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Abstract A so called “weak value” of an observable in quantum mechanics (QM)
may be obtained in a weak measurement + post-selection procedure on the QM sys-
tem under study. Applied to number operators, it has been invoked in revisiting some
QM paradoxes (e.g., the so called Three-Box Paradox and Hardy’s Paradox). This
requires the weak value to be interpreted as a bona fide property of the system con-
sidered, a par with entities like operator mean values and eigenvalues. I question such
an interpretation; it has no support in the basic axioms of quantum mechanics and it
leads to unreasonable results in concrete situations.

Keywords Weak value · Number operator · Hardy’s paradox · Interpretation of QM

1 Introduction

The pioneering work by Aharonov, Albert and Vaidman [1] introduced the concept
of ‘weak measurements’ of an observable in quantum mechanics (QM) in combina-
tion with the procedure of ‘post-selection’. The result of such a weak measurement
+ post-selection can be expressed in terms of the ‘weak value’ (f Ôin)w of the ob-
servable O under study. For an initial (‘pre-selected’) state |in〉 and a final (‘post-
selected’) state |f 〉, this weak value is defined by1

1It can be measured in a so called indirect measurement scheme in which the examined ‘system’ starts in
the initial state |in〉 (‘pre-selection’), interacts weakly with a suitable ‘meter’, and is then projected into a
final state |f 〉 (‘post-selection’). Following this procedure, the weak value can then be obtained by suitably
reading off the meter. See, e.g., [2–4] for further details.
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(f Ôin)w := 〈f |Ô|in〉
〈f |in〉 (1)

The basic idea of weak measurement + post-selection has since attracted much in-
terest; for recent reviews with further references see, e.g., [2–4]. Not the least has the
field opened up new tools for experimentalists to investigate aspects of phenomena
that were thought impossible earlier. These include determining (even if only statisti-
cally) the trajectories in a double slit experiment without destroying the interference
pattern [5], and directly measuring the wave function [6]. The use of the technique
for amplification purposes has been spectacular [7–9]. Weak measurements have also
been employed to illuminate the fundamental difference between classical and quan-
tum mechanics exhibited by violation of Leggett-Garg inequalities [3, 10–14], also
called “Bell inequalities in time”.

In addition, weak values of number operators have been invoked to revisit what
are conceived as QM paradoxes, like the so called Three-Box Paradox [15–18] and
Hardy’s Paradox [19–22]. It is even claimed that some of the so called ‘counter-
factual’ statements in these ‘paradoxes’ can be made ‘factual’ by using weak mea-
surements, quantified in terms of weak values, instead of the ordinary ‘strong’ mea-
surements. These claims rely on an straight-forward interpretation of a weak value
on a par with, e.g., a usual mean value. That is, one ascribes a meaning to a weak
value as an ‘ordinary’ property—like a probability, the number of particles, etc.—of
the system under investigation.

In this paper, I investigate these very basic interpretational issues. In particular,
I criticize such a realistic, straightforward interpretation (for short “RSFI” in the se-
quel). My emphasis is on a very fundamental (and also elementary) level: given that a
weak value (f Ôin)w has the definition and the operational connotations that it has, are
there grounds for seeing it as a bona fide, ‘ordinary’ property (like a mean value 〈Ô〉;
see Sect. 2 for a more explicit description of what I mean by an ‘ordinary’ property)?
I approach this problem from different angles: Do the conventional, basic rules—the
‘axioms’—of QM have any bearing? Is an RSFI consistent with varying the entities
defining (f Ôin)w , in particular with varying the post-selected state |f 〉?

Note that I do not here question the weak value as a measureable entity pertaining
to the system under study, nor the many ingenious ways experimentalist have ex-
ploited the weak measurement + post-selection idea ([5–9, 11–14]; see also [3] for a
brief review). What I do question is whether a weak value can be given an ‘ordinary’
meaning.

My focus is on the use of weak values for number operators. However, I begin
in Sect. 2 with some more general observations and remarks on weak values. In
Sects. 3–5, I then study how weak values of number operators are used in connection
with (variants of) the Three-Box Paradox, Hardy’s Paradox and a Mach-Zehnder in-
terferometer, and show that an RSFI of these weak values leads to results which seem
to lack a reasonable meaning. An appendix is devoted to the relation between weak
values of number operators and the so called Aharonov-Bergmann-Lebowitz (ABL)
probability formula [23].
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2 Interpreting a Weak Value—Some General Remarks

In the application of weak values, it is often taken for granted, explicitly or implicitly,
that en entity like (f Ôin)w has the same basic meaning as an average value 〈Ô〉. This
is done by Aharonov and collaborators when they treat the Three-Box Paradox and
the Hardy’s Paradox as I will describe in some detail in Sects. 3 and 4 below. It is also
what they do when they discuss “negative kinetic energy” in tunneling experiments
[15]. And Vaidman [24, 25] has argued that this is legitimate:

If we are certain that a procedure for measuring a certain variable will lead
to a definite shift of the unchanged probability distribution of the pointer, then
there is an element of reality: the variable equal to this shift. [24]

Sometimes they or other protagonist of the weak-measurement + post-selection
procedure even state that there are experimental support for ascribing such an ‘ordi-
nary’ meaning to the weak value [2, 25–28].

Ever since the path-breaking paper [1] by Aharonov et al. there has been much dis-
cussion of what a ‘weak measurement’ really can accomplish and what significance
one can and should ascribe to a ‘weak value’; the whole discussion can be retrieved
from [2, 15] and references therein. Of the previous criticisms of weak values that
seems most similar to mine, I should mention [29, 30] (to which Aharonov and Vaid-
man replied [31]) and [32]. Of the more recent ones, I emphasize [33] and, even more
[34], in which Kastner explicitly points out that a weak value “should be thought of as
an amplitude and not an expectation value at all.” Indeed, the weak value is the ratio
of two amplitudes. My arguments may be seen as a further deepening of Kastner’s
criticism.

It is without question that the weak value (f Ôin)w is an “element of reality” in
the general sense described by Vaidman [24] in the quotation above: the weak value
is an experimentally accessible entity. And part of the ingenuity of introducing the
weak measurement + post-selection procedure is that it allows direct measurement
of such a ratio of two amplitudes. But the very fact that an entity can be measured
does in no way entails its interpretation. Experiments really have little bearing on the
interpretation of the weak value; it must be the theory that decides what meaning
to ascribe to it. Nor can the fact that experiments confirm some of the predictions
for weak values be taken as an argument for the meaning of the weak value. For
examples, experiments on Hardy’s Paradox [21, 22] are indeed ingenious in their
own right. However, what they find is but a consequence of QM: they do confirm the
results of Aharonov et al., results that are entirely based on QM. To put it in another
way: should the experimentalists have found disagreement with the results derived
by Aharonov et al., they would have found a violation of QM.

In conclusion so far, the facts that (f Ôin)w can be measured and that the results
in concrete experimental situations agree with theoretical predictions cannot be taken
as support for an RSFI of (f Ôin)w as an ‘ordinary’ property.

In searching for an argument that could motive what meaning to ascribe to
(f Ôin)w , being the ratio of two amplitudes, it is natural to go back to the very founda-
tions of QM, to the basic rules that govern all the endeavor: QM (for a finite system)
lives in a (separable) Hilbert space H, an observable O is represented by a self-adjoint
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operator Ô in H, the result of (strongly) measuring the observable O is an eigenvalue
on of Ô , a state is describes by a density matrix ρ̂ in H, and the probability of ob-
taining a particular eigenvalue on equals the trace Tr(P̂nρ̂) with P̂n the projector onto
the subspace of H spanned by the eigenvectors of Ô with eigenvalue on. These rules
imply, i.e., that one may ascribe experimental and conceptual meaning to theoretical
entities like the eigenvalues of Ô , the probability of obtaining an eigenvalue, and the
mean value of the operator in a given state. These are examples of what I call the
‘ordinary’ meaning of the theoretical concepts of QM.

Nowhere in these basic rules can I find any motivation for interpreting a ratio
of two amplitudes, like the weak value (f Ôin)w , as an ‘ordinary’ property in
this sense.

But the basic rules are not sacred.2 No-one would object if they were supple-
mented with further insight provided this insight were in agreement with all previous
experience and with other ‘reasonable’ arguments, in particular also being compati-
ble with the usual meaning of the concepts involved. To try to find out whether such
an approach to the meaning of the weak value (f Ôin)w is a practical way forward,
I will devote the following sections to investigating some concrete applications of
weak values to the cases in which the operator Ô is a number operator.

3 The Three-Box Paradox

One (thought) experiment which Aharonov et al. analyzed in terms of weak val-
ues is the Three-Box Paradox. Imagine, they say [15–17], a single QM particle
in any one of three boxes A, B and C. The QM states representing the parti-
cle in box A is denoted |A〉, with corresponding notations for B and C. Let the
particle be described by a superposition given by the initial (‘pre-selected’) state
|in〉 = (|A〉 + |B〉 + |C〉)/√3. Suppose further that the particle is later found in the
(‘post-selected’) state |f 〉 = (|A〉 + |B〉 − |C〉)/√3. Moreover, consider an (interme-
diate in time) measurement of the projection operator Â := |A〉〈A|. It is a number
operator which, upon measurement, counts the number of particles in the box A; its
mean value gives the probability of finding the particle in box A. In the same way,
B̂ := |B〉〈B| is the number operator for the particle in box B , and similarly for C.
One is interested in the probability probA (in A) for finding the particle in box A

when measuring Â, as well as the corresponding probabilities for B and C.
Consider first an ordinary, ‘strong’ measurement of the respective projec-

tion/number operators. The ABL rule as presented in the Appendix applies and gives,
for the pre- and post-selected state as given above,

probA(in A) = 1 = probB(in B) while probC(in C) = 1/5 (2)

2For example, some authors [35, 36] have proposed to consider (essentially) the weak value as an extended
probability, which might even take complex values. I shall not follow that track here; it is not what I call
“compatible with the usual meaning of the concepts involved”.
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At first, there seems to be a paradox here. Not only does the total probability to find
the particle in any box exceed 1, it is with certainty or at least with probability 1 to be
found both in box A and in box B . But the paradox disappears when one realizes that
the results apply to different projective measurements, which certainly cannot be per-
formed in conjunction without each measurement heavily disturbing (‘collapsing’)
the system and thereby creating totally new conditions for a subsequent measurement.
In other words, the paradox only appears if one allows ‘counter-factual’ statements
which require, for their verification, measurements that are non-implementable in an
ordinary, ‘strong’ measurement scheme.

Could weak measurements come to the rescue? It is certainly possible to imple-
ment them. Indeed, so the advocates of the weak measurement plus post-selection
procedure argue, nothing forbids one to do all three weak measurements of the num-
ber operators Â, B̂ and Ĉ successively on the given pre- and post-selected states:
the fact that they are weak measurements, so the argument goes, ensures that one
may (approximately) disregard measurement disturbances. The conclusion is that,
with weak measurements, there are not necessarily any counter-factual statements
involved.

The relevant weak values are

(f Âin)w = 1 = (f B̂in)w. (3)

On the other hand,

(f Âin)w + (f B̂in)w + (f Ĉin)w = [
f
(Â + B̂ + Ĉ)in

]
w

= 1, (4)

which together imply

(f Ĉin)w = −1! (5)

(Of course, this could also be calculated directly from the explicit expression for
(f Ĉin)w .) Consequently, with an ‘ordinary’ meaning of these weak values in which
one interprets the weak value as a bona fide value of a number operator, one arrives
at the mind-boggling result that there is minus one particle in box C!

Let me see how this stands further scrutiny.
Let me first note that the result for the weak values of Â and B̂ being unity is

in agreement with the strong, ABL-values in Eq. (2) being unity (see the Appendix
below).

The ‘strong’ values of a projection operator are its eigenvalues, 1 and 0. It is this
fact that, from the basic rules of QM reviewed in Sect. 2 above, legitimates the result
of a measurement of a projection operator to be interpreted as the (relative) number
of particles in the respective box, and its mean value as the probability of finding the
particle in that box. But how legitimate is it to interpret the weak value of a projection
operator here as ‘the’, or even ‘a’, particle number, or as a probability?

An important difference to an ordinary mean value is that a weak value depends
not only on the pre-selected state, |in〉, but also on the post-selected one, |f 〉. In other
words, whatever it is, it is not only referring to the system in the initial, pre-selected
state, but to the whole set-up of the situation being analyzed. And, by considering
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different combinations of the basis states |A〉, |B〉 and |C〉 for |f 〉, one may get es-
sentially any result for the weak value of a number operator. In fact, one may look
upon the post-selected state as a kind of filter which can be tuned as one wants. Ex-
pressed differently, even for a given pre-selected state |in〉, like the one chosen here,
there is still the freedom of choosing the post-selected state |f 〉 in any way one likes.
The particular one |f 〉 = (|A〉+ |B〉− |C〉)/√3 used in the formulation above has no
preordained physical meaning. It is just one among a multiple continuum of choices,
none of which seems more natural than the other. I devote a section in my review [3]
to a more extensive study of this ambiguity.

Attempts have also been made by Aharonov and collaborators to give, in terms
of thought experiments, physical meaning to, e.g., the value −1 for the weak value
of a number operator. However, as I show in [3] for the particular case treated by
Rohrlich and Aharonov in [37], their explanation, too, is heavily dependent on the
filtering function of post-selection. Therefore, such a thought experiment carries no
further explanatory power.

In conclusion, in this case of the so called Three-Box Paradox, there are strong
arguments disfavoring an RSFI of the weak values as ‘ordinary’ values of number
operators. Besides not having any motivation from the basic postulates of QM, the
weak values here can take essentially any complex value, not in any obvious way
related to a number. More conceptually, for a given initial state, the weak values
depend also on the choice of the final, post-selected state and cannot be interpreted
merely as a property of the initial state alone: a weak value like (f Ĉin)w cannot
simply tell how many particles there are in box C.

4 Hardy’s Paradox

In [19], Hardy outlined a QM experiment that implies a paradox if interpreted in
classical terms. Aharonov and collaborators gave an analysis of the experiment [20]
in terms of weak values, in which they again relied on an RSFI of weak values of
number operators. In this section, I discuss the legitimacy of this interpretation. My
treatment here relies heavily on the paper [20] by Aharonov et al.

Two experimental groups have performed experiments [21, 22] and confirmed the
results of Aharonov et al. As I made clear in Sect. 2 above, this has no bearing on the
interpretation of the weak values.

The setting for Hardy’s Paradox is schematically presented in Fig. 1. It is assumed
that the beam-splitters are ideal 50–50 splitters, that the arms of the Mach-Zehnder
interferometers for the electron respectively for the positron are of equal length, and
that there are no other obstructions in the arms but the annihilation region in the
interacting arms Ip and Ie where annihilation is assumed to occur with unit proba-
bility. Also, the electron and positron are assumed to enter the apparatus simultane-
ously. The assumption of simultaneous passage of a positron-electron pair through
the whole set-up should therefore be valid.

The analysis proceeds by successively considering what happens at the rele-
vant moment of the particles’ traversal through the apparatus. In a hopefully self-
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Fig. 1 Schematic illustration of the experimental set-up for Hardy’s Paradox. An electron (e) and a
positron (p) enter each its own Mach-Zehnder interferometer with beam-splitters (BS), and are detected in
the B (for ‘bright’) or the D (for ‘dark’) ports. They are free to move in the non-interacting arms (N ) but
annihilate each other in the intersection of the interaction arms (I ). The paradox is that a pair appears in
the D-ports, indicating that the particles went through the I -arms, even though they should then have been
annihilated

explanatory notation, the transition at the beam-splitter BSp1 is described by

|p〉 BSp1−→= {|Np〉 + i|Ip〉}/√2, (6)

with similar transitions at the other beam-splitters. The state of the electron-positron
pair just before it enters the second pair of beam-splitters, i.e. after the possible anni-
hilation in the Ie-Ip-intersection, is without an |Ip〉 ⊗ |Ie〉-term, and reads

|in〉 := {
Np〉 ⊗ |Ne〉 + i|Ip〉 ⊗ |Ne〉 + |Np〉 ⊗ i|Ie〉

}
/
√

3. (7)

At the second pair of beam-splitters this turns into

{−|Dp〉 ⊗ |De〉 + i|Dp〉 ⊗ |Be〉 + i|Bp〉 ⊗ |De〉 − 3|Bp〉 ⊗ |Be〉
}
/
√

12. (8)

The paradox is now the following. Noting that the state (8) can be written

{(−|Dp〉 + i|Bp〉) ⊗ |De〉 + i|Dp〉 ⊗ |Be〉 − 3|Bp〉 ⊗ |Be〉
}
/
√

12

= {−i
√

2|Ip〉 ⊗ |De〉 + i|Dp〉 ⊗ |Be〉 − 3|Bp〉 ⊗ |Be〉
}
/
√

12, (9)

one sees that a click in the detector arm De means that the positron must have trav-
eled through the arm Ip , and similarly for Dp with respect to Ie. Therefore, from a
simultaneous click in De and Dp it seems reasonable to conclude that both particles
should have gone through their respective interacting arm Ip and Ie, in which case
they should have annihilated and therefore not have been able to reach any detector.
This is Hardy’s paradox.

Aharonov et al. [20] now want to check this by actually measuring through which
arms the particles went. Of course, this cannot be done by an ordinary, ‘strong’ mea-
surement, since that would ‘collapse’ the wave-function and thus destroy coherence.
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Instead, they invoke weak measurements of number operators, i.e., single particle oc-
cupation operators like |Np〉〈Np| =: N̂p and pair occupation operators like N̂p ⊗ Îe,
etc. They express their results in terms of the weak values of these operators. The
pre-selected state they choose is the state |in〉 of Eq. (7), and the post-selected state is

|f 〉 = |Dp〉 ⊗ |De〉, (10)

i.e., simultaneous clicks in the detectors Dp and De.
They deduce

[
f (Îp ⊗ Îe)in

]
w

= 0 (11)

i.e., vanishing weak value for the simultaneous appearance of the particles in the
interacting arms, which is not unreasonable. Moreover

[
f (N̂p ⊗ Îe)in

]
w

= 1 = [
f (N̂e ⊗ Îp)in

]
w
, (12)

which Aharonov et al. interpret as implying that there are two particle pairs in the
apparatus simultaneously: one pair in the Np- and Ie-arms, the other in the Ne- and
Ip-arms. However,

“(q-)uantum mechanics solves the paradox in a remarkable way” by giving
[
f (N̂p ⊗ N̂e)in

]
w

= −1, (13)

“i.e. that there is also minus one electron-positron pair in the non-overlapping
arms which brings the total down to a single pair.” (Quotes are from [20]).

As is evident, the arguments by Aharonov et al. rely heavily on an ‘ordinary’
interpretation of weak values: the weak values of the pair occupation operators are
straight-forwardly, and without further ado, identified with the number of pairs in the
respective arms of the interferometer.

I question whether this is legitimate. Again, I base this doubt partly on the fact
that another choice of the final state |f 〉 than that of Eq. (10) would have given other
values for the weak values.

True, the constraints on the choice of the final, post-selected state in this case
seems more well-motivated than in the Three-Box Paradox treated above: Given the
set-up and the questions asked, it is very natural to choose |f 〉 = |Dp〉 ⊗ |De〉. But
nothing fundamental would forbid one to choose other final states also in this case,
even if these states might seem somewhat contrived. To illustrate this, I will, however,
avoid the slightly more formal complications of the double Mach-Zehnder interfer-
ometer of the Hardy set-up and, in the next section, apply my arguments to a single
Mach-Zehnder interferometer.

5 A Single, Slightly Generalized Mach-Zehnder Device

Consider then the simple Mach-Zehnder interferometer as illustrated in Fig. 2, but
with a more general second beam-splitter BS2. In fact, the most general transfor-
mation at a beam-splitter obeying unitarity (= probability conservation) and time-
reversal invariance, can be written in obvious matrix notation (and with the same
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Fig. 2 Schematic illustration of
a single Mach-Zehnder
interferometer. (See text to
Fig. 1 for explanation of the
symbols.) The beam-splitter BS1
is assumed to be a perfect,
50–50 beam-splitter, while BS2
is of a more general type (see
text, in particular Eq. (14))

notational conventions for the states as above)

( |I 〉
|N〉

)
=

(
q ir exp(iβ)

ir exp(−iβ) q

)( |B〉
|D〉

)
, (14)

where q, r and β are real numbers and q2 + r2 = 1. The successive transitions will
then be (the first beam splitter is assumed to be a perfect 50–50 splitter)

|p〉 BS1−→ 1√
2

{|N〉 + i|I 〉}

BS2−→ i√
2

{
q + r exp(−iβ)

}|B〉 + 1√
2

{
q − r exp(iβ)

}|D〉 (15)

Now, let the state just before the particle enters the second beam-splitter be the pre-
selected state, i.e., choose

|in〉 = 1√
2

{|N〉 + i|I 〉}, (16)

and one or the other of |B〉 and |D〉 as the post-selected state |f 〉. The expressions
for the weak value of the respective number operators then read

[
f =D(N̂)in

]
w

= q

q − r exp(iβ)
(17)

and
[
f =B(N̂)in

]
w

= r

r + q exp(iβ)
, (18)

with similar results for the weak values of Î .
To say the least, these expressions are difficult to interpret as realistic particle

numbers or as ordinary probabilities. Not only would, in such an interpretation, the
number of particles in the arms depend on how they are detected, i.e., on the choice
of the state |f 〉. Also, the ‘number’ could take any value, e.g., [f =D(N̂)in]w = −1 for
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q = 1/
√

5, r = 2/
√

5, β = 0. I think no-one would bet on having minus one particle
in the N -arm!

One might argue that one should consider, instead, the real part of these expres-
sions since it is the real part of a weak value that, in the measurement scheme (cf.
footnote 1), is most directly related to the pointer position of the meter. But this does
not help. Indeed, one finds, e.g.,

Re
[
f =D(N̂)in

]
w

= q(q − r cosβ)

1 − 2qr cosβ
, (19)

which again seem to defy a reasonable interpretation.
These facts cast severe doubts on the whole enterprise of interpreting a weak value

in a RSFI fashion as anything reflecting a property of the pre-selected state per se.
As a side-remark, it might be interesting to evaluate the corresponding ABL prob-

abilities (see the Appendix below). For example

prob
(
N̂ = 1 | |f 〉 = |D〉, |in〉) = r2, (20)

i.e., the probability of finding the particle in the N -arm, given that it ends up in the
D-detector is given by the overlap |〈D|N〉|2 which is not an unreasonable result.

6 Summary

This paper makes two main points:

(1) The weak value is the ratio between two amplitudes. In Sect. 2, I argue that nei-
ther experiments nor the basic rules of quantum mechanics can be invoked to
motivate a realistic, straight-forward interpretation (an “RSFI”) of such a con-
struct.

(2) Moreover, in concrete cases—the Three-Box paradox (Sect. 3), Hardy’s paradox
(Sect. 4), a slightly generalized single Mach-Zehnder set-up (Sect. 5)—it seems
difficult to uphold an RSFI for the weak values of the number operators involved.
The main reasons are twofold: the weak value is not a property of the initial state
only, but depends also on the choice of the final (‘post-selected’) state, and non-
sensible (complex) values for what is supposed to be a number may easily be
obtained.

This casts doubts on any sensible interpretation of weak values representing an
‘ordinary’ property (see Sect. 2 above for the meaning of ‘ordinary’ property). In
particular, it casts severe doubts on whether the use of weak values really ‘explains’
the paradoxes—the Three-Box Paradox, Hardy’s Paradox—that they were supposed
to explain.
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Appendix: Relation Between Weak Values and the
Aharonov-Bergmann-Lebowitz (ABL) Probability Formula

In 1964—i.e., long before the concept of ‘weak measurement + post-selection’
was introduced—Aharonov, Bergmann and Lebowitz [23] proved an important re-
sult for ordinary, ‘strong’, measurement. They considered a situation very similar to
the one employed in weak measurement: a system is prepared (‘pre-selected’) in a
state |in〉 and ‘post-selected’ in a state |f 〉. Then, the ABL conditional probability
prob(oi | |f 〉, |in〉) of finding a particular eigenvalue oi (assumed non-degenerate) of
an operator Ô representing an observable O in an ordinary, ‘strong’ measurement,
intermediate in time between the pre- and the post-selection, is

ABL: prob
(
oi | |f 〉, in〉) = |〈f |oi〉|2|〈oi |in〉|2

∑
j |〈f |oj 〉|2|〈oj |in〉|2 . (A.1)

For the particular case of Ô being a projection/number operator, Ô = Â := |a〉〈a|,
onto a particular eigenstate |a〉 of any (self-adjoint) operator Â (the eigenvalues of
Â are 1 and 0, of which the latter could be degenerate even if the former is not;
however, that possible degeneracy is also covered by the following treatment), the
ABL formula (A.1) reads

prob
(
1 | |f 〉, |in〉) = |〈f |Â|in〉|2

|〈f |Â|in〉|2 + |〈f |(1 − Â)|in〉|2 , (A.2)

which is the probability of success in finding |a〉, and

prob
(
0 | |f 〉, |in〉) = |〈f |(1 − Â)|in〉|2

|〈f |Â|in〉|2 + |〈f |(1 − Â)|in〉|2 , (A.3)

which is the probability of failure in finding it.
In case 〈f |in〉 �= 0, these expressions may be written in terms of the weak value

(f Âin)w = 〈f |Â|in〉
〈f |in〉 (A.4)

as

prob
(
1 | |f 〉, |in〉) = |(f Âin)w|2

|(f Âin)w|2 + |[f (1 − Â)in]w|2 , (A.5)

with a corresponding expression for prob(0 | |f 〉, |in〉).3
In particular, if prob(1 | |f 〉, |in〉) = 1 (or = 0), i.e., if one is certain to find (re-

spectively not to find) the intermediate eigenstate |a〉, one also gets the weak value
(f Âin)w = 1(= 0) and vice versa. Furthermore, if (f Âin)w = −1, then the ABL prob-
ability becomes prob(1 | |f 〉, |in〉) = 1

5 .

3These relations between weak values and ABL probabilities are by no means new; they are given, e.g., in
[34, 38].
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One may even carry the relation between the ABL probability formula and the
weak value one step further: If one assumes that the imaginary part of the weak
value vanishes—and this has been the case in all application of weak values to
‘paradoxes’—the formula (A.5) may be used to solve for (f Âin)w . One finds

(f Âin)w =
√

p√
p ± √

1 − p
, p := prob

(
1 | |f 〉, |in〉), (A.6)

where I assume p �= 1
2 in case of the minus sign in the ±-ambiguity in the denomi-

nator. I note the particular cases

prob
(
1 | |f 〉, |in〉) = 1 ⇔ (f Âin)w = 1, (A.7)

as has already been stated, and

prob
(
1 | |f 〉, |in〉) = 1

5
⇔ (f Âin)w = −1 or = 1

3
. (A.8)

In sum, there is a very close numerical relationship between the ABL probability
prob(1 | |f 〉, |in〉) of Eq. (A.2) applied to a number operator Â = |a〉〈a| and the weak
value (f Âin)w : the ABL probability can be directly expresses in the corresponding
weak value, and the weak value, provided it is real, can be expressed in terms of the
ABL probability, albeit with a sign ambiguity. In this very restricted sense, there is a
correlation between strong and weak pre- and post-selected measurements.

Of course, conceptually the two notions are very different.
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