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Abstract We study the Efimov effect in a harmonic oscillator in the hyperspherical formulation, and show
how a reduced model allows for a description that is a generalization of the Efimov effect in free space and
leads to results that are easily interpreted. Three-particle states that resemble Efimov trimers for large scattering
length, become more similar to independent particles in a harmonic trap when adiabatically decreasing the
scattering length. In the transition region, Efimov physics may be observed, while the increased size of the
bound states reduces decay into more deeply bound states. The model also allows for the study of non-universal
Efimov trimers by including the effective range scattering parameter. While we find that in a certain regime
the effective range parameter can take over the role of the three-body parameter, interestingly, we obtain a
numerical relationship between these two parameters different from what was found in other models.

1 Introduction

In 1970, Efimov described a phenomenon occurring in a three-particle system of identical bosons, in which
there is an accumulation of bound states near the point of zero energy and diverging scattering length of the
interparticle interaction [1–3]. Efimov was inspired by the physics of the nucleus of the tritium atom. However,
the experimental signature for the existence of such Efimov states was not observed in nuclear physics, but in a
gas of ultracold cesium atoms [4] by studying three-body recombination. The reason that properties predicted
for nuclear physics few-body systems can be derived from ultracold atoms lies in the fact that the two sys-
tems are connected through universal relations, that are irrespective of the specific nature of the interparticle
interactions.

Since the first observations in cesium, the Efimov effect has received a lot of attention [5,6]. Several groups
now have observed Efimov physics by studying three-body recombination in a variety of atomic systems
[7–16]. Evidence for the existence of trimers appears as some distinct features (resonances) in the recombi-
nation rate coefficient. In Fig. 1 the energies of the Efimov trimers are shown, as a function of the inverse
two-body scattering length 1/a.

A crucial advantage of ultracold atoms with respect to nuclear systems is that the interparticle interactions
can be easily manipulated using Feshbach resonances [17–20], by varying the magnetic field. The two-body
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1 ⁄ a

K

Fig. 1 A schematic description of the Efimov effect: the curved lines show how the wavenumbers (K ∼ √
E) of the Efimov

trimers depend on the inverse scattering length 1/a. The horizontal line K = 0 indicates the threshold to the three-body scattering
continuum, while the region to the right of the dashed line marks the atom–dimer continuum. The dimer- binding energy scales
as −1/a2. Only a few Efimov states are shown. The figure is not to scale: for clarity reasons we plotted instead of K the quantity
H1/4 sin ξ , and instead of 1/a the quantity H1/4 cos ξ (cf. Eq. (4))

scattering length, which is obtained from the scattering phase shift δ(k) as a = − limk→0 tan δ(k)/k, diverges
on resonance to infinity, and is typically described by the dispersive formula

a = abg

(
1 − �B

B − B0

)
, (1)

with abg the background value of the scattering length, B the magnetic field, B0 the resonance position, and
�B the width of the resonance. This possibility to change the scattering length allowed for the observation of
distinct Efimov features in the three-body recombination rate, connected to two different Efimov states in a
row [8,10], confirming the scaling law [1–3,21] given by

En+1
T /En

T = e−2π/s0 ≈ 1/515, (2)

with s0 = 1.00624 a constant. Moreover, recent developments extended the universal few-body physics to the
domain of four-body states which was theoretically predicted [22–24] and experimentally verified [10,25].

In most of the experiments, Efimov physics has been observed only indirectly via three-body recombi-
nation [21]. Due to the short lifetime of these states, it is difficult to probe the Efimov states directly. These
weakly-bound trimers are not only unstable in collisions with other particles, but they are also intrinsically
unstable by itself, as trimers may decay to a deeper lying dimer state and an unbound atom. However, the group
of Jochim in Heidelberg recently succeeded in associating Efimov trimers directly via a new and promising
approach using radio-frequency fields [26].

Optical lattices might provide more experimental control, and potentially give rise to an enhanced lifetime
of Efimov trimers. Efimov physics can be studied in this way by loading three atoms in each lattice site.
When the lattice is deep enough, single sites act as harmonic oscillator potentials where individual trimers
can be trapped. A possible advantage is then that the interparticle separation of the trimers can be increased
to the scale of the harmonic oscillator length, while their properties are still determined by Efimov physics. In
this way the overlap of these states with deeply bound dimers is reduced, thereby suppressing the process of
three-body recombination. The influence of other limiting processes, where four or more particles involved,
will be reduced as well.

Jonsell et al. [27] were the first to introduce an harmonic oscillator term in a three-body system, by adapting
the approach of Ref. [28]. For diverging scattering length, they found exact expressions for the bound states
of three identical bosons, while they obtained numerical results for finite scattering length. Later, Werner and
Castin [29] obtained additional analytical results for diverging scattering length, and complimentary first-order
corrections for large scattering length. Stoll and Köhler [30] performed numerical simulations with a tunable
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separable potential to find the bound states of three particles in a trap. Thøgersen et al. found numerical solu-
tions of three particles in a harmonic trap [31], mainly to study the non-universal corrections to the Efimov
effect that come from the effective range. More recently, Liu et al. [32] derived an analytical description of
three attractively interacting fermions in a harmonic trap.

A convenient description of the Efimov effect in free space is presented in Ref. [21]. Defining the wave
number K as

K := sgn

(
m ET

h̄2

)√∣∣∣∣m ET

h̄2

∣∣∣∣, (3)

the authors introduce polar coordinates H and ξ , which are related to K and the scattering length a via

K = H sin ξ, (4a)
1

a
= H cos ξ. (4b)

Using Efimov’s radial law, it is derived that

H = κ∗e�(ξ)/2s0 e−nπ/s0 , (5)

for a function � : [−π,−π/4] → R. Here κ∗ is the three-body parameter that defines the trimer energies
exactly on resonance as En

T = −e−2nπ/s0 h̄2κ2∗/m, with m the mass of a single atom, and is a result of the
short-range behavior of three particles being close together. The combinations of K and ξ that yield bound
states describe a family of curves that can be mapped on top of each other by multiplying the distance of the
curves to the origin by a factor eπ/s0 , see Fig. 1.

In this paper, we extend the description of Ref. [21] and show how by introducing the harmonic oscillator
length as a new parameter, and by using spherical coordinates in parameter space, the scaling behavior in free
space very naturally generalizes to a situation with three particles in a harmonic trap. In particular, the curves
that are shown in Fig. 1 will be replaced by surfaces that are mapped on top of each other. In the derivation,
we use an approach slightly different from earlier work, that calculates the equivalent of the function � by
solving an ordinary differential equation. Additionally, we also include the coupling terms, we investigate the
stability of the trimers in the lattice, and we study the non-universal corrections coming from the effective
range scattering parameter.

2 Framework

We consider a system of three bosons with pair interactions trapped in a harmonic potential. The corresponding
Hamiltonian is

H = −1

2

∑
i

�i + 1

2 a4
ho

∑
i

r2
i +

∑
i

Vi , (6)

where aho = √
h̄/mω is the harmonic oscillator length, ω the trap frequency, and Vi is the interaction between

the particles j, k, with (i, j, k) a cyclic permutation of (1, 2, 3). For convenience, the Hamiltonian is scaled by
a factor m/h̄2. Throughout this paper, we will denote the eigenvalues of H by E , and the corresponding trimer
energies by ET = h̄2 E/m. To find the bound state energies, we closely follow the method described in Ref.
[28] and Ref. [21]. We denote the permutation operator corresponding to one cyclic permutation of (1, 2, 3)
by P and transform to the Faddeev operator

F = −1

2

∑
i

�i + 1

2 a4
ho

∑
i

r2
i + V (I + P + P†). (7)

If � is an eigenfunction of F, (I + P + P†)� is an eigenfunction of H , provided it is nonzero. In case
(I + P + P†)� = 0, � is called a spurious solution. We separate the center of mass motion, and consider the
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relative system in hyperspherical coordinates. For that, we introduce Jacobi-coordinates according to

ri, jk =
√

2

3
(ri − 1

2
(r j + rk)), (8)

r jk =
√

1

2
(r j − rk). (9)

The hyperradius R and the hyperangle α are defined by

R2 = 1

3
(r2

i j + r2
jk + r2

ki ) = r2
i, jk + r2

jk, (10)

r2
i, jk = R cosαi , (11)

r2
jk = R sin αi . (12)

The remaining hyperspherical coordinates are given by the unit vectors r̂i, jk and r̂ jk .
We restrict ourselves to states with zero total angular momentum. The advantage of considering the Faddeev

rather than the Schrödinger operator is that subsystem angular momentum comes in only at second order in
the short-range potential [33]. This motivates us to neglect the subsystem angular momentum, by averaging
over the Jacobi coordinates r̂i, jk and r̂ jk . In this approximation, the Schrödinger wavefunction �(r1, r2, r3)
is given in terms of reduced Faddeev wavefunctions ψ(R, α):

�(r1, r2, r3) = ψ(R, α1)+ ψ(R, α2)+ ψ(R, α3). (13)

In the differential Faddeev equation [21] we then make an adiabatic hyperspherical expansion

ψ(R, α) = 1

2πR5/2 sin(2α)

∑
n

fn(R)φn(R, α). (14)

For every value R, which is treated as a parameter, the functions φn(R, α) of hyperangle α form a complete
set, and are solutions to the eigenvalue equation on L2((0, π/2))

[
− ∂2

∂α2 − λn(R)

]
φn(R, α) = −2R2V (

√
2R sin α)

⎡
⎢⎢⎣φn(R, α)+ 4√

3

1
2π−| 1

6π−α|∫

| 1
3π−α|

φn(R, α
′)dα′

⎤
⎥⎥⎦ , (15)

with Dirichlet boundary conditions φ(R, 0) = φ(R, π/2) = 0. The eigenvalues λn(R) depend parametrically
on R. The set of hyperangular functions φn(R, α) are generally not orthogonal functions in α. Therefore, we
define

Gnm(R) =
1
2π∫

0

φ∗
n (R, α)φm(R, α)dα, (16)

which allows us to derive the following coupled set of differential equations for the functions fn

[
1

2

(
− ∂2

∂R2 + 15

4R2

)
+ 1

2

1

a4
ho

R2 + λn(R)− 4

2R2

]
fn(R)

+
∑

m

[
2Pnm(R)

∂

∂R
+ Qnm(R)

]
fm(R) = E fn(R). (17)
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The coupling terms in these equations are defined by

Pnm(R) = −1

2

∑
k

G−1
nk (R)

1
2π∫

0

φ∗
k (R, α)

∂

∂R
φm(R, α)dα, (18a)

Qnm(R) = −1

2

∑
k

G−1
nk (R)

1
2π∫

0

φ∗
k (R, α)

∂2

∂R2φm(R, α)dα. (18b)

This framework is very similar to the work of Refs. [28,21], and the harmonic oscillator term is taken into
account as in Ref. [27]. For now, we neglect the coupling terms as in the adiabatic hyperspherical approxima-
tion. However, later on we wil study the coupling between different channels more carefully, as the harmonic
oscillator gives rise to degeneracies between the Efimov-like solutions in the zeroth channel and the contin-
uum-like solutions of the first and higher channels.

Hyperangular Problem

The effect of the interaction potential V is now encoded in the eigenfunctions λn(R). Parametric solutions
for λn can be found by fixing the parameter R, while solving for the angular problem. The functions λn(R)
will then serve as input for the radial equation (17), and when the coupling terms are ignored, solutions are
obtained by solving an ordinary differential equation (ODE).

To find an approximation of λn , one can study solutionsψ(R, α) of Eq. (15) for small values ofα and values
of α close enough to π/2. Matching of the solutions at intermediate values of α then yields an approximation
of λn . This procedure has been described in Ref. [28]. The equation found in this manner is

cos
(
λ

1/2
n
π

2

)
− 8√

3
λ

−1/2
n sin

(
λ

1/2
n
π

6

)
= −√

2λ−1/2
n sin

(
λ

1/2
n
π

2

)
R kR cot(δ(kR)), (19)

where kR = √
λn/2R2. Note that λn ≡ 16 always solves this equation, but it gives rise to a spurious solution.

The right hand side of equation (19) can be conveniently expanded using the effective range approximation
for the s-wave scattering phase shift of the two-body problem

kR cot δ(kR) = −1

a
+ 1

2
rsk2

R + O(k4
R), (20)

with rs the effective range parameter. When this parameter is neglected, we find the approximating equation
for λn = λn(R/a) that is at the basis of the derivation in Ref. [28]:

cos
(
λ

1/2
n
π

2

)
− 8√

3
λ

−1/2
n sin

(
λ

1/2
n
π

6

)
= √

2λ−1/2
n (R) sin

(
λ

1/2
n
π

2

) R

a
. (21)

By taking into account the effective range as well, one obtains an approximation that is more accurate with
respect to the two-body physics near narrow Feshbach resonances. This has been proposed in Ref. [34] as a
regularization procedure and has been readdressed in Ref. [35]. We will come back to this issue in Sect. 4.

Hyperradial Problem

With the approximation of the channel eigenvalues at hand, we may turn to the hyperradial problem. In the
adiabatic hyperspherical approximation, we ignore the coupling between the different hyperradial channels
and only take the scattering length into account in the approximation of λn . In this setting, the Efimov effect
was derived in Ref. [28], and repeating it in this context allows for a comparison in the limit of aho → ∞. The
uncoupled system of equations is given by

[
− ∂2

∂R2 + λn(R)− 1
4

R2 + R2

a4
ho

]
fn(R) = 2E fn(R), (22)
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on (R0,∞), with a boundary condition

fn(R) → 0, R → ∞, (23)

and an appropriate boundary condition on the edge of the inner region R0 where the short-range potentials
become important, which is given in terms of the three-body parameter κ∗. The exact boundary condition will
be specified later.

We first concentrate on the zeroth channel, i.e. n = 0, which is the only channel that has an attractive
potential, and therefore the only channel in which the Efimov effect is found. We mimick the definitions (4)
and introduce spherical coordinates (T, ϑ, ξ) according to

K = T sin ϑ sin ξ, (24a)
1

a
= T sin ϑ cos ξ, (24b)

1

aho
= T cosϑ. (24c)

Next, we make a change of variables R = σ/T in equation (22) and obtain for f (σ ) = f0(σ/T )

[
− ∂2

∂σ 2 + λ0(σ sin ϑ cos ξ)− 1
4

σ 2 + cos4 ϑ σ 2

]
f (σ ) = 2 sgn (ξ) sin2 ϑ sin2 ξ f (σ ), (25)

with long-range boundary condition

f (σ ) → 0, σ → ∞. (26)

For small values of σ , the model does not provide us with a natural boundary condition. Solutions of Eq. (25)
have a log-periodic behavior as σ → 0, given by f (σ ) ∼ √

σ sin(s0 log(κσ/T ) + α0) for some value of κ .
Here s0 = √−λ0(0), and

α0 = −1

2
s0 log 2 − 1

2
Arg

�(1 + is0)

�(1 − is0)
. (27)

Fortunately, the real short-range potentials Vi provide us with a natural boundary condition at R0 encoded by
κ = κ∗, where κ∗ is the three-body parameter that accounts for the short-range physics, which was mentioned
already in the introduction. This gives rise to a short-range boundary condition at σ0 = T R0:

f ′(σ0)

f (σ0)
= 1

2σ0
+ s0

σ0
cot(s0 log(κ∗ R0)+ α0). (28)

We may determine for which parameter combinations a solution exists by a shooting method from large
values of σ . A particular convenient method makes use of a certain phase variable φ. One can set up an
equation for φ that is much alike the variable phase equation, but is adapted to fit the boundary condition at
short distances very well. Henceforth, it will play a role similar to the function � that appeared in equation
(5) in the introduction. We introduce the transformation

f ′(σ ) =
(

1

2σ
+ s0

σ
cot(φ(σ )+ s0 log σ + α0)

)
f (σ ). (29)

The equation for φ becomes

s0φ
′ +

(
λ0(σ sin ϑ cos ξ)+ s2

0

σ
− 2σ sgn(ξ) sin2 ϑ sin2 ξ + cos4 ϑσ 3

)
sin2 (s0 log σ + α0 + φ(σ)) = 0,

(30)
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Fig. 2 Surfaces that indicate for which values of a−1, K , and a−1
ho trimer bound states exist in the lowest channel. Only three

surfaces are shown, but in fact there is an infinite number of them, which can all be mapped on top of each other by multiplying
the distance to the origin by powers of eπ/s0 . These surfaces are sliced by a plane that corresponds to a given inverse harmonic
oscillator length a−1

ho . The intersection lines (dashed) show for this value of a−1
ho , for which combinations of the scattering length

a and the wave vector K bound states exist. The picture is not to scale: we used similar scaling relations as used in Fig. 1 to show
the surfaces more clearly

which is a nonlinear first order differential equation. Given values for ξ and ϑ , we denote by φ(σ ; ξ, ϑ) the
solution to (30) that satisfies φ(σ)+ s0 log σ + α0 → 0− for σ → ∞, that is, that approaches 0 from below.
With this definition, the problem (2) has a solution if and only if

φ(T R0; ξ, ϑ) = s0 log(κ∗/T ) mod π. (31)

Consequently, eigensolutions only exist if there exists an n ∈ Z such that

T = κ∗e−φ(T R0;ξ,ϑ)/s0 e−nπ/s0 . (32)

We would like to emphasize here the similarity with the description of the Efimov effect in free space given
by equation (5). Using the asymptotic behavior of λ0 for small arguments, one can easily show that φ(σ)
converges to a finite value for σ → 0+. The function φ(0; ξ, ϑ) can be shown to be continuous over the
region. For ϑ = 0 and ξ ∈ [−π,−π/4], the Efimov effect in free space is retained. Hence, φ(0; ξ, 0) is an
approximation of −�(ξ)/2, with �(ξ) as defined in (5).

Trimer Solutions in a Harmonic Potential

The trimer solutions are most easily represented by surfaces in three-dimensional (a−1, K , a−1
ho ) space, as

defined in Eq. (24). In Fig. 2 such surfaces are shown for the lowest channel, which can be mapped on top of
each other by multiplication of the distance to the origin by powers of eπ/s0 . Figure 2 can be regarded as a
generalization of the two-dimensional Fig. 1. The intersection of the surfaces with the a−1 = 0 plane precisely
corresponds to the exact results obtained by Jonsell et al. and Werner [27,36]. When the surfaces are sliced with
a plane corresponding to a fixed harmonic oscillator length aho, we obtain curves that express wave vectors K
in terms of the scattering length a. As we decrease 1/aho, this intersection moves continuously to lower values
of K , until at 1/aho = 0, the intersection consists of a curve representing an Efimov trimer in free space for
ξ ∈ (−π,−π/4), connected to the line K = 0, to the left of where the curve hits this line and to K = −1/a
to the right of where the curve hits this line. Hence any surface can be connected continuously to the curve
corresponding to a free Efimov trimer state. At fixed harmonic oscillator length, there is no accumulation of
bound states, but as 1/aho → 0, more and more bound states accumulate near K = 0, and 1/a = 0. This is
how the Efimov effect in free space, as depicted in Fig. 1, is recovered.

In Fig. 3 we show the trimer binding energies of cesium as a function of scattering length with a fixed
oscillator length, for the lowest and next to lowest hyperspherical channels. The parameters are κ∗ = 1.93 ×
10−4a−1

0 [4], with a0 the Bohr radius, R0 = 100a0, and aho = 13,000a0, which corresponds to a trap frequency
of approximately 1,000s −1. Would we increase the harmonic oscillator length, the energy levels would get
closer and closer together in the region ξ ∈ (−π/4, π), (quasi-) discretizing the continuum states found in the
free space situation.

It is interesting to note the change of energy scales in this figure. Below the thresholds of the trimer and
atom–dimer continuum (cf. Fig. 1), which would exist for the free-space Efimov effect, the bound states show
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Fig. 3 The trimer bound state energies of cesium in the zeroth and first hyperspherical channels. The result is obtained for a trap
frequency ω = 1, 000 s−1. A deeper bound state, with much lower energy, cannot be shown in this graph. Also indicated is the
dimer-binding energy (dotted blue line). Note that the scale on the vertical axis is the energy, rather than the wavenumber, to
illustrate approximate equidistance of the energy levels

the characteristic scaling law of Eq. (2). Above these thresholds, the bound states show a spacing typical for the
harmonic oscillator potential which is approximately 2h̄ω. This change of exponential scaling to linear scaling
of the trimer energies makes that the accumulation of bound states in the point of zero energy and infinite
scattering length disappears. Effectively, the Efimov trimers are “pushed” out of the trimer region through the
thresholds and aquire a strong harmonic oscillator state character.

There is also a clear difference between the zeroth and first hyperspherical channels. In this respect, it is
interesting to note the different limiting behavior of the solutions for small positive and negative scattering
length. For small and negative scattering length, there is no weakly-bound dimer state in the interatomic
potential, and the solutions have the character of three weakly-interacting atoms in a harmonic oscillator
potential. For small and positive scattering length, there is a weakly-bound dimer state, and for the zeroth hy-
perspherical channel the solutions have the character of a weakly-interacting dimer and an atom in a harmonic
oscillator potential. These regimes are connected through solutions which have a strong Efimov character.
However, for the first hyperspherical channel the situation is different. Here the solutions behave more as those
of two particles undergoing a Feshbach resonance [37,38], which as a result interpolate between two different
harmonic oscillator levels.

It should be possible to investigate this change of character experimentally, by using similar techniques as
have been done by Stöferle et al. [38]. Here the creation of dimers was investigated in an optical lattice while
sweeping the magnetic field through a Feshbach resonance. For the trimers, such adiabatic sweeps through
trimer solutions should allow for a creation of states with a character changing between harmonic oscillator-,
Efimov- and dimer+atom-type solutions.

So far, we have applied the adiabatic hyperspherical approximation, in which we completely ignored the
coupling between the various hyperspherical channels. While this is generally a good approximation, we see
from Fig. 3 that there are degeneracies between the zeroth and first channel solutions, which should be lifted
when the coupling is taking into account. In order to demonstrate this, we introduce an approximation of the
coupling. We calculate the coupling terms Pmn and Qmn of Eq. (18) using first order approximations of the
functions φn , and find in this way combined solutions which involve both channels. In free-space, the coupling
between these two hyperspherical channels is directly related to the process of three-body recombination,
where three colliding particles relax into a weakly-bound dimer and a third particle, with a surplus of kinetic
energy [21]. This coupling transforms the crossings in Fig. 3 into avoided crossings, as shown in Fig. 4. This
could be experimentally interesting, since using magnetic field sweeps would allow for adiabatic transitions
from one hyperspherical channel to an other.



Efimov Trimers in a Harmonic Potential 227

Fig. 4 Crossings in Fig. 3 are replaced by avoided crossings when the coupling between the zeroth and first hyperspherical
channels is taken into account

3 Stability of Trimers in a Harmonic Potential

The change of character of the trimer solutions, which was discussed above, will have a profound impact on
the stability of these states. So far, we implicitly assumed that the trimers in the harmonic oscillator potential
are stable. However, when the three particles are close together the trimer can dissociate into a deeply-bound
dimer and a third atom, with large kinetic energy. Here, we investigate the stability of the trimers by applying
the method of Braaten and Hammer [21], that regards the trimers as scattering resonances in a dimer–atom
scattering process. In this respect, the trimer energy ET acquires a width �T , where the latter can be used to
calculate the lifetime h̄/�T of the trimers. In this method, an inelasticity parameter η∗ is introduced to account
for the decay into various deeply bound states, which can be regarded as the imaginary part of a complex phase
factor that describes the reflection of hyperradial waves in the inner region. Effectively, this comes down to
changing the boundary condition at R0 to

f ′(R0)

f (R0)
= 1

2R0
+ s0

R0
cot (s0 log(κ∗ R0)+ α0 + iη∗) . (33)

For given values for the scattering length and the harmonic oscillator length, we are then able to find the
associated complex eigenvalues

E = m

h̄2

(
ET − i

�T

2

)
, (34)

where the trimer energy ET < 0 and the width �T > 0.
As an example, we calculated the linewidths or cesium, with a trapping frequency ω = 1,000 s−1, κ∗ =

1.93×10−4a0, andη∗ = 0.06 [4]. The short-range boundary condition was implemented at a value R0 = 100a0.
For some of the bound states shown in Fig. 3, the linewidths are shown in Fig. 5. The change of character of
the trimers can be clearly seen from this graph: for values a/aho � −2 the states have a harmonic oscillator
character, and the widths are relatively small. However, the Efimov effect shows up via a strong increase of the
widths towards a/aho � −2, which is the parameter region where in free-space a new Efimov state would enter
the tree-body system. It is also the region where a local peak in the three-body recombination rate would occur
(trimer resonance). Here, we see that at this point the width of the energetically lowest trimer keeps increasing,
while for the energetically higher trimer states the width saturates and displays an oscilating behavior. This
is not surprising, since the energetically higher trimers are more similar to three-particle continuum states.
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Fig. 5 The width �T of cesium Efimov states in a trap, with ω = 1, 000 s−1 and η∗ = 0.06, for the first (red, lowest on the left
hand side of figure), second (black, second lowest), and fourth (dotted, highest) bound states depicted in Fig. 3. Also, the width
of a free Efimov trimer corresponding to the first state is shown (black dashed)

For comparison, in Fig. 5 the linewidth of the free-space Efimov trimer compared to the linewidth of the
energetically lowest lattice trimer in a trap is shown in the region where it exists. These lines overlap mostly,
and can be more than two orders of magnitude above the widths for the higher trimer states. At the point
where the trimer energies approach the atom–dimer threshold, around a/aho = 34, the widths go down again
to the level of the higher trimer states. The width of the trimer in a trap is there somewhat larger than the
free-space trimer, probably due to the additional confinement of the weakly-bound dimer state caused by the
lattice.

While the Efimov effect shows up in the excited states by a clear deviation from the harmonic oscillator
levels, these states benefit from a much smaller linewidth than the deeply bound Efimov trimers, and they
should therefore be easier to study experimentally. Also the lowest trimer energy, which most closely follows
a free-space Efimov state, could be easier to study in experiment. The trimer could first be prepared in the
lowest harmonic oscillator level for a/aho � −1, and then the scattering lenght can be changed via a magnetic
field sweep to the region a/aho ≈ −2, where the decay is still manageable.

4 Effective Range Corrections

In order to improve the approximation of the channel eigenvalues λn arising in (15), one might want to include
the influence of the effective range rs . This can be done by making the so-called effective range expansion,
i.e. using the expansion in Eq. (20) up to second order. In literature there have been various instances in which
the effective range is taken into account in the determination of the three-particle spectrum [39,40].

Having an additional interaction parameter at hand, raises the question whether in this regime Efimov phys-
ics in ultracold gases can still be universal. On the experimental side, there are presently also some conflicting
observations. In order to understand these issues, we first need to define what we mean by the universal Efimov
regime. In the above, we have already seen that besides the scattering length, we need at least one additional
parameter that fixes at least one of the Efimov trimer energies. The other ones can then be derived from this
position. This information is provided via the three-body parameter κ∗, which can be regarded as a boundary
condition for the interaction potentials in the regime where the three particles are very close together. It is
related to the energy of the lowest Efimov trimer via ET = −h̄2κ2∗/m in the infinite scattering length limit,
and with this only additional parameter the Efimov physics is universal.

However, some experiments on three-body recombination do not imply universality. While the experi-
ments at Rice University did show the universal connection between Efimov states in 7Li at one side of the
resonance [10], the universality did not extend to the other side of the resonance. The Rice group was not
alone in this observation: also in Florence [8] on 39K, in Innsbruck [7] on 133Cs, and in Tokyo [15] on 6Li this
non-universality was observed. On the other hand, in three other experiments universality across the resonance
was observed: in Bar-Ilan it was found that universality does extend across a Feshbach resonance in 7Li, and
even that the short range physics encapsulated in κ∗ is independent of the nuclear spin configuration [41,42].
Furthermore universality was also observed in a three-component fermionic 6Li gas in Heidelberg [11] and in
State College [13].

Now the question arises whether the effective range paramer rs can explain, in addition to the three-body
parameter κ∗, the non-universal behavior of some of the above-mentioned experiments. However, it might also
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be that in a certain regime, the effective range will take over the role of the three-body parameter due to its
regularising effect of the radial wave functions [39,40]. And recently, it has been shown that small experimen-
tal deviations from universality [41] can be explained by effective range corrections using an effective field
theory [43].

As it has been shown by Fedorov and Jensen [34] and more recently by Platter et al. [35], the introduction
of the effective range in the approximate equation (19) for the eigenvalues λn yields the relation
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To get an idea on the validity of the approximation (35), we have compared the results with the eigenvalues
obtained by a truncated Fourier expansion for a square well potential with height V0 and width R0, such that
V0 R2

0 = −3.2. This expansion is very convenient when one considers the operator F R , which depends on the
hyperradius R and is defined via the eigenvalue equation (15) as follows
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The reason for this convenience is that in the basis of Fourier expansion functions

ξn(α) = 2√
π

sin(2nα), (37)

both the differential operator and the integral operator are diagonal. The matrix elements are then given by
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where

Vmn(R) = 4

π

π/2∫
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V (
√

2R sin α) sin(2nα) sin(2mα)dα. (39)

In Fig. 6, we compare the numerically calculated eigenvalues λn(R) of F R with results obtained from Eq. (21),
which depends on the scattering length only, and with the results from solving Eq. (35), which depends both on
scattering length and effective range. Here the values for a and rs are taken from the effective range expansion
of the square well potential. It can be seen that asymptotically, that is for large hyperradius, the inclusion of
the effective range in the model yields results that are considerably better than if one only takes the scattering
length into account. For relatively small values of the hyperradius, the predictions obtained by the Fourier
expansion and this simple model start to deviate. Hence, we expect that for short hyperradii, additional details
of the interaction potential become important, i.e. higher order expansion coefficients beyond the effective
range approximation have to be taken into account.

For rs < 0 and a fixed value for a, the lowest solution λ0 to Eq. (35) can be defined as a smooth function
of R for R ∈ (0,∞). Moreover, λ0(R) = O(R) as R → 0. Therefore, if we use this approximation in the
hyperradial equation, we can find regular solutions instead of rapidly oscillating ones. This could, at least in
principle, remove the need for a renormalization boundary condition in terms of κ∗ for R → 0. In the absence
of a harmonic oscillator, and in the limits of small energy and r ≡ −rs/a → 0, we will see that the solutions
to the hyperradial equation are identical to those when the effective range is not taken into account, except
that the value of κ∗ is determined by rs by boundary layer behavior for small values of the hyperradius. Such
a relation between κ∗ and rs has been established before [39,40].

Let us, therefore, study the Eq. (35) more closely. We have plotted the solutionλ0 for the situation a = −20rs
in Fig. 7, to give a characteristic example. In the region −rs � R � a, the value of λ0 satisfying (35) is close
to that obtained by solving (21). Similarly, when R � −rs , the solution λ0 to (35) will be close to μ(−R/rs),
where μ(−R/rs) is the solution to
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Fig. 6 Eigenvalues λ of F R depending on R/R0, as calculated in three different ways. The black, solid lines represent the
approximations of the eigenvalues by a truncated Fourier expansion. The black lines (short dashes) and red lines (long dashes)
are the approximations obtained by (21) and (35), respectively. We take for the square well parameters V0 R2

0 = −3.2. It can be
clearly seen that taking into account the effective range gives a much better asymptotic behavior

Fig. 7 The figure shows λ0 (black, solid) as a function of −R/rs , for a fixed value of a = −20rs , with rs < 0. For R � −rs ,
the solution is very close to that obtained from (21) (blue, dotted). For R � −rs , there is a boundary layer, in which the solution
resembles the solution μ of (40) (red, dashed)

Around R ∼ −rs , there is a transition from a boundary layer behavior similar to μ to behavior obtained by
ignoring the effective range (21).

To find the low-energy behavior of the system, which is needed to find a proper relationship between rs and
κ∗ [39,40], we have to turn back to the hyperradial equation (22). Following from the above considerations,
the solution f0 that decays exponentially for large hyperradius is to leading order in −rs/a, and for R � −rs ,
equal to f out, the exponentially decaying solution to the hyperradial equation obtained when the effective
range is ignored. This outer solution f out will have log-periodic behavior as R → 0

f out(R) ∼ √
R sin(s0 log(κR)+ α0), (41)

for some κ . The solution f0 will be similar for −rs � R � a, and will therefore for low enough energies
also show log-periodic behavior. However, there is a boundary layer for R � −rs , which makes that we can
demand the solution f0(R) to be regular for R → 0, that is, such that f0(R) ∼ √

R for R → 0. This effectively
determines the value of κ . To analyze the boundary layer, we introduce the new variable ρ = −R/rs and the
function f̃0, f̃0(ρ) = f0(−ρrs). The hyperradial equation for f̃0 reads[

− d2

dρ2 + λ0(ρ)− 1/4

ρ2 + r4
s

a4
ho

ρ2 − 2Er2
s

]
f̃0(ρ) = 0, (42)
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Fig. 8 Trimer solutions in a harmonic oscillator, for potential parameters corresponding to the paper of Thøgersen et al. [31].
Shown are the solutions above the three-particle threshold. The zeroth (first) channel solutions are given by black-solid (red-
dashed) lines. The graph can be directly compared with Fig. 1 in Ref. [31]

and we demand that f̃0(ρ) behaves like
√
ρ for ρ → 0. We consider now the case of a negligible harmonic

oscillator potential, i.e. aho = ∞, and take the low-energy limit Er2
s → 0 and a diverging scattering length.

The solution will then be equal to f in
0 , which satisfies

[
− d2

dρ2 + μ(ρ)− 1/4

ρ2

]
f in
0 (ρ) = 0. (43)

For ρ → ∞,

lim
ρ→∞ f in

0 (ρ) ∼ √
ρ sin(s0 log(ρ)+ φ0). (44)

We determine the phase φ0 numerically, by choosing a boundary condition

(
f (ρ)√
ρ

)′
= μ(ρ)

ρ

f (ρ)√
ρ
, (45)

for small enough values of ρ, and by integrating the equation. The boundary condition ensures that we pick up
the right solution. The result is φ0 = s0 log(1.0918)+ α0. In order to find what value of κ∗ (= κ in this limit)
is induced by rs , we have to match the inner and the outer solutions in the regime where −rs � R � a. This
yields that −κ∗rs = 1.0918.

Remarkably, this numerical value for −κ∗rs differs from the values obtained in Refs. [39,40], which are
−κ∗rs ≈ 5 and −κ∗rs ≈ 5.3062 respectively. It is unclear where the difference comes from, however, both
papers use models different from the hyperspherical formalism that we used here, where we base our treatment
of the effective range parameter on the descriptions in Refs. [34,35]. More research is needed to resolve this
discrepancy.

Now we are in a good position to compare our model with earlier work on the Efimov effect in a harmonic
potential. In the work of Thøgersen, Fedorov, and Jensen, the influence of the effective range is studied on the
universal Efimov effect [31]. They considered a system with a Gaussian interaction potential, given by

V (r) = V0 exp(−r2/R2
0), (46)

where V0 and R0 are constants. The range R0 has been chosen to equal R0 = aho/3,965.
Although the main purpose of Ref. [31] is to show the influence of the effective range, their model con-

tains a harmonic trap as well. In order to make a proper comparison with our model, we take κ∗aho = 3.7.
The results are shown in Figs. 8 and 9, and can be directly compared with Fig. 1 in Ref. [31]. We observe that
the numerical results are reproduced quite closely and we can assign the numerically found bound states to the
different hyperspherical channels. We also observed that if we include the above corrections that come from
the effective range, the comparison is better than results obtained without these corrections.
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Fig. 9 Trimer solutions in a harmonic oscillator, for potential parameters corresponding to the paper of Thøgersen et al. [31].
Shown are the solutions below the three-particle threshold. The red, dashed line indicates a solution when the effective range
is taken into account. Also indicated is the dimer–atom threshold, which includes effective range corrections. The graph can be
directly compared to Fig. 1 in Ref. [31]

5 Conclusion

We studied the Efimov effect in a harmonic potential by using the hyperspherical formulation. In the first part of
this paper, we studied the universal regime by only taking a large scattering length into account, and by making
the adiabatic hyperspherical approximation in that we ignored the coupling between different hyperspherical
channels. The model thus obtained is simple in the sense that the binding energies of the trimers result from
an ordinary differential equation, with an appropriate boundary condition for the lowest channel encoded by
the three-body parameter κ∗. Considering the lowest channel, we formulate an equation for a phase variable,
the exponent of which is the radius in a spherical plot describing a surface of values in (a−1, K , a−1

ho )-space
(inverse scattering length, wavenumber and inverse oscillator length) for which bound states exists. Other such
surfaces are obtained by multiplying the distance to the origin by a factor eπ/s0 , and there is an accumulation
point of surfaces near the origin, analogous to the Efimov effect in free space. In the limit aho → ∞, the
Efimov effect in free space is recovered.

Interesting differences with the situation of three particles in free space can be observed when we focus at
a fixed value of aho. For parameter combinations where in free-space bound states would exist, the situation is
very similar, except that the accumulation of energies only happens up to a typical energy of h̄ω. The rest of the
Efimov states are “pushed out” into the trimer continuum (which is of course only a continuum in free space).
Higher hyperspherical channels give rise to additional bound states, and by taking those into account as well
we obtain results very close to numerical simulations of three-particle systems [31]. Better qualitative results
are obtained by approximating the coupling between the hyperspherical channels, which lifts the degeneracies
and creates avoided crossings. The lifetime of the trimers is highest for states with a continuum character, i.e. in
the region which we would denote as trimer continuum in free space. The reason for this is the small overlap
of these states with deeply bound states. Experimental study of Efimov-like states, however, could be feasible
close to the transition from this continuum region to the trimer region, where the linewidth is still quite small.

For a more general Efimov model that allows for deviations from the universal regime, a natural step is
to improve on the approximation of the hyperangular problem by taking into account the effective range. By
doing this, we were able to find a relation between κ∗ and the effective range rs < 0 if a � −rs � R0, where
R0 is a typical range of the potential. We obtain the same qualitative behavior as Refs. [39,40] where different
descriptions were used, however, the actual value of κrs is also very different. It appears that the actual value
for this relationship depends strongly on the choice of the model and the corresponding approximations to
describe the three-particle physics, and more research is needed to understand this discrepancy. In a different
parameter regime for a, rs and R0, such a relationship between κ∗ and rs is not necessary. Then we have
in addition to rs , the three-body parameter κ∗ in the boundary condition for the hyperradial problem to our
disposal. By comparing to numerical calculations we find that this description indeed improves the predicted
trimer energies.

Acknowledgments The authors gratefully acknowledge useful discussions with J. de Graaf and J. Slot.



Efimov Trimers in a Harmonic Potential 233

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Efimov, V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)
2. Efimov, V.: Weakly bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)
3. Efimov, V.: Low-energy properties of three resonantly interacting particles. Sov. J. Nucl. Phys. 29, 546 (1979)
4. Kraemer, T., Mark, M., Waldburger, P., Danzl, J.G., Chin, C., Engeser, B., Lange, A.D., Pilch, K., Jaakkola, A., Nägerl,

H.-C., Grimm, R.: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315 (2006)
5. Ferlaino, F., Grimm, R.: Forty years of Efimov physics: how a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)
6. Greene, C.H.: Universal insights from few-body land. Phys. Today 63, 40 (2010)
7. Knoop, S., Ferlaino, F., Mark, M., Berninger, M., Schöbel, H., Nägerl, H.-C., Grimm, R.: Observation of an Efimov-like

trimer resonance in ultracold atom–dimer scattering. Nat. Phys. 5, 227 (2009)
8. Zaccanti, M., Deissler, B., D’Errico, C., Fattori, M., Jona-Lasinio, M., Müller, S., Roati, G., Inguscio, M., Modugno, G.:

Observation of an Efimov spectrum in an atomic system. Nat. Phys. 5, 586 (2009)
9. Gross, N., Shotan, Z., Kokkelmans, S.J.J.M.F., Khaykovich, L.: Observation of universality in ultracold 7Li three-body

recombination. Phys. Rev. Lett. 103, 163202 (2009)
10. Pollack, S.E., Dries, D., Hulet, R.G.: Universality in three- and four-body bound states of ultracold atoms. Science

326, 1683 (2009)
11. Wenz, A.N., Lompe, T., Ottenstein, T.B., Serwane, F., Zürn, G., Jochim, S.: Universal trimer in a three-component Fermi

gas. Phys. Rev. A 80, 040702(R) (2009)
12. Lompe, T., Ottenstein, T.B., Serwane, F., Viering, K., Wenz, A.N., Zürn, G., Jochim, S.: Atom–dimer scattering in a three-

component fermi gas. Phys. Rev. Lett. 105, 103201 (2010)
13. Huckans, J.H., Williams, J.R., Hazlett, E.L., Stites, R.W., O’Hara, K.M.: Three-body recombination in a three-state fermi

gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)
14. Williams, J.R., Hazlett, E.L., Huckans, J.H., Stites, R.W., Zhang, Y., O’Hara, K.M.: Evidence for an excited-state Efimov

trimer in a three-component fermi gas. Phys. Rev. Lett. 103, 130404 (2009)
15. Nakajima, S., Horikoshi, M., Mukaiyama, T., Naidon, P., Ueda, M.: Nonuniversal Efimov atom–dimer resonances in a

three-component mixture of 6Li. Phys. Rev. Lett. 105, 023201 (2010)
16. Barontini, G., Weber, C., Rabatti, F., Catani, J., Thalhammer, G., Inguscio, M., Minardi, F.: Observation of heteronuclear

atomic Efimov resonances. Phys. Rev. Lett. 103, 043201 (2009)
17. Feshbach, H.: Unified theory of nuclear reactions. Ann. Phys. (NY) 5, 357 (1958)
18. Feshbach, H.: A unified theory of nuclear reactions. II 19, 287 (1962)
19. Tiesinga, E., Moerdijk, A.J., Verhaar, B.J., Stoof, H.T.C.: Conditions for Bose–Einstein condensation in magnetically trapped

atomic cesium. Phys. Rev. A 46, R1167 (1992)
20. Tiesinga, E., Verhaar, B.J., Stoof, H.T.C.: Threshold and resonance phenomena in ultracold ground-state collisions. Phys.

Rev. A 47, 4114 (1993)
21. Braaten, E., Hammer, H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006)
22. Platter, L., Hammer, H.-W., Meissner, U.-G.: Universal properties of the four-Boson system in two dimensions. Few Body

Syst. 35, 169 (2004)
23. Platter, L., Hammer, H.-W., Meissner, U.-G.: Four-Boson system with short-range interactions. Phys. Rev. A 70,

052101 (2004)
24. Stecher, J.von , D’Incao, J.P., Greene, C.H.: Signatures of universal four-body phenomena and their relation to the Efimov

effect. Nat. Phys. 5, 417 (2009)
25. Ferlaino, F., Knoop, S., Berninger, M., Harm, W., D’Incao, J.P., Nägerl, H.-C., Grimm, R.: Evidence for universal four-body

states tied to an Efimov trimer. Phys. Rev. Lett. 102, 140401 (2009)
26. Lompe, T., Ottenstein, T.B., Serwane, F., Wenz, A.N., Zürn, G., Jochim, S.: Radio–frequency association of Efimov

trimers. Science 330, 940 (2010)
27. Jonsell, S., Heiselberg, H., Pethick, C.J.: Universal behavior of the energy of trapped few-Boson systems with large scattering

length. Phys. Rev. Lett. 89, 250401 (2002)
28. Fedorov, D.V., Jensen, A.S.: Efimov effect in coordinate space Faddeev equations. Phys. Rev. Lett. 71, 4103 (1993)
29. Werner, F., Castin, Y.: Unitary quantum three-body problem in a harmonic trap. Phys. Rev. Lett. 97, 150401 (2006)
30. Stoll, M., Köhler, T.: Production of three-body Efimov molecules in an optical lattice. Phys. Rev. A 72, 022714 (2005)
31. Thøgersen, M., Fedorov, D.V., Jensen, A.S.: Universal properties of Efimov physics beyond the scattering length approxi-

mation. Phys. Rev. A 78, 020501 (2008)
32. Liu, X.J., Hu, H., Drummond, P.D.: Three attractively interacting fermions in a harmonic trap: exact solution, ferromagnetism

and high-temperature thermodynamics. Phys. Rev. A 82, 023619 (2010)
33. Nielsen, E., Fedorov, D.V., Jensen, A.S., Garrido, E.: The three-body problem with short-range interactions. Phys.

Rep. 347, 373 (2001)
34. Fedorov, D.V., Jensen, A.S.: Regularization of a three-body problem with zero-range potentials. J. Phys. A 34, 6003 (2001)
35. Platter, L., Ji, C., Phillips, D.R.: Range corrections to three-body observables near a Feshbach resonance. Phys. Rev.

A 79, 022702 (2009)
36. Werner, F.: Trapped cold atoms with resonant interactions: unitary gas and three-body problem, PhD thesis, ENS (2008)
37. Busch, T., Englert, B.-G., Rzazewski, K., Wilkens, M.: Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)
38. Stöferle, T., Moritz, H., Günter, K., Köhl, M., Esslinger, T.: Molecules of fermionic atoms in an optical lattice. Phys. Rev.

Lett. 96, 030401 (2006)



234 J. Portegies, S. Kokkelmans

39. Petrov, D.S.: Three-Boson problem near a narrow Feshbach resonance. Phys. Rev. Lett. 93, 143201 (2004)
40. Gogolin, A.O., Mora, C., Egger, R.: Analytical solution of the Bosonic three-body problem. Phys. Rev. Lett. 100,

140404 (2008)
41. Gross, N., Shotan, Z., Kokkelmans, S., Khaykovich, L.: Nuclear-spin-independent short-range three-body physics in ultra-

cold atoms. Phys. Rev. Lett. 105, 103203 (2010)
42. Gross, N., Shotan, Z., Machtey, O., Kokkelmans, S., Khaykovich, L.: Study of Efimov physics in two nuclear-spin sublevels

of 7Li. (preprint) (accepted for Comptes rendus Physique) (arXiv:1009.0926)
43. Ji, C., Platter, L., Phillips, D.R.: Beyond universality in three-body recombination: an effective field theory treatment.

EPL 92, 13003 (2010)
44. Marcelis, B., Verhaar, B., Kokkelmans, S.: Total control over ultracold interactions via electric and magnetic fields.

Phys. Rev. Lett. 100, 153201 (2008)


	Efimov Trimers in a Harmonic Potential 
	Abstract
	1 Introduction
	2 Framework
	3 Stability of Trimers in a Harmonic Potential
	4 Effective Range Corrections
	5 Conclusion
	Acknowledgments
	References


