G(F') suchthat A" = yT,y~!

and fix such a y. Write ', @’ and v’ for the integer ring of F’, a uniformizer
and the valuation on F’ such that v'(ew’) = 1. With respect to the integral
model of G over O at the beginning of Sect. 7.1, we put K’ := G(O’). A point
of G(F)/K will be denoted x and any of its lift in G(F') will be denoted x.
LetXo € G(F)/K [resp. X, € G(F')/K’] denote the element represented by
the trivial coset of K (resp. K’). Then X (resp. X)) may be thought of as a
base point of the building B(G(F), K) [resp. B(G(F’), K')] and its stabilizer
is identified with K (resp. K’). There exists an injection
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B(G(F),K) — B(G(F'), K') (7.13)

such that B(G(F), K) is the Gal(F’/ F)-fixed points of B(G(F’), K’). (This
is the case because F’ is tame over F.) The natural injection G(F)/K —
G(F")/K’ coincides with the injection induced by (7.13) on the set of vertices.

Define 1" € X, (A") by A" := epr/pA (Where ef/p is the ramification index
of F" over F) so that A'(zw’) = A(w) and

M = ep/plrll < eprpk. (7.14)
For (the fixed y and) a semisimple element § € G(F’), set

Xp(y, 1) = {x € G(F)/K: % 'y¥ € KAM(w)K)}
Xp(8,)) = (X € G(F)/K': ) 's% € K'\(w)K'}.

By abuse of notation we write f_lyf € KA(w)K for the condition that
x! yx € KA(w)K for some (thus every) lift x € G(F) of X and similarly
for the condition on Xx'. It is clear that Xz (y, ) C X/ (y, M) N (G(F)/K).
By (3.4.2) of [66],

08D (Lisok has M) = Xk (y. M. (7.15)

Our goal of bounding the orbital integrals on the left hand side can be translated
into a problem of bounding | X r(y, A)|.

Let Apt(A’(F')) denote the apartment for A’(F’). Likewise Apt(T), (F))
and Apt(T, (F")) are given the obvious meanings. We have X, € Apt(A'(F")).
The metrics on B(G(F), K) and B(G(F’), K’) are chosen such that (7.13) is
an isometry. The metric on B(G(F’), K') is determined by its restriction to
Apt(A’(F’)), which is in turn pinned down by a (non-canonical choice of) a
Weyl-group invariant scalar product on X,(A"), cf. [103, §2.3]. Henceforth
we fix the scalar product once and for all. Scaling the scalar product does not
change our main results of this subsection.

Remark 7.6 For any other tame extension F” of F and a split maximal torus
A" of G over F”, we can find an isomorphism X,(A’) and X,(A”) over the
composite field of F’ and F”, well defined up to the Weyl group action. So the
scalar product on X,(A”) is uniquely determined by that on X,(A’). So we
need not choose a scalar product again when considering a differenty € G(F).

We define certain length functions. Consider an F’-split maximal torus A”
of G (for instance A” = T, or A” = A’) and the associated set of roots
® = O (G, A”) and the set of coroots @V = Y (G, A”). Let [ (P) denote
the largest length of a positive coroot in ®". Note that these are independent
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of the choice of A” and completely determined by the previous choice of a
Weyl group invariant scalar product on X,(A’). It is harmless to assume that
we have chosen the scalar product such that the longest positive coroot in each
irreducible system of X, (A’) has length [y« ().

Fix a Borel subgroup B’ of G over F’ containing A’ so that y~" !B’y is a
Borel subgroup containing 7), . Relative to these Borel subgroups we define the
subset of positive roots @ (G, A’) and T (G, T). Let m gy be as in Lemma
7.12 below. In order to bound | X (y, A)| in (7.15), we control the larger set
X (8, 1)) by bounding the distance from its points to the apartment for A’.

Lemma 7.7 Let § € A'(F') and X' € G(F')/K’. Then there exist constants
C =CG,E) >0cg>0andY = Y(G) € Z> such that whenever
(x")716x" € K’V (@)K’ [i.e. whenever X' € X (8, \)],

d(®', Apt(A'(F))) < Inax(®) - C|AT] - Y1 T s6

X Z (|v(1 —a~ ()| + Y(mgmgsp + mgeg + mEspl)K) ,
aed*(G,A)

where the left hand side denotes the shortest distance from X' to Apt(A’(F")).

Proof of Lemma 7.7 Write X' = anXx(, for some a € A'(F') and n € N(F’)
using the Iwahori decomposition. As both sides of the above inequality are
invariant under multiplication by a, we may assume that a = 1. Let A5 €
X4 (A") be such that § € As5(zw’)A’(O). For each Ag € X4(A")T recall the
definition of ng(Ag) from (2.6). Let cg > 0 be a constant depending only on
G such that every Ao € X, (A’) satisfies the inequality {(c, Ao) < cgllAoll for
alla € d7(G, A)).

Step 1. Show that 8" 'n~16n € K'Ag(ew’)K’ for some Ay € X4(A)t such
that ng(Ao) < (mgsp + cG)er/FK.
By Cartan decomposition there exists a B’-dominant Ay € X,(A")
suchthat $~'n~'8n € K'Ag(w’)K'. The condition on 8 in the lemma
is unraveled as (x(’))_ln_lénx(’) € K'M(w)K'. So

§7'n7len e 'KV (@)K € (K'a N (@) K'Y (KM (@) K').

Let w be a Weyl group element for A" in G such that wka_l is
B’-dominant. The fact that K’ g(zw’) K’ intersects (K’A(S_l(w’)K’)
(K'M (zw’)K') implies [16, Prop4.4.4.(iii)] that

(@ 2o < [, wii! +2/), @ € %G, A,
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We have (a, ') < cg||A/]|. Note also that
v'(@(8)) € [=mga | M|, mgspr[|2/]]] (7.16)

by Lemma 7.12 since a conjugate of § belongs to K'A/(zw’)K’. This
implies that

<(x, wx;1> = v (wa~'(8)) < mgw V]

On the other hand ||A'|| < e/ pk according to (7.14). These inequal-
ities imply the desired bound on ng(X¢), which is the maximum of
(o, ho) overa € (G, A').

Before entering Step 2, we notify the reader that we are going to use
the convention and notation for the Chevalley basis as recalled in Sect.
7.4 below. In particular n € N (F’) can be written as [cf. (7.33)]

n =xa,(Xa,)...xalq)ﬂ(Xa@ﬂ) (7.17)
for unique Xo,, ..., Xo 4, € F'.
Step 2. Show that there exists a constant Mg+ > 0 [explicitly defined in
(7.20) below] such that v'(X¢,) = —M g+ forall 1 <i < [®7F].
In our setting we compute

1 |<I>+|
57 =87 T xay(—Xa) |8 [] %er (Xar)
i=|D| i=1
| 9]
=| [I %" ®Xe) | [] *os (Xe)
i=|d] i=1
@]
=1 %« ((1 — o7 () X, + PO,,,) (7.18)
i=1

where the last equality follows from the repeated use of (7.34) to
rearrange the terms. Here P, is a polynomial (which could be zero)
in oz._l(S) and Xo; with integer coefficients for j < i. It is not hard
to olleerve from (7.34) that Py, has no constant term. As i varies in
[1,]|®7|], let Y denote the highest degree for the nonzero monomial
term appearing in Py, viewed as a polynomial in either o; 1) or
X, (but not both).” Set Y = 1 if Py; = 0. As mentioned above, the

7 For instance if Po; = o ' (8)2X% + ;' ()X}, then ¥ = 4.
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positive roots for a given (G, B, T) are ordered once and for all so
that ¥ depends only on G in the sense that for any G having G as its
Chevalley form, Y is independent of the local field F' over which G
is defined.

Applying Corollary 7.14 below, we obtain from (7.18) and the condi-
tion§~'n~'6n € K'ro(zw")K' that

v ((1 — a1 (8)) X + Pai) > —mgng(ho). (7.19)

For 1 <i < |®™T|, put

M= (YA = ;' 6] + mene o))
j=1
i—1 .
+> Yimgper k. (7.20)
j=1

Obviously 0 < M| < My < -+ - < M e+|. We claim that for every
i>1,

V(X)) = —M,. (7.21)
When i = 1, this follows from (7.19) as Py, = 0. (Use the fact that
Xg, (a1 Xy,) commutes with any other Xo;(ajXa;) in view of (7.34)

since ¢/ is a simple root.) Now by mductlon suppose that (7.21) is
verified for all j < i. By (7.19),

u/(xa,.)+v’( —a_l(S)) min (—mgng(ho). v'(Py,)) -

Note that P, is the sum of monomials of the form a7l (&Hk Xéﬁ with
Jj.ki,ko € Zsuchthat 1 < j < i and 0 < ky,k» < Y. Each
monomial satisfies

v (0 @1 xE) = kv (o571 ®) + kv (X))
2 —YmEspleF//FK - YMi_],

where the inequality follows from (7.16), (7.14), the induction hypoth-
esis, and the fact that 0 < M ; < M;_;. Hence

v’(Pal.) = —Ymgpep pk — Y M;_1.
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Now

=-M;,

V(1—a '
(1o

as desired. Now that the claim is verified, we have a fortiori
V' (Xg) = —Mgp+, Y1 <i<|DT]. (7.22)

For our purpose it suffices to use the following upper bound, which is
simpler than M ¢+|. Note that we used the upper bound on ng(Ao)
from Step 1.

M‘q>+| < Y‘q>+| Z (|U,(1 - Ol_1(8)| + (meEspl + mgca

acdt

Fmge)er /FK). (7.23)

Step 3. Finda € A'(F’) such thata~'na € K'.
We can choose a sufficiently large C = C(G, E) > 0, depending
only on the Chevalley group G and E, and integers ag e [-C, 0] for
o € AT such that

1< D (a)(p.a’) <C. VB et

acAt

[This is possible because the matrix ((8, ")) g yea+ is nonsingular.
For instance one finds a) € Q satisfying the above inequalities for
C =1 and then eliminate denominators in ag by multiplying a large
positive integer.] Now put aq := M|¢+|a2 € [-CM,¢p+,0] and
a:=72 ,cat dat’ (@') € A'(F') so that

Mg+ < —v(B(@)) < C- Mg+, VB e AT (7.24)

In fact (7.24) implies that the left inequality holds for all B € ®*.
Hence

||

a 'na = H X (ai(a)_lXo,i)

i=1
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|| |7 |

€ H Uai v(Xa)—vi@i(@) C H Ui M4 +0(Xa,)-
i1 i=l1

Here we have written Uy, with m € R for the image under the
isomorphism x, : F >~ Uy (F) of the set {a € F : v(a) > m}. Inlight
of (7.21), Mg+ + v(Xy;) > 0. Hence a'na e K'.

Step 4. Conclude the proof.
Step 3 shows that ax;, € Apt(A’(F’)) is invariant under the left mul-
tiplication action by n on B(G(F’), K’), which acts as an isometry.
Recalling that X" = nXx(, we have

d(x', Apt(A'(F'))) < d(n¥}, axy) = d(n¥}, naxy)
= d(X), ax}). (7.25)

On the other hand, for any X’ € Apt(A’(F’)) and any positive simple
coroot oV, we have

d@, a" (@) 1T < lnax (). (7.26)

Indeed this holds by the definition of /< (®) as the left hand side
is the length of «". Since a = [[,cp+ (@’ (@)% with a, €
[-CM, ¢+, 0], a repeated use of (7.26), together with a triangle
inequality, shows that

d(x, axy) < lmax(®) - C - Mg+ - |AT]. (7.27)

Lemma 7.7 follows from (7.25), (7.27), (7.22), (7.23), and ep//f <
[F': F] < wgsg as we saw in (7.12). O

Since y is elliptic and G is anisotropic over F, Apt(T) (F)) is a singleton.
Let X denote its only point. Then the Gal(F’/F)-action on Apt(T, (F")) has
X1 as the unique fixed point. Motivated by Lemma 7.7 we set M(y, k) to be

Inax (@) - CAY] - Y1 g5

x> (W =a o)+ Y(nemen +mee + mz)k)
aed(G,Ty)

and similarly M($, x) using « € ®(G, A’) in the sum instead. Note that
we are summing over all roots, not just positive roots as in the lemma. This
is okay since it will only improve the inequality of the lemma. We do this
such that M(y, k) = M(4, «). Indeed the equality is induced by a bijection
®(G, T)y) ~ ®(G, A") coming from any element y’ € G(F') such that A" =
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VT, )~ ! (for example one can take y’ = y). Define aclosed ballin G(F)/K:
forz e G(F)/K and R > 0,

Ball(z, R) :={x € G(F)/K :d(x,7) < R}.
Lemma 7.8 Xg(y,A) C Ball(xi, M(y, «)).

Proof Aswenotedabove, Xr(y, L) C Xp(y, A)) = Xp/(y~ 18y, 1'). Lemma
7.7 tells us that

X € Xr(y,r) = dyx, Apt(A'(F"))) < M(8,k) = dx, Apt(T, (F")))
< M@, k).

The last implication uses Apt(A'(F')) = yApt(T,(F')) (recall A" =
yT,/y_l). We have viewed x as a point of B(G(F'), K’) via the isometric
embedding B(G(F), K) < B(G(F’), K'). In order to prove the lemma, it
is enough to check that d(x, x1) < d(x, x») for every x, € Apt(Ty(F/)). To
this end, we suppose that there exists an x, with

d(x,x1) >d(x,Xx2) (7.28)

and will draw a contradiction.

As o € Gal(F'/F) acts on B(G(F'), K') by isometry, d(x,o0x;) =
d(x,X2). As Apt(T,(F')) is preserved under the Galois action, oX, €
Apt(T, (F")). According to the inequality of [103, 2.3], for any x, y,z €
B(G(F’"), K’) and for the unique mid point m = m(x,y) € B(G(F’), K')
such that d(x, m) = d(y, m) = ld(x, ),

2 2 2, 1 2
dx,2)"+d(y,z)” =2 2d(m, z) —I—Ed(x,y). (7.29)

Consider the convex hull €’ of 6y := {0X2}5eGal(F/F)- Since € is contained
in Apt(7,, (F")), so is €. Moreover 4 is fixed under Gal(F’/F), from which
it follows that ¢ is also preserved under the same action. [One may argue
as follows. Inductively define %; to be the set consisting of the mid points
m(x, y) for all x, y € ;. Then it is not hard to see that 4; must be preserved
under Gal(F'/F) and that U;>(%; is a dense subset of €.] As ¢’ is a compact
set, one may choose x3 € ¥ which has the minimal distance to X among the
points of %’. By construction

d(x3,%) < d(¥2, X). (7.30)

Applying (7.29) to (x, y, z) = (x3, 0X3, X), where o € Gal(F'/F),
— =2 — =2 - =2 Y S P
2d(x3, %) =d(x3,x) +d(ox3,x)" >2d(m(x3,0x3),X) +§d(x3,ox3) .
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As x3,0x3 € %, we also have m(x3,0x3) € % by the convexity of
% . The choice of X3 ensures that d(x3,x) < d(m(x3, 0x3),x), therefore
d(x3,0x3) = 0, i.e. X3 = ox3. Hence x3 is a Gal(F’/F)-fixed point of
Apt(T, (F")). This implies that X3 = X, but then (7.30) contradicts (7.28).

O

Lemma 7.9 There exist constants Z, Z> > 0, independent of y and A, such
that

IBall(X1, M(y, k)| < ¢ +41* DY ()%,

Remark 7.10 A scrutiny into the defining formulas for Z; and Z, (as well as
Z' and Z)) at the end of the proof reveals that Z; and Z> depend only on the
affine root data, the group-theoretic constants for G (and its Chevalley form),
and E. An important point is that, in the situation where local data arise from
some global reductive group over a number field by localization, the constants
Z1 and Z; do not depend on the residue characteristic p or the p-adic field
F as long as the affine root data remain unchanged. This observation is used
in the proof of Theorem 7.3 to establish a kind of uniformity when traveling
between places in V(6)\ Spaq for a fixed 6 € ' (I'1) in the notation there.

Proof To ease notation we write M for M (y, «) in the proof. Let us introduce
some quantities and objects of geometric nature for the building B(G(F), K).
Write emax > 0 for the maximum length of the edges of B(G(F), K). For a
subset S of B(G(F), K), define Ch™(S) to be the set of chambers ¢ of the
building such that 4" N S contains a vertex. Let v € B(G(F), K) be a vertex.
(We are most interested in the case v = x1.) We put % (v) to be the union
of chambers in Ch*({v}) and define &, 1(v) to be the union of chambers
in Ch™ (%, (v)) for all i e Z>1 so as to obtain a strictly increasing chain
{v} € G1(v) C G2 (v) C 63(v) € ---.Denote by V;(v) (resp. Ch; (v)) the set
of vertices (resp. chambers) contained in ¢; (v) fori € Zx.

Choose any chamber ¢ in B(G(F), K). Define € to be the union of all
chambers in Ch™(%). Clearly €T is compact and its interior contains the
compact subset %’. Hence there exists a maximal Rg > 0 such that for every
point y € ¥ (which may not be a vertex), the ball centered at y of radius R¢g
is contained in € T. Since the isometric action of G(F) is transitive on the
set of chambers, Rg does not depend on the choice of €. Moreover the ratio
Imax (®)/ R does not depend on the choice of metric on the building.

From the definitions we have Ball(x|, Rg) C %1(x) and deduce recur-
sively that

Ball()_cl, iRG) C V,‘(fl) (- %(f]), Vi e Z)l.
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Take M’ to be the integer such that ﬁ/‘—G <M < RMG + 1 so that in particular
Ball(x1, M) C Vr(x1). (7.31)

Let us bound |Chy (v)| for every vertex v € B(G(F), K). The stabilizer of v,
denoted by Stab(v), acts transitively on Ch(v). Let € € Ch;(v). Then

|Chy (v)] = [Stab(v)/Stab(%)| < |G(0)/Iw| < |G (k)| < g0+

where Iw denotes an Iwahori subgroup of G(0O), which is conjugate to
Stab(%’). The group Stab(v) may not be hyperspecial, but the first inequal-
ity follows from the fact that the hyperspecial has the largest volume among
all maximal compact subgroups [103, 3.8.2]. See the proof of Lemma 2.13 for
the last inequality.

Each chamber contains dim A + 1 vertices as a dim A-dimensional simplex.
Hence foreachi > 1,

[Vi(x1)| < (dim A+ 1) - |Ch; (x1)].
On the other hand,

IChip DI < D) IChi()] < gfo oV, (x))]
veV;(x1)

< qdt76 (dim A + 1) - |Ch; (7).
We see that Ch; (1) < g5 (dim A + 1) ! and thus

|V_/\/[/(fl)| < (dlmA + 1)M/ql{M/(dG+rG) < (rG + I)M/ql.f\/l/(dc'i—rc).
(732)
Note that

Mot M @)

< CIAT] - Y|<I>+|
Rg Rg [A™] WGSG

x (Z (= ()| + Y (memgm + meee + maspox),

aed

which can be rewritten in the form

M <1+ +Zk + 2, > v — e ().

aed
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Since |[v(1—a(y)[+|v(1—a~ (y)| < v(l—a(y))+v(l—a~ (y)) +2bzk
in view of (7.5), we have

qM/ < ql+(Zi+bEZ§)KDG(y)—Zé‘

Returning to (7.31) and (7.32),

IBall(X1, M)| < [Var@))] < glotHM M @dotra)

1+(Zi+2bEZé)K )dc+2rc+l

< (@ DO (y) %

The proof of Lemma 7.9 is complete once we set Z; and Z; as follows, the
point being that they

o /| := (Zi + 2bEZ/2)(dG +2rg + 1),
o 7r .= Zé(dG +2rg + 1).

G(F dg+1) 1 _
Corollary 7.11 IO),( )(1Kx(w)K,MG,MIIEf)|<CI£G( ot gl +21e pG () =22,

Proof Follows from (7.15), Lemmas 7.8 and 7.9.

7.4 Lemmas in the split case

This subsection plays a supporting role for the previous subsections, especially
Sect. 7.3. As in Sect. 7.2 let G be a Chevalley group with a Borel subgroup
B containing a split maximal torus T, all over Z. Let Eglz G — GL,, be
a closed embedding of algebraic groups over Q. Let T denote the diagonal
maximal torus of GL,,, B the upper triangular Borel subgroup of GL,,, and N
the unipotent radical of B.

Extend E(Sé?l to a closed embedding 2% G — GL,, defined over Z[1 /R]

for some integer R such that EPY(T) [resp. EP!(B)] lies in the group of
diagonal (resp. upper triangular) matrices of GL,,. To see that this is possible,
find a maximal Q-split torus T” of GL,,, containing E(SQ? ! (T). Choose any Borel
subgroup B’ over Q containing T. Then there exists g € GL,, (Q) such that the
inner automorphism Int(g): GL,, — GL,, by y > gyg~! carries (B', T’) to
(B, T). Then Egl and Int(g) extend over Q to over Z[1/R] for some R € Z,
namely at the expense of inverting finitely many primes [basically those in the
denominators of the functions defining E(SQ?I and Int(g)].

Now suppose that p is a prime not diving R. Let F be a finite extension of
Qp with integer ring O and a uniformizer o . The field F is equipped with a
unique discrete valuation vy such that vp(w) = 1. Let A € X, (T). We are
interested in assertions which work for F as the residue characteristic p varies.
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Lemma 7.12 (resp. Corollary 7.14) below is used in Step 1 (resp. Step 2) of
the proof of Lemma 7.7.

Lemma 7.12 There exists mgsp € Zsq such that for every p, F and A as
above and for every semisimple 6 € G(O)AM(@)G(O) (and for any choice of
Ts containing ),

Vo € @5, vr(a(d)) € [=mgs|[All, mgs||A][].

Proof The argument is the same as in the proof of Lemma 2.18. The constant
mgspi corresponds to the constant Bs in that lemma. To see that it is independent
of p, F and A, it suffices to examine the argument and see that the constant
depends only on G, B, T (and the auxiliary choice of &’s as in the proof of
Lemma 2.17, which is fixed once and for all).

The unipotent radical of B is denoted N. For F' as above, let xo be the
hyperspecial vertex on the building of G(F) corresponding to G(O). As usual
put ®* := &1 (G, T) be the set of positive roots with respect to (B, T).

Let us recall some facts about the Chevalley basis. For each @ € @, let U,,
denote the corresponding unipotent subgroup equipped with x,: G, ~ U,.
Order the elements of @1 as «q, ..., @ ¢+ once and for all such that simple
roots appear at the beginning. The multiplication map

mult: Uy, X -+ X Ua|d>+| =N, (U1, ..., up+) = Ul... U+
is an isomorphism of schemes (but not as group schemes) over Z. This can
be deduced from [5, Exp XXII, 5.5.1], which deals with a Borel subgroup
of a Chevalley group. In particular (since the ordering on ®* is fixed) any
n € N(F) can be uniquely written as

¥ = Yoy Ya) -+ Yo gy, Ve (7.33)

for unique Yy, € G4(F) =~ F’s. The Chevalley commutation relation ([20,
§111]) has the following form: forall 1 <i < j < |®*| and all Yy, € F’s,

Yoy (Yo )Xa; (Ya)) = Xa; (Yo )be; Yer) [ %o (Cij (Vo) (Yar)9)
c,d>1
ap=ca;+da;

(7.34)

where C;; are certain integers (depending on G) which we need not know
explicitly. It suffices to know that, in the cases of F' we are interested in, the
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constants C;; are units in O (cf. the assumption in the paragraph preceding
Proposition 7.1).
We thank Kottwitz for explaining the proof of the following lemma.

Lemma 7.13 Suppose that the Chevalley group G is semisimple and simply
connected. Let Q@ C X*(T) denote the set of fundamental weights and p" €
X« (T) the half sum of all positive coroots. Let . € X*(T) and define no(1) :=
maxqecq{w, A). For every prime p, every p-adic field F, and every cocharacter
A € X4 (T) asabove, the following is true: in terms of the decomposition (7.33),
each y € G(O)A(w)G(O) NN(F) satisfies the inequality

vr(Y;) = —2n00) (e, p¥), 1<i <[P,
Proof 1t suffices to check that
wZno()\)pvyw—2no()»),0v e N(O). (7.35)

[Here we write @210 for (pY ())?® ] Indeed, this implies the desired
inequality in the lemma since the decomposition (7.33) is defined over O.
Let us introduce some notation. Foreach w € Q2 let V,, denote the irreducible
representation of G (F') of highest weight w on an F-vector space. Write V,, =
@ pex*(T) Vo, for the weight decomposition. The geometric construction of
V, and its weight decomposition by using flag varieties gives us a natural
O-integral structures V,,(O) in V,, such that V,(O) = @ cx*(T) Vo, (O),
where V,, ,(0) = V,(0O) NV, ,. Note that each V,, receives an action of

Gy, via Gy 25T < G. We may consider a coarser decomposition V,, =
@iczVo,i» where Vi, i := @ u.2pv)=i Vo, Forany € Q and V =V, set
Vyi = Dj>i Vj, V>,'(O) =Vyn V(0), and V;(O) := V; N V(O). Observe
that B(F) preserves the filtration {V>;};cz and that N(F) acts trivially on
V>i/ Vsitr.

As a preparation, suppose that g € G(O)A (@ )G(O) and let us prove that
gVu(0) C 0NV, (O) for all w € Q. Since G(O) stabilizes V,,(O), the
latter condition is true if and only if A(z)V,(O) C @ 0™V, (©0), which
holds if and only if

(, ) = —no(A)

for all weights u for V,, by considering the weight decomposition. The above
inequality for all weights p is equivalent to that for the lowest weight u for
V. Since u = wow,, for the longest Weyl element wy, the condition is that
(—wow, A) < no(r) for all w. This is verified by the definition of ng(X) since
—wyq preserves the set .
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Now consider zr210@)0” (y — l)w-—Zno(?»)p where y is as in the lemma.
Since w2 acts on V; as @/, we see from this and the last paragraph that for
alwe Qandi € Z,

(@200 (y — Dy =200 (v, (0))
_ (w2110()»),0v (y — 1)) (o ~i10@) Vi (O))
C @ 210MPY (g =i+ Do) Vi, >i+1(0)) C V4 i (0).

It follows that z210®)e” yw‘z”oo‘)"’v also preserves V,, ;(O), hence V,,(O).
Therefore the element belongs to N (O) = N(F) N G(O), concluding the
proof of (7.35). |

For an arbitrary Chevalley group G and A € X, (T)™, define a nonnegative
integer

ng(A) := max (o, A). (7.36)

acdt

Corollary 7.14 Let G be an arbitrary Chevalley group. For every prime p,
every p-adic field F, and every cocharacter A € X, (T), there exists a constant
mg > 0 such that the following is true: each y € G(O)A(w)G(O) N N(F),
uniquely decomposed as in (7.33), satisfies the inequality

vr(Yy) = —2mgng(r), 1<i<|oT.

Proof The corollary is immediate from the lemma if G is semisimple and
simply connected. Indeed, define n{()) to be the maximum of (¢, A) as o runs
over AT, the set of simple roots. Observe that both the sets  and A™ are
bases for X*(T)q. By using the change of basis matrix, it is easy to deduce
from Lemma 7.13 that for some constant ¢ > 0 depending only on G, we have
that

ve(Y:) = —2cni (W) (e, pV)

for all p, F, A, and i. A fortiori the same holds with ng(A) in place of n1(}).
The proof is completed by setting m¢g := c max,ecqep+ (@, p).

It remains to extend from the simply connected case to the general case. As
usual write G,q for the adjoint group of G and Gy for the simply connected
cover of G,q. The pair (B, T) induces the Borel pairs (Bag, Taq) for Gag and
(Bgc, Tyc) for Ggc. Write @L and CIDSJE for the associated sets of roots. Let Nag
and Ng. denote the unipotent radicals of B,q and By, respectively. Then the
natural maps G — Gyq and Gy — Gyq induce isomorphisms N =~ Nyq and
Nie = Nug as well as set-theoretic bijections @+ — @, and &, — @7
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In particular the ordering on ®* induces unique orderings on CDL and @

With respect to these orderings, the decomposition (7.33) is compatible with
the maps G — Gyq and Gsc — G,q. From all this it follows that the corollary
for Gy implies that for G,q, and then for G. O

8 Lemmas on conjugacy classes and level subgroups

This section contains several results which are useful for estimating the geo-
metric side of Arthur’s invariant trace formula in the next section.

8.1 Notation and basic setup

Let us introduce some global notation in addition to that at the start of Sect. 4.

— My is a minimal F-rational Levi subgroup of G.

A, 1s the maximal split F'-torus in the center of M.

Ram(G) := {v € V}° : G is ramified at v}.

-SC V%" is a finite subset, often with a partition S = Sp [ [ S;.

- r: *G — GL4(C) is an irreducible continuous representation such that
r|g is algebraic.

— 8: G — GL,, is a faithful algebraic representation defined over F (or

over OF as explained below)

For any C-subspace H' C C2°(G(Fys)), define

supp H' = Usupp ps

where the union is taken over ¢g € H'.
— g5 = [l,es qv Where g, is the cardinality of the residue field at v. (Con-
vention: gg = 1if S = (.)

For each finite place v € Ram(G) of F, fix a special point x, on the
building of G once and for all, where x, is required to belong to an apartment
corresponding to a maximal F-split torus A, containing A y,. The stabilizer
K, of x, is a good special maximal compact subgroup of G (F,) (good in the
sense of [16]). Set K 7., := K,NM (F,) foreach F,-rational Levi subgroup M
of G containing A,. Then K, ,, is a good special maximal compact subgroup
of M(Fy).

It is worth stressing that this article treats a reductive group G without any
hypothesis on G being split (or quasi-split). To do so, we would like to carefully
choose an integral model of G over O for convenience and also for clarifying
a notion like “level n subgroups”. We thank Brian Conrad for explaining us
crucial steps in the proof below (especially how to proceed by using the facts
from [12]).
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Proposition 8.1 The F-group G extends to a group scheme & over O (thus
equipped with an isomorphism & x o, F >~ G) such that

- & Xop (’)F[m] is a reductive group scheme (cf. [32)),

- &(0y) = K, for all v € Ram(G) (where K, are chosen above),

— there exists a faithful embedding of algebraic groups B: & — GL,, over
OF for some m > 1.

Remark 8.2 If G is split then Ram(G) is empty and the above proposition is
standard in the theory of Chevalley groups.

Proof For any finite place v of F, we will write O, for the localization of
OF at v (to be distinguished from the completion O,). As a first step there
exists an injective morphism of group schemes Er: G < GL,, defined
over F for some m > 1 ([33, Prop A.2.3]. The scheme-theoretic closure
&’ of G in GL,, is a smooth affine scheme over Spec O[1/S] for a finite
set S of primes of OF by arguing as in the first paragraph of [32, §2]. We
may assume that S O Ram(G). By [32, Prop 3.1.9.(1)], by enlarging S if
necessary, we can arrange that &’ is reductive. For v € Ram(G) we have
fixed special points x,, which give rise to the Bruhat-Tits group schemes
&(v) over O,. Similarly for v € S\Ram(G), let us choose hyperspecial
points x, so that the corresponding group schemes & (v) over O, are reduc-
tive.

According to [12, Prop D.4,p. 147] the obvious functor from the cat-
egory of affine O(v) -schemes to that of triples (X, 3€(v) f) where X is
an affine F-scheme, 3€(v) is an affine Oy-scheme and f: X xp F, =~
%(v) x o, Fy 1s an equivalence. (The notion of morphisms is obvious in each
category.) Thanks to its functorial nature, the same functor defines an equiv-
alence when restricted to group objects in each category. For v € Ram(G),
apply this functor to the Bruhat-Tits group scheme &(v) over O, equipped
with G xp F, ~ ®(v) xp, F, to obtain a group scheme &(v) over
O(v).

An argument analogous to that on page 14 of [12] shows that the obvi-
ous functor between the following categories is an equivalence: from the cat-
egory of finite-type Op-schemes to that of triples (X, {X(v)}ves, {fvlves)
where X is a finite-type Op[1/S]-scheme, X(v) is a finite-type O(y,)-scheme
and fy: X xopn/s1 F = X(v) X0, F is an isomorphism. Again this
induces an equivalence when restricted to group objects in each cate-
gory. In particular, there exists a group scheme & over Of with isomor-
phisms & xp, Of[1/S] ~ & and & xp, Ou) =~ G) for v € §
which are compatible with the isomorphisms between &’ and &(v) over
F. By construction & satisfies the first two properties of the proposi-
tion.
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We will be done if Ef: G — GL,, over F extends to an embedding of
group schemes over Op. It is evident from the construction of &’ that Ep
extends to 2': G < GL,, over Op[1/S]. For each v € §, Ep extends
to E(v): &(v) — GL, over O, thanks to [17, Prop 1.7.6], which can be
defined over O, using the first of the above equivalences. Then the second
equivalence allows us to glue &’ and {E(v) }yes to produce an O p-embedding
E:G— GL,. O

For each finite place v ¢ Ram(G), & defines a reductive group scheme over
Oy, so K, := &(0,) is a hyperspecial subgroup of G(F,). Fix a maximal
F,-split torus A, of G which contains A, such that the hyperspecial point
for K, belongs to the apartment of A,. For each Levi subgroup M of G
whose center is contained in A,, define a hyperspecial subgroup Ky, :=
Ky, N M(F,) of M(Fy). At such a v ¢ Ram(G) define H" (G (Fy)) (resp.
H" (M (Fy))). The constant term (Sect. 6.1) of a function in C2° (G (Fy)) (resp.
CX°(M(Fy))) will be taken relative to K, (resp. Kys,,). When P = MN is a
Levi decomposition, we have Haar measures on K,, M (F,) and N (F,) such
that the product measure equals ©;*" on G(Fy) (cf. Sect. 6.1) and the Haar
measure on M (F)) is the canonical measure of Sect. 6.6. In particular when
G is unramified at v,

vol(Ky, N N(Fy)) =1 8.1

with respect to the measure on N (Fy).
Let n be an ideal of O and v a finite place of F. Let v(n) € Zx( be the

integer determined by nQ, = @, () O,. Define K, (w;)) to be the Moy-Prasad
subgroup G (Fy)y,.s of G(F,) by using Yu’s minimal congruent filtration as
in [108] (which is slightly different from the original definition of Moy and
Prasad). Yu has shown that G (Fy)y,,s = ker(&(0,) — &(0,/w;)) in [108,
Cor 8.8]. Set

K5®m) = H ker(&(0,) — &(0,/n)) = H K, (w:))(n)) ’
v¢SUSwo v¢SUSeo

to be considered the level n-subgroup of G (AS-*°).

Fix a maximal torus Ty of G over F and an R-basis By of X..(Ty)r, which
induces a function || - ||5,,6: X«(To)r — R3¢ as in Sect. 2.5. For any other
maximal torus 7', there is an inner automorphism of G inducing 7o >~ T,
so X, (T)r has an R-basis B induced from 5y, well defined up to the action
by Q@ = Q(G, T). Therefore || - ||5,6: X«(T)r — R3¢ is defined without
ambiguity. As it depends only on the initial choice of By (and Tp), let us write
| - |l for || - ||3,c when there is no danger of confusion.
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Let v be a finite place of G, and T, a maximal torus of G x ¢ F,, (which may
or may not be defined over Fy). Then ||-|| : Xy (T,)r — Ry 1is defined without
ambiguity viaT,, >~ Ty xffv by a similar consideration as above. Now assume
that G is unramified at v. For any maximal F,-splittorus A C G and a maximal
torus 7" containing A over Fy, the function | - || 5, is well defined on X+ (T)r
(resp. X«(A)r) and invariant under the Weyl group €2 (resp. 2r). Hence for
every v where G is unramified, the Satake isomorphism allows us to define
HY(G(F,))S< as well as H" (M (F,))S¥ for every Levi subgroup M of G over
F,. When G is unramified at S, we put H" (G (F5)) S 1= Q,es H" (G (F,))S¥
and define H" (M (Fg))S¥ similarly.

For the group GL,, with any m > 1, we use the diagonal torus and the
standard basis to define || - ||gL,, on the cocharacter groups of maximal tori of
GL,, (cf. Sect. 2.4). For E: G — GL,, introduced above, define

Bz :=max ||[E(e)llcL,- (8.2)
eeBy

8.2 z-Extensions

A surjective morphism « : H — G of connected reductive groups over F' is
said to be a z-extension if the following three conditions are satisfied: H9" is
simply connected, ker o« C Z(H), and ker « is isomorphic to a finite product
[1Resp, sFGLy for finite extensions F; of F. Writing Z := ker o, we often
represent such an extension by an exact sequence of F-groups 1 — Z —
H — G — 1. By the third condition and Hilbert 90, o: H(F) — G(F) is
surjective.

Lemma 8.3 For any G, a z-extension a.: H — G exists. Moreover, if G is
unramified outside a finite set S, where Sooc C S C VF, then H can be chosen
to be unramified outside S.

Proof 1t is shown in [76, Prop 3.1] that a z-extension exists and that if G
splits over a finite Galois extension £ of F then H can be chosen to split
over E. By the assumption on G, it is possible to find such an E which is
unramified outside S. Since the preimage of a Borel subgroup of G in H is a
Borel subgroup of H, we see that H is quasi-split outside S. O

8.3 Rational conjugacy classes intersecting a small open compact subgroup

Throughout this subsection S = Sp[] S1 is a finite subset of V%O and it is
assumed that Sy D Ram(G). Fix compact subgroups Us, and U of G(Fs,)
and G (F ®q R), respectively. Let n be an ideal of OF as before, now assumed
to be coprime to S, with absolute norm N(n) € Z;.
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Lemma 8.4 Let Ug, := supp Hur(G(Fgl))<K . There exists cg > 0 indepen-
dent of S, k and n (but depending on G, B, Us, and Ux,) such that for all n
satisfying

N() > czqs™"™",

the following holds: if y € G(F) and x 'yx € K5 (n) Us,Us, U for some
x € G(AF) then y is unipotent.

Proof Let y' = x~!yx. We keep using the embedding E: & < GL,, over
OF of Proposition 8.1. (For the lemma, an embedding away from the primes
in Sy or dividing n is enough.) At each finite place v ¢ Sy and v { n, Lemma
2.17 allows us to find &/, : & — GL,, over O, which is GL,, (O,)-conjugate
to 8 xo, F, such that E/ sends A, into the diagonal torus of GL,,.

Write det(E(y) — (1 — X)) = X" + a;—1 ()/)X”"_1 + -4+ ag(y), where
ai(y) € Ffor0 <i < m — 1. Our goal is to show that a;(y) = 0 for all i.
To this end, assuming a;(y) # 0 for some fixed i, we will estimate |a; (y)],
at each place v and draw a contradiction.

First consider v € S;. We claim that

v(ai(y)) =2 —Bgmk

for every y that is conjugate to an element of supp H" (G (F,))S<. To
prove the claim we examine the eigenvalues of E/(y’), which is con-
jugate to y. We know y’ belongs to supp H' (G(F,))S<, so B (y) €
GL,, (Oy) E! (1 (wy))GL,, (Oy) for some p € X, (A,) with ||| < «. Then
1, () oL, < Bzk. [A priori this is true for Bz defined as in (8.2), but
Bz, = Bg as &/ and E are conjugate.] Let ky, ko € GL,,(O,) be such that
E,(y") = k18 (u(wy))ka. Lemma 2.15 shows that every eigenvalue A of
Bl (u(wy))kaky [equivalently of E) (/)] satisfies v(X) > —Bgk. If A # 1,
we must have v(1 —A) > —Bgk. This shows that v(a;(y)) > — Bgik for any
i such that @; (y) # 0. Hence the claim is true.
At infinity, by the compactness of Uy, there exists cg > 0 such that

lai (¥)]oe < c2
whenever a conjugate of y € G, belongs to Ux.
Now suppose that v is a finite place such that v ¢ S; and v 1 n. (This

includes v € Sp.) Then a conjugate of E(y) lies in an open compact subgroup
of GL,, (F,). Therefore the eigenvalues of E(y) are in O, and

lai(¥)ly < 1.
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Finally at v|n, we have Z(x ~!yx)—1 eker(GL,,(O,) — GL,, (@v/wé)(n}))‘
Therefore
lai (V) = lai (x™ y0)ly < (Infy)™ "

—Bgmk

Now assume that N(n) > CEqy, . We assert that @;(y) = O for all i.
Indeed, if a;(y) # O for some i then the above inequalities imply that

_B= _ —B= _
L=[Tlanl < [ [T a0 %™ | ea [y~ < g5 caNm) ™' <1
v

ves] vin

which is clearly a contradiction. The proof of lemma is finished. O

8.4 Bounding the number of rational conjugacy classes

We begin with a basic lemma, which is a quantitative version of the fact that
F" is discrete in A;.

Lemma 8.5 Suppose that {8, € Roo}vey, satisfies the following: §, =1 for
all but finitely many v and [], 8, < 2718l Leta = (ay,..., ) € Al
Consider the following compact neighborhood of o

B(a, §) == {(x1,...,xr) € A;?: |xiv — vl <6y, Vv, VI <i <)

Then B(x, 8) N F" has at most one element.

Proof Suppose B = (Bi)i_;,v = (V)i_; € B(a,8) N F". By triangular
inequalities,

Sy, vt 00,
o — Vil <
|,81,v yl,U|U X {251), U|OO

for each i. Hence Hv |Biv—Vivly < 1.Since B;, y; € F, the product formula
forces f; = y;. Therefore 8 = y. O

The next lemma measures the difference between G (F)-conjugacy and
G (A r)-conjugacy.

Lemma 8.6 Let X (resp. 2 ) be the set of semisimple G(F)-(resp. G(Ap)-
Jconjugacy classes in G(F). For any [y] € 2, there exist at most
(wgsg) 6t elements in Xg mapping to |y] under the natural surjection
X6 — Z¢.
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Proof Let [y] € Z¢ be an element defined by a semisimple y € G(F).
Denote by X the preimage of [y’] in Xg. There is a natural bijection

X, < ker(ker'(F, I,) — ker' (F, G)).

Since | ker! (F L) = |ker1(F, Z(Z,))l by [62, §4.2], we have |X,| <
| ker! (F, Z(I,)).

Let T be a maximal torus in /,, defined over F. Lemma 6.5 tells us that 7
becomes split over a finite extensmn E /F such that [E: F] < WGSG- Then
Gal(F/E) acts trivially on T and Z(I ). The group ker! (E, Z(I )) consists
of continuous homomorphisms Gal(F / E)—> Z (I ) which are trivial on all
local Galois groups. Hence ker! (E Z (I )) is trivial. This and the inflation—
restriction sequence show that ker!(F, Z (I )) is the subset of locally trivial
elements in H'! (Te/F, Z(I )), where we have written I'g/r for Gal(E/F).
In particular,

X, | < |H'(Tg/r, Z(T).

Let d := |Gal(E/F)| and denote by [d] the d-torsion subgroup. The long

exact sequence arising from 0 — Z(IA},)[d] — Z(Z,) LS d(Z(f;)) —- 0
gives rise to an exact sequence

H'(Tg/r, ZA)ld) — H'(TCg/p, Z(1,)) = H (Cgyp, Z(1,))[d] — 0.

Let uy denote the order d cyclic subgroup of C*. Then Z (ﬁ,)[d ] — f[d] ~
(ud)dlm T Hence

X, | < |H' Tg/r, ZA)AD| < ITe/r| - 1Z(T)[d]|
< d . (d)dlmT < (wGsG)dim T+1‘

O

For the proposition below, we fix a finite subset Sp C V}p° containing
Ram(G). Also fix compact subsets Us, C G(Fs,) and Usy C G(F). As
usual we will write S for Sp [ | S;.

Proposition 8.7 Let k € Zx. Let Sy C VF\So be a finite subset such
that G is unramified at all v € S;. Set Us, := SuppHur(G(Fsl))g",
Us>® .= HU¢SUSOO Ky and U := Ug,Us,U5®Ux,. Define % to be the
set of semisimple G (Ap)-conjugacy classes of y € G(F) which meet U. Then
there exist constants Az, Bz > 0 such that for all S| and « as above,

A3+B
%] = O (qslw 3/()
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[In other words, the implicit constant for O(-) is independent of S| and k.]

Remark 8.8 By combining the proposition with Lemma 8.4 we can deduce the
following. Under the same assumption but with U := K S.00mU soUs Uso We
have

%61 =1+ 0 (g4, PN =c).

for some constants A, B, C > 0.

Proof Our argument will be a quantitative refinement of the proof of [63, Prop
8.2].

Step I. When GY' is simply connected.
Choose a smooth reductive integral model & over O p[SLO] for G and an

embedding of algebraic groups & : & — GL,, defined over OF[SLO] as in
Proposition 8.1. Consider

G(AF) = GLy(Ap) — A™ (8.3)

where the latter map assigns the coefficients of the characteristic polynomial,
and call the composite map E’. Set U’ := E'(U). Then |U' N F™| < oo since
it is discrete and compact. We would like to estimate the cardinality.

Fix {8,} such that §, = 1 for all finite places v and [], 8, < 218l 5o
that the assumption of Lemma 8.5 is satisfied. We will write B, (x, r) for the
ball with center x and radius r in F,. Since E is defined over O F[SLO], clearly

E(US®) C GL,,(O%™). Thus

2ws*) c (05%)" = [ B,
v¢SUSso

Set J$% := {0} C (AY*)". Similarly as above, E'(Us,) C (OF.s,)". By
the compactness of Us, and U, there exist finite subsets Jg, C Fg, and
Joo C F5o such that

gWUspc J ([IBBD|. EWd U [ [] BuBrrdw)

ﬁsoe]so veSy BooE€EJo \VESso

Now we treat the places contained in S;. Let 7' be a maximal torus of G over F.

-

Since the image of the composite map T — Gx =l (GL,)F is contained in
a maximal torus of GL,,, we can choose g = (g,'j)l’.”j:1 € GL,,(F) such that
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gE(TF) g~ ! sits in the diagonal maximal torus T of GL,. Fix the choice of T
and g once and for all (independently of S; and «) until the end of Step 1. Set
Umin(g) := min; ; v(g;;) and vmax(g) := max; ; v(g;;). There exists Bg > 0
such that for any p € X, (T) with |||l < &, the element gE(u)g~' € X.(T)
satisfies | g 2(u)g " || < Bgk.Let vs; = (Vulves, € Us,.Eachy, has the form
Vv = ki (oy)ko for some ||| < k and k1, k2 € G(Oy). Since E(G(Oy)) C
GL,,(Oy), we see that E(y,) is conjugate to E(u(wy))k’ in GL,,(F,) for
some k' € GL,,(O,). Applying Lemma 2.15 to (gE(u(wv))g_l)(gk/g_l)
withu = gk’ g_1 and noting that vimin (#) = Vmin(g) + Vmin(g~ 1), we conclude
that each eigenvalue A of E(y,) satisfies

V(L) = —Bgk + Vmin(g) + Umin(g ™).

Therefore the coefficients of its characteristic polynomial lie in @, m(Bokc+A1)

Oy, where we have set Ay := —(vpin(g) + vmin(g_l)) > 0. To put things
together, we see that

m
E/(USI) - H (wv—m(Bs/c—i-Az;)@v) .

vES]

[A fortiori E'(Us,) C [[,es, 172 ary B AD 0 holds as well.] The right
hand side is equal to the union of HveS1 By(Bu, 1), as {By}ves, runs over Jg, =

[Tyes, Jo» where J, is a set of representatives for (z, m(BoktAD 0 10,)m,

2
Notice that | Jg, | = q?l (Bek+44) Finally, we see that

v'=zgwW)c|JB@®.

pelJ

where J = Jg, x Js, X J5® x Joo. Lemma 8.5 implies that
2
|U/ﬂ Fm| < | J| = |-]SO| : |JS1| - Jso] = O (q?l (36K+A4)) ’

since |Js,| - |Jxo| 1s a constant independent of « and S;.

Foreach 8 € U'NF™, we claim that there are at most m! semisimple G (F)-
conjugacy classes in G(F) which map to 8 via G(F) — GL,,(F) - F",
the map analogous to (8.3). Let us verify the claim. Let 77 and T” be maximal
tori in G and GL,, over F, respectively, such that 2(T’) C T’. Then the set of
semisimple conjugacy classes in G (F) [resp. GL,, (F)] is in a natural bijection
with T'(F)/ 2 [resp. T'(F)/ QqL,, 1. The map E|7 : T" — T’ induces a map
T'(F)/Q — T'(F)/QaL,, . Each fiber of the latter map has cardinality at most
m!, hence the claim follows.

@ Springer



Sato—Tate theorem for families 97

Fix B € U' N F™. We also fix y € G(F) such that E'(y) = B. We assume
the existence of such a y; otherwise our final bound will only improve. We
would like to bound the number of G (A r)-conjugacy classes in G (F) which
meet U and G (F)-conjugate to . Let ®,, denote the set of roots over F for
any choice of maximal torus 7, in G. Define V'(y) to be the set of places v
of F suchthatv ¢ SU Sy and a(y) # 1 and |1 — a(y)|, < 1 for at least
one o € ®,,. Since T), splits over an extension of F, of degree at most wgsg
(Lemma 6.5), 1 — a(y) belongs to such an extension. Hence the inequality
|1 —a(y)|y < 1implies that

1 1

1 —a()|y < qp "9 <2 6%,

Put V(y) := V/(y) US U Sy. Clearly |V (y)| < co. Moreover we claim that
[V (y)| = O(1) (bounded independently of ). Set

Cs, := sup H [T —a)lsll —a(¥)lsy |
V€U U \ gea,

which is finite since Us,Ux is compact. Then

1:H H 11 —a(y)|, = H H [T —a®)ly

v oaed, veV(y) aed,
1 _IVwi
< Cg, H 2 w66 L Cgy2 "G5G |
veV'(y)

Thus |V/(y)| = O(1) and also |V (y)| = O(1).

We are ready to bound the number of G (AF)-conjugacy classes in G (F)
which meet U and are G (F)-conjugate to y. For any such conjugacy class of
vy’ € G(F), [63, Prop 7.1] shows that y’ is G(O,)-conjugate to ¥ whenever
v ¢ V(y). Hence the number of G(AF)-conjugacy classes of such y’ is at

IVl

most u, ", where u is the constant of Lemma 8.11 below.

2
Putting all this together, we conclude that |#;| = O(q?1 (Bric+4s) ) as Sp

and « vary. The lemma is proved in this case.
Step II: general case.

Now we drop the assumption that G%" is simply connected. By Lemma 8.3,
choose a z-extension

1-Z>H2G6 - 1.
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Our plan is to argue as on page 391 of [63] with a specific choice of € and
%z below (denoted Cy and Cz by Kottwitz). In order to explain this choice,
we need some preparation. If v ¢ S U S, choose Ky, to be a hyperspecial
subgroup of H(Fy) such that «(Kp ) = K,. (Such a Ky, exists by the
argument of [63, p. 386].) We can find compact sets Uy s, C H(Fs,) and
UHn, 0 of H(Fx) such that (Up s,) = Us, and a(Up, o) = Uso. Moreover,
in Lemma 8.9 below we prove the following: O

Claim There exists a constant 8 > 0 independent of k and S| with the fol-
lowing property: for any k € Zxp, we can choose an open compact subset
Un.s, C supp HY(H)SP* such that a(Up s,) = Us,.

Now choose Uz s, to be the kernel of o: Ups, — Us,, which is
compact and open in Z(Fs,). Then choose a compact set U ;‘ such that
Uz s, U?Z(F) = Z(A)'. (This is possible since Z(F)\Z(A)1 18 compact.g)
Set

Uy = H Ko | UnsyUns,Uncos Uz :=UzsU5
v¢SUSso

and set U}, := Uy N H(Ap)!, UL := Uz N Z(Ap)'. Let %y be defined
as in the statement of Proposition 8.7 (with H and U II{ replacing G and U).
Then page 391 of [63] shows that the natural map %y — % is a surjection,
in particular |%/| < |%y|. Since H%" is simply connected, the earlier proof
implies that |#| = O(qgfﬂKJrAS
the earlier proof after enlarging Uy s, to supp H" (H)SP* in the definition of
Up . Such a replacement only increases |%/|, so the bound on |#y | remains
valid.) The proposition follows.

We have postponed the proof of a claim in the proof of Step II above, which
we justify now. Simple as the lemma may seem, we apologize for not having
found a simple proof.

) for some B7, As > 0. (To be precise, apply

Lemma 8.9 Claim 8.4 above is true.

Proof As the claim is concerned with places in S;, which (may vary but) are
contained in the set of places where G is unramified (thus quasi-split), we may
assume that H and G are quasi-split over F' by replacing H and G with their
quasi-split inner forms.

8 Choose U g‘ to be any open compact subgroup. Then Uz s, U g‘ Z(F) has a finite index in

Z(A)! by compactness. Then enlarge U ;1 without breaking compactness such that the equality
holds.
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Choose a Borel subgroup By of H, whose image B = «(Bpg) is a Borel
subgroup of G. The maximal torus 7y C By maps to a maximal torus T C B
and there is a short exact sequence

1> Z—>Ty ST 1.

The action of Gal(f/ F) on X, (Ty) factors through a finite quotient. Let X
be the quotient of Gal(f/ F) which acts faithfully on X, (Ty). If v ¢ Sp then
G is unramified at v, so the geometric Frobenius at v defines a well-defined
conjugacy class, say €, in . Let Ay, (resp. A,) be the maximal split torus
in Ty (resp. T) over F,,. Then Ay, — Ty and A, < T induce X4(Ap ) =
X.(Ty)% and X,.(Ay) =~ X, (T)%. We claim that X, (Ty) — X.(T) induces
a surjective map X,.(Ag.y) = Xi(Ay).

Xo(Ty) = X (Tp)® ~— Xs(Afy) = Tu(Fy)/Ta(Oy)

L |

X (T) <—— X (1) ~———— Xo(Ay) = T(Fy)/T(Oy)

Indeed, we have an isomorphism X, (Ag ) =~ T (Fy)/Ta(Oy) via u +—
w(wy) and similarly X, (A,) >~ T (F,)/ T (Oy).Further,«: Ty (F,) — T (Fy)
is surjective since H L(Gal(F, /Fy), Z (F,)) istrivial (as Z is an induced torus).
Denote by [X] the finite set of all conjugacy classes in X. For ¢ € [X],
choose Z-bases By ¢ and By for X.(Ty)% and X, (T)? respectively. [Note
that the Z-bases By for X, (T) and B for X, (Ty) are fixed once and for all.]
An argument as in the proof of Lemma 2.3 shows that there exist constants
c(Bg), c(Bu,#) > 0 such that for all x € X*(TH)g and y € X*(T)g,

X8y 2 c(Brg) - 1xlBy,  |yIBy < c(Bg) - Iylls. (8.4)

Set my := max, (miny |x|3H,<€), where y € X..(T)? varies subject to the
condition |y|z, < l and x € X «(Tr)? runs over the preimage of y. (It was
shown above that the preimage is nonempty.) Then by construction, for every
y € X.(T)?, there exists an x in the preimage of y such that |x| Bpy S

m%)ly|8cg-
Recall that Us, = Hue51 U, where U, = U, K, ju(w,) K, the union being

taken over u € X,(T)% such that |||z < k. We have seen that there exists
mwh € X.(Ty)® mapping to p and |1 |5, < me,|ils,, - By (8.4),

lrlls, < mecBrg,) 'eBg)lluls.

@ Springer



100 S. W. Shin, N. Templier

Take B := man»e[z](m(,gc(BH,(,g)_lc(Bf)). Clearly g is independent of S
and «. Notice that |ug (B, < Bllnls < Bk.

For each u € X (T)% such that |||z < k, we can choose a preimage 1ty
of wsuchthat ||y |5, < Bk.Take Uy, tobetheunionof Ky yup (wy) Kh o
for those g ’s. By construction a(Up,y) = Uy. Hence Uy 5, := HveSl Uny
is the desired open compact subset in the claim of Lemma 8.9. O

Corollary 8.10 In the setting of Proposition 8.7, let Yg be the set of all
semisimple G (F)-conjugacy (rather than G(Ar)-conjugacy) classes whose
G (AF)-conjugacy classes intersect U. Then there exist constants Ag, By > 0
such that |Yg| = O(q€8K+A6) as Sy and k vary.

Proof Immediate from Lemma 8.6 and Proposition 8.7.

The following lemma was used in Step I of the proof of Proposition 8.7 and
will be applied again to obtain Corollary 8.12 below.

Lemma 8.11 Assume that G is simply connected. For eachv € Vi and each
semisimple y € G(F), let ny ,, be the number of G(Fy)-conjugacy classes in
the stable conjugacy class of y in G (F,). Then there exists a constant ug > 1
(depending only on F and G) such that one has the uniform bound n, , < ug
forallvandy.

Proof PutI'(v) := Gal (f / Fy).Itis a standard fact that n, ,, is the cardinality
of ker(H'! (Fv, I,)) — H'(F,, G)). By [63], H'(F,, 1)) is isomorphic to the
dual of 70(Z (1, )”v)). Hence n,,,, < |mo(Z(1, )F<v>)|. It suffices to show that
a uniform bound for |7y (Z (@)F(”))l exists.

By Lemma 6.5, there exists a finite Galois extension E/F w1th [E: F] <
wgsg such that I, splits over E. Then Gal(F/F) acts on Z (Iy) through
Gal(E/F).In partlcular I'(v) actson Z (I ) through a group of order < wgsg.-
Denote the latter group by I'(v)’.

Note that there is a uniform bound on the number of connected components
[Z (i;,) : Z(i;,)o] as v and y vary. Indeed it suffices to observe that there are
only finitely many isomorphism classes of root data for /;, over F (hence also
for I,)). This is easily seen from the fact that the roots of /,, (for a maximal
torus containing y) are exactly the roots a of G such that a(y) = 1. Write
Z(?;)O’F(”) for the I" (v)-invariants in Z(IAV)O. Since

[0(Z(T)"™): 7o(Z(T)" T )] < (2T = Z(T,)"T V)
<1z(,): Z2(1,)],

it is enough to show that |710(Z(Z,)0*F(“))| is uniformly bounded.
Now consider the set of pairs

T ={(A, T): |A| < wgsg, dimT < rg)
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consisting of a C-torus T with an action by a finite group A. Two pairs (A, 7";)
and (A’, T') are equivalent if there are isomorphisms A >~ A’ and T ~ T’
such that the group actions are compatible. Note that

rw,za1,)e7

and that .7 depends only on G and F. Clearly |ﬂo(fA)| depends only on the
equivalence class of (A, T) € 7. Hence the proof will be complete if .7
consists of finitely many equivalence classes.

Clearly there are finitely many isomorphism classes for A appearing in .7 .
So we may fix A and prove the finiteness of isomorphism classes of C-tori
with A-action. By dualizing, it is enough to show that there are finitely many
isomorphism classes of Z[ A]-modules whose underlying Z-modules are free
of rank at most rg. This is a result of [36, §79]. O

Corollary 8.12 There exists a constant ¢ > 0 (depending only on G) such
that for every semisimple y € G(F), |n0(Z(Iy)F)| < ¢. (We do not assume
that G is simply connected.)

Proof Suppose that Gder is simply connected. The proof of Lemma 8.11 shows
that (Gal(E/F), Zz (I )) € .7 in the notation there, thus there exists ¢ > 0
such that |o(Z (I Y| < ¢ for all semisimple y.

In general,let | - Z — H — G — 1 be a z-extension over F so that
Z is a product of induced tori and H%" is simply connected. Since H (F) —
G(F), we may choose a semisimple yy mapping to y. Let I, denote the
centralizer of yy in H. (Since H9" is simply connected, Ly, is connected)
By the previous argument there exists cy > 0 such that |JT()(Z(IVH) ) < cy
for any semisimple yg. The obvious short exact sequence 1 — Z — I, —

I,, — 1 over F gives rise (Sect. 2.1) to a I"-equivariant short exact sequence

1= Z(I) = Z(I,,) — Z — 1,
hence by [62, Cor 2.3],

0 — coker (X(Z(T,)" = X.(2)") = 7n0(Z2(T,)") = mo(Z2(T,,)")
— 7o(ZD) = 0. (8.5)

On the other hand, the inclusions Z — [,,, — H induce I"-equivariant maps
Z(H) — Z(IVH) — Z. The map Z(H) — Z(IVH) is constructed by [63,
4.2], whereas Z(IyH) — 7 and Z(H) — Z are given by Sect. 2.1. (The
distinction comes from the fact that typically /,,, — H is not normal.) The
three maps are compatible in the obvious sense. By the functoriality of X, (-)",
there is a natural surjection
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coker (X4 (Z(H)' = X.(Z)") — coker (X« (Z(T, )" = X.(2)D).

The left hand side is finite because it embeds into the finite group mo(Z (G)F),
again by [62, Cor 2.3]. Going back to (8.5), we deduce

o~ 1" o~ o~ o~
’nO(Z () )‘ < |0 (Z(@y)T)| - |coker (Xu(Z(H) = X(Z)D)]
< cu - [mo(Z(G)D)].
The proof is complete as the far right hand side is independent of y. O

For a cuspidal group and conjugacy classes which are elliptic at infinity, a
more precise bound can be obtained by a simpler argument, which would be
worth recording here.

Lemma 8.13 Let G be a cuspidal F-group. For any y € G(F) such that
y € G(Fs) is elliptic,

[m0(Z(I,)")| < 2@/,
Proof Via restriction of scalars, we may assume that /' = Q without losing
generality. Let us prove the lemma when Ag is trivial. By assumption there

exists an R-anisotropic torus 7" in G(R) contalmng y. Thus T ~ U( l)rk(G)
and T < I, over R. The former tells us that Tr) ~ {£1}%(D and the

latter gives rise to Z (I )L s TT() [63, §4]. Hence the assertion follows
from
Z(A)" — Z(T,)T) s TTO) ~ (£1)K(O),
In general when Ag is not trivial, consider the exact sequence of Q-groups
l - A¢ — I, — I,/Ac — 1, whose dual is the I"-equivariant exact
sequence of C-groups

| > Z(I,/Ag) — Z(I,) — Ag — 1.

Thanks to [62, Cor 2.3], we obtain the following exact sequence:
X*(A6)" = 70 (20, /A6)") = 0 (Z()") — mo(Ae)" =

Hence |m0(Z(1,)")| < |m0(Z(I,/Ag)"), and the latter is at most 2%(G/46)
by the preceding argument. O
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9 Automorphic Plancherel density theorem with error bounds

The local components of automorphic representations at a fixed finite set of
primes tend to be equidistributed according to the Plancherel measure on the
unitary dual, namely the error tends to zero in a family of automorphic repre-
sentations (cf. Corollary 9.22 below). The main result of this section (Theorems
9.16,9.19) is a bound on this error in terms of the primes in the fixed set as well
as the varying parameter (level or weight) in the family. A crucial assumption
for us is that the group G is cuspidal (Definition 9.7), which allows the use of
a simpler version of the trace formula. For the proof we interpret the problem
as bounding certain expressions on the geometric side of the trace formula
and apply various technical results from previous sections. One main applica-
tion is a proof of the Sato—Tate conjecture for families formulated in Sect. 5.4
under suitable conditions on the parameters involved. In turn the result will be
applied to the question on low-lying zeros in later sections.

9.1 Sauvageot’s density theorem on unitary dual

We reproduce a summary of Sauvageot’s result [91] from [99, §2.3] as it can
be used to effectively prescribe local conditions in our problem. The reader
may refer to either source for more detail.

Let G be a connected reductive group over anumber field F. Use v to denote
afinite place of F. When M is a Levi subgroup of G over F,, write V,, (M (Fy))
(resp. V(M (Fy))) for the real (resp. complex) torus whose points parametrize
unitary (complex-valued) characters of M (F)) trivial on any compact subgroup
of M (F,). The normalized parabolic induction of an admissible representation
o of M(F,) is denoted n-indAG,, (0).

Denote by %.(G(F,)") the space of bounded ﬁgl—measurable functions fAv
on G (F,)" whose support has compact image in the Bernstein center, which is
the set of C-points of an (infinite) product of varieties. A measure on G (F,)"
will be thought of as a linear functional on the space .7 (G(Fy)") consisting
of f, € B.(G(Fy)") such that for every F,-rational Levi subgroup M of G
and every discrete series o of M (Fy),

W, (M(F,)) - C givenby x > f,(n-ind$, (o0 ® x))

is a function whose points of discontinuity are contained in a measure zero
set. (Here n-ind denotes the normalized parabolic induction.) Now for any
finite set S of finite places of F, one can easily extend the above definition
to .Z(G(Fs)") so that fs(rs) € C makes sense for fs € .Z(G(Fs)") and
s € G(Fs)". We have a map
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CX(G(Fs)) — F(G(Fs)"), ¢s— bs: s > trws(gs),

as follows from Proposition 9.6 below. Harish-Chandra’s Plancherel theorem
states that

12 (bs) = ps(1).

Our notational convention is that $ s often signifies an element in the image
of the above map whereas fs stands for a general elAement of F(G(Fs)™M).
Sauvageot’s theorem allows us to approximate any fs € .7 (G(Fs)") with
elements of C2°(G(FYs)).

Proposition 9.1 [91, Thm 7.3] Let fg € Z(G(Fs)™). For any € > 0, there
exist ¢s, ¥s € C°(G(Fs)) such that

Y (Js) < e and Vs € G(Fs)", | fs(rs) — ds(rs)| < ¥s(rs).

Conversely, any fg € ﬂc(G/(-\FS)) with the above property belongs to
F(G(Fs)™).

Remark 9.2 1Itis crucial that ]"} € .7 (G(Fs)™) has the set of discontinuity in a
measure zero set. Otherwise we could take f} to be the characteristic function
on the set of points of G(Fs)" which arise as the S-components of some
m € ARuisc, x (G) with nonzero Lie algebra cohomology. Note that the latter
function typically lies outside .7 (G (Fs)"). The conclus10ns of Theorems
9.26, 9.27 and Corollary 9.22 are false in general if such an fg is placed at
So. Namely in that case [z, s, (¢S1) is often far from zero but 2% S (d) s) always
vanishes.

From here until the end of this subsection let us suppose that G is unram-
ified at S. It will be convenient to introduce F(G(Fs)") and its sub-
space F(G(Fg)"U-*mP) in order to state the Sato-Tate theorem in Sect.
9.7. The former (resp. the latter) consists of fs € F(G(Fs)™) such that the
support of fg is contained in G(FS)A U [resp. G(Fg)/\urtemp], Denote by
F(T;0/2.p) the space of bounded 1z, y, T_measurable functions on TC 0/ 2.0
whose points of discontinuity are contained in a ﬁg’T—measure zero set. Define
F(Tpes T},gv / Q¢.6,) in the obvious analogous way. By using the topological
Satake isomorphism for tempered spectrum [cf. (5.2)]

[ 176,/ Qc6, = G(Fs) mtem

ves
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and extending by zero outside the tempered spectrum, one obtains

f(H ’Tz,ev/szc,ev) ~ F(G(Fs) "™ s F(G(Fs)™).  (9.1)

veS

Although the first two JF (-) above are defined with respect to different measures
| ﬁSUT and ZZIS)I, the isomorphism is justified by the fact that the ratio of
the two measures is uniformly bounded above and below by positive constants
(depending on gg) in view of Proposition 3.3 and Lemma 5.2. Note that the
space of continuous functions on [, g T},gv/ Qc.p, [resp. on G(Fg)/Urtemp]
is contained in the first (resp. second) term of (9.1), and the two subspaces
correspond under the isomorphism.

Corollary 9.3 Let ]/CE € f(G(FS)A*“r). For any € > 0, there exist ¢s, s €
H"(G(Fs)) such that (i) [t (@S) < € and (ii) Vs € G(Fs)™", | fs(ms) —
ds(ms)| < Ys(ms).

Proof Letgs, ¥rs € CX°(G(Fs)) be the functions associated to ]‘E asin Propo-
sition 9.1. Then it is enough to replace ¢ and ws with their convolution

products with the characteristic function on [, ¢ K

The following proposition will be used later in Sect. 9.7. Foreach v € Vp (0),
the image of f in F(G(F,)"") via (9.1) will be denoted f,.

Proposition 9.4 Let f e F (TC’@ /2.0) and € > 0. There exists an integer
k = 1 and for all places v e VF (0), there are bounded functions ¢y, ¥, €

HY (G (F))S< such that B8 (¥ry) < € and | () — o ()| < Yo () for all
7 € G(F,)™r,

Proof This is no more than Corollary 9.3 if we only required ¢, ¥, €
H" (G (Fy)) without the superscript < k. So we may disregard finitely many v
by considering the subset Vr (9)Z€ of Vi () consisting of v such that ¢, > Q
for some Q > 0. In view of Proposition 5.3, we may choose Q € Z-¢ that

Vo € Ve(0)22, Vf € F(Teo/p), EﬁST(IfI)
<A AD <2857 FD. 9.2)

Fix any w € Vp(0)Z<. Corollary 9.3 allows us to find ¢, V), €
H" (G (Fy)) such that

W) <e/8 and Yy € G(Fu)™™, | fo(Tw) — uw ()| < ¥, ().
(9.3)
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Letko € Z>obesuchthat gy, ¥, € H"(G(Fy)) <%0, Now recall that for every
v € VF(0) there is a canonical isomorphism [cf. (2.2), Lemma 3.2] bgtween
H" (G (Fy)) and the space of regular functions in the complex variety Ty / 2.
Using the latter as a bridge, we may transport ¢y, V., to ¢y, ¥, € H' (G (Fy))
for every v € Vr(0). Clearly ¢,, ¥, € H" (G (F,))S¥ from the definition of
Sect. 2.3. Moreover (9.2) and (9.3) imply that for all v € V¢ 0)>2,

@) <e/2 and Vm, € G(F) ™™ | £ () — do(mo)| < ¥ ().

[Observe that 715 (%) < 25Ty = 2m8T (L) < ARD L) < €/2 to
justify the first 1nequahty ]

To achieve the latter inequality for non-tempered 7, € G (F,)"""", we would
like to perturb v, in a way independent of v while not sacrificing the former
inequality. Since fv (my) = O for such m,, what we need to establish is that
|¢v ()| < wv (7y) for all non-tempered 7, € G(Fy )Y To this end, we
use the fact that there is a compact subset K of Ty/ 2 such that G (F,)™""
is contained in K for every v € Vg (0) (cf. [11, Thm X1.3.3]). By using the
Weierstrass approximation theorem, we find v, € H" (G (F),)) such that

! < e/,

Vit € KNG (Fyp) P 140! (1,)| 4 | (77)

| <Yl (Tw),
Vi, € G(Fw)/\,ur,temp’ W{[)(ﬂw) >0

Choose k > ko such that ¥/ € H"(G(F,))S* and put ¥, := ¥ + ¥/ so

that 72 (V) < €/4 and ¥y, € HY(G(Fy))<<. Foreachv € Vr(0)>2, let ¥y
denote the transport of 1/, just as ¥/ was the transport of v/, in the preceding

paragraph. Then ZIBI({//\U) < e and ¥, € HY(G(F,))S¥ as before. Moreover
Vi, € G(F) M| fy () — ()| < Uy (m) < Pru(m)
and for 7, € G(F,) "\ G (F,)"uremp,
| FoGro) = o (r)| = o (ma)| < 97 (r) — 117, (r)| < Po(ma),
the last inequality following from ¥, = ¥/ + . |
Remark 9.5 A more direct approach to (9.3) that wouldn’t involve Corol-
lary 9.3 would be to use Weierstrass approximation to find polynomials ¢

and ¥ on TC 0/ 2,0 of degree < k such that | f ¢| < ¢ and then the
isomorphism (9.1) to transport ¢ and v at the place v.
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We note [91, Lemme 3.5] that for any ¢, € € CX°(G(Fy)) there exists a
¢, € CX(G(Fy)) such that |¢>U(nv)| < gb/ (mry) for all m, € G(F,)". This
statement is elementary, e.g. it follows from the Dixmier—Malliavin decom-
position theorem. In fact we have the following stronger result due to Bern-
stein [8].

Proposition 9.6 (Uniform admissibility theorem) For any ¢, € CZ°(G(Fy))
there exists C > 0 such that |tr w(¢p,)| < C forall m € G(F,)".

9.2 Automorphic representations and a counting measure
Now consider a string of complex numbers

= {a]-‘(n) S (C}JT E.ARdisc,X (G)

such that ar (1) = 0 for all but finitely many 7r. We think of F as a multi-set
by viewing ar(7r) as multiplicity, or more appropriately as a density function
with finite support in F as ax () is allowed to be in C. There are obvious
meanings when we write w € F and |F| (we could have written & € supp F
for the former):

def

meF & ap(m) £0, |Fl:= D ar(n).

weF

In order to explain our working hypothesis, we recall a definition.
Definition 9.7 Let H be a connected reductive group over Q. The maximal
Q-split torus in Z(H ) is denoted A . We say H is cuspidal if (H/Ap) xg R
contains a maximal R-anisotropic torus.

If H is cuspidal then H(R) has discrete series representations. (We remind
the reader that discrete series always mean “relative discrete series” for us,
i.e. those whose matrix coefficients are square-integrable modulo center.) The

converse is true when H is semisimple but not in general. Throughout this
section the following will be in effect:

Hypothesis 9.8 Resr /G is a cuspidal group.

Let S = So [[ S1 C V¥ be a nonempty finite subset and ]/‘EO € Z(G(Fs)").
(It is allowed that either Sp or S is empty.) Let

— (level) US> be an open compact subset of G(AS-°),
— (weight) § = ®y|o0éy be an irreducible algebraic representation of

Goo xR C = (Resp/pG) xg C = H G xp,C.

v|oco
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Denote by x: Ag.o.o — C* the restriction of the central character for &V.
Define

F=FUS®, fs,. S1.£) by

ar(1) = (=D Omgige (1) dim( 5" fy (5,
g, (rs) xep(Too ® §) € C. 9.4)

Note that TKsl (7s,) equals 1 if g, is unramified and O otherwise, and that
XEP (Moo @ €) = 0 unless o has the same infinitesimal character as V.
The set of w such that ar(w) # 0 is finite by Harish-Chandra’s finite-
ness theorem. Let us define measures iz s, and /’Iu}-’ s associated with F on

the unramified unitary dual G (Fs, )", motivated by the trace formula. Put
7(G) := ™ EP(G(F)Ag. OO\G(AF)) For any function fs, on G(Fg, )"
which is continuous outside a measure zero set, define

Cal’l(US,OO)

7/(G)dim & > armMfs(rs). (9.9

e ARdisc, y (G)

wrF,s (fs) =

The sum is finite because ar is supported on finitely many 7. Now the key
point is that the right hand side can be identified with the spectral side of
Arthur’s trace formula with the Euler-Poincaré function at infinity as in Sect.
6.5 when fsl ¢>51 for some ¢5, € H" (G (Fs,)) ([3, pp. 267-268], cf. proof
of [99, Prop 4.1]). So to speak, if we write ¢>° = ¢50¢51¢S’°°,

) Ispec (¢oo¢§_’ Mcan’EP)
7/(G)dimé&

= (- l)q(G) geom(¢ o¢, Mcan,EP) (9.6)

7/(G) dim &

fr.s (ps) = (—=1)1C

where Igpec (resp. Igeom) denotes the spectral (resp. geometric) side Arthur’s
the invariant trace formula with respect to the measure x““EP_ Finally if fg,
has the property that ﬁgh (]"EO) # 0 then put

/’Lg: 5 /’LSo(fSO ﬁ]:,Sp

Remark 9.9 The measure ﬁuf s, is asymptotically the same as the counting

measure

1 ~
AL (fs,) = i > ap(m) fs ().

b e-AR'disc,)( (G)
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associated with the S7-components of F (assuming |F| # 0). More precisely
if {Fi}>1 is a family of Sect. 9.3 below, then //ICJ%H,%E /ﬁufk, s, 18 a constant
tending to 1 as k — oo by Corollary 9.25.

Example 9.10 Let m € ARgisc,x (G). Suppose that the highest weight of £ is
regular and that So = . Then 7 belongs to F if and only if the following three
conditions hold: (7':5"’0)[]&oc # 0, 7 is unramified at S, and o, € Tgisc(§Y).
When 7o € Igisc(€Y), (9.4) simplifies as

S,oo)US~°°

aF(m) = Mgisc, y (r) dim (7

Example 9.11 Let ]/‘EO be a characteristic function on some relatively compact
’/Igl—measurable subset U s, C G(Fs,)". Assume that Sy is large enough such

that G and all members of F are unramified outside Sy. Take US> to be the
product of K, over all finite places v ¢ Sp. Then for each m € AR isc, x (G),

ar(r) = (=" yep (o0 @ E)maise, (7) ©9.7)
if 7750-% is unramified, s, € l750 (in which case ar(w) # 0 if moreover
XEP (T ® &) # 0; otherwise ar(w) = 0). If the highest weight of & is
regular, xgp (7o ® €) # 0 exactly when oo € Tgisc(§Y), in which case (9.7)
simplifies as

ar(mw) = Mdisc, x (7).

Compare this with Example 9.10. (The analogy in the case of modular forms is
that v as newforms are counted in the current example whereas old-forms are
also counted in Example 9.10.) Finally we observe that since the highest weight
of & isregular and 7w+, € Tgisc(§Y), the discrete automorphic representation 7
is automatically cuspidal [107, Thm. 4.3]. In the present example the discrete
multiplicity coincides with the cuspidal multiplicity.

Remark 9.12 Asthelastexample shows, the main reason to include Sy is to pre-
scribe local conditions at finitely many places (namely at Sp) on automorphic
families. For instance one can take fs, = (li;so where ¢, is a pseudo-coefficient
of a supercuspidal representation (or a truncation thereof if the center of G is
not anisotropic over Ffg,). Then it allows us to consider a family of 7 whose
So-components are a particular supercuspidal representation (or an unramified
character twist thereof). By using various fs, [which are in general not equal
to ¢s, for any ¢, € C2°(G(Fs,))] one obtains great flexibility in prescribing
a local condition as well as imposing weighting factors for a family.
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9.3 Families of automorphic representations

Continuing from the previous subsection (in particular keeping Hypothesis 9.8)
let us introduce two kinds of families {F%}r>1 which will be studied later on.
We will measure the size of & in the following way. Let T, be a maximal torus
of G over R. For a B-dominant A € X*(Tx), set m(A) := mingcqg+ (A, ).
For & with B-dominant highest weight A¢, define m(§) := m(A¢).

Let ¢, € C(?O(G(FSQQ). [More generally we will sometimes prescribe a
local condition at Sy by fs, € . (G (Fs,)") rather than ¢,.] In the remainder
of Sect. 9 we mostly focus on families in the level or weight aspect, respectively
described as the following:

Example 9.13 (Level aspect: varying level, fixed weight) Let n, C OF be a
nonzero ideal prime to S for each k > 1 such that N(ng) = [OF : ng] tends to
o0 as k — oo. Take

Fi = f(KS’OO(nk), b5y» S1» é:) :

Then |Fi| — oo as k — oo.

Example 9.14 (Weight aspect: fixed level, varying weight) For our study of
weight aspect it is always supposed that Z(G) = 1 so that Ag.oc = 1 and
x = 1 in order to eliminate the technical problem with central character when
weight varies.” Let {£;} k>1 be a sequence of irreducible algebraic representa-
tions of G xr C such that m (&) — 0o as k — oo. Take

Fr =F (US’OO, &5\50, S1, fk) .

Then |Fi| — oo as k — oo.

Remark 9.15 Sarnak proposed a definition of families of automorphic repre-
sentations (or automorphic L-functions) in [87]. The above two examples fit
in his definition.

9.4 Level aspect

We are in the setting of Example 9.13. Recall that Res /oG is assumed to be
cuspidal. Fix E: G — GL,, as in Proposition 8.1 and let Bg and cg be as in
(8.2) and Lemma 8.4. Write .Z.(My) for the set of F-rational cuspidal Levi
subgroups of G containing the minimal Levi M.

9 Without the hypothesis that the center is trivial, one should work with fixed central character
and apply the trace formula in such a setting. Then our results and arguments in the weight
aspect should remain valid without change.
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Theorem 9.16 Fix ¢s, € CX°(G(Fs,)) and&. Let S| C Vi be a subset where
G is unramified. Let ¢s, € Hur(G(Fgl))<K be such that |¢ps,| < 1 on G(Fs,).

If £.(Mo) = {G} (in particular if G is abelian) then [iz, 5, (Ps,) = Its (Ps).
Otherwise there exist constants Ay, By > 0 and C\y > 1 such that

7.5 (@s) — % (s) = O (Q?IIV+BIVKN(“)_C'V) (9.8)

asn, k € Zx1, S1 and ¢s, vary subject to the following conditions:

(i) N(n) > czqg"",
11) no prime divisors of n are contained in S.
p d tained in S

[The implicit constant in O(:) is independent of n, «, S1 and ¢s,.]

Remark 9.17 When ’/II;) (550) # 0 (9.8) is equivalent to

~ -~ ~pl & _
.5, @s) — 25, @s) = 0 (g8 " New =)

kemark 9.18 One can choose Ay, Bly, Cly to be explicit integers. See the
proof below. For instance C}y > ng for ng defined in Sect. 1.8.

Proof Put ¢35 := 1 kS0 The right hand side of (9.6) is expanded as in
[3, Thm 6.1] as shown by Arthur. Arguing as at the start of the proof of [99,
Thm 4.4], we obtain from Lemma 8.4 in view of the imposed lower bound on
N (n) that

Ars@s) —R5 @)= 20 am - dsom s u(ey )
MeZ.(Mo)\{G}
G
060 o
dim &

where the sum runs over proper cuspidal Levi subgroups of G containing a
fixed minimal F-rational Levi subgroup (see [45, p. 539] for the reason why
only cuspidal Levi subgroups contribute) and ajs € C are explicit constants
depending only on M and G. A further explanation of (9.9) needs to be given.
Since only semisimple conjugacy classes contribute to Arthur’s trace formula
for each M, Lemma 8.4 tells us that any contribution from non-identity ele-
ments vanishes. Note that ﬁgl (as) comes from the M = G term on the right
hand side.

The first assertion of the theorem follows immediately from (9.9). Hence-
forth we may assume that .Z.(My)\{G} # @.
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Clearly ¢s, m(1) and d>f,,(1,§)/ dim & are constants. It was shown in

Lemma 2.14 that |¢s, ()| = O(q4¢ " *%) for b > 0 in that lemma.
We take

Ay :=dg +rc and By :=bg.

We will be done if it is checked that |¢1f,1’°°(1)| = O(Nn)~v) for some
Ciy = 1. Let P = MN be a parabolic subgroup with Levi decomposition
where M is as above. Then

o<y m = [ Lo, OO

= I1 vol (K (@) ™) N N(F,))
véS
v[n or veRam(G)

— H VOl(N(Fv)x,u(n))

véS
v|n or veRam(G)

- H g, v dmN H vol(Ky N N(Fy)).

vin veRam(G)

véS veS
The last equality uses the standard fact about the filtration that vol(N (Fy) x v(n))
= | |"™WIMN yol(N(F,)x.0) and the fact (8.1) that vol(N(F,)yr.0) =
vol(N (F,) N K,) = 1 when G is unramified at v. Take

Cy = min (dim N)
MeZ.(Mo)\{G}
P=MN
to be the minimum dimension of the unipotent radical of a proper parabolic sub-
group of G with cuspidal Levi part. Then Iqbf,l’oo M| < N, cram G)
vol(K, N N(Fy)) for every M in (9.9). |

9.5 Weight aspect

We put ourselves in the setting of Example 9.14 and exclude the uninteresting
case of G = {1}. By the assumption Z(G) = {1}, forevery y # 1 € G(F) the
connected centralizer /;, has a strictly smaller set of roots so that [®, | < [P].
Our next task is to prove a similar error bound as in the last subsection.

Theorem 9.19 Fix ¢5, € C°(G(Fs,)) and US> C G(AS>). There exist
constants Ay, Byt > 0 and Cy > 1 satisfying the following: for
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— any k € Z-o,
— any finite subset S\ C Vy° disjoint from Sy and Spaq (Sect. 7.2) and
— any ¢s, € Hur(G(Fgl))<” such that |¢s,| < 1 on G(Fs,),

7.5 @) — 5 @s) = O (qg ™ m(&)=)

where the implicit constant in O(-) is independent of k, S1 and ¢s,. (Equiva-
N ~ —pl wit+Bu ~ ompl
lently, [y s, (bs)) — i (§s)) = O(qg™ T m(&)=Cw) if B (bs,) #0.)

Remark 9.20 We always assume that Sy and S are disjoint. So the condition
on 8 is really that it stays away from the finite set Spaq. This enters the proof
where a uniform bound on orbital integrals from Sect. 7.2 is applied to the
places in S;.

Remark 9.21 Again Ay, Bwi, Cwt can be chosen explicitly as can be seen
from the proof below. For instance a choice can be made such that Cy; > ng
for ng defined in Sect. 1.8.

Proof We can choose a sufficiently large finite set S O Sp U Ram(G) in the
complement of S; U Sx such that US> is a finite disjoint union of groups of
the form (], ¢ S5US1US» Kv) X Usp\ g, for open compact subgroups Uy, s, of
G(Af, A s,)- By replacing So with Sj (and thus S with S | [ S1), we reduce
the proof to the case where US> = HU¢SUSOO K.

For an F-rational Levi subgroup M of G, let Y); be as in Proposition 8.7,
where k, Sp and S; are as in the theorem. (So the set Y, varies as « and S
vary.) Take (9.6) as a starting point. Arthur’s trace formula ([3, Thm 6.1]) and
the argument in the proof of [99, Thm 4.11] show (note that our Y, contains
Yy of [99] but could be strictly bigger):

ir.s (¢s,) — ﬁ? (®s)
= > a6y, 11T 0y e

yeYe\{l}

G
Mo 1l AMAP) oo P (V. En)
2, z : 0 ———— (9.10
+ am.y [ ()l y (Dur) dim&, ( )
MeZ NG} yeYy

ooy tr &, (y)
dim &,

where ay; ,, (including M = G) is given by
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Jrean EP (Iy(F)\Iy(AF)/AIy,oo)
wEP (I)ﬁ”(Foo)/Aljﬂ,oo)

M
Cor 6.13 © (IV ) 1§21 L(Mot; )
TG 1Rl e (1%00) 2IFQlr6

ay, = TG

Let us work with one cuspidal Levi subgroup M at a time. Observe that
clearly |2 m |/]€2 M, <! < |€2] and that r(l}],"’ ) is bounded by a constant depend-

ing only on G in view of (6.3) and Corollary 8.12 or Lemma 8.13.
By Corollary 6.17, there exist constants c2, A> > 0 such that

A
|aM,y| <@ H qu

veRam(I}{V’)

Itis convenient to define the following finite subset of V7° foreach y € Y.
We fix a maximal torus TM in M over F containing y and write &y .y for

the set of roots of T]f” in M . (A different choice of T;‘” does not affect the
argument.)

Sm,y = {v e VP\S: Jua € Dpry, a(y) #land [1 —a(y)|y # 1}.

(If y is in the center of M (F) then Sy, =¥ and g5, , = 1.)
We know that OM(F")(IKMYU) = lforv ¢ SUSuy,, USx and that Sy, D

Ram(l]fu ) from [63, Cor 7.3]. According to Lemma 6.2 ¢, = 1k, implies
¢v.m = 1k, . Hence

lam.y| < ez (gsy,,)™ 9.11)
M(A )
@) =0y sy [ 0)/ "k,

UGSMJ,

By Theorem 13.1, there exists a constant c(¢s,, ) > 0 such that

0," " @sy.) < csym) [[ DY )2y € Yu.

veSy

By Theorem 7.3, there exist a, b, ¢, eg € R> (independent of y, Sy, k and
k) such that

M(F a —e
W (gsan < gl T DYoo, 9.12)

vES]|
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0) (g, ) < qiDY ()%, Vv e Sy, (9.13)

[To obtain (9.12) and (9.13), apply Theorem 7.3 to v € S; and v € Sy ]
Hence

M(A®) _
0y T (@) < c@smas a5, | [T Yo

v{o0

x [ DpMro)i-cor

veS|USy,y

= c(so.anqs g5, [ DY o»'?

v|oo

<[] DYoo (9.14)

veS|USu,y

On the other hand there exist 8, o0, 65, = 1 such that for every y € Yy
witha(y) # 1,

— |1 —a(y)ls, < ds,. (compactness of supp ¢s,)
— |1 —a(¥) oo < 80 (compactness of Uyo)

-1 —a(y)ls, < ds, q?lsk. (Lemma 2.18 and Remark 2.20 explains the
independence of B of S;.)

[When «(y) = 1, our convention is that |1 — «(y)|, = 1 for every v to be
consistent with the first formula of Appendix A.] Hence, together with the
product formula for 1 — a(y),

L=TT1 - el <8s008s,a8™ ] 11 =@l
v

vESqu

Set § := 85,00005,. Note that [1 —a(y)|, < 1foralla € ®y ), andall v €
Sm,y Ity € Z(M)(F) thenqSM,y = 1. Otherwise foreach v € Sy ,,, we may

choose a € @, such that |1 — a(y)], # 1. Then |1 — a(y)], < gy /"%
(for the same reason as in the proof of Proposition 8.7, Step I) so
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wGS
qv < (6615“) L ve Sm.y- (9.15)

In particular the crude bound maxycs,, L Qv = 2|Swm,y | holds, hence

1 weGs
a1 < 5 ((8q§5“) s 1) — 5 9.16)

Notice that the upper bound is independent of  (and depends only on the fixed
data). Keep assuming that y is not central in M and that «(y) # 1. Again by

the product formula [],cs,us,, 11 = ¢l = [Tyegus, 11— a0l =
(85,800) 1, thus

[T PYo™ <85 9.17)

veSIUSy .y

The above holds also when y is central in M, in which case the left hand side

equals 1.
Now (9.14), (9.15), (9.16), and (9.17) imply

O)I/W(AF) (¢1?40) < C(¢S(),M)6€wcsca,(85()800)(60_1)/2qgl+bK+CBstSG8,K
<[] Yo'~ (9.18)
v|oo

Lemma 6.11 gives a bound on the stable discrete series character:

250 O] _ Tl D' )12

. ~
dim & |®+|—|4>ij|

9.19)

m(

Multiplying (9.11), (9.18) and (9.19) altogether (and noting |¢* (y)|~! < 1),
the absolute value of the summand for y in (9.10) (including M = G) is

_(dt—lpt
(el lq)[{)” )qg—kbx—kchwcscﬁ/K—i-Az)
1 .

o (m(é)

. -~ - - 1 - 1
Allin all, |z s(ds) — s (Ps)] is

Yol=1+ >, Yul]oO & 1D avbicBsugsasian
G M m(§ qs, .
MeZ\{G}
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Set (excluding ¥ = 1 in the second minimum when M = G)

Cwt := min min ot — |0
YT MeZ(My) yeM(F) (271 =1®7uD
ell.inM (Fxo)

Note that Cy depends only on G. It is automatic that |®*| — ICD;FM | > 1on

Y \{1} and Yy, for M € Z.(My)\{G}. The proof is concluded b; invoking
Corollary 8.10 (applied to Y and Y}j,) with the choice

Awt ' =a+ Ay + A, Byt := b+ cBswgsgd' + Bs.

9.6 Automorphic Plancherel density theorem

In the situation of either Examples 9.13 or 9.14, let us write Fy(¢s,) for Fi
in order to emphasize the dependence on ¢g,. Take S1 = ¥ so that § = Sp.
Then iz, (45),s May be viewed as a complex number (as it is a measure on
a point). In fact we - can consider Fx(fs), a family whose local condition at
S is prescribed by fs € g(G(FS)’\), even if fg does not arise from any ¢g
in C2°(G(Fs)). Put i (fs) = ﬁfk(fs),@ € C. We recover the automorphic
Plancherel density theorem [99, Thms 4.3, 4.7].

Corollary 9.22 Consider families Fy. in level or weight aspect as above. In
level aspect assume that the highest weight of & is regular. (No assumption is
necessary in the weight aspect.) For any fs € .7 (G(Fs)"),

PGS pl =~
lim 72k (fs) = i (fs).
k— 00
Proof Theorems 9.16 and 9.19 tell us that
P _pl —~
lim 72z (¢s) = 115 (¢s). (9.20)
k—o00
(Even though there was a condition on Sy, note that there was no condition on
So in either theorem.)

We would like to improve (9.20) to allow more general test functions. What
needs to be shown [cf. (9.21) below] is that for every € > 0,

. PO ~pl, ~
lim sup | (fs) — 2% (fs5)| < 4e.

k— o0

Thanks to Proposition 9.1 there exist ¢s, s € H" (G (Fs)) such that |f5 —
bs| < ¥s on G(Fs)" and 2% (s) < €. Then [cf. (9.22) below]
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(fs) = 75 (Fs)| < 1 s = s)|
+ |k @s) — 7S @s)| + |75 @s — o).

pl, =~ —~pl =~ o~ ol
Now |12 (fs — s)| < 72§ (Ws)| < €, and | (bs) — B (ds)| < € fork > 1
by (9.20). Finally iy is a positive measure since the highest weight of & is
regular (see Example 9.11), and we get

7k (fs — ¢9)| < 1k (1fs — sl) < e(s).

[To see the posmVlty of [ ks notice that 1ty ( fg — (/55) is unraveled via (9.4) and
(9.5) as a sum of ( fg — ¢S)(JT) with coefficients having nonnegative signs.
This is because xgp (oo @) is either 0 or (—1)7(%) when ";‘ has regular hlghest

weight, cf. Sect. 6.5.] Accordlng to (9.20), limy_, o ,uk(z/fg) = /LS (ws)
In particular |y ( fS — ¢S)| 2¢ for k >> 1. The proof is complete. O

Remark 9.23 1If G is anisotropic modulo center over F so that the trace for-
mula for compact quotients is available, or if a further local assumption at
finite places is imposed so as to avail the simple trace formula, the regularity
condition on § can be removed by an argument of De George and Wallach
[38] and Clozel [22]. The main point is to show that the contribution of (¢-
cohomological) non-tempered representations at oo to the trace formula is
negligible compared to the contribution of discrete series. Their argument
requires some freedom of choice of test functions at oo, so it breaks down
in the general case since one has to deal with new terms in the trace formula
which disappear when Euler—Poincaré functions are used at co. In other words,
it seems necessary to prove analytic estimates on more terms (if not all terms)
in the trace formula than we did in order to get rid of the assumption on &.
(This remark also applies to the same condition on £ in Sects. 9.7 and 9.8 for
level aspect families.) We may return to this issue in future work.

Remark 9.24 In the case of level aspect families [99, Thm 4.3] assumes that
the level subgroups form a chain of decreasing groups whose intersection is
the trivial group. The above corollary deals with some new cases as it assumes
only that N(ng) — oo.

Corollary 9.25 Keep assuming that S| = (. Let (U,f’oo, £) = (K5 (), &)
or (US>, &) in Examples 9.13 or 9.14, respectively, but prescribe local con-
ditions at S by fs rather than ¢s. Then

S,00
Mcan (Uk )

lim ————2 |7 ="
M TGy dime 5 (fs).
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Proof The corollary results from Corollary 9.22 since

Iucan (UIE»OO) |f l Mcan (UIE»OO) Z
i =

7/(G) dim & ~ 7/(G)dim & A 6
1SC, Xk

Cl]-‘k(ﬂ) = ﬁfk,ﬂ(f/g)

9.7 Application to the Sato—Tate conjecture for families

As an application of Theorems 9.16 and 9.19, we are about to fulfill the promise
of Sect. 5.4 by showing that the Satake parameters in the automorphic families
{Fk} are equidistributed according to the Sato—Tate measure in a suitable sense
(cf. Conjecture 5.9).

Th/g notatign and convention of Sect. 5 are retained her/e\. Letd € €(I')
and f € F(T¢0/S2,0). Foreach v € Vr (), the image of f in F(G(Fy)™')
via (9.1) will be denoted f,.

Theorem 9.26 (Level aspect) Pick any 6 € €(I'1) and let {vj};j>1 be a
sequence in Vi () such that q,,; — 00 as j — 00. Suppose that

~pl =
— i, (¢s) # 0 and
— & has regular highest weight.
Then for every fe .7:(?5,9/9@9),

: ~f 7\ _ ST A
G lll)rgooufk’”-i (fvj) =g (f)

where the limit is taken over (j, k) subject to the following conditions:
~ Nmgy,”*™ > c3",
- v f g,
- q{)\]/N(nk)_l — Oforall N > 0.
Proof Fix f. We are done if lim SUP(j k)00 |ﬁ5TMj (fAvj) — ﬁgT(fN < 4e for

every € > 0. By Proposition 5.3, |ﬁ5_li(ﬁj) — ﬁST(ﬂl < ¢ for sufficiently
large j. So it is enough to show that

. ] o~ ~pl ,
limsup (7%, , (fu)) = A0, (fo))| < 3e, 921

(j,k)—o00

For every j > 1, Proposition 9.4 allows us to find ¢Uj,g//vj €
o~ -~ -~ Al o~
HY (G (Fy;)< such that | fy, — @u;] < ¥y; on G(Fy))" and 728 (%) < e.
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Foreach j > 1

PN o ~pl
W, (Fop) = A% (Fo))

‘M]:k v (fll\), - avj)

T ] 1
|0, @) — 8 @)

(9.22)

. ~pl . I
Since ,bLBj 1S a pos1t1ve measure,

i (o, — fop)| ST (J6u, — 1)) ST (W) <

Theorem 9.16 and the assumptions of the theorem imply that for sufficiently
large (J, k), |’;Zufk’ v (g/b\vj) ﬁgi (¢v;)| < €.Sowe will be done if for sufficiently
large (j, k),

50, (o — )| < e 9.23)

Argumg as in the proof of Corollary 9.22 we deduce the following: when
M Feovj ( fvj qﬁv ) is unraveled as a sum over 7 [cf. (9.4) and (9.5)], each
summand is aso (nso)(f/; i @, i) (Tl’vj) times a nonnegative real number. (This
uses the regularity assumption on &. Certainly the absolute value of the sum
does not get smaller when every summand is replaced with (something greater
than or equal to) its absolute value, i.e.

X MU (’f/;] - avj‘) < /T’Zu Y ({[/\U,)

fk(|¢sol) vj Fi(lpsyDvj

"U“}'k v \Jvj ¢’v])

Now choose ¢g0 € CX°(G(Fs,)) according to Lemma 9.6 so that |¢s, (s,) | <
¢30 (s,) for every mg, € G(Fs,)". Then

~f
H F1dsyhov; W) < “fk«p NE Wy)-

Theorem 9.16 applied to Wv and the inequality & /,LU i (Wv, € imply that

lim sup M @ ) <e.
(j,k)—o00 (4)50) vi ( ) h

This concludes the proof of (9.23), thus also (9.21). |

Theorem 9.27 (Weight aspect) Let 6 € € (I'1) and ago € CX(G(Fsy)).
Suppose that {vJ}J>1 is a sequence in Vr(0) such that q,; — oo as j — 00

and that [t /,L (qSSO) = 0. Then for every f € .7:(TC 0/ S2.0),
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lim 2%, (f;) =" ()

(j,k)—o00
ifqu;\jm(gk)_l — 0as k — oo for any integer N > 1.

Proof Same as above, except that Theorem 9.19 is used instead of Theorem
9.16. O

Remark 9.28 As we have mentioned in Sect. 5.4, Theorems 9.26 and 9.27
indicate that {F}}> are “general” families of automorphic representations in
the sense of Conjecture 5.9.

Corollary 9.29 In the setting of Theorems 9.26 or 9.27, suppose in addition
that |Fy| # 0 forall k > 1. Then

: t AST
olim R (fo;) = 5" (.

Proof Follows from Corollary 9.25 and the two preceding theorems (cf.
Remark 9.9). |

Remark 9.30 The assumption that |F%| # O is almost automatically satisfied.

Corollary 9.25 and the assumption that ﬁgt ($SO) # 0 imply that | Fx| # O for
any sufficiently large k.

9.8 More general test functions at So

So far we worked primarily with families of Examples 9.13 and 9.14. We wish
to extend Theorems 9.26 and 9.27 when the local condition at Sy is given
by ]"}0, which may not be of the form (75\50 for any ¢s5, € CX°(G(Fs,)) (cf.
Example 9.11 and Remark 9.12).

Corollary 9.31 Let 6 € €(I'1) and let {v;};>1 be a sequence of places in
Vr(0) such that q,; — 00 as j — oo. Consider l/’(/\fk,vj where

F = F(Ksoo(ﬂk) fso» vj, &) level aspect, or
T F(US*, Fsy. v, &) weight aspect

satisfying the conditions of Theorems 9.26 or 9.27, respectively. Then

lim 7%, () =05 ()

(j,k)—o0

where the limit is taken as in Theorem 9.26 (resp. Theorem 9.27).
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Proof The basic strategy is to reduce to the case of $ and dTU_,- in place of f
and ﬁ via Sauvageot s density theorem, as in the proof of Theorem 9.26.

We can decompose f=7t+ 7 with f+, f~ e F(T. 6/ c6) such that
f £t and f are nonnegative everywhere. The corollary for f is proved as
soon as it is proved for f £+ and f . Thus we may assume that f > 0 from
now on.

Fix any choice of € > 0. Proposition 9.1 ensures the existence of ¢, Vs, €

C2(G(Fs,)) such that 7% () < € and | fs, (s,) — s, ()| < s, (w5,)

forallwg, € G(Fs,)". Of course we can guarantee in addition that ﬁgt (aso) +
0. Put

Fi@sy) 1= F (K5, §sy. v, 6)
(resp. Fe(@s0) = FWUS™, sy, v7.60)

Likewise we define .7-";{(1’/;50) and so on. Then (cf. a similar step in the proof
of Theorem 9.26)

0, (Fo) = By (Fso Fop)| < | Bemigas Fo) = By @ fo)

+ﬁIS):)u (|f50 $S<)|ﬁj)

+ ’”fk(\ﬁo—a?sow)(fvj)

The first term on the right side tends to 0 as (j, k) — oo by Theorems 9.26
. —pl ~ ~pl .
and 9.27. The last term is bounded by Mgou{vj}(llfso fv_/.) < e,uf,’j ( fvj) using

the fact that ﬁg}) is a positive measure. In order to bound the second term,
recall that we are either in the weight aspect, or in the level aspect with reg-
ular highest weight for §. Then a,, Fso—bso)) (7r) is a nonnegative multiple of

| fgo (7rs,) d)so (7s,)| as in the proof of Theorem 9.26. Thus

1 r( fsp—ds,h o))

P N N T =
=151 sy —dsoh o)) S Brigsy) S S €l g ),

the last inequality coming from the bound ﬁglo (1’//\50) <e
Hence we have shown that

. ~ o~ ~pl
tim sup [z, (Foy) = Bypey) (Fso o)
(j.k)y—o0

~pl
ehmsupx(u (fo)) + 7% (f-)).
(Jj.k)—o00 i) Y
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By Theorems 9.26 and 9.27 and the fact that lim Ap i( fvj) = ﬁg’T( f), the

right hand side is seen to be bounded by 2¢ ST( f ). As we are free to choose
€ > 0, we deduce that

~pl ~
lim T, o (Fo;) = 5, (Fso) g ().

O

Remark 9.32 1t would be desirable to improve Theorems 9.16 and 9.19 simi-
larly by prescribing conditions at Sg in terms of ]/‘tgo rather than the less general
as(). Unfortunately the argument proving Corollary 9.31 does not carry over.
For instance in the case of Theorem 9.16, one should know in addition that
the multiplicative constant implicit in O (qglerB”KN(nk)*ClV) is bounded as a

sequence of ¢g, approaches f,.

10 Langlands functoriality

Letr: LG — GL4(C) be a representation of LG. Letw € ARdise, x (G) be
such that with 77, € Igisc(&,)) for each v|oo (recall the notation from Sects.
6.4 and 9.2). The Langlands correspondence for G (F,) [71] associates an
L-parameter ggy : W — LG to the L-packet gisc (€)', cf. Sect. 6.4.

The following asserts the existence of the functorial lift of 7 under r as
predicted by the Langlands functoriality principle.

Hypothesis 10.1 There exists an automorphic representation I'T of GL4(AF)
such that

(1) IT is isobaric,
(i) ITy = ry(my) [defined in (2.9)] when G, r and 7 are unramified at v,
(iii) IT, corresponds to rggy via the Langlands correspondence for GLg4(F})
for all v|oo.

If IT as above exists then it is uniquely determined by (i) and (ii) thanks to
the strong multiplicity one theorem. Moreover

Lemma 10.2 Hypothesis 10.1 (iii) implies that I1,, is tempered for all v]|oo.

Proof Recall the following general fact from [71, §3, (vi)]: let ¢ be an L-
parameter for a real reductive group and I1(¢) its corresponding L-packet.
Then ¢ has relatively compact image if and only if I1(¢) contains a tempered
representation if and only if IT(¢) contains only tempered representations. In
our case this implies that ¢;y has relatively compact image for every v|oo, and
the continuity of r shows that the image of rggv is also relatively compact.
The lemma follows. m|
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As before let (B, T, {Xq}aeav) denote the Gal(F/F)-invariant splitting
datum for G. Recall that A¢y € X *(T)* designates the highest weight for &
Then gy | is described as

@SUV(Z) = ((Z/z)p+)“§1\;/, Z) € /G\ X W(C, VZ S W(C = CX.

Itis possible to extend @y |w, to the whole of Wr but this does not concern us.
(The interested reader may consult pp. 183—184 of [65] for instance.) Let Tbe
amaximal torus of GL4 (C) containing the image r (), and B a Borel subgroup
containing T. Write |5 = @icsr; as a sum of irreducible G-representations.
For each i € I, denote by A(r;) € X*(T) the B-positive highest weight for
ri. Write A(ri) = Ao(ri) + X yep a(ri, @) - oY for Ao(r;) € X«(Z(G))g and
a(ri, o) € Qxo. Put [A(r))| := D> cp a(ri, @) and

M(&y) == mag((x, hey), M(r) = max |A(ri).

Similarly define m(&,) and m(r) by using minima in place of maxima. We are
interested in the case where Ao (r;) is trivial for every i € I. This is automati-
cally true if Z(G) is finite. (Recall that we consistently assume Z(G) = 1 in
the weight aspect.)

Lemma 10.3 Suppose that Ao(r;) is trivial for every i € 1. Hypothesis 10.1
(iii) implies that for each v|oo,

Q2 +mEmEN < C(M,) < G+ 2M )M E))?.

In particular if Z(G) is finite, then the following holds for any fixed L-
morphism r.
L+ m(&) < C(IL) < M(E)

Proof First we recall a general fact about archimedean L-factors. Let
¢: Wr — GLy(C) be a tempered L-parameter and decompose ¢|w,. into
GL;-parameters as ¢|w. = EB/](V:1 Xk. The archimedean L-factor associated
with ¢ may be written in the form [cf. (4.1)]

N
L(s,¢) = [ [ Tr(s — 1(9)). (10.1)
k=1

For each k assume that yj(z) = (z/z)% for some ay € %Z. Then we have for
every 1 <k <N, ur(p) € %Zgo and, after reordering ui (¢)’s if necessary,

lar| < [n(@)| < lax] + 1. (10.2)
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Indeed this comes from inspecting the definition of local L-factors asin of [102,

3.1, 3.3] for instance. (Use [102, 3.1] if a; = 0 and [102, 3.3] otherwise.)
Returning to the setup of the lemma, we have by definition L(s, [1,) =

L(s,rgg,). Foreachi € I we consider the composite complex L-parameter

@Ev‘ -~ i1
We S G x We "3 GLgimy, (©)

decompose it as EB?i;nlr" xi,j- We can find q; ; € %Z such that x; j(z) =
(z/2)*J. For each i, the highest weight theory tells us that ¢; ; = (p +
Aey, M(ri)) = O forone j and |a; j/| < a;,j for the other Jj' # j.By (10.1) and

(10.2), the analytic conductor for IT, (introduced in Sect. 4.2) satisfies

dim r;

d
cy) =[]e+ ) <[] [T G+ laiih
k=1

iel j=I
<3+ (o + Ay, AGron®™

iel

Further (p+Agyv, A(ri)) = (o, A(ri))+(Agy, A(ri)) < M) [+|A )M (6y) <
M@)(1 + M(&,)). Hence

C(M) < [J(@+ME)(1 + MENM™ = (B + M)+ ME)).

iel

Now we establish a lower bound for C (I1,). For each i, we apply (10.2) to
the unique j = j(i) such thata; ; = (p + hey, A(ri)). Then

C(My) = [[@+ laijo)) = [[@+ (o + 2y, 2Gi)))
iel iel

> Q2+ mr)(1+mE)N!.

11 Statistics of low-lying zeros

As explained in the introduction an application of the quantitative Plancherel
Theorems 9.16 and 9.19 is to the study the distribution of the low-lying zeros
of families of L-functions A (s, IT). The purpose of this section is to state the
main results and make our working hypothesis precise.
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11.1 The random matrix models

For the sake of completness we recall briefly the limiting 1-level density
of normalized eigenvalues. We consider the three symmetry types G(N) =
SO(2N), U(N), USp(2N). For each integer N > 1 these groups are endowed
with their Haar probability measure. For all matrices A € G(N) we have a
sequence ¥ = 1#;(A) of normalized angles [59]

0<? < <--- <Oy <N (11.1)

Namely the eigenvalues of A € U(NN) are given by e(%) = ¢277j/N The
eigenvalues of A € USp(2N) or A € SO(2N) occur in conjugate pairs and
are given by e(:l:f—j(,).

The mean spacing of the sequence (11.1) is one. The 1-level density is
defined by

W) (®) == / > o (A)dA.
N)1<i<n
The limiting density as N — oo is given by the following [59, Theo-
rem AD.2.2].
Proposition 11.1 Let G = U, SO(even) or USp. For all Schwartz functions
®d on R+,

lim Wg(N)(Cb)z/ O(x)W(G)(x)dx,
N—o0 R,

where the density functions W(G) are given by (1.5).

The density functions W (G) are defined a priori on R, . They are extended to
R_ by symmetry, namely W(G)(x) = W(G) (—x) forall x € R. For a Paley—
Wiener function ® whose Fourier transform @ has support inside (—1, 1), we
have the identities

- ®(0) ifG =0,
/ P (x)W(G)(x)dx = { B(0) + 10 (0) if G = USp, (11.2)
o d(0) - 1o  if G = SO(even).

11.2 The 1-level density of low-lying zeros

Consider a family § = (§«)«>1 of automorphic representations of GL(d, Ar).
The 1-level density of the low-lying zeros is defined by

D@1 @) = M >3 (VJ( )logC@k)) (113)

e Jj
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Here @ is a Paley—Wiener function; we don’t necessarily assume @ to be
even because the automorphic representations I1 € §; might not be self-dual.
See also the discussion at the end of Sect. 4.4. The properties of the analytic
conductor C(§) > 2 will be described in Sect. 11.5.

Since ® decays rapidly atinfinity, the zeros y; (IT) of A (s, IT) that contribute
to the sum are within O (1/ log C (F)) distance of the central point. Therefore
the sum over j only captures a few zeros for each I1. The average over the
family IT € §y is essential to have a meaningful statistical quantity.

11.3 Properties of families of L-functions

Recall that in Sect. 9.3 we have defined two kinds of families 7 = (Fy)x>1 of
automorphic representations on G (A ). The families from Example 9.13 are
varying in the level aspect: N(n;) — oo while the families from Example 9.14
are varying in the weight aspect: m(&;) — oo. In both cases we assume that
¢s, € C°(G(Fs,)) is normalized such that

% (Bsy) = ¢, = 1. (11.4)

For families in the weight aspect we assume from now the weights are bounded
away from the walls. Namely we assume that we are given a fixed n > 0 and
that

(dim &) < m(&), Vk. (1L.5)

Given the continuous L-morphism r: “G — GL(d, C) we can construct
a family § = rF of automorphic L-functions. Assuming the Langlands
functoriality in the form of Hypothesis 10.1, for each & € Fj there is a unique
isobaric automorphic representation I1 = r,m of GL(d, Ar). We denote by
Sk = r«Fi the corresponding family of all such IT. Recall from Sect. 9.2 that
Fi is a weighted set and that the weight of each representation 7 is denoted
ar, (7r). The same holds for § and in particular we have

8l = 17l = D ag (o).

weFy

We have seen in Corollary 9.25 that |§;| — oo as k — oo.

By definition [see (9.4)], if # € Fi then m has the same infinitesimal
character as ?;‘,;/, ie. m € Mgisc(€x). If I1 € § then 1, corresponds to the
composition r o ¢, via the Langlands correspondence for GL;(Foo) [This is
Hypothesis 10.1 (iii)]. In particular 1y, is uniquely determined by & and r.
It is identical for all IT € §y.

It is shown in Lemma 10.2 that 1 is tempered. Therefore Proposition 4.1
applies and the bounds towards Ramanujan (4.6) are satisfied for all IT € .
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To simplify notation throughout this and the next section, we use the con-
vention of omitting the weight when writing a sum over §. If [ (IT) is a quantity
that depends on IT € §, we set

DI = D ag (m)l(r).

IMeg weFy

This convention applied in particular to (11.3) above.

11.4 Occurrence of poles

We make the following hypothesis concerning poles of L-functions in our
families.

Hypothesis 11.2 There is Cpe > 0 such that the following holds as k — oco:
#{IT € §x, A(s, ) has a pole} < |F|'~Crote .

The hypothesis is natural because it is related to the functoriality Hypothe-
sis 10.1 in many ways. Of course it would be difficult to define the event that
“L(s, IT) has a pole” without assuming Hypothesis 10.1. Also when Functori-
ality is known unconditionally it is usually possible to establish the Hypothe-
sis 11.2 unconditionally as well. We shall return to this question in a subsequent
article.

11.5 Analytic conductors

As in [53] we define an analytic conductor C(§%) associated to the family.
The significance of C (k) is that each IT € F have an analytic conductor
C (IT) comparable to C (Fx). The hypothesis in this subsection will ensure that
log |§x| < log C (§x). We distinguish between families in the weight and level
aspect.

11.5.1 Weight aspect

For families in the weight aspect we set C (%) to be the analytic conductor
C(I1y) of the archimedean factor Il (recall that I1y is the same for all
IT € $%). Then C(IT) < C(§k) for all IT € §y.

From Corollary 9.25 we have that |§x| =< dim&; as k — oo. It remains
to relate the quantities C($%), dim & and m (&), which is achieved in (11.6)
and (11.7) below.
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Lemma 11.3 Let v|oo. Let &, be an irreducible finite dimensional algebraic
representation of G(Fy). Then m(év)|®+| < dim§, M(Sv)|®+|. Also
M(§,) < dim§,.

Proof This follows from Lemma 6.10. Recall the definition of m (&,) in Sect.
6.4 and M (&,) in Sect. 10. O

Because of (11.5) and the previous lemma we have that

m(E)? < dim & < m(E)N. (11.6)

From Lemma 10.3 we deduce that there are positive constants Cy, C> such
that
m(E) < C(Fr) < mE). (11.7)

11.5.2 Level aspect

For families in the level aspect the situation is more complicated mainly
because of the lack of knowledge of the local Langlands correspondence on
general groups and the depth preservation under functoriality. We define C ()

by the following
1
log C(3x) := — >_ log C(I),

8kl &

and we introduce the following hypothesis.

Hypothesis 11.4 There are constants C3, C4 > 0 such that

N(m) S <« C(Fr) < N(ng)©,

11.6 Main result

We may now state our main results on low-lying zeros of the family § =
r«JF . The following is a precise version of Theorem 1.5 from the introduction
[compare with (11.2)].

Theorem 11.5 Assume Hypothesis 10.1 for individual representations as well
as 11.2 and 11.4. There is 0 < § < 1 such that for all Paley—Wiener functions
® whose Fourier transform ® has support in (=6, §) the following holds:

ng@b®=6®—%?wm

where s(r) € {—1,0,1} is the Frobenius—Schur indicator of r: 'G —
GL,4(O).
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12 Proof of Theorem 11.5

The method of proof of the asymptotic distribution of the 1-level density of
low-lying zeros of families of L-functions has appeared at many places in
the literature and is by now relatively standard. However we must justify the
details carefully as families of L-functions haven’t been studied in such a
general setting before. The advantage of working in that degree of generality
is that we can isolate the essential mechanisms and arithmetic ingredients
involved.

In order to keep the analysis concise we have introduced some technical
improvements which can be helpful in other contexts: we use non-trivial
bounds towards Ramanujan in a systematic way to handle ramified places;
we clarify that it is not necessary to assume that the representation be self-dual
or any other symmetry property to carry out the analysis; most importantly
we exploit the properties of the Plancherel measure when estimating Satake
parameters. Previous articles on the subject rely in a way or another on explicit
Hecke relations which made the proof indirect and lengthy, although manage-
able for groups of low rank.

12.1 Notation

To formulate the main statements we introduce the following notation

~ L (1
Liy(y) = |g|Z/ (2+lxl'l) V¥ dx, veVp, yeR.

(12.1)

We view Ek y as a tempered distribution on R. Note that when v is non-
archimedean £k v is a signed measure supported on a discrete set inside R o.

The proof of the main theorems will follow by a fine estimation of Ck (V)
as k — oo. The uniformity in both the places v € Vr and the parameter y € R
will play an important role. Typically g, will be as large as C(Fx)?©® and y
will be of size proportional to log C(3x).

The first step of the proof consists in applying the explicit formula (Proposi-
tion 4.4). There are terms coming from the poles of L (s, IT) which we handle
in Sect. 12.4. The second term in the right hand-side in Proposition 4.4 is
expressed in terms of the arithmetic conductor ¢ (IT) and will yield a positive
contribution in the limit for families in the level aspect. When evaluating the
1-level density D (g, ©) it remains to consider the following sum over all
places
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1 -~ ~ 2y
_— Li v , Pl ——) ), 12.2
log C (&) Z< ev0) (logC<sk))> (122)

UGVF

plus a conjugate expression, see Sect. 12.3.

Our convention on Fourier transforms is standard. Let ® be a Schwartz
function on R. The Fourier transform is as in (4.7) and the inverse Fourier
transform reads

+00
O (x) = / D ()2 dy.
—0oQ

Given two Schwartz functions ® and W we let
o0
(D, W) := / O(x)W(x)dx.
—0o0

Sometimes we use the notation (® (x), ¥ (x)) to put emphasize on the variable
of integration. The Plancherel formula reads

(@ (x), W(x)) = (D(y), B(—)). (12.3)

We use the same conventions for tempered distributions. The Fourier transform
of the pure phase function x > 7% is the Dirac distribution §(a) centered
at the point a.

To condense notation we write

w( )-—6(—2’” )
7 P log €@

and shall express our remainder terms with the quantities || V|| 5, < H ) H ~ and
H 7 H | S ||®|;. Since P is fixed these are uniformly bounded, independent of
k — oo.

There are different kinds of estimates depending on the nature of the place
v € Vr. We shall distinguish the following set of places:

(i) the archimedean places S, the contribution of which is evaluated in Sect.
12.5;

(i1) a fixed set So of non-archimedean places. These may be thought of as
the “ramified places”. Their contribution is negligible as shown in Sect.
12.7;

(iii) the set {v | ng} of places that divide the level. These play a role only
when the level varies and we show in Sect. 12.10 that their contribution
is negligible. We use the convention that for families in the weight aspect
this set of places is empty;

(iv) the generic places Sgen Which is the complement in Vg of the above three
sets of places. This set will actually be decomposed in two parts:
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Sgen = Smain U Scut,

(v) where the set Scy is infinite and consists of those non-archimedean places
U € Sgen such that k)zg—n% is large enough to be outside of the support of
W [see (12.18) below for the exact definition of Scy]. Then the pairing
in (12.2) vanishes;

(vi) the remaining set Spain is finite (but growing as k — 00). It will produce
the main contribution of (12.2). For all places v € Smain, €ach of G, r
and m is unramified over F;,. Using the notation of Sect. 5 we split Spain

further as the disjoint union of

Smain N VF(Q)v 0 e Cg(rl)~

12.2 Outline

For non-archimedean places v € Smain We study in Sect. 12.6 various moments
of Satake parameters. The quantity Ly , in (12.11) below will be the analogue
of (12.1) where the average over automorphic representations I1 € §; gets
replaced by an average of I1, against the unramified Plancherel measure. Our
Plancherel /e\quidistribution theogms for families (Theorems 9.16 and 9.19)
imply that Ly , is asymptotic to Ly , as k — oo.

It is essential that our equidistribution theorems are quantitative in a strong
polynomial sense. Details on handling the remainder terms are given in Sects.
12.8-12.10.

For the main term we then need need to show the existence of the limit of

> (Lo ¥) (12.4)

VESmain

1
log C (k)

as k — oo. The evaluation of Epl?v is a nice argument in representation theory,
see Sect. 12.12 where we shall see clearly the role of the two assumptions on r
(that 7 is irreducible and does not factor through W ). The evaluation of L ,
can actually be quite complicated since it depends on the restriction of r to
subgroups G x W, for varying v € Smain and on the Plancherel measure on
G(F,)"™"". Fortunately the expression will simplify when summing over all
places v € Smain and applying the Cebotarev density theorem (see Sect. 12.11).

The overall conclusion of the below analysis is that the limit of (12.4) as
k — oois equallo to —%Cb (0), where s(r) is the Frobenius—Schur indicator

10 A quick explanation for the minus sign is as follows. A local L-factor is of the form (1 —
ag~*)~! with three minus signs thus its logarithmic derivative is — log ¢ 2>1a”q" with
one minus sign.
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of r. In the derivation of the one-level density there is an additional term
@ (0) which easily comes from the explicit formula and the contribution of the
archimedean terms. Thereby we finish the proof of Theorem 11.5.

12.3  Explicit formula

We apply the explicit formula (Proposition 4.4) for each IT € §; to obtain

@ (0) > log ¢ (IT)

DSk, ®) = Dpo1 (Fx, PH
ISkl

| Dy, PHDy (Fr, D).
- Tog O3 ZV: (Ft, DHD, (i, D)

(12.5)
Here Do) (k. ®) denotes the contribution of the eventual poles. Also we have
set

Dy (3. @) = > LY e o Z10gCGp) )d
5 "2n|3k|negk/_oof(5+’x’ ) (E e k)) .

See also the remark in (4.9) explaining how to shift contours. The scaling
factor w comes from (11.3).
Applying Fourier duality (12.3) and the definition (12.1) implies the equal-

ityll

B 1 -~ ~ 2wy
P8 = i C<sk><£"’”(y (icg C(sk))>’ o

We have made a change of variable so as to make explicit the multiplicative
factor 1/ log C (F) in front of the overall sum. Similarly we have

_ 1 o T /1 X
Du, @) = 5 nék/—oo - (5 tix, nv) @ (Elog C(gk)) dx

1 <A— ~( —2my
_ L (me( o)
log C (%) log C(Sw)
12.4 Contribution of the poles

The contribution of the poles in the explicit formula above is given by

Dpol Sk, ) := — |§ | > Z ( E )10gc(3k))
J

Medk

1T Note that the exponential in (12.1) is ¢27*Y with a plus sign.
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We bound the sum trivially and obtain
#{I1 € §k, L(s, II) has a pole}
K73

where the last term comes from the exponential order of growth of ® along
the real axis because the Fourier transform & is supported in (-4, §).

Dpoi (B, @) < CF)°®,

12.5 Archimedean places

In this subsection we handle the archimedean places v € So. Recall from
Lemma 10.2 that Il is tempered. In fact we shall only need here a bound
towards Ramanujan 0 < 6 < % as in Sect. 4.2.

Lemma 12.1 Forall u € C with Re u < 60, and all Schwartz function WV, the
following holds uniformly

T /1 o~ 1
/ T (E—M—i-ix) V(x)dx=W¥(0)log (5 - M)+0(||‘I’||1 +lx W) )

Proof We have the following Stirling approximation for the Digamma function
[traditionally denoted v (2)]:

%(z) =logz + O(1) (12.7)

uniformly in the angular region |argz| < m — €, see e.g. [51, Appendix B].
Since 6 < 1/2 all points % — @+ ix lie in the interior of the angular region
and we can apply (12.7). We note also that uniformly

1 1

and this conclude the proof of the proposition. O

Remark 12.2 Note that the complete asymptotic expansion actually involves
the Bernoulli numbers and is of the form

N

r’ 1 By, 1
F@=loget - = S+ O(ZZN—H). (12.8)
n=1

From (12.8) we have that

/ / /

I . NS 2
F(U+lt)+F(G —it) _2F o)+ O0{t/)o))
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holds uniformly for o and ¢ real with o > 0. As in [53, §4] this may be
used when the test function W is even (e.g. which is the typical case when
all representations I1 € § are self-dual). We don’t make this assumption and
therefore use (12.7) instead.

Corollary 12.3 Uniformly for all archimedean places v € S and all
Schwartz function W, the following holds

(B ) = Tg(,j) ZZ ( uz<Hv>)+0(u®n1>.

Here we have set log, z := %logz when v is real and log,, z := log z when v
is complex.

Proof Recall the convention (4.1) on local L-factors at archimedean places
V € Soo. From Fourier duality (12.3) and the definition (12.1) we have

<Z\k,v, |@k| Z/ L,( +ix, I )\Il(x)dx

MMedk

Note that

F_;( )= —%10g7r+%%(%), when v is real,
—log(2m) + FT(s), when v is complex.
Applying Lemma 12.1, the estimate in the corollary follows. Recall from
Proposition 4.1 that the bounds towards Ramanujan in Sect. 4.2 apply to all
IT € Fr. O

We may continue the analysis of the contribution of the archimedean places
to the one-level density. For v € S, the local L-function L(s, I[1,) are the
same for all IT € §. We therefore conclude that

®(0)

Z Dy (i, ) + Dy(Sk, @) = logC—(Sk)

VESx

d
X Z ZZlogU %

VESs i=1

— ni(Iy) |+ 0()

®(0)

= —_— log C (I1, o(1 . 12.9
o CGD EZ 0g C(I,) + 0(1) (12.9)
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In the last line we used the definition of the analytic conductor at archimedean
places from Sect. 4.2.

12.6 Moments of Satake parameters

Now let v € V¢° be a non-archimedean place. A straightforward computation
shows that

L -
7 (5. ) = —logg, > BV Mg,

v>1

where BV (I1,) := a;(IT,)" + - - - + ag(I1,)". Averaging over the family §
we let

1
B (Fr) = A Z BYI,), veV®, v>1.

IMeFx

The formula (12.1) becomes

~ _ 1%
Liw = —log, 3 A G0, 26 (5 logqu ). (12.10)

v>l

where § is Dirac distribution (see Sect. 12.1).
Similarly for all v € Sgen we let

—~ v
Lo,y = —logqy Zﬂéi})qu V/26(271 logqv), (12.11)
v>l

where the coefficients ,B( are defined locally as follows. Since v € Sgen, the
group G is unramified over F and that the restriction r|g Wr, is an unramified
Apl ur

L-morphism, i.e. it factors through G x Wur Recall from Sect 3 that w

is the restriction of the Plancherel measure uv to G(F,)"". Then

il (A (GRS ) § (12.12)

where we are using the convention in Sect. 2.3 for the L-morphism of unram-
ified Hecke algebras r*: H"(GLy4(Fy)) — H"(G(Fy,)) and the Satake iso-
morphism with the polynomial algebrain Yy, ..., ¥g (Sect. 2.4).

The supports of both measures Ly, and Ly , are contained in the discrete
gqu

set N>i. If g, is large enough this is disjoint from the support of ¥ and
thus all sums over places v € Vr considered below shall be finitely supported.
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12.7 General upper-bounds

Recall from Proposition 4.1 that the bounds towards Ramanujan apply to every
IT € Fx. Thus for every non-archimedean v € V$°, we have the upper bound
lo; (TTy)] < qf from which it follows that for every v > 1,

B G| < day”.
Proposition 12.4 (i) For all v € V¢° and all continuous function W,

~ o—1
(Ek,v» \Il) Lqy ° log gy [V o -

(ii) Forall v € Sge, and all continuous function ¥,

~ _1
<£pl,v» qj) L qv *logqy [W]lo -

Proof (i) Inserting the above upper bound into (12.10) we have

(ﬁku, V) < logg, Zq”(e 1/2)‘\11( logqv) .
v>1

Because 0 < 6 < %, the conclusion easily follows.

(i) The Plancherel measure ZZP""" has total mass one and is supported on the
tempered spectrum G (F,)Uremp (see Sect. 3.2). We deduce similarly
that for every v > 1,

B3| <d (12.13)
Indeed the image of any unramified L-parameterr o ¢ : W}éz — GL4(C)
is bounded and all Frobenius eigenvalues have therefore absolute value

one. O

12.8 Plancherel equidistribution

We are in position to apply the Plancherel equidistribution theorem for families
established in Sect. 9. We shall derive uniform asymptotics as k — oo for

B ).

Proposition 12.5 There exist constants C5 > 0 and A7, By < oo such that
the following holds uniformly on v > 1 and v € Sgy,

Y0 = (1+ 0B, + 0 (¢i P cEo™").  (214)
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Proof Let Sy be a sufficiently large set of non-archimedean places which con-
tains all places v € V3° where G is ramified and where r is ramified. Let
S1 := {v}. We set

Dy =Y + - 4 Y)) € HY(G(F)).

The notation for the Satake isomorphism is as in Sects. 2.2 and 2.5. By def-

inition we have that ﬂgﬁ )v = ﬁﬁl@v). Thanks to Lemma 2.6 we have that

v € H(G(F,))SPY and |¢,| < 1. Thus we are in position to apply the
respective Theorems 9.16 (in the level aspect) and 9.19 (in the weight aspect).
Using the notation of Sect. 9.2, we have by construction

1 ~
BY (Fr) = 7 > ar (m)®y(m)

lj: weFy
~ t/(G)dimé&, __ ~
= ﬁc]g)ur;t(q%) = S M]—'k,v(q)v)-
“ uen (U ) | il
7/(G) dim &

The Corollary 9.25 shows that

oo =1+4o0(l)ask — oco. We
U ™) [ Fil
shall now distinguish between the two types of families.

For families in the level aspect, the assumption (ii) in Theorem 9.16 is
satisfied because v { ng for all k and all v € Sgen. If the assumption (i) in
Theorem 9.16 is not satisfied, then

K

1 B
CEN < Ny) < cequ

where the first inequality comes from Hypothesis 11.4. Thus the error term
in (12.14) dominates if A7 is chosen large enough. If the assumption (i) in
Theorem 9.16 is satisfied, then from (9.8) we obtain the main term in (12.14)
and the error term O(qf VBN () ~C). By Hypothesis 11.4 we may then
choose then Cs := C}y/C4 to conclude the proof of (12.14).

For families in the weight aspect the assumptions in Theorem 9.19 are
always satisfied. This yields the main term in (12.14) with the error term
O(Q?IWHFBW‘Km(Sk)_CWt). By the estimate (11.7) we may choose Cs5 :=
Cywi/ C> to conclude the proof of (12.14). O

12.9 Main term

We deduce from Proposition 12.5 the following estimate for Ek,v.
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Proposition 12.6 Forall A > 0 there is Ag > 0 such that the following holds
uniformly for all v € Sge, and all continuous function W:

(L, W) = (Lpt,0, ¥)(1+0(1)+0 @2 CF) ™ N1 o) +0(@y 4 1% ]o0),

Proof Let k be a large enough integer. We apply the bounds towards Ramanu-
jan in the form (12/.\7) to those term in (12.10) with v > «. The contribution
of those terms to (L., W) is uniformly bounded by

K©O—1)

<L qv ¥loo -

We have that A := K(% — 6) may be chosen as large as we want since 8 < %
is fixed and « 1is arbitrary large.

For those terms in (12.10) with v < « we apply (12.14). Their contribution
to (Ek,v, \Il> is equal to

—logqy > Ayhar W (5= 1ogau) + 0 ()P Wl CEO ).
1<v<k

The next step is now to complete the v-sum. Applying (12.7) we see that
the terms v > k yield another remainder term of the form ¢, A W], with A
arbitrary large (again depending on «). O

12.10 Handling remainder terms

In this subsection we handle the various remainder terms and show that they
don’t contribute to D(§x, ®) in the limit when & — oco. We shall apply the
above estimates to the function

v = —, R. 12.15
ok (log C@k)) v e (121

Recall from (12.6) that D, (Fx, ) = (Ek’v, W) /log C(Sk)-

For archimedean places v € S, we encountered in Sect. 12.5 the remainder
term 0(||@ [l1). Because log C($r) — oo, this remainder term is negligible
for Dy, (S, ®) as k — oc.

For the non-archimedean places v such that v | ngy or v € Sy we use the
general bounds of Sect. 12.7 that imply

~ o—1
> [T« X @ T logan Wl < 1 # {0 | i)
veSy, and v|ng veSy, and v|ng

(12.16)
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In the last inequality we used the fact that Sy is fixed and that 6 < % Again
the multiplication by 1/log C(J) shows that these terms are negligible for
DSk, ®) as k — oo. Indeed it is easy to verify that

#{v | n} = o0(ogN(ng)), ask — oo, (12.17)

and we conclude using Hypothesis 11.4 that this is o(log C (§k))-
We partition the set of generic non-archimedean places Sge into two disjoint
sets Smain and Scut where

Seut == {v € Sgen: qv > CE0)} . (12.18)

Since the support of ® is included in (=46, 6) we know that W(vloggq,/2m)
vanishes for all v € S¢ye and v > 1.

For the generic places v € Spyain We use the estimate in Proposition 12.6.
The second remainder term yields

1 4 1
—_— V=0 —F71- 12.19
l%a&>;:%”'% ﬁ%aao (1219

V€ Smain

This is again negligible as k — oo. The first remainder term in Proposition 12.6
is negligible as well because

D gl Wl CE™S < CG)AsHD =6 (12.20)

VE Smain

and 4 is chosen small small enough such thzﬁ 8(Ag+ 1) < Cs.
Finally we show that the contribution to (Lp; », W)/ log C(§x) of the higher
moments v > 3 is negligible. Because of the definition (12.11) of L , and the

bound (12.13) for /3151),)1;’ the contribution of the higher moments is uniformly
bounded by

v vlogg 3/
E log gy E q," W(—Zn ”) < V¥l E g, logqy < 1.
VE Stmain V>3 UEV%O

(12.21)
Therefore we can write the main contribution to D($, ®) as

1 Z (Ephv» ‘I’) =MD+ M+ 0 (;)

log CE0) , 4~ log C(§1)

@ Springer



Sato—Tate theorem for families 141

where for v = 1, 2 we define

logg, _ ~ ( vlogg,
M(v) = — _—odv  —v/250) ol —— ). 12.22
2 jogcgo® B (ogeio (12.22)

VESmain

[recall the relation (12.15) between & and V]

12.11 Sum over primes

It remains to estimate the above terms (12.22) which consist of sums over
the places v € Spain. We shall use the prime number theorem and the Ceb-
otarev equidistribution theorem which we now proceed to recall, following
e.g. [79, Chap. 7]. Let E/F be a finite Galois extension with Galois group
I' = Gal(E/F). For all conjugacy class 8 € %' (I"), recall that Vr () consists
of those unramified places v € V¢ such that Fr, € 6.

Proposition 12.7 (Prime number theorem) Notation being as above,

#{UEV%O, qvéx}fv

1 , asx — oQ0.
ogx

(Cebotarev equidistribution theorem) For any 6 € € ('),

#{v e Vr0), qv < x} ~ X —,
logx ||

As a corollary we deduce the following estimate for any 6 € ¢ (I")

loggy 1= ( log gy ) (|0| )
2 igcan® ®\iogean) = Ur tom

veVr(0)

[e.e]
x/ d(y)dy, ask — oo. (12.23)
0

This estimate will be used below to evaluate M®.

Note that if we replace log g, by —logg,, the same estimate holds with
the integral on the right-hand side ranging from —oo to 0. We shall use this
observation below when adding the contribution of D_v(§ r» ®) which will then
produce produce the integral ffooo 5(y)d y = ®(0).
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12.12 Computing the moments M1 and M®

Recall that by assumption
r: G xGal(F/F) =G — GL4(C)

is irreducible and does not factor through Gal(F/F).
Lemma 12.8 The restriction r|g does not contain the trivial representation.

Proof If there were a non-zero vector in C4 invariant by r(G) then all its
translates by Gal(F / F)) would still be invariant because G isanormal subgroup

of L'G. Because r is irreducible these translates generate C? and thus the
restriction 7|5 would be trivial 12 which yields a contradiction. For an extension
of this argument see e.g. [93, Prop. 24, § 1.8.1]. O
Since v € Smain, the group G is unramified over F, and the restrictionr |z, Wr,

is an unramified L-morphism which factors through G x W}i Note that this
restriction might reducible in general.

Let A is a maximal F),-split torus and Qr, the F,-rational Weyl group for
(G(Fy), A). Recall from Sect. 2 the Satake isomorphism

S: HY(G) = H™(A)%.

For the group GL, the right hand-side is identified with C[Y, ... Y],
We recall the morphism of unramified Hecke algebras r*: H"(GL;) —
HY(G(Fy,)) and the test functions:

o) =Yy + -+ Y)) € HU(G(F)).
In view of (12.12) we have
B = (B17) = (1),
Proposition 12.9 The following estimate holds uniformly for all v € S;4in
By =0 (a,").
Proof We decompose the restriction of r to G x Wl‘ér into a direct sum of

irreducible &®;r;. By Lemma 12.8 each r; |5 does not contain the trivial repre-
sentation. In particular each r; does not factor through Wu]r)

12 1n the sense that rlg would be a direct sum of trivial representations. In the sequel we use
this slight abuse of notation when saying that a representation is “trivial”.
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We can now apply Lemma 2.9 which shows that

#V(1)] < ;! |2k, | max pGi w0,
wEQFU

Here A; is as defined in Sect. 2.2. The two terms ‘Q F,| and p(A; *,, 0) are
easily seen to be bounded (uniformly with respect to v € Smain)- |

As a consequence of Proposition 12.9 we deduce that

MDY =0 (;) (12.24)
log C (k)

because the summand over v in (12.22) is dominated by ¢, 32,

For the second moment M® we shall need a more refined estimate. Recall
the finite extension F/ F from Sect. 5. We also choose a finite extension F»/ F
such that r factors through G x Gal(F,/F).LetI'y := Gal(F,/F) and denote
by % (I'2) the set of conjugacy classes in I';.

Proposition 12.10 (i) Forall® € € (I',) there is an algebraic integer s(r, 6)
such that uniformly for all v € Spain,

B, = s(r [Fr,]) + 0 (¢;7). (12.25)

Here [Fr,] € € (I,) is the conjugacy class of Fry, in I';.
(ii) The following identity holds

6
sy = > %s(r, 6)

0e% ()
where s(r) € {—1,0, 1} is the Frobenius-Schur indicator of r.

Proof (i) We proceed in way similar to the proof of Proposition 12.9 above.
We shall give an explicit formula (12.26) for s(r, 6).

We decompose Sym? r = 69,01* (resp. /\2 r = @p; ) into a direct sum of
irreducible representation of G Gal(E/F). Then we can decompose for each
i the restriction ,ol.+| Guwyr = D, ,0;; as a direct sum of irreducible representa-

tions of G x Wl‘éf) . Similarly we let p;~ |G><1W}; =®;p;;-
Let CID;; = (pf)*(le + -+ Yi) and similarly for ¢l; Then it is easily

J
verified that
~ Nt ~
P =L -> .
ij ij
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We now distinguish two cases. In the first case, i is such that ,ol.+ does not
factor through Gal(E/F). Then by Lemma 12.8 the restriction ,017L |g does
not contain the trivial representation. Thus for all j, pi“;. | does not contain
the trivial representation. In particular ,o;;. does not factor through WIE‘{ By

+ —1 : +
Lemma 2.9 we deduce that ¢, y (I) = O(g, ") These representations p;” only
contribute to the error term in (12.25).

In the second case, i is such that ,ol.+ does factor through Gal(E/F). Then
for all j, ,017;. factors through W' (in particular it is 1-dimensional). We have
that 5;;(1) = ,o; (Fry). By linearity we deduce that Zi d)jjf(l) =tr ,ol.+ (Fry).
This is an algebraic integer which depends only on the conjugacy class of Fr,
in .

We proceed in the same way for qb; We deduce that (12.25) holds with
0 = [Fry]and s(r,0) = sT(r,0) — s~ (r, 0), where

sT(r, 0) = > tr p;" () (12.26)

pi+ factors
through Gal(E/F)

and similarly for the definition of s~ (, 6). This concludes the proof of assertion
).

(ii) By orthogonality of characters we have for each i such that ,ol.+ factors
through Gal(E/F),

6] 1, ifprf=1
> @ =wph =g
9699”(F2) 2 , otherwise.
We deduce that ]
ST st 0) = (1, sym? ),
96‘6(F2)| 2l

the multiplicity of the trivial representation 1 in Sym? r [as a representation
of G x Gal(E/F)]. The same identity holds for s~ (r, ) and /\2 r. From the
definition of the Frobenius—Schur indicator s(r) in Sect. 6.8 we conclude the
proof of the proposition. O

As a corollary we have the following estimate for the second moment:

loggy 1~
@ _ v -1
MP =— 3" s D> e CGo ™ d

0e? (I') VESmainNVFE(0)
1 1
y (ﬂ) L0 (_) -
log C(§x) log C(Sk)
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We can extend the sum to v € Sgen N VE () because

Z log g, qil loglog C(3%) — o(1)
—q, —= - =

VeV S log C(S) log C(Sk)

uniformly as k& — oo. Applying the Cebotarev equidistribution theorem we

deduce that

@ _ _ 101 l/ooA
M?=— > s(r,@)(|F2|+o(l))2 |0y

0e? (")

s(r) =
= (_T +0(1))/0 D(y)dy. (12.27)

The last line follows from Proposition 12.10 (ii) above.

12.13 Conclusion

We now gather all the estimates and conclude the proof of Theorem 11.5.
The explicit formula (12.5) expresses D (T, P) as the sum of four terms. The
term Dpo1(Sk, @) goes to zero as k — o0 as consequence of Hypothesis 11.2,
see Sect. 12.4.

The archimedean terms are evaluated in (12.9). In addition with the second
term in (12.5) which involves log g (IT), these contribute

®(0) log C(IT)
1Skl Z log C (k)

+ o(1).
MeFk

This is equal to 6(0) + o(1) (using the Hypothesis 11.4 for families in the
level aspect).

We now turn to the non-archimedean contribution. The places v € Sg and
v | ng are negligible thanks to (12.16) and (12.17), respectively.

It remains the non-archimedean places v € Sgen =/\Smain U Scut- The contri-
bution from v € S¢y is zero because the support of & is included in (-6, §),
see (12.18).

Foreach v € Smain we apply Proposition 12.6. The sum over v € Spain of the
remainder terms is shown to be negligible in (12.19) and (12.20). For the main
term the estimate (12.21) shows that the contribution of the higher moments
is negligible. It remains the two terms M) and M as defined in (12.22).

The asymptotic of M) and M@ are given in (12.24) and (12.27) respec-
tively. There is a similar contribution from the conjugate D, (Fx, ®). Overall
this yields
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- s(r) oo
D Do @)+ Dy(Fr @) = —— |90y
VESmain
0
_s0 d(y)dy + o(1) = —%cp(m +o(1).

—00
We can now conclude that

) ~ s(r)
kli)rgo D(Fy, ®) = ®(0) — Td>(0).

This is the statement of Theorem 11.5. O
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Appendix A: By Robert Kottwitz

Let F be a finite extension of @, and G a connected reductive group over F'.
For each semisimple y € G(F), define a positive real number

D(y) = |det(1 — Ad(¥)ILic G /Lie 69)

=11 n—etmh. azn
acd

a(y)#1
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[In particular if ¥ belongs to the center of G(F) then DY (y) = 1.] We equip
G(F), as well as I,,(F) (the connected centralizer of y) for each semisimple
y € G(F), with the Haar measures as in [47, §4]. The quotient measure on
I, (F)\G(F) is used to define the orbital integral O,, (f).

Theorem 13.1 For each f € CX°(G(F)), there exists a constant c(f) > 0
such that for all semisimple y € G(F),

10, ()] < c(f)-DE(y)~V/2

Proof There are only finitely many G (F)-conjugacy classes of maximal F-
tori in G, so in proving the theorem we can fix a maximal F-torus 7" in G and
restrict attention to elements y lying in 7 (F). Then we must show that the
function y — DG (y) 172 O, (f) is bounded on 7' (F'). Harish-Chandra proved
that the restriction of this function to the set of regular elements in 7 (F) is
bounded, so we just need to check that his methods can be used to treat singular
y as well.

Since the function y > D¢ (y)!/? 0, (f) is compactly supported on T'(F),
itis enough to show that it is also locally bounded. Harish-Chandra’s method of
semisimple descent reduces us to proving local boundedness in a neighborhood
of 1 € T(F), and then the exponential map reduces us to the analogous
problem on the Lie algebra g of G. The remainder of this appendix handles g,
the main result being Theorem 13.11. O

A.1 Notation pertaining to the Lie algebra version of the problem

We write t for the Lie algebra of 7. We write R for the (absolute) root system
of T in G. We often write G for the group of F-points of G, etc. We will
follow closely the exposition of Harish-Chandra’s work given in [66]. Most
of the proofs are just the same as the ones there and will therefore be omitted.
(Instead of a proof, the reader will find the words “same as usual.””) However,
a couple of additional ingredients will be needed; these are simple adaptations
of ideas in Sparling’s article [100].

A.2 Orbital integrals Oy for X € t

Let X e t. The centralizer of X in G is a connected reductive F-subgroup of
G that we will denote by M. (The reason for using the letter M is that this
subgroup is a twisted Levi subgroup of G, i.e. an F-subgroup that becomes a
Levi subgroup after extending scalars to an algebraic closure of F'; however
this fact is not actually needed below.) The set M of subgroups obtained in
this way (as X varies in t) is finite.
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The following notation will be useful. Let M € M. We write Ry, for the
(absolute) root system of M (a subset of R). We write 3,7 for the Lie algebra
of the center of M; we then have

sm={Xet:a(X)=0 VYo € Ry}
For X € t we have Mx = M if and only if
{d e R: a(X) =0} = Ry
or, in other words, if and only if X lies in the open subset
iy ={X €3m:a(X) #0 Ya € R\Ry}

of 3. Obviously t is the disjoint union of the locally closed subsets 3),. For
example we have 3;; = 3G, while 3, is the set of regular elements in t.

We fix a Haar measure dg on G. In addition, for each M € M we fix a Haar
measure dm on M. For instance one can use the canonical measures defined
by Gross. In any case, for X € 3}, we define the orbital integral Ox by

Ox(f) 1=/ f(g~'Xg)dg/dm. (13.2)
M\G

Thus we now have a coherent definition of orbital integrals for all X € t.
A.3 Preliminary definition of Shalika germs on g

There are finitely many nilpotent G-orbits O1, Oa, ..., O, in g. We write
U1, - .., 1y for the corresponding nilpotent orbital integrals. The distributions
U1, ..., 1y are linearly independent.

Theorem 13.2 There exist functions 'y, I'a, ..., 'y on t having the following
property. For every f € C2°(g) there exists an open neighborhood Uy of 0 in
t such that

Ox(f) =D wi(f) - Ti(X) (13.3)

i=1
forall X € Uy. The germs about O € t of the functions I'y, ..., I'; are unique.
We refer to T'; as the provisional Shalika germ for the nilpotent orbit O;.

Proof Same as usual. O

A Shalika germ is an equivalence class of functions on t. As we will see
next, the homogeneity of Shalika germs makes it possible to single out one
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particularly nice function I'; within its equivalence class. Once we have done
this, I'; will from then on denote this function (whose germ about 0 is the
old F,‘).
A.4 Behavior under scaling
For B € F* and f € CZ°(g) we write fg for the function on g defined by

f(X) == f(BX). (13.4)
Harish-Chandra proved that

— |y—dimO
rno(fe2) = || ro(f) (13.5)

for every nilpotent orbit O and « € F*. Moreover it is clear from (13.2) that

Ox(fp) = Opx(f) (13.6)

forall X e tandall 8 € F*.

A.5 Partial homogeneity of our provisional Shalika germs I';
Leta € F*. Let O; be one of our nilpotent orbits, let 1; be the corresponding
nilpotent orbital integral, and let I'; be the corresponding Shalika germ. Put
d; := dim O;. We claim that

Fi(X) = || Ti (@?X), (13.7)
where the equality means equality of germs about O of functions on t.

Indeed, as in the proof of the Shalika germ expansion on G, pick a function
fi € C(g) such that

wi(fi) = 6ij. (13.8)
Then I'; (X) is the germ about O of the function
X — Ox(fi) (13.9)

on t. In fact during the remainder of our discussion of provisional germs, we
will use always use (13.9) as our choice for a specific function I'; having the
right germ.
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In view of the homogeneity of nilpotent orbital integrals established above,
o | - (fi)42 can also serve as f;, so that I'; (X) is also the germ about 0 of the
function

X > Ox (lal - (fi)g2) = Il - Opax (f) (13.10)

on t. Comparing (13.9), (13.10), we see that the germs of I';(X) and
|oz|di [ (a?X) are equal, as desired.

A.6 Canonical Shalika germs

Let I'; be one of our germs. We are going to replace I'; by another function
"% on t that has the same germ about 0 and is at the same time homogeneous.

Lemma 13.3 There is a unique function on t which has the same germ
about 0 as T'; and which satisfies (13.7) foralla € F* andall X € t. Moreover
I‘;‘ew is real-valued, translation invariant under the center of g, and invariant
under conjugation by elements in the normalizer of T.

new
Fi

Proof Same as usual. O

From now on we replace the germs I'; by the functions I'}*Y, but we drop
the superscript “new.”

We also need a slight strengthening of the fact that I'; is translation invariant
under the center 3 of g. Let G’ be the derived group of the algebraic group G.
Then G(F) = G'(F)Z(F), but for F-points we have only that G’ Z is anormal
subgroup of finite index in G. We denote by D the finite group G/G’Z. Each
G-orbit Oin g = g’ @3 decomposes as a finite union of G’-orbits O, permuted
transitively by D. We normalize the invariant measures on the orbits in such a

way that
/ = Z/ . (13.11)
(@] xeD x~1O'x

For a nilpotent G-orbit O (respectively, nilpotent G’-orbit O’) we denote by Fg
(respectively, Fg:) the corresponding Shalika germ on t (respectively, g’ N t).

Lemma 13.4 Ler X € t and decompose X as X' + Z with X' € g’ Nt and
Z € 3. Then

rgx)= > rgx). (13.12)
o'co

Proof Same as usual, but note that there is a typo in the proof of the corre-
sponding result in [66]: the functions f, f’ occurring in formula (17.8.9) of
that article should have a subscript O.
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A.7 Germ expansions about arbitrary central elements in g

We have been studying germ expansions about 0 € t. These involve orbital
integrals for the nilpotent orbits ;. Now we consider germ expansions about
an arbitrary element Z in the center of g. These will involve orbital integrals
nz+o; for the orbits Z 4 O;, but will involve exactly the same germs I'; as
before.

Theorem 13.5 Let Z be an element in the center of g. For every f € C2°(g)
there exists an open neighborhood U y of Z in t such that

Ox(f) =D nzvo,(f) - Ti(X) (13.13)

i=1
forall X € Uy.

Proof Same as usual. O
A.8 Germ expansions about arbitrary semisimple elements in g

We are going to use Harish-Chandra’s theory of semisimple descent in order
to obtain germ expansions about an arbitrary element S € t. We fix such an
element S and let H := G g denote the centralizer of S, a connected reductive
subgroup of G.

LetYy, ..., Y, beaset of representatives for the nilpotent H-orbits in . Let
1s+y; denote the orbital integral on g obtained by integration over the G-orbit
of S+Y;.Now T is alsoamaximal torusin H,soforeach 1 < i < s we cancon-
sider the canonical Shalika germ I" lH for H, t and the nilpotent H-orbit of ;.

Theorem 13.6 Let S, H be as above. For every f € CZ2°(g) there exists an
open neighborhood U ¢ of S in t such that

Ox(f) =D sy, (f) - THX) (13.14)

i=1
forall X € Uy.

Proof Same as usual.
A.9 Normalized orbital integrals and Shalika germs
For X e t we put

DY(X) = det(ad(X); g/my)
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(my being the Lie algebra of the centralizer Mx of X in G) and define the
normalized orbital integral /x by

Ix = |D9(X)|"?0x.

When we use Iy instead of Oy, we need to use the normalized Shalika germs
[ (X) := |DY(X)|"/2T;(X) instead of the usual Shalika germs.

Clearly Theorem 13.2 remains valid when Oy, 'y are replaced by Iy, I;
respectively. Now consider the germ expansion about an arbitrary element
S € t. Asusual put H := Gg. There exists a neighborhood of S in t on which

DY (X)|'/? = |DH (X)|"/?| det(ad(S); g/h)|"/>.

It then follows from Theorem 13.6 that

Ix(f) = |det(@d(S); g/0)|'"* D sy, (f) - T (X) (13.15)

i=1

for all X in some sufficiently small neighborhood of S in t.
The homogeneity property (13.7) of the Shalika germs I'; implies the fol-
lowing homogeneity property for the normalized Shalika germs I';:

[ (@?X) = |o|m©@x)—dim(Mx) 1. () (13.16)

for all @ € F* and all X € t. Here we have chosen X; € O; and introduced
its centralizer G ;.

The next proposition will be needed when we use (13.16) in the proof of
boundedness of normalized Shalika germs. It is a simple adaptation of ideas
from Sparling’s article [ 100]. To formulate the proposition we need a definition.
Consider the action morphism G x g — g (given by (g, X) — gXg~1); we
are now thinking of G and g as algebraic varieties over F. For M € M we
consider the image VAO,, C g of G x 3, under this morphism. Obviously VAO4
is an irreducible G-invariant subset of the variety g, so its Zariski closure Vy,
is a G-invariant irreducible subvariety of g. We say that a nilpotent orbit O is
relevant to M if O is contained in V).

Proposition 13.7 Let M € M and let O be a nilpotent orbit in g. Then the
following two statements hold.

(1) If O is relevant to M, then for Y € O we have dim Gy > dim M, where
Gy denotes the centralizer of Y in G.

(i) If O is not relevant to M, then the normalized Shalika germ T o vanishes
identically on 3.
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Proof (1) Over Vj; we have the group scheme whose fiber at X € V), is the
centralizer of X in G. At points in 3, this centralizer is M and at points
of VAO,I it is some conjugate of M. Since VAO4 is dense in Vs, we conclude
from SGA 3, Tome I, Exp. VI, Prop. 4.1 that dimGx > dim M for
all X € Vj,. In particular this inequality holds when we take X to be
YeOcCVy.

(2) Let f € C2°g and suppose that o (f) = 0 for all nilpotent orbits O rel-
evant to M. Then, as in the proof of the existence of Shalika germs, there
exists an open neighborhood Uy of 0 in t such that Ox(f) = 0 for all
X € UgNVy . Inparticular Ox (f) = Oforall X € UrNj),. Applying this
observation to the functions f; used to produce our provisional Shalika
germs, we conclude that if O; is not relevant to M, then there is a neigh-
borhood U of 0 in t such that the provisional Shalika germ I"; vanishes
on U; N 3),. Looking back at how the true (homogeneous) Shalika germs
were obtained from the provisional ones, we see that the true Shalika germ
I'; vanishes identically on 3, when O; is not relevant to M. O

A.10 T; is a linear combination of functions T 51 in a neighborhood of §

Againlet S € tandlet H beits centralizer in G. Consider one of the normalized
Shalika germs I'; for G. We are interested in the behavior of I'; in a small
neighborhood of S in t.

Lemma 13.8 There exists a neighborhood V of S in t such that the restriction

of T; to V is a linear combination of restrictions of normalized Shalika germs
for H.

Proof Same as usual. O

Corollary 13.9 Let M € M. Each normalized Shalika germ T; is locally
constant on 3y,.

Proof Same as usual. O

A.11 Locally bounded functions

We are going to show that the normalized Shalika germs T'; are locally bounded
functions on t. First let’s recall what this means. Let f be a complex-valued
function on a topological space X. We say that f is locally bounded on X
if every point x € X has a neighborhood U, such that f is bounded on U,.
When X is a locally compact Hausdorff space, f is locally bounded if and
only f is bounded on every compact subset of X.
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A.12 Local boundedness of normalized Shalika germs

Let f:i be one of our normalized Shalika germs on t. We are going to show
that I'; is locally bounded as a function on t, slightly generalizing a result of
Harish-Chandra.

Theorem 13.10 Every normalized Shalika germ T; is locally bounded on t.
Proof Same as usual once one takes into account Proposition 13.7. O

As a consequence of the local boundedness of normalized Shalika germs, we
obtain a slight generalization of another result of Harish-Chandra.

Theorem 13.11 Let f € C2°(g). Then the function X +— Ix(f) on tis
bounded and compactly supported on t. Moreover, for each M € M this
function is locally constant on 3.

Proof Same as usual. O
Appendix B: By Raf Cluckers, Julia Gordon and Immanuel Halupczok

In this appendix we use the theory of motivic integration to control bounds
for orbital integrals, normalized by the discriminant, as the place varies. In
Appendix A, the bound for orbital integrals is proved for a fixed local field;
here we show that this bound cannot exceed a power of the cardinality of the
residue field, using the tools from model theory. We emphasize that the main
result of Appendix A, namely, the fact that the orbital integrals are bounded,
is used in our proof. More specifically, we prove Theorems 14.1, and 14.2
which are stronger versions of, respectively, Theorem 7.3 and Proposition
7.1 with eg = 1. We also prove the analogous statement for the function
fields; moreover, we prove that the optimal exponents can, in some sense,
be transferred between the function field and number field cases, see Theo-
rem 14.7. We expect that the same methods could apply to weighted orbital
integrals, provided that one had a statement similar to the Theorem 13.1 of
Appendix A.

Let F be a number field with the ring of integers O. Let G be a connected
reductive algebraic group defined over F, and g its Lie algebra. Let F = F,, be
a completion of F. We denote the ring of integers of F' by OF, the residue field
by kr, and let gr = #kF be the cardinality of kr. For a semisimple element
y € G(F) and a test function f € C°(G(F)), the orbital integral at y is
denoted by O,, (f). As in Appendix A,

péyy= [] 1n—=a@h.
aed

a(y)#1

where @ is the root system of G.
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We keep the set-up of Sects. 7.1 and 7.2; in particular, we first treat the case
of a reductive group with a given root datum defined over a local field, and
then derive the global statement from it. Thus, we start with a reductive group
G defined over a local field F', and we assume that G is unramified. In order to
get to this setting from the global set-up, we just have to assume that G = G,
where the place v is finite, and lies outside the set Ram(G).

Given an unramified reductive group G over a local field F as above, we
recall the definition of the functions rf from Sect. 2.2. We have a Borel
subgroup B = TU, and let A be the maximal F-split torus in 7. As in Sect.
2.2, choose a smooth reductive model G for G corresponding to a hyperspecial
point in the apartment of A, and let K = G(OpF) be a maximal compact
subgroup. For A € X, (A), rAG is the characteristic function of the double coset
Ki(m)K.

We prove

Theorem 14.1 Let G be a connected reductive algebraic group over ¥, with
T and A, as in Sect. 7.2. There exist constants ag and bg that depend only on
the global model of G such that for all . € X,(Ay) with | 1| < «, for all but
finitely many places v

0, (5)| < giete DOy~

for all semisimple elements y € G(F,), where q, is the cardinality of the
residue field of F,,.

In fact, we prove a stronger and more general statement, which does not
require F' to have characteristic zero. By an unramified root datum we mean a
root datum of an unramified reductive group over alocal field F,i.e. aquintuple
£ = (X*, &, X, DV, 0), where 0 is the action of the Frobenius element of
F'/F on the first four components of &.

Theorem 14.2 Consider an unramified root datum &. Then there exist con-
stants M > 0, agz and bg that depend only on &, such that for each non-
Archimedean local field F with residue characteristic at least M, the following
holds. Let G be a connected reductive algebraic group over F with the root
datum&. Let A be a maximal F-split torus in G, and let rf be as above. Then
forall & € X4 (A) with |1|| < «k,

0, (z0)] < gp P DO ()71

for all semisimple elements y € G(F).

The strategy of the proof is to use the theory of motivic integration devel-
oped by Cluckers and Loeser [29]. In [29], a class of functions called con-
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structible motivic functions is defined. Here, in order to simplify the lan-
guage, we are working directly with the specializations of constructible motivic
functions, which we define below, and we call these ‘“constructible func-
tions”. These functions are defined by means of formulas in a first-order
language of logic, called Denef-Pas language, which we review below. The
key benefit of using logic is that the formulas defining the functions are
independent of the field of definition, hence this set-up is perfectly suited
for proving a result that applies uniformly across almost all completions of
a given number field. This method can be thought of as an extension of
a geometric approach—*“definable” is a less restrictive notion than ‘“geo-
metric”, yet it provides a field-independent way of talking about orbital
integrals.

The key to our proof is a general result which, roughly speaking, states that
if a constructible function is bounded (which is known in our case thanks to
Appendix A), then its upper bound cannot exceed a fixed power of the cardi-
nality of the residue field (Theorem 14.6 below). In order to apply this result
to orbital integrals, we need to show that they are, in some sense, constructible
functions. More precisely, one would like to show that given a constructible
test function f € CZ°(G(F)), the function y +— O, (f) is a constructible
function of y, on the set of all semisimple elements. For regular semisim-
ple elements, the Lie algebra version of this statement is essentially proved
by Cluckers et al. [27]. For general elements X, the Lie algebra version of
this statement with a particular normalization of the measure on the orbit is
proved in [26]; however, the normalization of the measures used in [26] is not
the same as the canonical normalization used in Appendix A above. For non-
regular semisimple elements, we show here that the canonical measure differs
from a motivic measure by a constant that can be bounded by a fixed power of
the cardinality of the residue field, and consequently, obtain that given f, there
exists a constructible function Hy and a constant ¢ that depends only on the
root datum of the group, such that |H¢(y)| < |0, (f)| < ¢°|Hy(y)|. Taking
f to be the characteristic function of the maximal compact subgroup K in this
argument, we obtain the special case of Theorem 14.2 with ¥ = 0. The full
statement of Theorem 14.2 is obtained by a similar argument that allows the
test functions to vary in definable families.

Much of the preliminary and introductory material is quoted freely from
[25-28,43], sometimes without mentioning these ubiquitous citations.

B.1 Denef-Pas language
The Denef-Pas language is a first order language of logic designed for working

with valued fields. We start by defining two sublanguages of the language of
Denef-Pas: the language of rings and Presburger language.
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B.1.1 The language of rings

A formula in the first-order language of rings is any syntactically correct for-
mula built out of the following symbols:

— constants ‘0°, ‘17;

— binary functions ‘x’, ‘+’;

— countably many symbols for variables x1, ..., x;, ... running over a ring;

— the following logical symbols: equality ‘=", parentheses ‘(’, ), the quan-
tifiers ‘3°, V’, and the logical operations conjunction ‘A’, negation ‘—’,
disjunction ‘V’.

If a formula in the language of rings has n free (i.e. unquantified) variables
then it defines a subset of R” for any ring R. Note that quantifier-free formulas
in the language of rings define constructible sets (in the sense of algebraic
geometry).

B.1.2 Presburger language

A formula in Presburger’s language is built out of variables running over Z,
the logical symbols (as above) and symbols ‘+’, ‘<’, ‘0°, ‘1°, and for each
d=2,3,4,...,asymbol ‘=, to denote the binary relation x = y (mod d).
Note the absence of the symbol for multiplication.

Since multiplication is not allowed, sets defined by formulas in the Pres-
burger language are in fact very basic, cf. [23] or [81]. For example, {(a, b) €
7?2 |a=1 mod 4; a < b+10}is aPresburger subset of 72. Since quantifiers
are never needed to describe Presburger sets, they all are of a similar, simple
form.

B.1.3 Denef-Pas language

The formulas in Denef-Pas language have variables of three sorts: the valued
field sort, the residue field sort, and the value group sort (in our setting, the
value group is always assumed to be Z, so we will call this sort the Z-sort).
Here is the list of symbols used to denote operations and binary relations in
this language:

— In the valued field sort: the language of rings.

— In the residue field sort: the language of rings.

— In the Z-sort: the Presburger language.

— a symbol ord(-) for the valuation map from the nonzero elements of the
valued field sort to the Z-sort, and ac(-) for the so-called angular component,
which is a function from the valued field sort to the residue field sort (more
about this function below).
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On top of the symbols for the constants that are already present (like O
and 1), we will add to the Denef-Pas language all elements of O[[7]] as extra
symbols for constants in the valued field sort. We denote this language by L.

Given a discretely valued field F that is an algebra over O, together with a
choice of a ring homomorphism ¢ : @ — F and a choice of a uniformizer @
of the valuation, one can interpret the formulas in Lo by letting the variables
range, respectively, over F, the residue field kr of F', and Z (which is the value
group of F). The function symbols ord and ac are interpreted as follows. For
x € F*, ord(x) denotes the valuation of x. If x is a unit (that is, ord(x) = 0),
then ac(x) is the residue of x modulo @ (thus, an element of the residue field).
For a general x # 0 define ac(x) as ac(zw ~°"4™x); thus, ac(x) is the first non-
zero coefficient of the w-adic expansion of x. Finally we define ac(0) = 0.
The elements from O are interpreted as elements of F' by using ¢, the constant
symbol ¢ is interpreted as the uniformizer @, and thus, by the completeness
of F, elements of O[[¢]] can be naturally interpreted in F as well.

Definition 14.3 Let Cp be the collection of all triples (F, ¢, @), where F is
a non-Archimedean local field which allows at least one ring homomorphism
from O to F, the map ¢ : O — F is such a ring homomorphism, and @ is a
uniformizer for F. Let Ao be the collection of those triples (F, ¢, @) in Cp in
which F has characteristic zero, and let By be the collection of those triples
(F,t, w) where F has positive characteristic.

Given an integer M, let Co, y be the collection of (F, ¢, @) in Co such that
the residue field of F' has characteristic larger than M, and similarly for Ao _y
and Bo’ M-

Since our results and proofs are independent of the choices of the map ¢ and
the uniformizer @, we will often just write F' € Cp, instead of naming the
whole triple. For any F' € Cp, write OF for the valuation ring of F, kr for its
residue field, and g for the cardinality of k.

In summary, an Lp-formula ¢ with n free valued-field variables, m free
residue-field variables, and r free Z-variables defines naturally, for each F' €
Co, asubset of F" x kg x Z" by taking the set of all tuples where ¢ is “true”
(in the natural sense of first order logic, see e.g. [73]).

B.2 Definable sets and constructible functions

As mentioned in the introduction, to study dependence on p of various bounds
we will need to have a field-independent notion of subsets of F" x klz x Z"
for I € C». To achieve this, we call a collection (Xz)p of subsets Xrp C
F" x k7 x Z", where F runs over Co, which come from an Lo-formula ¢ as
explained at the end of Sect. B.1.3, a definable set. Thus, for us, a “definable
set” is actually a collection of sets, namely one for each F' € Cp; in earlier work
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on motivic integration, the term “specialization of a definable subassignment”
was used for a similar notion. For an integer r > 0, Z" will often denote the
definable set (X ) such that X = Z" for each F. More generally, for non-
negative integers n, m, r, the notation h[n, m, r] will stand for the definable
set (F" x k'y x Z")F.

For definable sets X and Y, acollection f = ( fr)F of functions fr: Xr —
Yr for F € Cp is called a definable function and denoted by f: X — Y if
the collection of graphs of fr is a definable set.

Definable functions are the building blocks for constructible functions,
which are defined as follows. For a definable set X, a collection f = (fF)r of
functions fr : X — Ciscalled a constructible function if there exist integers
N, N’, and N”, such that fF has the form, for x € X, forall F € Cp,

N/ N//

N
fr0 =D af % (pit ) [ [T Auro | (T1 ﬁ
i=1

j=1 (=1 F

where:

—ajgwithi =1,...,N,£=1,..., N are negative integers;

—o: X - Zwithi =1,...N,and B;;: X — Zwithi =1...,N,
j =1,..., N are Z-valued definable functions;

— Y; are definable sets such that Y;p C k;i x X for some r; € Z, and
pi: Yi — X is the coordinate projection.

The motivation for such a definition of a constructible function comes from
the theory of integration: namely, constructible functions form a rich class of
functions which is stable under integration with respect to parameters (as in
Theorem 14.4 below). See [28,43] for details.

Foreach F in Cp, let us put the Haar measure on F so that O has measure 1,
the counting measure on kr and on Z, and the product measure on Cartesian
products. Thus, we get a natural measure on h[n, m, r]. Furthermore, any
analytic subvariety of F", say, everywhere of equal dimension, together with
an analytic volume form, carries a natural measure associated to the volume
form, cf. [13].

The notion of a measure associated with a volume form carries over to
the definable setting, roughly as follows. By the piecewise analytic nature of
definable sets and definable functions, any definable subset X of h[n, m, r]
can be broken into finitely many pieces X;, such that X;(F) is a subset of
Vi x k't x Z" for some F-analytic subvariety V; of F" of the same dimension
as X;(F), for each F with large residue characteristic. A definable form on
h[n, 0, 0] in the affine coordinates x is just a finite sum of terms of the form
f)dxi A---Adx;, where f is adefinable function with valuesin A[1, 0, O]. If
the functions f restrict to F-analytic functions on V; for each such f, and if the
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form is a d-form where d is the dimension of V;, then one can use the measure
associated to this analytic volume form on V;. This construction yields natural
“motivic”’ measures on the definable set X, associated to definable differential
forms, cf. also [26, §3.5.1]. Such a construction of measures associated with
differential forms behaves well in the setting of motivic integrals because there
exists a natural change of variables formula for motivic integrals, see §15 of
[29]. In summary, the measures that arise from definable differential forms
occur naturally in the context of motivic integration and we will call such
measures “motivic”’ below. We refer to [29, §15] for the definition of the sheaf
of definable differential forms on a definable set, and other details. We note
that any algebraic volume form on a variety over Op, where F is a global field,
is definable in this sense. Note, however, that in this appendix we have to deal
with volume forms on orbits of elements of a group defined over a local field,
and the resulting measures are not automatically motivic.

Let us recall one of the results of [25], the first part of which generalizes a
result of [30], and which shows that the class of constructible functions is a
natural class to work with for the purposes of integration.

Theorem 14.4 [25, Theorem4.3.1] Let f be a constructible functionon X x Y
for some definable sets X and Y. Then there exist a constructible function g on
X and an integer M > 0 such that for each F € Co, y and for each x € Xr
one has

gr(x) = SF(x,y),
YEYF

whenever the function Yp — C: y — fr(x,y) lies in L'(YF), where, say
Yp C F" x kg x 7.

Note that although the theorem is stated for the affine measure on F”, it also
holds for measures given by definable differential forms, by working with
charts as is done in [29, §15].

Remark 14.5 In the literature on general motivic integration, one often uses
a more abstract notion of “definable subassignments”. Any such definable
subassignment X specializes to the sets X r discussed here for all F € Co u
for some M, and any motivic integral over X specializes to the corresponding
integrals over X r. In this paper it is sufficient and more convenient to work
with the above notion of definable sets (X ) r directly.

Let us finally fix our terminology about “families of definable sets” and
“families of constructible functions”. A family of definable sets X, indexed
by a parameter a € A is a definable subset X of ¥ x A for some defin-
able sets Y and A, equipped with the canonical projection ps: X — A,
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and the family members are pzl(a) = X, for a € A. Similarly, a family
of constructible (respectively, definable) functions f, on the family X, is a
constructible (respectively, definable) function on X C Y x A. Whenever we
call a specific function f: Xpg, C Fy x k’ﬁo x 7' — C (for a specific field
Fop) constructible, we mean that it appears naturally as fr, for a constructible
function (fr)r for which uniformity in F is clear from the context as soon
as the residue field characteristic is large enough; we use a similar convention
for calling a specific function definable, and so on.

Finally, we will occasionally need to take roots of g (in order to take the
square root of the absolute value of the discriminant, for example). We adopt

the same convention as in [26, §B.3.1], and call any expression of the form
1

H q;‘f, or a finite sum of such expressions, a motivic function, where f is a
Z-valued definable function, and H is a motivic function in the usual sense
defined above. All the results about motivic functions generalize to this setting
by splitting the domain into finitely many pieces according to (f mod r). We
note also that the boundedness results from the next section for such functions
reduce to the same results without fractional powers by considering the r-th
power.

B.3 Boundedness of constructible functions

The following two theorems are the main results of this section.

Theorem 14.6 Let H be a constructible motivic function on W x Z*, where
W is a definable set. Then there exist integers a, b and M such that for all
F € Co, m the following holds.

If there exists a (set-theoretical, and not necessarily uniform in F) function
af : 7" — R such that

|Hr(w, Mg <af(A) on Wp x Z",
then one actually has
|Hr(w, Mg < ¢4 on Wi x 27,

where |A|| = 2?21 Ai, and where | - |r is the usual absolute value on R.

We observe that in the case with n = 0, the theorem yields that if a con-
structible function H on W is such that Hr is bounded on Wy for each
F € Co,um, then the bound for |[Hp|r can be taken to be g{. uniformly in
F with large residue characteristics, for some a > 0.

The following statement allows one to transfer bounds, which are known
for local fields of characteristic zero, to local fields of positive characteristic,
and vice versa.
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Theorem 14.7 Let H be a constructible motivic function on W x 7', where
W is a definable set, and let a and b be integers. Then there exists M such
that, for any F € Co ym, whether the statement

Hr(w, 1) < ¢4 ™" forall (w, ) € Wr x 2" (14.1)

holds or not, only depends on the isomorphism class of the residue field of F.

Informally speaking, the idea of the proof is to first eliminate all the valued-
field variables, possibly at the cost of introducing more residue-field and Z-
valued variables. This step is summarized in Lemma 14.8 below, whose proof
relies on the powerful cell decomposition theorem for definable sets in Denef-
Pas language. Once we have a constructible function that depends only on the
residue-field and value-group variables, we note that the residue-field variables
can only play a very minor role in the matters of boundedness (the so-called
“orthogonality of sorts” in Denef-Pas language referred to below). Finally, the
question is reduced to the study of Presburger constructible functions of several
Z-variables, which are similar to constructible functions as defined above in
Sect. B.2, but without the factors #(p;; Fl (x)), see [25]. Roughly, Presburger
constructible functions in x € Z" are sums of products of piecewise linear
functions in x and of powers of gr, where the power also depends piecewise
linearly on x. If such a function is bounded, then it is a sum of bounded terms
as above, after removing possible redundancy in the sum. Each single term in
x can then easily be bounded, by a power of gr that depends linearly on x.
Since the number of terms is bounded, one obtains an upper bound of the right
form. The reduction to single terms instead of their sum is made precise via the
Parametric Rectilinearization (see Theorem 2.1.9 of [25]) and Lemma 2.1.8
of [25]. In summary, the main tools used to obtain these rather strong results
with seeming ease are the cell decomposition theorem and the understanding
of Presburger constructible functions. Now we proceed with the detailed proof.

Proposition 14.8 Let H be a constructible function on W x B for some defin-
able sets W and B. Then there exist a definable function f: W x B —
h[0, m, r]x B forsomem > Qandr > 0, which makes a commutative diagram
with both projections to B, and a constructible function G on h[0,m,r] x B
such that, for some M and all F in Co_y, the function Hr equals the function
Gr o fF, and such that G g vanishes outside the range of fF.

Proof Let us write W C h[n, a, b] for some integers n, a and b. It is enough
to prove the lemma when n = 1 by a finite recursion argument. We are done
since the case n = 1 follows from the Cell Decomposition Theorem, in the
version of Theorem 7.2.1 from [29]. |
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Proof (Proof of Theorem 14.6) Let us first consider the specific case that, for
each F' € Cp, y for some M, the set Wr is a subset of Z" for some r > 0 and
that Hp is of the specific form, mapping x € Wr x Z" to

N

N/
> sir g3 [18irx

i=1 j=1

for some real numbers s; p possibly depending on F but not on x, and some
definable functions «;: X — Z and B;j: X — Z. Let us moreover assume
that W as well as the graphs of the o; and B;; are already definable in the
Presburger language (which is a sublanguage of the Denef-Pas language). Let
us finally assume that there exists @¢p > 0 such that |s;p|r < anO for each i
and F. Let us call the specific situation with all these assumptions case (1).
This case (1) reduces to the case that the «; and ;; are restrictions of Z-linear
functions and that W = A, x N’ for some ¢ > 0 and some finite set Aj
depending on s € Z" by Theorem 2.1.9 of [25] applied to X = S x W with
S = 7" in the notation of that theorem. If A is a singleton, then the result
follows from Lemma 2.1.8 of [25]. For A with at least two elements, one
replaces Hr by the sum of (Hf + 1)2 over the elements of A and the proof
is completed by Theorem 14.4 and induction on r.

The more general case where W C k[0, m, r] for some m > 0 and some
r > 0 can be reduced to case (1) by the orthogonality between the residue field
sort and the value group sort. Concretely, the following form of orthogonality,
see [104], is used. For any definable set A C h[0, m, r] there exist M > 0
and finitely many definable sets B; and C; such that B; C h[0, m, 0] and
Ci C h[0,0,r] foreachi,and Ar = |J; Bir x CiF foreach F € Co,y, see
(3.5) and (3.7) of [104]. It is this form of orthogonality that is applied to all
the Denef-Pas formulas that are used to build up H (recall that constructible
functions are built up from definable functions, and hence, involve finitely
many formulas).

For the general case of the theorem, letus choose f: W xZ" — h[0, m, r]x
7! and G with the properties as in Lemma 14.8 with B = Z". For G instead of
H and h[0, m, r] instead of W, we know that the theorem holds by the above
discussion. But then the theorem for H follows. Indeed, by Proposition 14.8,
the set Hp (W x {A}) U {0} equals (as subset of RR) the set G (kly x Z" x
{A}) U {0} for each A € Z" and each F in Co_yy for some M.

Proof (Proof of Theorem 14.7) If W C h[0, m, r] for some m > 0 and some
r > 0, then, for some M, the function

HFZWFXZn—>C
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will depend on F only via the two-sorted structure on (kr, Z) coming from
restricting the Denef-Pas language Lo to the sorts (kg, Z) (i.e., leaving out
the ring language on the valued field sort and the symbols ord and ac).
Hence, for W C h[0, m, r] the theorem follows. Now the general case
follows from the case W C h[0, m, r] by Proposition 14.8. O

B.4 Root data and reductive groups
B.4.1 Split reductive groups

We start out by following [27] in the treatment of the root data and definability
of the group G and its Lie algebra g. Split reductive groups G are classified
by the root data ¥ = (X*, ®, X, ®") consisting of the character group of
a split maximal torus T in G, the set of roots, the cocharacter group, and the
set of coroots. The set of possible root data of this form (which we will refer
to as absolute root data) is completely field-independent. Given a root datum
W, the group G(F) is a definable subset of GL,(F), given as the image of
a definable embedding E: G — GL,, defined over Z[1/R] for some large
enough R (see Sect. 7.2 of the main article; we note also that in [27], such an
embedding is denoted by pp).

In order to show that general reductive groups are definable, we will use
the fact that every reductive group splits over the separable closure of F, and
the F-forms of a group are in one-to-one correspondence with the Galois
cohomology set H'(F, Aut(G)) (see e.g. [101, §16.4.3]).

We start by giving a construction of finite separable field extensions in
Denef-Pas language.

B.4.2 Field extensions

Let [I'] be an isomorphism class of the Galois group of a finite field exten-
sion. We can think of a representative of [['] explicitly as a finite group
determined by its multiplication table. Given a non-Archimedean local field
F, we would like to realize all field extensions of F with Galois group in
the isomorphism class [['] as elements of a family of definable sets (with
finitely many parameters coming from F). Let m be the order of I'. Let
b = (by,...,by—1) € F™. The set of tuples b such that the polynomial
Pp(x) = x™ + bp—_1x™1 4+ ... 4 b is irreducible and separable, is defin-
able. Asin [27, §3.1], one can identify the field extension Fj = F[x]/(P;(x))
with F™. Further, the condition that the field extension Fj;/F is Galois is
definable. Indeed, it is given by the requirement that Pj is irreducible over
F, the degree of Fj over F equals m, and there exist m distinct roots
of Pj(x) in Fj. Note that the latter condition is expressible in Denef-Pas
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language using b as parameters, and an existential quantifier. Similarly to
[27], we treat the elements of the Galois group Gal(Fj;/F) as m x m-
matrices of variables ranging over F. More precisely, we introduce m x m-
matrices o1, ..., o, of variables ranging over F, and impose the condition
that oy, ..., 0y, are distinct automorphisms of Fj over F, and there exists
a bijection {o1,...,0,} — I' which is a group isomorphism. Finally, let
Sirp C F mm? be the definable set of tuples (b,o1,...,0m) satisfying the
conditions defined above. Note that every Galois extension of F with the
Galois group of the isomorphism class [I"] will appear as a fibre of S| over
h[m, 0, 0] several times, since o1, . . . 0, are not unique for each isomorphism

type.
B.4.3 General connected reductive groups

Let W be an absolute root datum as in Sect. B.4.1 above, and let G be
the corresponding split group (so that we can think of G as a definable
set). The goal is to construct the sets G(F) for all connected reductive
algebraic groups G with absolute root datum W as members in a family
of definable sets G.r, indexed by a parameter z which, loosely speaking,
encodes the information about the the cocycle Gal(F*P / F) — Aut(G)(F*°P).
More precisely, for every parameter s = (l;, ol,...,0m) € S| as above,
we consider the groups G with the absolute root datum W that split over
the extension Fj corresponding to the parameter b (if such groups exist).
Such groups are in one-to-one correspondence with the elements of the set
H! (Gal(Fj;/ F), Aut(G)(Fj)). Following the approach of [27, §5.1], we work
with individual cocycles rather than cohomology classes. First, observe that
the family of sets Z 1(Gal(Fl; /F), Aut(G)(Fp)) of such cocycles is a fam-
ily of definable sets, indexed by s € Sirj. This follows from the fact that
G is definable: indeed, then the group Aut(G)(Fj) is definable as well, and
we have Gal(Fj/F) =~ {oy,...04}, and the cocycle condition is, clearly,
definable.

Definition 14.9 We denote by Zjr; the definable set Z (T, Aut(G)(F, 7))
equipped with the projection to the set Sir.

Let us now recall the construction of the group G, (F) corresponding to the
cocycle z. By definition, G,(F) is the set of fixed points in G (Fj) under
the action of Gal(Fj/F) ~ {01, ...0,} given by: 0 - g = z(0)(0g), where
g € G(F;), o € Gal(F;/F), and the action og is the standard action of the
Galois group, where o acts on the coordinates of g. Such a fixed point set
is definable (with parameters from Zr}), since oy, .. ., oy, are interpreted as
matrices of variables with entries in F', according to Sect. B.4.2.
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B.4.4 Unramified groups

In the case G is unramified over F, i.e. when it is quasi-split and splits over
an unramified extension of F, one can think of G (F) as the fixed-point set of
the action of the Frobenius element, which substantially simplifies the above
construction, see [27, §4.2] for detail. Unramified reductive groups are deter-
mined by the root data £ = (W, ), where W is an absolute root datum as in
Sect. B.4.1, and 6 is the action of the Frobenius automorphism on W.

Remark 14.10 The reason we are including general reductive groups here even
though we can, and will, assume that G is unramified over F, is that we have
to deal with the connected centralizers of semisimple elements of G (F’), and
these can be quite general reductive groups.

When we start with a reductive group G over a global field F, outside of
the set of places Ram(G), the group G xf F,, over F,, is unramified and there
are finitely many possibilities for its root datum, as described in Sect. 5.2
of the main article. We recall the notation: the set of finite places v where
G xy F, is unramified is partitioned into the disjoint union of sets V(0),
0 € € (I'1) (see Sect. 5.2 for the definitions). Accordingly, for every conjugacy
class [#] € € (I"1), we have a definable set, which we denote by G}, such
that G[Q]Fv = G((F,) forall v € V(0).

We empbhasize that G}, by construction, is a definable subset of GL,, (F})
for a suitable parameter b, as in [27, §4.1].

B.5 Orbital integrals

Here we prove the main technical result — namely, that the orbital integrals
are bounded on the both sides by constructible functions. Throughout this
section, we are assuming that we are given an unramified root datum & =
(W, 0). For every local field F of sufficiently large residue characteristic, it
defines an unramified reductive group G, and also gives rise to a definable set
Go)r = G(F), as in Sect. B.4.4 above. Note that we are not assuming that F
has characteristic zero.

B.5.1 Two lemmas

We start with two easy technical remarks.

Lemma 14.11 Let & be an unramified root datum as above, F—a local field of
sufficiently large residue characteristic, and G — the corresponding reductive
group over F defined by the root datum &. Then the set of semisimple elements
in G(F) is definable.
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We will denote this definable set by G;.

Proof The proofis, in fact, contained in the proof of [27, Lemma 7.1.1]. Indeed,
the lemma follows from the fact that existence of a basis of eigenvectors is a
definable condition: we can write down the conditions stating that there exists
a degree n! extension over which there exists a basis of eigenvectors for an
element g € G(F) C GL, (Fj) for a suitable prameter b. O

Next, we show that the functions tf (see Sect. 2.2) forming the basis of the
spherical Hecke algebra are constructible, and depend on X in a definable way.

Lemma 14.12 Let G be an unramified reductive group with the root datum
& as above. Then there exists M > 0 (depending only on &) and a definable
Sfamily of constructible functions T, such that for each F in Co p one has
that

G
‘E)\ = T)\,F.

Proof Forunramified groups, itis proved in [26] that the hyperspecial maximal
compact subgroup K is definable. One can identify the parameter A with an
r-tuple of integers (A1, ..., A,), where r is the rank of the maximal split torus
in G. We can fix an isomorphism x4 : A — (G;,)" defined over Z. Fora € A,
let ¢, (a) be the formula stating that there exists a tuple (¢, ...t) € (F*)"
with ord(¢;) = A; fori = 1,...,r, such that ys(a) = (¢, ..., t.). Then the
double coset KAK is defined by the condition on g:

dki,kr € K, a € A suchthat g = kjaky, ¢y (a) = ‘true’.

Therefore, we can take T r to be the characteristic function of this double
coset. O

B.5.2 The measures

Recall the normalization of the measures used to define the orbital integrals in
the main article and in Appendix A.

Lety € G(F) be asemisimple element. Then /,, (the connected component
of the centralizer of y) is a connected reductive group, and has a canonical
measure d M?;‘“ defined by Gross [47, §4]. The G-invariant measure on the orbit

. . dusn .
0, is defined as the quotient measure d’;% of the canonical measure d "
I

on G by the canonical measure on /,,. Thisy is the measure that appears in the
statement of the main theorem. However, we do not yet know that this measure
is “motivic” in general. The difficulty comes from the canonical measure on
I, itself in the case y is ramified. We point out that it is explained in [27,
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§7.1] for split groups (and stated for unramified groups), that the canonical
measure d " defined by Gross comes from a definable differential form, and
therefore fits into the framework of motivic integration by the construction of
[29, §8]. The same statement for ramified groups is still open. For now, we
prove a technical lemma that allow us to circumvent this difficulty. Namely, we
prove that there exists a motivic measure on the orbit, and that it differs from
the canonical measure by a constant bounded on both sides by fixed powers
of g.

Let M be a connected reductive group over F that splits over a tamely
ramified extension. Let F| be a finite Galois extension over which M splits,
and let I' = Gal(F;/F). Let x be a special point in the building of M over
F,and let M(F), be the corresponding maximal compact subgroup of M(F).
By definition of the canonical measure, 157" (M(F),) = 1. Our difficulty is
that it is presently not known whether M(F), is definable, except in the case
when the group M is unramified over F'. For our current purposes, a weaker
statement will be sufficient.

In Sect. B.4.3 above, we have constructed M(F') as an element of a family
of definable sets (using parameters in Zr}, with M in place of G), by taking
the set of I'-fixed points of M(F7), under the action determined by a cocycle
z. It follows from [80] that M(F), C M(F})x N M(F), see [1, Lemma 2.1.2]
for the statement precisely in this form. Let M| = M(F1), N M(F'). Then the
subgroup M is definable, since M(F1), is definable because M is split over
F (see [26]).

Definition 14.13 We denote by iy, the index [M: M(F),].

The proof of the next crucial lemma was provided by Sug Woo Shin. Note
that this is the only place where we need to assume that the extension F
is tamely ramified. We observe also that a much more precise bound (which
we do not need for our present purposes) could have been obtained using the
results of Kushnirsky [69].

Lemma 14.14 With the notation as above, there exists a constant ¢ depending
only on the root datum of G such that

i =[Mi: M(F)] < ¢°

when F € Co and M runs over all connected centralizers of semisimple
elements of G (F).

Proof Let My = M(F1)x,0+ N M(F) = M(F)y 0+, where the equality holds
by Remark 2.2.2 of [1] (note that the field is not assumed to have characteristic
zero in [1]). We have My C M(F),y C My, so [M1: M(F),] < [M1: M>].
Let M, be the maximal reductive quotient of the reduction mod p of the Op-
group scheme associated to the parahoric subgroup M(F), by Bruhat-Tits,
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see [77, §3.2] (where the group is denoted by G and the reductive quotient —
by M). Then it follows from [77, §3.2] that M|/ M> can be identified with the
set of kp, -points of M,, where kp, is the residue field of Fj, and thus we get
iv < #M, (kF,). Since the dimension of M, is at most the dimension of G,
there is a bound on #M, (k F,) given by Steinberg’s formula (see [47, §3]); then
we carry out the same estimate as done for the numerator in the Eq. (7.11) in
the main article, to obtain

v d, d 1
#M, (k) < ¢'0g(0@etD

where rg and dg stand for rank and dimension of G, respectively, and ¢ is
the cardinality of kf,. Finally, since the degree of the extension [Fy: F] is
bounded by a universal constant, we obtain the desired result. O

Now we can define a motivic measure on the orbit of y. As above, I, is
the set of F-points of a connected reductive algebraic group, which we will
denote by M. Let I be the Galois group of the finite field extension that splits
M. Then M(F) = I, arises in a family of definable sets (with parameters
in Z[ry) constructed in Sect. B.4.3 above. There exists a motivic measure on
M(F) (which uses the cocycle z as a parameter, so we will denote it by d u; moty
constructed in [26, §3.5.2] (see also [44, §2.3]), and if M is unramified over
F, this measure coincides with the canonical measure du7". Consider the

quotient measure dun‘fm on the orbit of y. Since G is unramified, this is a

quotient of two motivic measures.
Recall the definable open compact subgroup M; of M(F) = I,, constructed
above Definition 14.13. Let

can

dug
d mot ’
Mz

S = volyymo (M) (14.2)

and let O™°'( f) be the orbital integral with respect to this measure. We will
show in Lemma 14.15 below that this is a “motivic distribution” on C2°(G)
in a precise sense.

For now, let us estimate the factor by which this distribution differs from
the orbital integral with respect to the canonical measure.

We have:

d,l,Lcan dﬂcan d,bLmOt
dugt — dpretdugt’

mot

where ducan is a constant, namely, the factor by which the Haar measure d ™"

that we defined on M(F) differs from the canonical measure on M(F’). Since
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by definition, the volume of the compact subgroup M(F'), with respect to the
canonical measure is 1, we have that
d,um(’t
Z
can
du I,

= VOldpL;nol(M(F)x) = VOldMIan(Ml)/iM7

where M and ij; are as in Definition 14.13 above.
Combining this with (14.2), we get:

can 1

dps? volg m(M1) 1
- du™, ———— = —du™,.. (14.3)
dug;m VOldM?lol(Ml) I\G M M I\G

Now we are ready to prove our main theorem.

B.6 Proof of the main theorem
B.6.1 Proof of Theorem 14.2

Let y € G%, and let M = I,, be the identity component of the centralizer of
y, as above. We assume that the residue characteristic of F is sufficiently large
so that /,, is automatically tamely ramified. As above, f O)I,n"t( f) denotes
the distribution on C2°(G(F)) defined as the orbital integral with respect to

the measure d u}‘;"\tG on the orbit of y.

Let us break up the definable set G into finitely many pieces according to
the isomorphism class of the centralizer of y (see Appendix A). Fix a Galois
group I', and suppose M is an algebraic group that splits over an extension

Fy with Gal(Fy/F) ~ T. Let Z%] be the definable set of Definition 14.9 with

M in place of G. Let z € Z%\l/!] be a cocycle corresponding to M. We observe
that the set of elements y such that /,, is isomorphic to M, is definable, using
b, o1, ..., 0 and z as parameters (we are using the notation of Sect. B.4.3).
For brevity, we denote this definable set by Gy [precisely, we should think of
it as an element in a family of definable sets indexed by b, O1,...,0m,2 as
above; in particular, we will denote by z(y) the cocycle that gave rise to M].

The following easy lemma amounts to the statement that the quotient of
two motivic measures gives a motivic distribution, up to multiplication by a
motivic constant (i.e., volume of a fixed definable set).

Lemma 14.15 Let { f}ses be a family of constructible test functions on G
indexed by some definable set S.

Then there exists a motivic function HM on Gy < S

such that for all fields F of sufficiently large residue characteristic,
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| hade ) digt = 1),
I \G(F)

fory € Gy (F).

Proof By definition (which we quote from [66, §2.4]), the quotient measure

s . . : .
ng is characterized by the identity
Z

can

can mot d/’LG
/ f(@dug (g)=/ f(hg)du (h)d mot(g) (14.4)
I\G(F)

for all f € C2°(G). We recall that this identity characterizes the quotient
measure because the map « : C2°(G) — C°(1,\G) defined by

£ (g = / f(hg)dum‘“(h))

is surjective. We observe that as we think of the measures as linear functionals
on the spaces C°(G), C°(1,\G), etc., we can in fact replace these spaces
with their respective subspaces consisting of constructible test functions. This
follows form the fact that one can construct a family of definable balls, such
that the space spanned by the characteristic functions of these balls is dense in
the space C°(G), and therefore constructible test functions still distinguish
between continuous distributions. We refer to [24, §3] for details of such an
argument.

Using the definable open compact subgroup M; of I,,, we obtain that
for every constructible function f € CZ2°(I,\G), there exists a con-
structible function f € C°(G) such that o f ) = VOldumot (My) f. Thus,

we can construct a family of constructible test functions fs such that
a(fs)(g) = volg,mo (Ml)fs(Ad(g_l)y). Multiplying both sides of (14.4)
by vol g, me (M), we obtain

can

NN
Vol (M1) / fiad(s™ ) )

Can
= /I . «(F )" i m fs (©)dpi™(g). (145
4
The left-hand side of (14.5) equals f L\G fs(Ad (g_l)y)d u’]‘;‘/‘)\tG by definition;
the right-hand side is a motivic function of all the parameters involved (i.e.,
of y, on which it depends directly and also via z(y), and of s) by the main
theorem on motivic integrals, [29, Theorem 10.1.1] (briefly restated above as
Theorem 14.4), since G is assumed to be unramified over F, and the canonical
measure on G is motivic. |
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Since the test functions rf form a definable family of constructible functions
by Lemma 14.12, the above lemma can be applied to this family, and yields
the existence of a constructible function H M(y, A) on Gy, such that

HY' (v, 1) = 0°'(zf)

forevery y € Gy, A € Z".
Therefore, by the relation (14.3), we have:

1 1
0y (x°) = -0 (z%) = T HY ). (14.6)

By Lemma 14.14, we have

|0y(ff)’ < |H?4(y, k)‘ <q°

0, (zf)‘ .

We observe that DY (y) is a constructible function of y, and by our con-
vention on fractional powers of ¢, so is DY (y)!/2.

By the Theorem A.1, the function O, (tf YDC (y)l/ 2 is bounded for every
M. Therefore, the constructible function H};/I(y, )L)DG()/)I/ 2 is bounded for
every A, and now our Theorem 14.2 follows from Theorem 14.6.

B.6.2 Proof of Theorem 14.1

As discussed in Sect. 5.2 of the main article, the set of all unramified finite
places is partitioned into finitely many families according to the root datum of
the group G xf F,. Applying Theorem 14.2 to all these families and taking
the maximum of the ag and b values, we obtain Theorem 14.1.

Remark 14.16 Though our method sheds no light on the optimal values of ag
and bg, Theorem 14.7 allows to transfer these values between positive char-
acteristic and characteristic zero: namely, if, for example, some values ag and
bg were obtained in the function fields case by geometric methods, Theorem
14.7 would immediately imply that the same values work for characteristic
zero fields of sufficiently large residue characteristic. We also note that for
good orbital integrals, it should be possible to get a bound on a¢ in terms of
the dimension of G, using [35].
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