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Abstract

By using some inequalities for NOD random variables, we give its application to
investigate the nonparametric regression model based on these errors. Some
consistency results for the estimator of g(x) are presented, including the mean
convergence, uniform convergence, almost sure convergence and convergence rate.
We generalize some related results and as an example of designed assumptions for
weight functions, we give the nearest neighbor weights.
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1 Introduction
Consider a fixed design regression model

Yni = g (xni) + εni, i = 1, 2, ..., n, (1:1)

where xni are design points on a set A in Rq for some q ≥ 1, g(·) is an unknown

function on A and εni are random errors. Assume that for each n, {εni, 1 ≤ i ≤ n} has

the same distribution as {εi, 1 ≤ i ≤ n}. As an estimator of g(·), the following weighted

regression estimator is given:

gn(x) =
n∑
i=1

Wni(x)Yni,

where Wni(x) = Wni(x,xn1,...,xnn) are weighted functions.

The above estimator was first proposed by Georgiev [1] and subsequently has been

studied by many authors. In the independent case, consistency and asymptotic normal-

ity have been investigated by Georgiev and Greblicki [2], Georgiev [3], Müller [4], and

the references therein. Fan [5] extended the work of Georgiev [3] and Müller [4] in the

estimation of the regression model to the case of Lq-mixingale for some 1 ≤ q ≤ 2.

Roussas [6] discussed strong consistency and quadratic mean consistency of gn(x), and

Roussas et al. [7] established asymptotic normality of gn(x) assuming that the errors

are from a strictly stationary stochastic process and satisfying the strong mixing condi-

tion. Tran et al. [8] obtained the asymptotic normality of gn(x) assuming that the errors

form a linear time series, more precisely, a weakly stationary linear process based on a

martingale difference sequence. Hu et al. [9] generalized the main results of Tran et al.
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[8]. Liang and Jing [10] established the consistency, uniform consistency, and asympto-

tic normality of gn(x) under negatively associated (NA) samples. Meanwhile, for the

semiparametric regression model, Ren and Chen [11] obtained the strong consistency

for the least squares estimator of b and the nonparametric estimator of g(t) based on

NA samples, Hu [12] obtained the consistency and complete consistency for these esti-

mations based on the linear time series, Baek and Liang [13] established some asymp-

totic results for these estimations under NA samples, Liang et al. [14] also established

some asymptotic results for a linear process based NA samples, etc. For more details

of semiparametric regression model, one can refer to Hardle et al. [15] and the refer-

ences therein.

In this article, we investigate the nonparametric regression model based on negatively

orthant dependent (NOD) random variables, which is weaker than NA random vari-

ables. Some related definitions are given as follows:

Definition 1.1 Two random variables X and Y are said to be NQD if for ∀ x, y Î R,

P
(
X ≤ x,Y ≤ y

) ≤ P (X ≤ x) P
(
Y ≤ y

)
.

A sequence of random variables {Xn, n ≥ 1} is said to be pairwise NQD if for all i, j Î
N, I ≠ j, and Xi and Xj are NQD.

The concept of NQD was intruduced by Lehmann [16] and he pointed out some

useful properties of NQD, for example, let X and Y be NQD, then

(i) EXY ≤ EXEY,

(ii) P(X >x, Y >y) ≤ P(X >x)P(Y >y), for ∀ x, y Î R,

(iii) if f, g are both nondecreasing (or nonincreasing) functions, then f(X) and g(Y)

are NQD.

Definition 1.2 A finite collection of random variables X1, X2,..., Xn is said to be NA if

for every pair of disjoint subsets A1, A2 of {1, 2,..., n},

Cov
{
f (Xi : i ∈ A1) , g

(
Xj : j ∈ A2

)} ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance exists.

An infinite sequence {Xn}n≥1 is NA if every finite subcollection is NA.

Definition 1.3 A finite collection of random variables X1, X2,...,Xn is said to be nega-

tively upper orthant dependent (NUOD) if for all real numbers x1,x2,...,xn,

P (Xi > xi, i = 1, 2, ...,n) ≤
n∏
i=1

P (Xi > xi),

and negatively lower orthant dependent (NLOD) if for all real numbers x1,x2,...,xn,

P (Xi ≤ xi, i = 1, 2, ...,n) ≤
n∏
i=1

P (Xi ≤ xi).

A finite collection of random variables X1, X2,...,Xn is said to be NOD if they are both

NUOD and NLOD.

An infinite sequence {Xn}n≥1 is said to be NOD (NUOD or NLOD) if every finite sub-

collection is NOD (NUOD or NLOD).
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The concepts of NA and NOD sequences were introduced by Joag-Dev and Proschan

[17]. They pointed out that NA random variables are NOD random variables, but

neither NUOD nor NLOD implies NA. Various results and examples of NOD random

variables can be found in Joag-Dev and Proschan [17], Bozorgnia et al. [18], Asadian et

al. [19], Wang et al. [20], Wu [21,22], Wang et al. [23,24], Li et al. [25] and Sung [26],

etc. Obviously, by the definitions of NOD and pairwise NQD, NOD random variables

are pairwise NQD random variables. For more results and examples of pairwise NQD

random variables, one can refer to Lehmann [16], Matula [27], Wu [28], Gan and

Chen [29], Li and Yang [30], etc. But unlike NOD random variables, pairwise NQD

random variables have not some nice inequalities such as Bernstein-type inequality as

we know.

Inspired by Liang and Jing [10] and other articles referred above, we investigate the

nonparametric regression model based on NOD random errors. By using the moment

inequality, Bernstein-type inequality and truncating method for NOD random vari-

ables, we obtain some consistency results for estimator of g(x) such as the mean con-

vergence, uniform convergence, almost sure convergence and convergence rate. We

generalize some results of Liang and Jing [10] for NA random variables to the case of

NOD random variables. Meanwhile, as an example of designed assumptions for weight

functions, we give the nearest neighbor weights.

For any function g(x), we use c(g) to denote all continuity points of function g on the

set A in Rq for some q ≥ 1. Let c, c1, c2, C, C1, C2,... denote the positive constants

whose values may vary at each occurrence. ⌈x⌉ denotes the largest integer not exceed-

ing x, I(B) is the indicator function of set B, x+ = xI(x ≥ 0), x- = -xI(x < 0) and ∥x∥
denotes Euclidean norm of x. In this article, main results are presented in Section 2,

some lemmas and the proofs of main results are presented in Sections 3 and 4,

respectively.

2 The main results
Under the nonparametric regression model of (1.1), for any fixed point x Î A, some

assumptions on weighted function Wni(x) = Wni(x, xn1,..., xnn) are given as follows:

(H1)
∑n

i=1 Wni(x) → 1 as n ® ∞;

(H2)
∑n

i=1

∣∣Wni(x)
∣∣ ≤ C for all n;

(H3)
∑n

i=1 W
2
ni(x) → 0 as n ® ∞;

(H4)
∑n

i=1

∣∣Wni(x)
∣∣ · ∣∣g (xni) − g(x)

∣∣ I (‖xni − x‖ > a) → 0 as n ® ∞ for all a > 0.

Theorem 2.1 Let {εn, n ≥ 1} be a mean zero NOD sequence. Assume that the condi-

tions (H1)-(H4) hold true. If supn≥1Eε2n < ∞, then for x Î c(g) and some p Î (0, 2],

E
∣∣g(x) − g(x)

∣∣p → 0, as n → ∞. (2:1)

If sup
n≥1

E|εn|p < ∞ for some p > 2, then (2.1) also holds true.

In order to obtain uniform convergence for the estimator of g(x), for any fixed point

x on a compact set A in Rq for some q ≥ 1, some uniform version of assumptions on

Wni(x) = Wni(x,xn1,...,xnn) are replaced by that as follows:
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(H′
1)supx∈A

∣∣∣∑n

i=1
Wni(x) − 1

∣∣∣ → 0 as n → ∞;

(H′
2)supx∈A

∣∣∣∑n

i=1
Wni(x)

∣∣∣ ≤ C for all n;

(H′
3)supx∈A

∑n

i=1
W2

ni(x) → 0 as n → ∞;

(H′
4)supx∈A

∑n

i=1

∣∣Wni(x)
∣∣ I (‖xni − x‖ > a) → 0 as n → ∞ for all a > 0.

Theorem 2.2 Let {εn, n > 1} be a mean zero NOD sequence. Assume that the condi-

tions (H′
1) − (H′

4)hold true and g is continuous on the compact set A. If

supn≥1Eε2n < ∞, then for some p Î (0, 2],

sup
x∈A

E
∣∣gn(x) − g(x)

∣∣p → 0, as n → ∞. (2:2)

If sup
n≥1

E|εn|p < ∞ for some p > 2, then (2.2) also holds true.

Next, we will study the almost sure convergence and convergence rate for the esti-

mator of g(x). Similarly, for any fixed point x on the compact set A in Rq for some q

≥ 1, some assumptions on the Wni(x) = Wni(x, xn1,...,xnn) are shown as follows:

(H5)
∣∣∑n

i=1 Wni(x) − 1
∣∣ = O

(
n−1/4

)
; ;

(H6)
∑n

i=1

∣∣Wni(x)
∣∣ ≤ C for all n ≥ 1 and max1≤i≤n

∣∣Wni(x)
∣∣ = O

(
n−1/2log−3/2n

)
;

(H7)
∑n

i=1

∣∣Wni(x)
∣∣ · ∣∣g(xni) − g(x)

∣∣ I (‖xni − x‖ > an−1/4
)
= O

(
n−1/4

)
for some a >

0.

Theorem 2.3 Let {εn, n ≥ 1} be a mean zero NOD sequence such that

supn≥1Eε2n < ∞. Suppose that the conditions (H5)-(H7) hold true and g(x) satisfies a

local Lipschitz condition around the point x. Then for x Î A,

gn(x) → g(x), as n → ∞, a.s. (2:3)

Theorem 2.4 Let {εn, n ≥ 1} be a mean zero NOD sequence such that

supn≥1Eε2n < ∞. Suppose that the conditions (H5)-(H7) hold true and g(x) satisfies a

local Lipschitz condition around the point x. Then for x Î A,

gn(x) − g(x) = O
(
n−1/4

)
, a.s. (2:4)

Remark 2.1 The similar assumptions on weighted functions can be found in Ren

and Chen [11], Hu et al. [31] and Liang and Jing [10], etc. Under the NA sequence

and other assumptions, for some p > 1, Liang and Jing [10] obtained the result E|gn(x)-

g(x)|p ® 0 as n ® ∞ (see Liang and Jing [10, Theorem 2.1]). In our Theorem 2.1, we

give the result E|gn(x)-g(x)|
p ® 0 as n ® ∞ for some p > 0. Liang and Jing [10] also

studied the strong consistency of the estimator for g(x). In our Theorems 2.3 and 2.4,

the strong consistency and convergence rate of the estimator for g(x) are presented.
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Since NA sequence is a NOD sequence, we generalize some results of Liang and Jing

[10] to the case of NOD sequence.

Example 2.1 Here, we give an example that the designed assumptions (H5)-(H7) are

satisfied for the nearest neighbor weights. Without loss of generality, let A = [0,1] and

xni =
i
n
, 1 ≤ i ≤ n . For x Î A, we rewrite |xn1 - x|, |xn2 - x|,..., |xnn - x| as follows

∣∣∣x(n)R1(x)
− x

∣∣∣ ≤
∣∣∣x(n)R2(x)

− x
∣∣∣ ≤ · · ·

∣∣∣x(n)Rn(x)
− x

∣∣∣ , (2:5)

if |xni - x| = |xnj - x|, |xni - x| is in frond of |xnj - x| for i <j. Let kn = ⌈n5/8⌉ and

define the nearest neighbor weight functions as following

Wni(x) = Wni (x, xn1, xn2, . . . , xnn) =

⎧⎨
⎩

1
kn

if |xni − x| ≤
∣∣∣x(n)Rk(x)

− x
∣∣∣ ,

0, otherwise.
(2:6)

Consequently, for every x Î [0,1], we can find by definition of Ri (x) and choice of

xni that

n∑
i=1

Wni(x) =
n∑
i=1

WnRi(x)(x) =
kn∑
i=1

1
kn

= 1, (2:7)

max
1≤i≤n

Wni(x) =
1
kn

≤ c1
n5/8

, (2:8)

n∑
i=1

Wni(x)I
(
|xni − x| > an−1/4

)
≤

n∑
i=1

Wni(x)
(xni − x)2

a2n−1/2

=
kn∑
i=1

(
x(n)Ri(x)

− x
)2

kna2
n1/2 ≤

kn∑
i=1

(
i/n
)2

kna2
n1/2

≤
(
kn
na

)2

n1/2 ≤ c2
n1/4

, ∀a > 0.

(2:9)

If g is continuous on [0,1], then by (2.6)-(2.9), it can find that the assumptions of

(H1)-(H7) and (H′
1) − (H′

4) are satisfied.

3 Some lemmas
Lemma 3.1 (cf. Bozorgnia et al. [18]). Let random variables X1,X2,...,Xn be NOD, f1,f2,...,

fn be all nondecreasing (or nonincreasing) functions, then random variables f1(X1), f2
(X2),..., fn(Xn) are NOD.

Lemma 3.2 (cf. Asadian et al. [19]). Let {Xn, n ≥ 1} be a NOD sequence such that

EXn = 0 and E|Xn|
p < ∞ for all n ≥ 1 and p ≥ 2. Then

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ cp

⎧⎨
⎩

n∑
i=1

E|Xi|p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭ ,

where cp depends only on p.
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Lemma 3.3 (cf. Wang et al. [20]). Let {Xn}n≥1 be a sequence of NOD random vari-

ables such that EXn = 0 and |Xn| ≤ b for each n ≥ 1, where b is a positive constant.

Denote �2
n =

∑n
i=1 EX

2
i for each n ≥ 1. Then for every ε > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

{
− ε2

2
(
2�2

n + bε
)
}
.

4 Proofs of the main results
Proof of Theorem 2.1: By Cr inequality, it has

E
∣∣gn(x) − g(x)

∣∣p ≤ cp
{
E
∣∣gn(x) − Egn(x)

∣∣p + ∣∣Egn(x) − g(x)
∣∣p} . (4:1)

For x Î c(g) and a > 0,

∣∣Egn(x) − g(x)
∣∣ ≤

n∑
i=1

∣∣Wni(x)
∣∣ · ∣∣g (xni) − g(x)

∣∣ I (‖xni − x‖ ≤ a)

+
n∑
i=1

∣∣Wni(x)
∣∣ · ∣∣g (xni) − g(x)

∣∣ I (‖xni − x‖ > a)

+
∣∣g(x)∣∣ ·

∣∣∣∣∣
n∑
i=1

Wni(x) − 1

∣∣∣∣∣ .
So, similar to the proof of (2.10) in Hu et al. [31], by conditions (H1), (H2) and (H4),

it is easy to have that∣∣Egn(x) − g(x)
∣∣ → 0, x ∈ c(g). (4:2)

On the other hand, by Lemma 3.1, for the fixed x, we can see that{
W+

ni(x)εi, 1 ≤ i ≤ n
}

and
{
W−

ni(x)εi,≤ i ≤ n
}
are also NOD sequences. Combining

with Wni(x)εi = W+
ni(x)εi − W−

ni(x)εi , without loss of generality, we assume Wni(x) ≥ 0

in the proof. If 0 <p ≤ 2, by Jensen’s inequality, Lemma 3.2, (H3) and sup
n≥1

Eε2n < ∞ , we

have

E
∣∣gn(x) − Egn(x)

∣∣p = E

∣∣∣∣∣
n∑
i=1

Wni(x)εni

∣∣∣∣∣
p

= E

∣∣∣∣∣
n∑
i=1

Wni(x)εi

∣∣∣∣∣
p

≤
⎡
⎣E

(
n∑
i=1

Wni(x)εi

)2
⎤
⎦

p/2

≤ C1

[
n∑
i=1

W2
ni(x)Eε2i

]p/2

≤ C2

[
n∑
i=1

W2
ni(x)

]p/2

→ 0,

(4:3)

following from that {εni, 1 ≤ i ≤ n} has the same distribution as {εi, 1 ≤ i ≤ n} for each

n. Otherwise, for p > 2, by Lemma 3.2, supn≥1E|ε|p < ∞ and (H3) again, we obtain
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E
∣∣gn(x) − Egn(x)

∣∣p = E

∣∣∣∣∣
n∑
i=1

Wni(x)εni

∣∣∣∣∣
p

= E

∣∣∣∣∣
n∑
i=1

Wni(x)εi

∣∣∣∣∣
p

≤ C3

⎧⎨
⎩

n∑
i=1

Wp
ni(x)E|εi|p +

[
n∑
i=1

W2
ni(x)Eε2i

]p/2
⎫⎬
⎭

≤ C4

⎧⎨
⎩
[

n∑
i=1

W2
ni(x)

]p/2

+

[
n∑
i=1

W2
ni(x)

]p/2
⎫⎬
⎭ → 0,

(4:4)

since
(∑n

i=1 a
α
i

)1/α ≥
(∑n

i=1 a
β

i

)1/β
for any positive number sequence {ai,1 ≤ i ≤ n}

and 1 ≤ a ≤ b. Therefore, by (4.1)-(4.4), the desired result (2.1) has been proved

completely.

Proof of Theorem 2.2: Since g is continuous in the compact set A, g is uniformly

continuous in the compact set A. Consequently, similar to the proof of Theorem 2.1,

we can get that

lim
n→∞ sup

x∈A
E
∣∣gn(x) − Egn(x)

∣∣p = 0, lim
n→∞ sup

x∈A

∣∣Egn(x) − g(x)
∣∣ = 0.

Therefore,

lim
n→∞ sup

x∈A
E
∣∣gn(x) − g(x)

∣∣p ≤ cp

{
lim
n→∞ sup

x∈A
E
∣∣gn(x) − Egn(x)

∣∣p + lim
n→∞ sup

x∈A

∣∣Egn(x) − g(x)
∣∣p} = 0,

which implies the desired result (2.2).

Proof of Theorem 2.3: Combining the proof of (4.2) with the assumptions of (H5)-

(H7) and g(x) satisfying a local Lipschitz condition around the point x, we can get that

∣∣Egn(x) − g(x)
∣∣ = O

(
n−1/4

)
. (4:5)

Therefore, for x Î A, to prove (2.3), we only have to show that

gn(x) − Egn(x) → 0, as n → ∞, a.s. (4:6)

Without loss of generality, we assume that Wni(x) ≥ 0 in the proof. Let

ε
(n)
1,i = −i1/2I

(
εni < −i1/2

)
+ εniI

(
|εni| ≤ i1/2

)
+ i1/2I

(
εni > i1/2

)
,

ε
(n)
2,i =

(
εni − i1/2

)
I
(
εni > i1/2

)
, ε

(n)
3,i =

(
εni + i1/2

)
I
(
εni < −i1/2

)
,

ε1,i = −i1/2I
(
εi < −i1/2

)
+ εiI

(
|εi| ≤ i1/2

)
+ i1/2I

(
εi > i1/2

)
,

ε2,i =
(
εi − i1/2

)
I
(
εi > i1/2

)
, ε3,i =

(
εi + i1/2

)
I
(
εi < −i1/2

)
.

Since Eεni = Eεi = 0 for each n, it is easy to see that

gn(x) − Egn(x) =
n∑
i=1

Wni(x)εni

=
n∑
i=1

Wni(x)
[
ε
(n)
1,i − Eε

(n)
1,i

]
+

n∑
i=1

Wni(x)
[
ε
(n)
2,i − Eε

(n)
2,i

]
+

n∑
i=1

Wni(x)
[
ε
(n)
3,i − Eε

(n)
3,i

]
=: Tn1 + Tn2 + Tn3.

(4:7)
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Obviously, for the fixed x and n,
{
Wni(x)

(
ε1,i − Eε1,i

)}
1≤i≤n is a NOD sequence with

mean zero. Meanwhile, by the condition (H6), it has

max
1≤i≤n

∣∣Wni(x)
(
ε1,i − Eε1,i

)∣∣ ≤ 2n1/2 max
1≤i≤n

∣∣Wni(x)
∣∣ ≤ c1log

−3/2n,

n∑
i=1

Var
[
Wni(x)

(
ε1,i − Eε1,i

)] ≤
n∑
i=1

W2
ni(x)Eε2i

≤ c2 max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

∣∣Wni(x)
∣∣ ≤ c3n

−1/2log−3/2n.

Since {εni, 1 ≤ i ≤ n} has the same distribution as {εi, 1 ≤ i ≤ n} for each n, we obtain

by applying Lemma 3.3 that for every � > 0,

P (|Tn1| ≥ ε) = P

(
n∑
i=1

Wni(x)
[
ε
(n)
1,i − Eε

(n)
1,i

]
≥ ε

)
= P

(
n∑
i=1

Wni(x)
[
ε1,i − Eε1,i

] ≥ ε

)

≤ 2 exp

⎧⎨
⎩ ε2

2
(
2c3n−1/2log−3/2n + c1εlog

−3/2n
)
⎫⎬
⎭

≤ 2 exp
{
−c4log

3/2n
}

≤ c5n
−2, for n large enough,

which implies

Tn1 =
n∑
i=1

Wni(x)
[
ε
(n)
1,i − Eε

(n)
1,i

]
→ 0, as n → ∞, a.s., (4:8)

following from Borel-Cantelli lemma.

Next, we turn to estimate Tn2 and Tn3. It can be checked by sup
n≥1

Eε2n < ∞ that

∞∑
i=1

Eε
(n)
2,i

i1/2log5/4(2i)
=

∞∑
i=1

Eε2,i

i1/2log5/4(2i)
≤

∞∑
i=1

E
[
εiI
(
εi > i1/2

)]
i1/2log5/4(2i)

≤
∞∑
i=1

Eε2i

ilog5/4(2i)
< ∞,

(4:9)

which implies

∞∑
i=1

ε
(n)
2,i

i1/2log5/4(2i)
< ∞, a.s.

Consequently, by Kronecker’s lemma, we have that

1

n1/2log5/4(2n)

n∑
i=1

ε
(n)
2,i → 0, a.s.

Thus, by the condition (H6), it is easy to see that∣∣∣∣∣
n∑
i=1

Wni(x)ε
(n)
2,i

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

ε
(n)
2,i ≤ c7n−1/2log−3/2n

n∑
i=1

ε
(n)
2,i

= o
(
log−1/4n

)
, a.s.

(4:10)
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Obviously, by sup
n≥1

Eε2n < ∞ and (H6) again,

∣∣∣∣∣
n∑
i=1

Wni(x)Eε
(n)
2,i

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

Wni(x)Eε2,i

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

E
[
|εi| I

(
|εi| ≥ i1/2

)]

≤ c8n−1/2log−3/2n
n∑
i=1

i−1/2E
[
ε2i I

(
|εi| ≥ i1/2

)]

= O
(
log−3/2n

)
.

(4:11)

Combining (4.10) with (4.11), it follows

|Tn2| =
∣∣∣∣∣

n∑
i=1

Wni(x)
[
ε
(n)
2,i − Eε

(n)
2,i

]∣∣∣∣∣ = o
(
log−1/4n

)
, a.s. (4:12)

Likewise, by sup
n≥1

Eε2n < ∞ , we will found that

∞∑
i=1

E
∣∣∣ε(n)3,i

∣∣∣
i1/2log5/4(2i)

=
∞∑
i=1

E
∣∣ε3,i∣∣

i1/2log5/4(2i)
≤

∞∑
i=1

−E
[
εiI
(
εi < −i1/2

)]
i1/2log5/4(2i)

≤
∞∑
i=1

Eε2i

ilog5/4(2i)
< ∞

which implies

∞∑
i=1

∣∣∣ε(n)3,i

∣∣∣
i1/2log5/4(2i)

< ∞, a.s.

Then, by Kronecker’s lemma

1

n1/2log5/4(2n)

n∑
i=1

∣∣∣ε(n)3,i

∣∣∣ → 0, a.s.

Consequently, by (H6), it has that∣∣∣∣∣
n∑
i=1

Wni(x)ε
(n)
3,i

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

∣∣∣ε(n)3,i

∣∣∣ = o
(
log−1/4n

)
, a.s.

On the other hand, by (H6) and sup
n≥1

Eε2n < ∞ again,

∣∣∣∣∣
n∑
i=1

Wni(x)Eε
(n)
3,i

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

Wni(x)Eε3,i

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

E
[
|εi| I

(
|εi| > i1/2

)]

≤ cn−1/2log−3/2n
n∑
i=1

i−1/2E
[
ε2i I

(
|εi| > i1/2

)]

= O
(
log−3/2n

)
.

Finally,

|Tn3| =
∣∣∣∣∣

n∑
i=1

Wni(x)
[
ε
(n)
3,i − Eε

(n)
3,i

]∣∣∣∣∣ = o
(
log−1/4n

)
, a.s. (4:13)
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Therefore, by (4.7), (4.8), (4.12) and (4.13), (4.6) is completely proved. The desired

result (2.3) follows from (4.5) and (4.6) immediately.

Proof of Theorem 2.4: By the estimation of (4.5), to prove (2.4), we only need to

prove that |gn(x) - Egn(x)| = O(n-1/4), a.s. It is also to assume that Wni(x) ≥ 0 in the

proof. Similar to the proof of Theorem 2.3, we will use the same notation ε
(n)
q,i , εq,i and

Tnq for q = 1, 2, 3, where i1/2 is replaced by i1/4. Obviously sup
n≥1

Eε4n < ∞ implies

sup
n≥1

Eε2n < ∞ , by (H6), it has

max
1≤i≤n

∣∣Wni(x)
(
ε1,i − Eε1,i

)∣∣ ≤ 2n1/4 max
1≤i≤n

∣∣Wni(x)
∣∣ ≤ c1n−1/4log−3/2n,

n∑
i=1

Var
[
Wni(x)

(
ε1,i − Eε1,i

)] ≤
n∑
i=1

W2
ni(x)Eε2i ≤ c2n

−1/2log−3/2n.

Since {εni, 1 ≤ i ≤ n} has the same distribution as {εi, 1 ≤ i ≤ n} for each n, we obtain

by applying Lemma 3.3 that for every � > 0

P
(
|Tn1| ≥ εn−1/4

)
= P

(
n∑
i=1

Wni(x)
[
ε
(n)
1,i − Eε

(n)
1,i

]
≥ εn−1/4

)

= P

(
n∑
i=1

Wni(x)
[
ε1,i − Eε1,i

] ≥ εn−1/4

)

≤ 2 exp

⎧⎨
⎩− ε2n−1/2

2
(
2c2n−1/2log−3/2n + c1εn−1/2log−3/2n

)
⎫⎬
⎭

≤ 2 exp
{
−c3log

3/2n
}

≤ c4n−2, for n large enough,

which implies by Borel-Cantelli lemma that

n1/4Tn1 → 0, a.s. (4:14)

Meanwhile, it can be checked by sup
n≥1

Eε4n < ∞ that

∞∑
i=1

Eε
(n)
2,i

i1/4log3/2(2i)
=

∞∑
i=1

Eε2,i

i1/4log3/2(2i)
≤

∞∑
i=1

E
[
εiI
(
εi > i1/4

)]
i1/4log3/2(2i)

≤
∞∑
i=1

Eε4i

ilog3/2(2i)
< ∞,

which implies

∞∑
i=1

ε
(n)
2,i

i1/4log3/2(2i)
< ∞, a.s.

Then, we have by Kronecker’s lemma that

1

n1/4log3/2(2n)

n∑
i=1

ε
(n)
2,i → 0, a.s.
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Consequently, by (H.6), it follows∣∣∣∣∣
n∑
i=1

Wni(x)ε
(n)
2,i

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

ε
(n)
2,i = o

(
n−1/4

)
, a.s., (4:15)

and ∣∣∣∣∣
n∑
i=1

Wni(x)Eε
(n)
2,i

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

Wni(x)Eε2,i

∣∣∣∣∣
≤ max

1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

E
[
|εi| I

(
|εi| > i1/4

)]

≤ c5n−1/2log−3/2n
n∑
i=1

i−3/4E
[
ε4i I

(
|εi| > i1/4

)]

= O
(
n−1/4log−3/2n

)
.

(4:16)

On the other hand, it can be checked that

∞∑
i=1

E
∣∣∣ε(n)3,i

∣∣∣
i1/4log3/2(2i)

=
∞∑
i=1

E
∣∣ε3,i∣∣

i1/4log3/2(2i)
≤

∞∑
i=1

−E
[
εiI
(
εi < −i1/4

)]
i1/4log3/2(2i)

≤
∞∑
i=1

Eε4i

ilog3/2(2i)
< ∞,

which implies

∞∑
i=1

∣∣∣ε(n)3,i

∣∣∣
i1/4log3/2(2i)

< ∞, a.s.

So, by Kronecker’s lemma,

1

n1/4log3/2(2n)

n∑
i=1

∣∣∣ε(n)3,i

∣∣∣ → 0, a.s.

Consequently, by (H.6), we have∣∣∣∣∣
n∑
i=1

Wni(x)ε
(n)
3,i

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

∣∣∣ε(n)3,i

∣∣∣ = o
(
n−1/4

)
, a.s., (4:17)

and ∣∣∣∣∣
n∑
i=1

Wni(x)Eε
(n)
3,i

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

Wni(x)Eε3,i

∣∣∣∣∣
≤ max

1≤i≤n

∣∣Wni(x)
∣∣ n∑
i=1

E
[
|εi| I

(
|εi| > i1/4

)]

≤ cn−1/2log−3/2n
n∑
i=1

i−3/4E
[
ε4i I

(
|εi| > i1/4

)]

= O
(
n−1/4log−3/2n

)
.

(4:18)

Finally, similar to the proof of (2.3), by (4.14)-(4.18), it easily has that |gn(x) -Egn(x)|

= O(n-1/4), a.s..
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