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Abstract

Background: Compared to engineering or physics problems, dynamical models in quantitative biology typically
depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such
multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are
significantly limited by model size.

Results: In order to simplify analysis of multi-parameter models a method for clustering of model parameters is
proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The
measure quantifies to what extend changes in values of some parameters can be compensated by changes in values
of other parameters. The proposed methodology provides a natural mathematical language to precisely
communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a
relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK
pathway models shows that highly compensative parameters constitute clusters consistent with the network
topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics
reveals that the experiments jointly ensure identifiability of only 60 % of model parameters. The method indicates
which further experiments should be performed in order to increase the number of identifiable parameters.

Conclusions: We currently lack methods that simplify broadly understood analysis of multi-parameter models. The
introduced tools depict mutually compensative effects between parameters to provide insight regarding role of
individual parameters, identifiability and experimental design. The method can also find applications in related
methodological areas of model simplification and parameters estimation.

Background
Methods to understand the relationship between param-
eters (input) and model properties (output) are of par-
ticular interest in the context of biochemical dynamics
and related phenomena. Sensitivity analysis and statistical
inference have proven their importance for utilising mod-
elling in physics and engineering. Models of biochemical
dynamics, however, are different from conventional mod-
els in a number of ways. Primarily they involve a substan-
tially larger number of parameters compared to available
data. The high number of parameters and sparse data
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in ordinary differential equation (ODE) models make a
conventional sensitivity analysis and statistical inference
methods often prohibitively difficult to apply. This chal-
lenge has given rise to a number of approaches aimed
at improving our ability to develop, verify and manipu-
late multi-parameter mechanistic models of such systems.
These methods can be vaguely grouped into those aim-
ing at: 1) improved description of parameter sensitivities;
2) detection of parameters that cannot be inferred from
experimental data (identifiability analysis) and 3) guided
experimental design to improve parameter identifiability
and inference accuracy. Within the first group a number
of studies have reported an intrinsic feature of dynamic
multi-parameter models of biochemical dynamics to be
sensitive only to a small number of linear combinations
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of parameters [1–5]. The conventional identifiability anal-
ysis verifies whether local distinct changes in parameter
values imply distinct changes in model behaviour. A pri-
ori methods focus on determining whether this condition
is satisfied prior to data collection. This can be done
either based on model structure, often by attempting to
find functional relationships between parameters [6], or
by analysing model responses to local perturbations in
parameter values. The latter is achieved by examining
the Fisher information matrix (FIM). Two natural sources
of non-identifiability have been recognised: insensitiv-
ity of individual parameters and compensative effects of
parameter changes, also known as collinearity. Both prob-
lems have gained substantial attention. As a remedy, most
approaches aim to select an optimal subset of parameters
that is both sufficiently sensitive and has lowest collinear-
ity. The identifiable subset can be then estimated jointly
with the remaining parameters assumed fixed. The deter-
minant of the FIM and its least eigenvalue are used to
measure optimality [7–10] of the selected set. Pairwise
clustering has also been proposed to reduce the number
of parameters [9]. A posteriori methods focus on finding
identifiable parameters when experimental data are avail-
able. The likelihood surface around its maximum is then
examined by means of the Hessian matrix [11, 12]. A sta-
tistical concept of profile likelihoods is particularly helpful
[13] in this case. Identifiability analysis is closely related
to experimental design. It has been used to show how
the information content in experimental measurements
can be maximised [13–16]. Despite useful methodological
developments performing routine modelling tasks with a
multi-parameter model still constitutes a substantial chal-
lenge. Here, we introduce a natural, universal and simple
measure to quantify similarity between groups of model
parameters. Themeasure links canonical correlation anal-
ysis (CCA) with Shannon’s mutual information (MI) and is
called MI-CCA throughout the paper. Similarity between
model parameters has been previously addressed (e.g.
[9, 10, 17]). However a precise, statistically interpretable
similarity measure has not been proposed. MI-CCA,
when employed in a hierarchical clustering, provides
statistically meaningful and precise information about
mutual compensability of parameters. It can also be used
as an assistance tool to validate parameters identifiabil-
ity in experimental planning. Apart from its simplicity
and rigorous statistical interpretation, the main advan-
tage of our tool is that it can be applied to large models,
for which other, well established, approaches are compu-
tationally infeasible. We demonstrate the power of our
framework by analysis of the NF-κB andMAPK signalling
models. We find that highly similar parameters consti-
tute groups consistent with the network topology. For
the NF-κB model we analyse the majority of published
experimental protocols [18–26] and examine parameters

identifiability. We show how the method can be used to
guide further experiments.

Methods
A typical model of biochemical dynamics describes how
abundances of a set of k molecular entities, y =
(y1, . . . , yq, . . . , yk), change with time t. Deterministically
it is usually written as an ordinary differential equation
(ODE)

dy
dt

= F(y, θ), (1)

where F() is a law that determines the temporal evolution
of y and implicitly contains a control signal. The vec-
tor θ = (θ1, . . . , θl) is a vector of model parameters. To
numerically simulate the model, parameter values and ini-
tial condition, (y1(0), . . . , yk(0)), must be set. The method
proposed in this paper is a priori in nature, therefore the
parameter values and initial conditions are not inferred
from data and must be assumed in advance based on the
modellers knowledge.
Often only certain components of y, for instance first

q, y(q) = (y1, . . . , yq), at specified times, (t1, . . . , tn), are
of interest. These components, which may correspond to
experimentally measured variables, are denoted here as
Y = (

y(q)(t1), . . . , y(q)(tn)
)
.

Conventional sensitivity analysis fails to capture collective
interactions betweenmodel parameters
Sensitivity analysis provides a prediction how Y will
change, ∂Y , in response to small changes in a single
parameter, ∂θi, or all parameters, ∂θ = (∂θ1, . . . , ∂θl). If
changes in parameters are small, the problem is solved
by finding the derivative of a solution of the equation (1),
y(t), with respect to the parameter θi, zi(t) = ∂y(t)

∂θi
. This

derivative can be easily calculated by solving another ODE
(see Additional file 1). Evaluation of zi(t) at the times
and components of interests defines the sensitivity vec-
tor Si =

(
z(q)i (t1), . . . , z

(q)
i (tn)

)
of the parameter θi. The

sensitivity vector describes the shift in Y in response to
perturbation in the parameter θi, ∂Y = Si∂θi. A collection
of the sensitivity vectors for all i = 1, . . . , l constitutes the
sensitivity matrix S = (S1, . . . , Sl), which summarises the
change in Y in response to perturbation of all of the model
parameters ∂Y = S∂θ . The sensitivity matrix, S, is directly
linked with the concept of Fisher information. Given that
Y is observed with the Gaussian unit variance error the
FIM can be written as (see Additional file 1)

FI(θ) = STS. (2)

Therefore the FIM contains information regarding the size
of a perturbation, ||∂Y || = √

∂θTFI(θ)∂θ . The pairwise



Nienałtowski et al. BMC Systems Biology  (2015) 9:65 Page 3 of 9

similarity between parameters, quantified as the cosine
between the Si and Sj vectors, is also given by elements of
the FIM, cos(Si, Sj) = STi Sj/||Si||||Sj||. It is not clear, how-
ever, how the FIM can serve as a tool to analyse mutual
relations between groups of parameters. Belowwe provide
a rigorous and practical solution to this problem.

Measuring similarity between parameters groups
Canonical correlations. The canonical correlation analy-
sis (CCA) is a simple extension of the Pearson correlation.
With CCs it is possible to measure correlations between
multidimensional covariates. We modify the well estab-
lished definition to suit the considered context. Assume,

we measure similarity between two subsets of parameters
θA = {

θi1 , . . . , θia
}
and θB = {

θj1 , . . . , θjb
}
that corre-

spond to the two subsets of sensitivity vectors, �A ={
Si1 , . . . , Sia

}
and �B = {

Sj1 , . . . , Sjb
}
. The latter can be

interpreted as hyper-planes. CCs form a set of correlation
coefficients defined recursively. The first CC, ρ1, is a max-
imal cosine between a linear combination, u1, in �A and a
linear combination, v1, in �B, ρ1 = cos(u1, v1). Each next
CC is found in the same way under the constraint that
the next linear combination must be orthogonal to these
found in the previous steps (see Additional file 1). Repeat-
ing the procedure m = min(ia, jb) times provides a set of
CCs 1 ≥ ρ1 ≥ . . . ≥ ρm ≥ 0 (see Fig. 1a–b). The value of 1

Canonical correlation analysis (CCA)BSensitivity vectorsA

Single parameter model

Multi-parameter model

Mutual information  

reduction in entropy

expressed by the CCA

C D

Fig. 1 Canonical correlations and identifiability. a Illustrative view of the sensitivity vectors Si . b Conceptual illustration of the canonical correlations.
Two subsets of sensitivity vectors represented as linear subspaces (planes �A and �B). Canonical vectors on the planes are found to yield maximum
cosine. In a two-dimensional subspace case, the second canonical vectors u2, v2 are required to be perpendicular to the first ones. c The introduced
δ-condition requires that each parameter θi is correlated less than δ with the remaining parameters θ−i = (θ1, .., θi−1, θi+1, . . . , θl). It can be
interpreted in terms of how variance of the estimates changes when a single parameter and all model parameters are estimated. Parameter θ0
denotes the linear combination of θ−i maximally correlated with θi , i.e. θ0 = lin∗ {θ−i}. dMutual information as a measure of similarity between two
parameter sets θA , θB , which span linear subspaces �A , �B interpreted in terms of the asymptotic posterior P(θ̂ |θ)
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indicates that there exists a linear combination of param-
eters in θA and θB having an identical impact, whereas
0 indicates existence of an orthogonal parameter com-
bination. The CCs therefore provide an m-dimensional
similarity measure between θA and θB.
Mutual information. The above geometric view has a

natural probabilistic interpretation that provides a natural,
one-dimensional similarity measure. Assume, we estimate
the parameter vector θ using the maximal likelihood esti-
mate θ̂ (equivalently Bayesian posterior estimate) from
data X = Y + ξ , where ξ is a measurement error. Asymp-
totically (for large number of independent copies of X,
denoted here byN) the distribution of the estimate θ̂ given
a true value θ is asymptotically multivariate normal

P(θ̂ |θ) ∝ exp(− 1
2N

(θ̂ − θ)FI(θ)(θ̂ − θ)T ). (3)

Consider the entropy, H(θ̂A), of the estimate θ̂A, and the
average conditional entropy of θ̂A given θ̂B, H(θ̂A|θ̂B). The
reduction in entropy of θ̂A resulting from knowledge of θ̂B
is given by Shannon’s mutual information between θ̂A and
θ̂B, denoted here by I(θA, θB). We propose to use I(θA, θB)

as the natural measure of similarity. The more similar θA
and θB are, the more knowing one will help in determining
the value of the other. In Additional file 1 we show that the
mutual information between estimates θ̂A and θ̂B and CCs
are closely related

I(θA, θB) = H(θ̂A)−H(θ̂A|θ̂B) = − 1
m

m∑
i
log

(
1 − ρ2

i
)
,

(4)

where H(θ̂A|θ̂B) is the condition entropy of θ̂A given θ̂B.
The above measure, which throughout the paper is called
MI-CCA, provides a novel and efficient way to quantify
overall similarity between parameter groups via mutual
information and CCs.
We use the constructed measures to propose a natu-

ral definition of parameters identifiability in the multi-
parameter scenario.

(δ, ζ )-identifiability
Conventionally, parameters of a statistical model P(Y |θ)

are said to be identifiable if there exists a neighbourhood
of θ such that for all parameter values in that neighbour-
hood P(Y |θ) represents a different distribution. Equiva-
lently the FIM must have the full rank. This definition
refers simultaneously to the entire vector of model param-
eters θ . The definition of [13] introduces a notion of prac-
tical non-identifiability by examining the flatness of the
likelihood surface. We propose a novel definition of iden-
tifiability of individual parameters in multi-parameters
models. It is widely recognised that lack of identifiability

can arise from two sources: lack of sensitivity, or com-
pensation of a parameter by remaining model parameters
[7–10, 12, 27–30]. A definition that quantifies this intu-
ition has been missing. Therefore, we propose a natural
criterion of whether the parameter θi can be identified
along with the remaining model parameters, θ−i. The
parameter θi is said to be (δ, ζ )-identifiable if ρ(θi, θ−i) <

δ and ||Si|| > ζ . Correlation ρ is used here in the canon-
ical sense. If θi was estimated as a single parameter of the
model ζ -condition requires its asymptotic variance to be
smaller than 1/ζ . The δ-condition requires the parame-
ter not to be correlated with any linear combination of the
remaining parameters by more than δ. In variance terms,
it translates into demanding that the variance does not
increase by more than 1/(1− δ2) when the single parame-
ter and multi-parameter scenarios are compared (Fig. 1c).
The above definition is conceptually similar to the profile
likelihood approach. However it uses asymptotic likeli-
hood instead of actual likelihood and therefore does not
require any numerical optimisation. Based on the FIM,
solutions are given analytically by CCs. As a result iden-
tifiability can be determined for models of virtually any
size. In practical applications values of δ and ζ must be
selected. The above interpretation of δ and ζ values pro-
vides a theoretical ground to guide how these thresholds
can be set. For instance, in the logarithmic parametrisa-
tion setting ζ = 1 requires a parameter to be learned with
at most an order of magnitude error. Parameter δ controls
how the estimate’s variance increases when the parameter
is estimated as a single parameter and jointly with remain-
ing model parameters. Setting stricter values (lower δ and
higher ζ ) will result in lower variance of parameter esti-
mates. Efficiency of the method enables the analysis to be
performed for a range δ and ζ values that correspond to
different levels of stringency. In the applications consid-
ered in this paper we used ζ = 1 and δ = 0.95. The latter
corresponds to approximately 10-fold increase of variance
(Fig. 1c). In Additional file 1 we use one of the analysed
experiments to show that these thresholds provide results
consistent with the profile likelihood approach. In general,
profile likelihoods can also be used to validate method’s
predictions as experimental data become available (see
Sections 4.3 and 6.6 of the Additional file 1).

Clustering reveals similarity structure and identifiability
Using the constructed similarity measure we can mean-
ingfully group model parameters. We provide a modifica-
tion of the conventional hierarchical clustering algorithm.
At each level of the hierarchy, clusters are created by
merging clusters at the next lower level. At the low-
est level, each cluster contains a single parameter. The
pair chosen for merging consists of the two groups with
the highest mutual information, I(θA, θB). When a new
cluster is formed we verify if each of the parameters
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within the newly created cluster satisfies the δ-condition.
The parameters of the clusters most correlated with the
remaining parameters of the cluster are removed until all
satisfy the δ-condition. We use average canonical corre-
lation between the clusters, 1

m
∑m

i=1(1 − ρ2), which is
normalised opposed to I(θA, θB), to determine the height
of linkages. A set of identifiable parameters is not guar-
anteed to be maximal. Finding the maximal set would
require testing each of the subsets of the parameter set,
which is computationally infeasible. As the output of the
algorithm, we obtain the visualisation of similarity struc-
ture and a set of identifiable parameters (see Fig. 2). The
pseudocode describing the clustering algorithm in details
is presented in Section 3 of the Additional file 1 and an
R-implementation (Additional file 2) is available as an
online supplement.

Example: a simple gene expression model
To clarify the principles behind the method, we use a sim-
plistic gene expressionmodel. We assume that the process

Hierachical clusteringA

B

Fig. 2 a Agglomerative hierarchical clustering of model parameters. b
Verification of the δ-condition. Recursively, at each level, a pair of
most similar clusters is merged into a single cluster and δ-condition is
verified. Linkages between clusters, at each stage of clustering, are
plotted at high 1

m

∑m
i=1(1 − ρ2), wherem is the size of a new cluster,

compared to a previous linkage. Identifiability results from violation of
either of the δ-condition or ζ -condition therefore even parameters
that have sensitivities above a threshold can be non-identifiable.
Non-identifiable parameters are marked red

begins with the production of mRNA molecules at rate
kr . Each mRNA molecule r may be independently trans-
lated into protein molecules at rate kp. Both mRNA and
protein molecules are degraded at rates γr and γp, respec-
tively. Therefore, we have the vector of model parameters
θ = (kr , kp, γr , γp) and ODEs presented in Figure 1A in
Additional file 1. Consider the steady state Y =

(
kr
γr
, krkp

γrγp

)
.

We address the following questions: 1) Which model
parameters are most similar?; 2) Which parameters are
identifiable?; 3) What consequence does the similarity
structure have for the model robustness?; 4) How can the
steady state experiment be modified to reduce parameter
correlations? The similarity of the parameters is deter-
mined entirely by the response of the model to changes
in parameter values. The steady state formula implies that
perturbations in kr and γr have the same impact i.e. they
increase or decrease the RNA and protein level. The same
holds for perturbations in kp and γp. On the contrary, a
perturbation in (kr , γr) does not have the same impact
as one in (kp, γp). The first pair affects the level of both
RNA and protein; the latter only the level of protein.
This intuition is formalised and visualised by the method.
The linkage between parameters kr , γr and kp, γp is plot-
ted at zero height, and the non-identifiable parameters
are marked red (Figure 1B in Additional file 1). Linkage
between the pairs is at a non-zero height, as they are not
entirely correlated. As for model robustness, the dendro-
gram depicts that mutually compensative perturbations
occur within pairs (kr , γr) and (kp, γp). The analysis high-
lights the sources of non-identifiability and therefore helps
to find experiments that render more parameters iden-
tifiable. For instance, in this example, pushing the initial
condition r(t0), p(t0) above the steady state levels changes
the model dynamics (Figure 1C in Additional file 1). The
resulting exponential decay is not invariant with respect
to parameter changes. As a result all parameters can be
identified (Figure 1C in Additional file 1).

Results
TheNF-κB pathway is one of the key components control-
ling the innate immune response. The model considered
(see Additional file 1) was first proposed in [3] and fur-
ther developed in [26]. For the simulations we have used
parameter values and initial conditions introduced therein
and reproduced in the Table 1 of the Additional file 1. The
model represents a dynamic activation of NF-κB induced
genes in response to stimulation by a pro-inflammatory
cytokine, TNF-α. It involves 39 parameters and 19 vari-
ables and encapsulates typical features of systems biol-
ogy models. We address three questions: 1) What can
we learn from the structure of parameter similarities?
2) Which parameters of the network can be estimated
from the experiments published in the literature? 3) What
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experiments can be performed to increase the number of
identifiable parameters?
Correspondence between parameter correlations and

topology of the NF-κB system. The dendrogram obtained
for the NF-κB system reveals that correlated parame-
ters are grouped into clusters that largely correspond
to the network structure (Fig. 3b). The cluster C1 con-
tains parameters describing IKK kinase post-translational
modifications and its interactions with the IκBα-NF-κB
complex; C2: TNF-α receptor activation and signalling;
C3: IKKK kinase post-translational modifications and its
interactions with A20 and IKK; C4: nuclear shuttling of
NF-κB and IκBα - NF-κB binding; C4: A20 transcription
and mRNA degradation; C6: IκBα transcription, transla-
tion, degradation and post-translational modificationsC7:
NF-κB - DNA interactions and nuclear shuttling of IκBα.
The correspondence of the correlation structure with

the network topology is one of the main findings of the
paper. After that is explicitly stated it may seem intu-
itive. Although it provides relevant practical information,
it has not been reported before. When aiming to change
model dynamical response, parameters of various net-
work modules should be manipulated rather than those
within the same module. Regarding parameter inference,

knowing a priori some parameters within various mod-
ules is more likely to help in estimating the remaining
parameters than knowing the same number of parame-
ters within a single module. The analogous conclusion
holds for the system robustness. In the above analysis, we
assumed that all model variables define model behaviour,
i.e. q = n, and considered a response of the system
to a physiological stimulation: gradual increase, plateau
and gradual decrease of TNF-α. In a later subsection
we present analogous observation for a MAPK signalling
model. Earlier work of Huang et al. [31] reported similar
fining using pairwise correlations. Moreover, the authors
demonstrated that parameter correlations can be effec-
tively used for systematic model reduction.
Experiments examining the NF-κB dynamics jointly

exhibit highly correlated parameters. It is debatable how
much data is needed to ensure parameters’ identifiability
in systems biology models, and whether it is realistically
achievable. Here we examined collectively all experiments
reported in 9 papers [18–26] that contain rich data sets
on the dynamics of the NF-κB system. We asked which
parameters of the NF-κBmodel can be estimated from the
published experiments (see Table 1 in Additional file 1).
We found that 18 out of 39 model parameters cannot
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be estimated as they fail to satisfy the δ-condition (red
parameters in Fig. 4a). The huge amount of literature
available data, providing a comprehensive knowledge on
the dynamics of the NF-κB system, was not sufficient to
ensure identifiability of all model parameters. The identi-
fiability problem is widely reported. Here we demonstrate
that it is not mitigated by a huge number of experiments
performed to obtain insights other than values of kinetic
rates. To draw our conclusions we have initially set δ =
0.95 and ζ = 1. As we used logarithmic parameterisation,
i.e. log(θi) instead of θi the latter corresponds to learn-
ing a parameter more accurately than with an order of
magnitude error if the remaining model parameters were
known. Value δ = 0.95 requires the estimate’s variance not
to increase bymore than approximately 10 times when the
single parameter and multi-parameter scenarios are com-
pared. Thereafter we have verified that our main findings
remain robust to assumptions regarding specific values
of δ and ζ (Figure 3 in Additional file 1). We have also
analysed how each of the analysed papers increased the
number of identifiable parameters (Figure 2 in Additional
file 1) . Chronologically first two papers [18, 19], rendered
13 parameters identifiable. Subsequent 7 papers provided
information to estimate 8 new parameters, which gives
approximately 1 parameter per paper. This indicates that
making more parameters identifiable requires specifi-
cally tailored experiments different to these performed to
address conventional biological questions.
Given the size of the model analysed and the size of the

data included in the aforementioned papers a posterior
identifiability analysis would be hardly feasible. Identi-
fiability studies available so far analyse single or small
number of experiments. Importantly the dendrogram in

Fig. 4a identifies which parameters are most correlated
and therefore non-identifiable. This information can be
effectively used to design experimental perturbations that
decrease parameter correlations and enhance parameters
identifiability.
Tailored experiments can decrease parameter correla-

tions and increase the number of identifiable parameters.
In order to find experiments that can provide informa-
tion about non-identifiable parameters, we first randomly
searched a space of potential new TNF-α stimulation
time-profiles that together with available data wouldmake
new parameters identifiable. Details of considered proto-
cols are presented in Additional file 1. We have assumed
that only variables proven before to be measurable could
be quantified. After having generated 1000 random TNF-
α stimulation time-profiles we surprisingly found that
none of the generated protocols can make more param-
eters to satisfy (δ, ζ )-condition. The underling cause is
show in Figure 5 in Additional file 1: in all such proto-
cols certain parameters have close to 1 correlation with
the remaining parameters. This finding indicates that a
successful strategy to obtain new identifiable parame-
ters in multi-parameter models may require more careful
design of new experiments. Correlation structure (Fig. 4a)
revealed the underlying cause of non-identifiability and
therefore we can select some of the highly correlated
parameters to be estimated in additional experiments. We
propose a small number of experiments that lead to iden-
tifiability of ki, KN, ka, c3, c4, and c3a. Here we describe
how ki, KN, ka can be estimated whereas experiments
to estimate c3, c4 and c3a are described in Additional
file 1. Parameters ki, KN, ka and ka20 describe dynamics
of phosphorylated IKKK (y1).
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Fig. 4 Identifiability study of the NF-κB system. a Clustering results together with the identifiability analysis computed based on all the major
published experiments. Non-identifiable parameters are marked in red. We used δ = 0.95, ζ = 1 to verify the identifiability condition. Sensitivity
coefficients, i.e diagonal elements of the FIM, are shown below the dendrogram. b Clustering results as in (a) but for the published experiments
together with the suggested experimental protocols
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ẏ1 = ka y16 (KN − y1) ka20/(ka20 + y9) − ki y1, (5)

where y16 and y9 denote activated TNF-α receptors and
cytoplasmic A20 protein, respectively (see also equation
(31) in Additional file 1). We assume phosphorylated
IKKK, phosphorylated TNF-α receptors and cytoplasmic
A20 protein can be measured by means of immunchem-
istry and we are able to evaluate the equation and compare
it to a data. As identified by the dendrogram (Fig 4a),
structure of the equation (5) also indicates that considered
three parameters have very similar impact on y1. Figure
7A in Additional file 1 shows that indeed in a TNF-α
stimulation experiment in wild type cells all parameters
are highly correlated and non-identifiable. However, com-
bining the dynamics in wild type cells, in A20 knockout
cells and in A20 knockout cells with blocked phosphatase
activity provides information to make ki,KN and ka iden-
tifiable (Figure 7C in Additional file 1). We verified that
these identifiability predictions are correct using profile
likelihood approach (Figure 7 B,D in Additional file 1).
Identifiability also does not depend on specific parameter
values used (Figure 7E in Additional file 1).
Analysis of the MAPK signalling model. In order to

verify whether other biochemical models exhibit similar
properties regarding correspondence between parame-
ters similarity and network topology we have performed
analysis of a MAPK signalling model [32]. The dendro-
gram of this model reflects the network topology (Figure
9 and 10 in Additional file 1). Our observations, there-
fore, might have a more general character. The model of
[32] incorporates over 200 parameters and 100 equations.
Computations required to plot dendrogram take several
minutes on a standard desktop computer. The computa-
tional time scales with the cube of number of parameters.
Therefore, the method can be applied to much larger
models.

Discussion and conclusions
The mutually compensative effects of parameters changes
in mathematical models have gained substantial attention
in recent years [1, 4, 5, 27, 28, 33]. Methods to better
understand origins and consequences of parameter cor-
relations have began to emerge. Particularly, authors of
[7] defined identifiability of parameter subsets using the
smallest eigenvalue of corresponding sub-matrices of the
FIM. Selection of an identifiable set of parameters based
on orthogonalisation of sensitivity vectors was proposed
in [8, 10]. In [9, 10, 17] authors used pairwise correlations
to better understand parametric sensitivity. In addition,
the method introduced in [17] allows to detect existence
of an explicit functional relationship between parameters
but, in contrary to our method, it does not quantify the
degree of collinearity. The existing methods are largely
based on the determinant, the eigenvalues of the FIM or

the pairwise correlations, and do not reveal the complex-
ity of mutual relationships between parameters in multi-
parameter models. Pairwise correlations cannot reflect
similarity between groups of parameters. For instance,
three parameters that have low pairwise correlations can
be jointly non-identifiable. This is detected by CCA. MI-
CCA allowed us to phrase intuitions about the impact of
parameter correlations on parameter sensitivity and iden-
tifiability in a natural, statistically justified framework. In
addition efficiency of the method makes it ideally suitable
for large ODE models.
In the setting of this paper the mutual information

I(θA, θB) is calculated based on the asymptotic poste-
rior (3), which makes it exceptionally efficient to cal-
culate in the local scenario. The concept however is
very general and can be easily extended to the global
case at the price of more intensive computations (see
Additional file 1).
Apart from methodological development, the paper

provides relevant insight into how experiments designed
for purposes other than parameter estimation contribute
to identifiability of model parameters. Non-identifiability
problem may not be easily mitigated by collecting large
number of measurements in experiments aimed at bio-
logical insight other than parameter estimation. Despite
exceptionally rich data on the NF-κB dynamics, a large
fraction of model parameters remains non-identifiable.
Experimental design strategies to be used in the multi-
parameter scenario have not been developed yet. System-
atic improvement of experimental design requires origins
of non-identifiability to be pinpointed and removed. Our
method constitutes a theoretically grounded approach to
examine link between correlations and non-identifiability
in a systematic way. Having a precise picture how cor-
relations translate into non-identifiability allows targeted
and rational design of further experiments. However it
does not provide any automated or systematic approach
to indicate a sequence of experiments leading to a
full identifiable model. It only provides information to
the modeller regarding sources of non-identifiability. It
only helps to understand how non-identifiability arrises
and provides guidelines whether considered experimental
perturbations can remove detected correlations.
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