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Abstract It is shown that order continuity of the norm and weak sequential
completeness in non-commutative strongly symmetric spaces of τ -measurable oper-
ators are respectively equivalent to properties (u) and (V ∗) of Pelczynski. In addition,
it is shown that each strongly symmetric space with separable (Banach) bidual is
necessarily reflexive. These results are non-commutative analogues of well-known
characterisations in the setting of Banach lattices.

Keywords Measurable operators · Property (u) · Property (V*)

Mathematics Subject Classification (2000) Primary 46L52;
Secondary 46E30 · 47A30

1 Introduction

An important tool in the study of subspaces of Banach lattices is the (so-called) property
(u) introduced by Pelczynski [19] (for the precise definition, see Sect. 3 below). It
was shown by Pelczynski (see [19]) that each Banach space with an absolute basis has
property (u); if a Banach space X has property (u), then so does each closed subspace
of X ; and if the Banach space X has property (u), then X is weakly sequentially com-
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plete if and only if no subspace of X is isomorphic to c0. It was subsequently shown
[15,26] that any Banach lattice with order continuous norm has property (u). Indeed
[1,12,16], for Dedekind σ -complete Banach lattices, order continuity of the norm is, in
fact, equivalent to property (u) and this, in turn, is equivalent to the Banach lattice not
containing any isomorphic copy of l∞. A principal result of this paper (Theorem 3.7)
shows that these characterisations continue to hold for non-commutative strongly sym-
metric spaces of τ -measurable operators affiliated with a semi-finite von Neumann
algebra (M, τ ). In this setting, the elegant Banach lattice arguments of [1,16] are no
longer valid. Our approach is via the theory of non-commutative symmetric spaces
as developed in [6–9]. In particular, a crucial role is played by the Yosida–Hewitt
decomposition of the dual space of a strongly symmetric space and the sequential
weak∗-continuity of the corresponding Yosida–Hewitt projection.

Property (V ∗) (see Sect. 4 below) was introduced by Pelczynski [20] in connection
with his study of Banach spaces on which every unconditionally converging operator
is weakly compact. It was shown in [20] that every abstract L-space has property
(V ∗), and if X is a closed subspace of a Banach space with an unconditional basis,
then a necessary and sufficient condition that X should have property (V ∗) is that no
subspace of X be isomorphic to the Banach space c0. It was shown by Pelczynski
[20] that any Banach space with property (V ∗) is weakly sequentially complete. In
fact, as noted in [22], a Banach space has property (V ∗) if and only if X is weakly
sequentially complete and every sequence in X equivalent to l1 contains a subsequence
which generates a complemented copy of l1. On the other hand, it was shown by Saab
and Saab [23] that a separable subspace X of a Banach lattice with order continuous
norm has property (V ∗) if and only if X contains no copy of c0 (or equivalently, if X is
weakly sequentially complete). Meyer-Nieberg [16, Proposition 5.3.4], noted this con-
tinues to hold for arbitrary closed subspaces of a Banach lattice with order continuous
norm. Further, it was shown by Pfitzner [21] that L-summands in their biduals have
property (V ∗). In the setting of spaces of τ -measurable operators, it was shown by
Randrianantoanina [22] that if E is a (strongly)symmetric Banach function space on
[0,∞) then the non-commutative space E(τ ) corresponding to E has property (V ∗)
if E contains no copy of c0. His approach is based on the cited result of Pfitzner which
implies that non-commutative L1-spaces have property (V ∗). In Sect. 4 below, we
prove directly (see Proposition 4.8) the equivalence of weak sequential completeness
and property (V ∗) for [7, Proposition 2.3]. This yields a very short and direct proof
of the main result of [22] in the somewhat more general setting of strongly symmetric
spaces which are not necessarily constructed as the non-commutative counterpart of
rearrangement invariant spaces on the positive semi-axis. In particular, the fact that
the non-commutative spaces L1(τ ) have property (V ∗) now follows as an immediate
consequence.

Section 5 contains several extensions of the main results to subspaces of strongly
symmetric spaces with order continuous norm. Finally, the last section contains sev-
eral complements on the relation of separability to order continuity of the norm. It is
shown (Proposition 6.8) that if the strongly symmetric space E has order continuous
norm, then E is separable if and only if the set of finite trace projections in M is
separable for the measure topology. In the setting of (commutative) Banach function
spaces, this goes back to the thesis of Luxemburg [13]. Finally, we show that any
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non-commutative strongly symmetric space with separable (Banach) bidual is neces-
sarily reflexive. While true in the setting of Banach lattices, this result is well-known
to be false in general Banach spaces as shown by an example due to R.C. James of a
non-reflexive Banach space with separable Banach bidual.

2 Preliminaries and notation

Throughout this paper M will denote a von Neumann algebra on some Hilbert space
H. Unless otherwise stated, it will be assumed throughout that M is equipped with a
fixed semifinite faithful normal trace τ . For standard facts concerning von Neumann
algebras, we refer to [5,24]. The identity in M is denoted by 1 and we denote by
P(M) the complete lattice of all (self-adjoint) projections in M. A linear operator
x : D(x) → H, with domain D(x) ⊆ H, is said to be affiliated with M if ux = xu
for all unitary u in the commutant M′ of M. For any self-adjoint operator x on H,
its spectral measure is denoted by ex . A self-adjoint operator x is affiliated with M if
and only if ex (B) ∈ P(M) for any Borel set B ⊆ R.

The closed and densely defined operator x , affiliated withM, is called τ -measurable
if and only if there exists a number s ≥ 0 such that

τ(e|x |(s,∞)) < ∞.

The collection of all τ -measurable operators is denoted by S(τ ). With the sum and
product defined as the respective closures of the algebraic sum and product, it is
well-known that S(τ ) is a *-algebra. For ε, δ > 0, we denote by V (ε, δ) the set of
all x ∈ S(τ ) for which there exists an orthogonal projection p ∈ P(M) such that
p(H) ⊆ D(x), ‖xp‖B(H) ≤ ε and τ(1 − p) ≤ δ. The sets {V (ε, δ) : ε, δ > 0}
form a base at 0 for a metrizable Hausdorff topology on S(τ ), which is called the mea-
sure topology. Equipped with this topology, S(τ ) is a complete topological ∗-algebra.
These facts and their proofs can be found in the papers [17,25].

For x ∈ S(τ ), the singular value function μ(·; x) = μ(·; |x |) is defined by

μ(t; x) = inf{s ≥ 0 : τ(e|x |(s,∞)) ≤ t}, t ≥ 0.

It follows directly that the singular value functionμ(x) is a decreasing, right-continuous
function on the positive half-line [0,∞). Moreover, μ(uxv) ≤ ‖u‖‖v‖μ(x) for all
u, v ∈ M and x ∈ S(τ ) and μ( f (x)) = f (μ(x)) whenever 0 ≤ x ∈ S(τ ) and f is
an increasing continuous function on [0,∞) which satisfies f (0) = 0.

It should be observed that a sequence {xn}∞n=1 in S(τ ) converges to zero for the
measure topology if and only if μ(t; xn) → 0 as n → ∞ for all t > 0.

If m denotes Lebesgue measure on the semiaxis [0,∞), and if we consider L∞(m)

as an Abelian von Neumann algebra acting via multiplication on the Hilbert space
H = L2(m), with the trace given by integration with respect to m, then S(m) consists
of all measurable functions on [0,∞) which are bounded except on a set of finite
measure, and that for f ∈ S(m), the generalized singular value function μ( f ) is
precisely the classical decreasing rearrangement of the function | f |, which is usually
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denoted by f ∗. In this setting, convergence for the measure topology coincides with
the usual notion of convergence in measure. If M = L(H) and τ is the standard trace,
then S(τ ) = M, the measure topology coincides with the operator norm topology. If
x ∈ S(τ ), then x is compact if and only if limt→∞ μ(t; x) = 0; in this case,

μn(x) = μ(t; x), t ∈ [n, n + 1), n = 0, 1, 2, . . . ,

and the sequence {μn(x)}∞
n=0

is just the sequence of eigenvalues of |x | in non-increasing
order and counted according to multiplicity. In the general setting, we denote by S0(τ )

the two-sided ∗-ideal in S(τ ) of all τ -compact operators, that is, of all x ∈ S(τ ) such
that limt→∞ μ(t; x) = 0 (equivalently, τ(e|x |(s,∞)) < ∞ for all t > 0).

The real vector space Sh(τ ) = {x ∈ S(τ ) : x = x∗} is a partially ordered vector
space with the ordering defined by setting x ≥ 0 if and only if 〈xξ, ξ 〉 ≥ 0 for all
ξ ∈ D(x). The positive cone in Sh(τ ) will be denoted by S(τ )+. If 0 ≤ xα ↑α≤ x
holds in S(τ )+, then supα xα exists in S(τ )+. The trace τ extends to S(τ )+ as a non-
negative extended real-valued functional which is positively homogeneous, additive,
unitarily invariant and normal. This extension is given by

τ(x) =
∞∫

0

μ(t; x) dt, x ∈ S(τ )+,

and satisfies τ(x∗x) = τ(xx∗) for all x ∈ S(τ ). It should be observed that if f is an
increasing continuous function on [0,∞) satisfying f (0) = 0, then

τ( f (|x |)) =
∞∫

0

μ(t; f (|x |)) dt =
∞∫

0

f (μ(t; x)) dt (2.1)

for all x ∈ S(τ ).
If 1 ≤ p < ∞, we set L p(τ ) = {x ∈ S(τ ) : τ(|x |p) < ∞}. Note that it follows

from (2.1) that L p(τ ) is also given by

L p(τ ) = {x ∈ S(τ ) : μ(x) ∈ L p(m)},

where m denotes Lebesgue measure on [0,∞). The space L p(τ ) is a linear subspace
of S(τ ) and the functional x �−→ ‖x‖L p(τ ) = τ(|x |p)1/p, x ∈ L p(τ ), is a norm. It
should be observed that ‖x‖L p(τ ) = ‖μ(x)‖L p(m) for all x ∈ L p(τ ). Equipped with
this norm, L p(τ ) is a Banach space. In this setting, we also have that L∞(τ ) = M.

In the commutative setting, the spaces L p(τ ) are the familiar Lebesgue spaces.
In the special case that M is B(H) equipped with standard trace, the corresponding
L p-spaces are the Schatten classes Sp. As is well-known, the space L1(τ ) may be
identified with the von Neumann algebra predual of M with respect to trace duality. If
x ∈ S(τ ), then the projection onto the closure of the range of |x | is called the support
of x and is denoted by s(x). We set F(τ ) = {x ∈ M : τ(s(x)) < ∞}.
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If (N , σ ) is a semifinite von Neumann algebra, if x ∈ S(τ ) and y ∈ S(σ ) then x
is said to be submajorised by y (in the sense of Hardy, Littlewood and Polya) if and
only if

t∫

0

μ(s; x) ds ≤
t∫

0

μ(s; y) ds

for all t ≥ 0. We write x ≺≺ y, or equivalently, μ(x) ≺≺ μ(y).
For further details and proofs, we refer the reader to [6,8,10].
It will be convenient to adopt the following terminology. A linear subspace E ⊆

S(τ ), equipped with a norm ‖ · ‖E will be called

(i) symmetrically normed if x ∈ E , y ∈ S(τ ) and μ(y) ≤ μ(x) imply that y ∈ E
and ‖y‖E ≤ ‖x‖E ;

(ii) strongly symmetrically normed if E is symmetrically normed and its norm has
the additional property that ‖y‖E ≤ ‖x‖E whenever x, y ∈ E satisfy y ≺≺ x .

In the present paper we shall only consider strongly symmetrically normed spaces.
It should be pointed out that all results are also valid for symmetrically normed spaces
if one assumes in addition that the von Neumann algebra M is either non-atomic (that
is, does not contain any minimal projections) or atomic and all minimal projections
have equal trace.

If a (strongly) symmetrically normed space is Banach, then it will be simply called
a (strongly) symmetric space.

It may be shown that any strongly symmetrically normed space E for which∨
x∈E s(x) = 1 (which will be always assumed) satisfies

F(τ ) ⊆ E ⊆ L1(τ ) + M,

with continuous inclusions (where F(τ ) is equipped with the L1 ∩ L∞-norm). If, in
addition, E is a Banach space, then L1(τ ) ∩ M ⊆ E , with continuous embedding.

Remark 2.1 We point out that the terminology introduced above differs from that
which has been used elsewhere in the literature. We point out explicitly that the
terms “symmetrically normed” and “strongly symmetrically normed” as defined above
are used in the present paper instead of the earlier terminology of “rearrangement-
invariant” and ”symmetrically normed”, respectively, used in the papers [7,8].

If M is L∞(m), with m Lebesgue measure on the semiaxis [0,∞), then a sym-
metrically normed space E ⊆ S(m) will be called, for simplicity, a symmetrically
normed space on [0,∞).

If E ⊆ S(τ ) is a strongly symmetrically normed space, then the embedding of E
into S(τ ) is continuous from the norm topology of E to the measure topology on S(τ ).

A wide class of strongly symmetrically normed spaces may be constructed as
follows. If E ⊆ S(m) is a strongly symmetrically normed space on [0,∞), set

E(τ ) = {x ∈ S(τ ) : μ(x) ∈ E}, ‖x‖E(τ ) := ‖μ(x)‖E
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It may be shown as in [6] that (E(τ ), ‖ · ‖E(τ )) is a strongly symmetrically normed
and is a Banach space if E is a Banach space.

Now suppose that E ⊆ S(τ ) is a strongly symmetrically normed space and let

E× = {y ∈ S(τ ) : sup{τ(|xy|) : x ∈ E, ‖x‖E ≤ 1} < ∞}

and

‖y‖E× = sup{τ(|xy|) : x ∈ E, ‖x‖E ≤ 1}.

If y ∈ S(τ ), then y ∈ E× if and only if

sup

⎧⎪⎨
⎪⎩

∫

[0,∞)

μ(x)μ(y) dm : x ∈ E, ‖x‖E ≤ 1

⎫⎪⎬
⎪⎭ < ∞,

in which case, the latter quantity is equal to ‖y‖E× . The space (E×, ‖·‖E×) is a strongly
symmetrically normed space, and is called the Köthe dual of E . The symmetrically
normed space E is said to have the Fatou property if, whenever 0 ≤ xα ↑α⊆ E
is an upwards directed system with sup ‖xα‖E < ∞, it follows that x = supα xα

exists in E and ‖x‖E = supα ‖xα‖E . The Köthe dual E× of any strongly sym-
metrically normed space E ⊆ S(τ ) always has the Fatou property. If y ∈ E×, set
φy : E → C, φy(x) = τ(xy), x ∈ E . The mapping y → φy, y ∈ E× is an
isometry of E× into the Banach dual E∗. The linear functional φ on the symmet-
rically normed space E ⊆ S(τ ) is said to be normal if whenever xα ↓α⊆ E , it
follows that φ(xα) →α 0 and singular if φ vanishes on some order dense ideal in
E . See [9]. The space of all normal (respectively, singular) linear functionals on E
is denoted by E∗

n (respectively, E∗
s ). It is shown in [9] that, if E ⊆ S(τ ) is strongly

symmetric, then the Banach dual E∗ admits the unique decomposition E∗ = E∗
n ⊕ E∗

s ,
called the Yosida–Hewitt decomposition, and that E∗

n may be identified with the Köthe
dual E× by trace duality. See also [8]. It is shown in [9] that the natural projections
Pn : E∗ → E∗

n , Ps : E∗ → E∗
s are positive, bounded projections which are sequen-

tially continuous for the weak ∗-topology σ(E∗, E). The norm on E is said to be
order-continuous if ‖xα‖E ↓α 0 whenever xα ↓α 0 ⊆ E . If the norm on E is order-
continuous, then every continuous linear functional on E is normal, and in this case,
the Banach dual E∗ may be identified with the Köthe dual E×.

3 Property (u) of Pelczyński

If {xn}∞n=1 is a sequence in the Banach space X , then the series
∑∞

n=1 xn is said to be
weakly unconditionally Cauchy (or, WUC), whenever

∞∑
n=1

|ϕ(xn)| < ∞, ϕ ∈ X∗.
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Observe that the series
∑∞

n=1 xn is WUC if and only if the set

sup

{∥∥∥∥∥
∑
n∈F

xn

∥∥∥∥∥ : F ⊆ N finite

}
< ∞. (3.1)

This is well-known for real spaces (see, for example, the monograph [4]), but the
changes needed for the complex case are straightforward.

A weak Cauchy sequence {xn}∞n=1 in the Banach space X is said to have property
(u) if and only if there exists a WUC series

∑∞
n=1 un in X such that xn −∑n

k=1 uk → 0
weakly as n → ∞. The Banach space X is said to have property (u) if and only if
every weak Cauchy sequence in X has property (u).

Property (u) was introduced by Pelczyński [19], where it is shown that it is hered-
itary, that is, if the space X has property (u), then so does every closed subspace of
X .

Before proving the main result of the present section, some technical preparations
are necessary. Throughout, it is assumed that (M, τ ) is a semi-finite von Neumann
algebra on a Hilbert space H.

Lemma 3.1 If E ⊆ S(τ ) is a strongly symmetric space and if {xn}∞n=1 is an increasing
weak Cauchy sequence in E+, then {xn}∞n=1 has property (u).

Proof Define the sequence {un}∞n=1 ⊆ E+ by setting u1 = x1 and un = xn − xn−1
for n ≥ 2. Since each element of E∗ is a linear combination of at most four positive
linear functionals on E , it will clearly suffice to show that

∑∞
k=1 ϕ(uk) < ∞ for all

0 ≤ ϕ ∈ E∗. Observe that, if 0 ≤ ϕ ∈ (E∗)+, then

n∑
k=1

ϕ(uk) = ϕ(xn) ≤ ‖ϕ‖E∗‖xn‖E ≤ ‖ϕ‖E∗ sup
j

‖x j‖E < ∞

for all n, using the fact that the sequence {xn}∞n=1 is norm bounded. ��
Recall that a projection e ∈ P(M) is called σ -finite if there exists a sequence

{pn}∞n=1 of finite trace projections in P(M) such that pn ↑n e.

Lemma 3.2 For a projection e ∈ P(M) the following statements are equivalent.

(i) e is σ -finite.
(ii) There exists a sequence {pn}∞n=1 of finite trace projections in P(M) such that

e ≤ ∨∞
n=1 pn.

(iii) Every mutually orthogonal system {qα} of non-zero projections in
P(M) satisfying qα ≤ e for all α, is at most countable.

(iv) There exists a mutually orthogonal sequence {pn}∞n=1 of finite trace projections
in P(M) such that e = ∑∞

n=1 pn.

Proof The implications (i)⇒(ii) and (iv)⇒(i) are evident. That (iii) implies (iv) fol-
lows immediately from the semi-finiteness of the trace τ .
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(ii)⇒(iii). Suppose that {qα}α∈A is a mutually orthogonal system in P(M) such
that 0 < qα ≤ e for all α. If n ∈ N, then for each finite subset F ⊆ A,

∑
α∈F

pnqα pn = pn

( ∑
α∈F

qα

)
pn ≤ pn,

so that

∑
α∈F

τ(pnqα pn) ≤ τ(pn) < ∞.

This implies that the set An = {α ∈ A : pnqα pn �= 0} is at most countable. Now
observe that A = ⋃∞

n=1 An . Indeed, suppose that α ∈ A satisfies pnqα pn = 0 for all
n ∈ N. It follows that (qα pn)∗qα pn = 0 and so, also qα pn = 0 for all n ∈ N. Hence,
pn ≤ 1 − qα for all n and so, e ≤ ∨∞

n=1 pn ≤ 1 − qα . Since 0 < qα ≤ e, this is a
contradiction. Consequently, A is at most countable. ��

From the above lemma, it is clear that if f ≤ e in P(M) and e is σ -finite, then f
is also σ -finite. Similarly, if {en}∞n=1 is a sequence in P(M) of σ -finite projections,
then the projection

∨∞
n=1 en is also σ -finite.

Lemma 3.3 Let E ⊆ S(τ ) be a strongly symmetric space with order continuous norm.
If {xn}∞n=1 is a sequence in E, then there exists a σ -finite projection p ∈ P(M) such
that xn = xn p for all n.

Proof First observe that for every x ∈ E the support projection s(x) is σ -finite.
Indeed, since E has order continuous norm, it follows that E ⊆ S0(τ ). Hence,
τ(e|x |(1/n,∞)) < ∞ for all n ∈ N. Observing that e|x |(1/n,∞) ↑n e|x |(0,∞) =
s(|x |) = s(x), it is now clear that s(x) is σ -finite. Therefore, if {xn}n=1 is a sequence
in E , then the projection p = ∨∞

n=1 s(xn) is σ -finite and satisfies xn = xn p for all n.
��

Lemma 3.4 If 0 ≤ x ∈ S(τ ) and if s(x) is σ -finite, then there exists a sequence
{xn}∞n=1 in F(τ ) such that 0 ≤ xn ↑n x.

Proof It follows from Lemma 3.2 that there exists a mutually orthogonal sequence
{qn}∞n=1 in P(M) of finite trace projections such that s(x) = ∑∞

n=1 qn . It follows
from the spectral theorem that, for each n ∈ N, there exists a sequence {an,k}∞k=1 in
M+ such that 0 ≤ an,k ↑k x1/2qn x1/2. Observing that

μ(x1/2qn x1/2) = μ((qn x1/2)∗(qn x1/2)) = μ((qn x1/2)(qn x1/2)∗)
= μ(qn xqn) ≤ μ(x)χ[0,τ (qn)),

it follows that τ(s(x1/2qn x1/2)) ≤ τ(qn). Since 0 ≤ an,k ≤ x1/2qn x1/2 it follows that
s(an,k) ≤ s(x1/2qn x1/2). Consequently, τ(s(an,k)) ≤ τ(qn) < ∞ and so, 0 ≤ an,k ∈
F(τ ) for all k, n ∈ N. Define 0 ≤ xn ∈ F(τ ) by setting

xn = a1,n + a2,n + · · · + an,n, n ∈ N.
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It is clear that 0 ≤ xn ≤ xn+1 for all n. Further,

xn ≤ x1/2q1x1/2 + x1/2q2x1/2 + · · · + x1/2qn x1/2

= x1/2(q1 + q2 + · · · + qn)x1/2 ≤ x

for all n ∈ N. To show that 0 ≤ xn ↑n x holds in S(τ ), suppose that 0 ≤ b ∈ S(τ )

satisfies xn ≤ b for all n ∈ N. It follows that

0 ≤ a1,m + · · · + an,m ≤ xm ≤ b, m ≥ n,

and this implies that,

x1/2q1x1/2 + x1/2q2x1/2 + · · · + x1/2qn x1/2 ≤ b, n ∈ N.

Since

n∑
j=1

x1/2q j x1/2 = x1/2

⎛
⎝ n∑

j=1

q j

⎞
⎠ x1/2 ↑n x1/2s(x)x1/2 = x,

it follows that x ≤ b, and this suffices to complete the proof. ��

We are now in a position to prove one of the main results of the present section.

Theorem 3.5 If E ⊆ S(τ ) is strongly symmetric and if E has order continuous norm,
then E has property (u).

Proof If φ ∈ E∗, then the functional φ∗ ∈ E∗ is defined by setting φ∗(x) = φ(x∗),
x ∈ E . It follows that, if {xn}∞n=1 is a weak Cauchy sequence in E , then so is the
sequence {x∗

n }∞n=1. Using that linear combinations of sequences with property (u) also
have property (u), it will suffice to show that each weak Cauchy sequence consisting
of self-adjoint elements of E has property (u).

Suppose then that {xn}∞n=1 ⊆ E is a weak Cauchy sequence in E such that x∗
n = xn

for all n ∈ N. Since the norm on E is order continuous, the Banach dual E∗ may
be identified with the Köthe dual E× via trace duality. Since the sequence {xn}∞n=1 is
bounded, there exists � ∈ (E×)∗ such that

�(y) = lim
n→∞ τ(xn y), y ∈ E×,

that is, xn → � with respect to the σ((E×)∗, E×)-topology. Let P = Pn be the
projection in (E×)∗ onto (E×)∗n corresponding to the Yosida–Hewitt decomposition
(E×)∗ = (E×)∗n ⊕ (E×)∗s . It is shown in [9] that the projection P is sequentially
continuous with respect to the σ((E×)∗, E×)-topology and hence, Pxn → P� in the
σ((E×)∗, E×)-topology. Since Pxn = xn for all n ∈ N, it follows that P� = �, that
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is, � ∈ (E×)∗n . Identifying (E×)∗n with E×× via trace duality, it follows that there
exists z ∈ E×× such that

τ(zy) = lim
n→∞ τ(xn y), y ∈ E×.

Since

τ(zy) = lim
n→∞ τ(xn y) = lim

n→∞ τ(x∗
n y)

= lim
n→∞ τ(xn y∗) = τ(zy∗) = τ(z∗y)

for all y ∈ E×, it is clear that z∗ = z.
By Lemma 3.3, there exists a σ -finite projection p ∈ P(M) such that xn = xn p

for all n ∈ N. Observing that

τ(zy) = lim
n→∞ τ(xn y) = lim

n→∞ τ(xn py) = τ(zpy), y ∈ E×,

it follows that z = zp and so, s(z) ≤ p. Since s(z+) ≤ s(z) ≤ p, it follows that s(z+)

is σ -finite and so, by Lemma 3.4, there exists a sequence {un}∞n=1 ⊆ F(τ ) ⊆ E such
that 0 ≤ un ↑ z+. Similarly, there exists a {vn}∞n=1 ⊆ F(τ ) such that 0 ≤ vn ↑ z−.
It is also clear that un → z+ and vn → z− and hence, un − vn → z with respect to
the weak topology σ((E×)∗, E×). It follows that xn − (un − vn) → 0 weakly in E .
Furthermore, it follows from Lemma 3.1 that each of the sequences {un}∞n=1, {vn}∞n=1
has property (u) and so, the sequence {un − vn}∞n=1 has property (u). It is now clear
that the sequence {xn}∞n=1 has also property (u), and this completes the proof of the
theorem. ��

It will be shown next that property (u) is actually equivalent to order continuity of
the norm. The proof is based on the following result.

Proposition 3.6 If E ⊆ S(τ ) is strongly symmetric and if E does not have order
continuous norm, then E contains an isomorphic copy of l∞.

Proof If E does not have order continuous norm, then it follows from [9] Theorem
6.13 that there exists ε > 0, an element 0 ≤ x ∈ E and a mutually orthogonal sequence
{en}∞n=1 ⊆ P(M) of projections such that ‖en x‖E ≥ ε for all n ∈ N. If (αn) ∈ l∞,
then the series

∑∞
n=1 αnen is strongly convergent in M and ‖∑∞

n=1 αnen‖B(H) =
‖(αn)‖∞. Define the linear mapping T : l∞ → E by setting

T (αn) =
( ∞∑

n=1

αnen

)
x, (αn) ∈ l∞.

It is clear that

‖T (αn)‖E ≤
∥∥∥∥∥

∞∑
n=1

αnen

∥∥∥∥∥
B(H)

‖x‖E = ‖(αn)‖∞‖x‖E , (αn) ∈ l∞,
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and so T is bounded with ‖T ‖ ≤ ‖x‖E . For each m ∈ N, it is clear that

em T (αn) = αmem x

and so

ε|αm | ≤ ‖αmem x‖E = ‖em T (αn)‖E ≤ ‖T (αn)‖E .

This implies that

ε‖(αn)‖∞ ≤ ‖T (αn)‖E , (αn) ∈ l∞,

and hence T is an isomorphism onto its range. This suffices to complete the proof.
��

Theorem 3.7 If E ⊆ S(τ ) is strongly symmetric, then the following statements are
equivalent.

(i) E has order continuous norm.
(ii) E has property (u).

(iii) E does not contain a copy of l∞.

Proof The implication (i)�⇒(ii) is just the statement of Theorem 3.5 and the impli-
cation (iii)�⇒(i) follows from Proposition 3.6. It will suffice to show that (ii)�⇒(iii).
If E has property (u), then E cannot contain an isomorphic copy of l∞, since it is
well-known that l∞ does not have property (u), and each closed subspace of a space
with property (u) again has property (u). This suffices to complete the proof. ��

An immediate consequence of the preceding theorem is that order continuity of the
norm is a Banach space property within the class of strongly symmetric spaces, that
is, if E ⊆ S(τ ), F ⊆ S(σ ) are isomorphic as Banach spaces, then the norm on E is
order continuous if and only if the norm on F is order continuous.

In the setting of Banach lattices, the preceding Theorem 3.7 is due to Lozanovskiĭ
[12].

Corollary 3.8 Suppose that E ⊆ S(m) is strongly symmetric. If E has property (u),
then so does E(τ ) for all semifinite (M, τ ).

Proof Suppose that E ⊆ S(m) has property (u). By the commutative specialisation
of Theorem 3.7, it follows that E has order continuous norm. By [8] Proposition 3.6, it
follows that E(τ ) has order continuous norm for all semifinite (M, τ ). The assertion
of the corollary now follows from the implication (i)�⇒(ii) of Theorem 3.7. ��
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4 Property (V*) of Pelczynski

The following definition was introduced in [20].

Definition 4.1 A subset K of a Banach space X is called a (V ∗) -set if

sup{|ϕn(x)| : x ∈ K } → 0, n → ∞,

for every WUC series
∑∞

n=1 ϕn in X∗.

It should be noted that every (V ∗)-set is bounded. Further, it is easily seen that if
K is a V ∗-set in X and if T : X → Y is a continuous linear mapping from X to the
Banach space Y , then T (K ) is a (V ∗)-set in Y .

It will be convenient to recall the following alternative characterisation of (V ∗)-sets.
See [2], Proposition 1.1.

Proposition 4.2 If X is a Banach space and K ⊆ X, then following statements are
equivalent.

(i) K is a (V ∗)-set.
(ii) For every WUC series

∑∞
n=1 ϕn in X∗ we have

sup

{ ∞∑
n=m

|ϕn(x)| : x ∈ K

}
→ 0, m → ∞. (4.1)

(iii) Every bounded linear operator T : X → l1 maps K onto a relatively compact
subset of l1.

(iv) K contains no sequence {xn}∞n=1 equivalent to the unit vector basis of l1 for
which the closed linear span [xn] is complemented in X.

Definition 4.3 A subset K of a Banach space X is called sequentially σ(X, X∗)-
precompact if every sequence in K has a σ(X, X∗)-Cauchy subsequence.

Note: In [2], sequentially σ(X, X∗) -precompact sets are called weakly condition-
ally compact sets. As observed in [2, Corollary 1.3], Proposition 4.2 has the following
consequence.

Corollary 4.4 If X is a Banach space, then every sequentially σ(X, X∗)-precompact
subset of X is a (V ∗)-set.

Proof Let K ⊆ X be sequentially σ(X, X∗)-precompact. If T : X → l1 is a bounded
linear map, then T (K ) is sequentially σ(l1, l∞)-precompact in l1, as the image under
T of a weakly Cauchy sequence in X is a weakly Cauchy sequence in l1. Hence, T (K )

is relatively weakly compact, since l1 is weakly sequentially complete. Consequently,
since weak and norm convergence of sequences coincide in l1, T (K ) is relatively
compact in l1. The result now follows from Proposition 4.2. ��
Definition 4.5 A Banach space X is said to have property (V ∗) if every (V ∗)-subset
of X is relatively weakly compact.
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It is easily seen that, if the Banach space X has property (V ∗), then so does each closed
subspace Y ⊆ X . Indeed, it suffices to observe that the restriction to Y of any WUC
series in X∗ is again a WUC series in Y ∗. This is an immediate consequence of the
characterisation of a WUC series in terms of bounded sums given in equation (3.1)
which implies that any (V ∗)-subset of Y is also a (V ∗)-subset of X .

Further, the Banach space c0 does not have property (V ∗). Indeed, since c∗
0 = l1 is

weakly sequentially complete and weak and norm convergence of sequences coincide
in l1, it follows that every bounded set in c0 is a (V ∗)-set. If c0 had property (V ∗), it
would then follow that every norm-bounded subset of c0 is relatively weakly compact,
which is clearly not the case. Consequently, if the Banach space X has property (V ∗)
then X cannot contain any copy of c0.

The following simple observation is worth noting. See [2], Remark 1.4 (a). The
proof is included for the sake of completeness.

Lemma 4.6 For a Banach space X the following two statements are equivalent:

(i) X has property (V ∗);
(ii) X is weakly sequentially complete and every (V ∗)-subset of X is sequentially

σ(X, X∗)-precompact.

Proof (i)⇒(ii). Any (V ∗)-subset of X is relatively weakly compact and hence, sequen-
tially σ(X, X∗)-precompact. Furthermore, if {xn}∞n=1 is a σ(X, X∗)-Cauchy sequence
in X , then the set K = {xn : n ∈ N} is a (V ∗)-set (as follows from Corollary 4.4).
Hence, K is relatively weakly compact. This implies that the sequence {xn}∞n=1 is
weakly convergent in X . Consequently, X is weakly sequentially complete.

(ii)⇒(i). Let K ⊆ X be a (V ∗) -set and {xn}∞n=1 be a sequence in K . By hypothesis,
K is sequentially σ(X, X∗)-precompact and so, {xn}∞n=1 has a weak Cauchy sequence
{xnk }∞k=1. Since X is weakly sequentially complete, {xnk }∞k=1 has a weak limit in X .
Hence, K is relatively weakly (sequentially) compact. The proof is complete. ��

It will now be shown that, for strongly symmetric spaces E ⊆ S(τ ), weak sequen-
tial completeness coincides with property (V ∗).We begin with the following simple
observation.

Lemma 4.7 If x ∈ E and if {en}∞n=1 ⊆ P(M) is any sequence of mutually orthogonal
projections then the series

∑∞
n=1 xen and

∑∞
n=1 en x are both WUC.

Proof If F ⊆ N is finite, then

∥∥∥∥∥
∑
n∈F

xen

∥∥∥∥∥ =
∥∥∥∥∥x

( ∑
n∈F

en

)∥∥∥∥∥
E

≤
∥∥∥∥∥
∑
n∈F

en

∥∥∥∥∥
B(H)

‖x‖E ≤ ‖x‖E

It now follows from the remark at the beginning of the previous section that
∑∞

n=1 xen

is a WUC series. The second statement is proved similarly. ��
We recall that a strongly symmetric space E ⊆ S(τ ) is said to be a K B-space if

and only if every norm-bounded increasing sequence in E is convergent in the norm
of E , or equivalently, E ⊆ S(τ ) is a K B-space if and only if the norm on E is order
continuous and E has the Fatou property.
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Proposition 4.8 If E ⊆ S(τ ) is a strongly symmetrically normed space then the
following statements are equivalent.

(i) E is weakly sequentially complete.
(ii) E is a KB-space.

(iii) E contains no copy of c0.
(iv) E has property (V ∗).

Proof The equivalences (i)⇐⇒(ii)⇐⇒(iii) are established in [7] Proposition 3.2. The
implication (iv)�⇒(iii) follows from the above remarks. It will suffice to show that
(i)�⇒(iv). Suppose then that E is weakly sequentially complete. In particular, E is
a K B-space and so the norm on E is order continuous, E∗ coincides with the Köthe
dual E× and the natural embedding of E into E×× ⊆ E∗∗ is a surjective isometry.
Now suppose that K ⊆ (E×)× is bounded and that K is a (V ∗)-set. Let 0 ≤ y ∈ E×
and suppose that {en}∞n=1 ⊆ P(M) is a sequence of mutually orthogonal projections.
By Lemma 4.7, the series

∑∞
n=1 xen and

∑∞
n=1 en x are both WUC . Since K is a

(V ∗)-set, it follows that

sup{max(|τ(yxen)|, |τ(yen x)|) : y ∈ K } →n 0.

By the weak compactness criterion given in [7] Proposition 2.3, it follows that K is
relatively σ((E×)×, E×) = σ(E, E∗)-compact, and this completes the proof of the
Proposition. ��

Since the space L1(τ ) is weakly sequentially complete, the following consequence
is immediate and was first proved for the more general class of spaces which are
L-summands in their bidual by Pfitzner [21]

Corollary 4.9 The space L1(τ ) has property (V ∗).

Corollary 4.10 Suppose that E ⊆ S(m) is a strongly symmetrically normed space.
If E has property (V ∗), then so does E(τ ) for all (M, τ ).

This follows from the fact that, if E is a K B-space, then so is E(τ ), as follows
from [8, Corollary 5.12].

In the Banach lattice setting, the equivalence of (iii), (iv) in the preceding Proposi-
tion 4.8 may be found in [23], where it is pointed out that the implication (iii)�⇒(iv)
fails in general Banach spaces. In the non-commutative setting, the preceding Corol-
lary 4.10 follows from the main result in [22], although it is tacitly assumed there that
if E ⊆ S(m) is a strongly symmetric space which contains no copy of c0, then the
corresponding non-commutative space E(τ ) is weakly sequentially complete. As has
been observed earlier, if E ⊆ S(m) is a K B-space, then so is the non-commutative
space E(τ ) for all (M, τ ), and so this assertion is actually a consequence of Proposi-
tion 4.8. The proof of Corollary 4.10 given in the present paper is more direct and is
a considerable simplification of the method of [22].
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5 Subspaces of strongly symmetric spaces with order continuous norm

Before proceeding, some technical preparation is required.

Lemma 5.1 Let E ⊆ S(τ ) be a strongly symmetric space and let K ⊆ E be a
(V ∗)-set.

(i) If {yn}∞n=1 is a sequence in E× such that yn ↓ 0, then

sup{|τ(xyn)| : x ∈ K } → 0, n → ∞.

(ii) If {pn}∞n=1 is a sequence in P(M) such that pn ↓ 0 and if y ∈ E×, then

sup{|τ(xpn y)| : x ∈ K } → 0, n → ∞.

Proof (i) Note that yn ↓ 0 in E× implies that τ(xyn) → 0 for all x ∈ E . Defining
zn = yn − yn+1, it follows that

0 ≤
∑
n∈F

zn ≤ y1

and so, ‖∑
n∈F zn‖E× ≤ ‖y1‖E× for all finite subsets F of N. Hence, the series∑∞

n=1 zn is WUC in E∗ (identifying E× with a closed linear subspace of E∗ via trace
duality). Therefore, it follows from Proposition 4.2 that

sup

{ ∞∑
n=m

|τ(xzn)| : x ∈ K

}
→ 0, m → ∞.

If m < N in N and x ∈ K , then

N∑
n=m

τ(xzn) =
N∑

n=m

{τ(xyn) − τ(xyn+1)} = τ(xym) − τ(xyN+1)

and so,

τ(xym) =
∞∑

n=m

τ(xzn).

Hence,

sup{|τ(xym)| : x ∈ K } ≤ sup

{ ∞∑
n=m

|τ(xzn)| : x ∈ K

}
→ 0, m → ∞.

The proof of (i) is complete.
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(ii) Observe first that τ(xpn y) → 0 as n → ∞ for all x ∈ E . Indeed, τ(xpn y) =
τ(pn yx) for all n and ‖pn yx‖1 → 0 as n → ∞ by the order continuity of the norm
in L1(τ ). Define qn = pn − pn+1 and note that

N∑
k=n

τ(xqk y) =
N∑

k=n

{τ(xpk y) − τ(xpk+1 y)}

= τ(xpn y) − τ(xpN+1 y)

whenever n < N in N. Hence,

τ(xpn y) =
∞∑

k=n

τ(xqk y).

If F ⊆ N is finite, then ‖∑
n∈F qn y‖E× ≤ ‖∑

n∈F qn‖∞‖y‖E× ≤ ‖y‖E× and so,
the series

∑∞
n=1 qn y is WUC in E∗. Hence, it follows from Proposition 4.2 that

sup{|τ(xpn y)| : x ∈ K } ≤ sup

{ ∞∑
k=n

|τ(xqk y)| : x ∈ K

}
→ 0

as n → ∞. The proof is complete. ��
Lemma 5.2 Let E be a strongly symmetric space with order continuous norm, let
K ⊆ E be a (V ∗)-set and let {xn}∞n=1 be a sequence in K . If p ∈ P(M) with
τ(p) < ∞, then there exists a subsequence {xnk }∞k=1 of {xn}∞n=1 such that {xnk p}∞k=1
is a σ(E, E∗)-Cauchy sequence.

Proof If x ∈ E , then xp ∈ L1(τ ) and ‖xp‖1 ≤ ‖p‖E×‖x‖E . Hence, x �−→ xp,
x ∈ E , is a bounded linear map from E into L1(τ ). As observed earlier, it follows that
{xp : x ∈ K } is a (V ∗)-set in L1(τ ). Since L1(τ ) has property (V ∗), it follows that
{xp : x ∈ K } is relatively weakly compact in L1(τ ). Hence, there is a subsequence
{xnk }∞k=1 of {xn}∞n=1 such that {xnk p}∞k=1 is σ(L1(τ ),M)-Cauchy.

It will now be shown that {xnk p}∞k=1 is a σ(E, E∗)-Cauchy sequence. Since E has
order continuous norm, it follows that E∗ = E× and so it needs to be shown that
{τ(xnk py)}∞k=1 is a Cauchy sequence for all y ∈ E×. It will be sufficient to show this
for all 0 ≤ y ∈ E×. So, let 0 ≤ y ∈ E× be given. It follows from the spectral theorem
that there exists a sequence {yn}∞n=1 in E× ∩M such that 0 ≤ yn ↑ y in E×. It follows
from Lemma 5.1, (i) that

sup{|τ(xnk p(y − yn))| : k ∈ N} → 0, n → ∞.

Consequently, given ε > 0, there exists N ∈ N such that

|τ(xnk p(y − yN ))| ≤ ε/3, ∀ k ∈ N.
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The sequence {xnk p}∞k=1 is σ(L1(τ ),M)-Cauchy and so, there exists J ∈ N such that

|τ(xnk pyN ) − τ(xnl pyN )| ≤ ε/3, k, l ≥ J.

Hence, if k, l ≥ J , then

|τ(xnk py) − τ(xnl py)|
≤ |τ(xnk p(y − yN ))| + |τ(xnk pyN ) − τ(xnl pyN )| + |τ(xnl p(y − yN ))|
≤ ε/3 + ε/3 + ε/3 = ε

The proof is complete. ��
Proposition 5.3 If E ⊆ S(τ ) is a strongly symmetric space with order continuous
norm, then every (V ∗)-set is sequentially σ(E, E∗)-precompact.

Proof Let K ⊆ E be a (V ∗)-set and {xn}∞n=1 be a sequence in K . By Lemma 3.3,
there exists a σ -finite projection p ∈ P(M) such that xn p = xn for all n ∈ N.
Let {pk}∞k=1 be a sequence in P(M) such that pk ↑ p and τ(pk) < ∞ for all k.
It follows from Lemma 5.2 combined with a diagonal argument that there exists a
subsequence {xn j }∞j=1 of the sequence {xn}∞n=1 with the property that {xn j pk}∞j=1 is a
σ(E, E∗)-Cauchy sequence for all k ∈ N.

For simplicity, denote xn j by xn . It follows that {xn}∞n=1 is a σ(E, E∗)-Cauchy
sequence. Indeed, fix y ∈ E× (= E∗) and let ε > 0 be given. It follows from Lemma
5.1 (ii) that

sup{|τ(xn(p − pk)y)| : n ∈ N} → 0, k → ∞.

Hence, there exists J ∈ N such that

|τ(xn(p − pk)y)| ≤ ε/3, n ∈ N, k ≥ J.

The sequence {xn pJ }∞n=1 is σ(E, E∗)-Cauchy and so, there exists N ∈ N such that

|τ(xn pJ ) − τ(xm pJ )| ≤ ε/3, n, m ≥ N .

Consequently, if n, m ≥ N , then

|τ(xn y) − τ(xm y)| = |τ(xn py) − τ(xm py)|
≤ |τ(xn(p − pJ )y)| + |τ(xn pJ y) − τ(xm pJ y)| + |τ(xm(p − pJ )y)|
≤ ε/3 + ε/3 + ε/3 = ε.

This completes the proof. ��
Corollary 5.4 Let E ⊆ S(τ ) be a strongly symmetric space with order continuous
norm. If X ⊆ E is a closed linear subspace, then a subset K ⊆ X is a (V ∗)-set if and
only if K is sequentially σ(X, X∗) -precompact.
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Proof If K ⊆ X is sequentially σ(X, X∗) -precompact, then it follows from Corol-
lary 4.4 that K is a (V ∗)-set.

Conversely, if K ⊆ X is a (V ∗)-set, then K is a (V ∗)-set in E and so, by Proposi-
tion 5.3, K is sequentially σ(E, E∗)-precompact. The Hahn–Banach theorem implies
that K is sequentially σ(X, X∗)-precompact. ��

The following result is shown in [2] Corollary 1.6. We include the proof for sake
of completeness.

Proposition 5.5 If X is a Banach space with the property that each (V ∗)-set is sequen-
tially σ(X, X∗)-precompact, and if X contains a copy of l1, then X contains a com-
plemented copy of l1.

Proof If X contains no complemented copy of l1 then the implication (iv)�⇒(i) of
Proposition 4.2 implies that every bounded set of X has property (V ∗). Consequently,
every bounded subset of X is weakly sequentially precompact. It follows that X con-
tains no copy of l1, and this is a contradiction. ��

The following corollary is then an immediate consequence of Proposition 5.5 and
Corollary 5.4.

Corollary 5.6 Let E ⊆ S(τ ) be a strongly symmetric space and suppose that X ⊆ E
is a closed linear subspace. If the norm on E is order continuous then the following
statements are equivalent.

(i) X contains a copy of l1.
(ii) X contains a complemented copy of l1.

In the setting of Banach lattices, the preceding corollary is due to Tzafriri [26].
Note that l∞ does not have the property that each (V ∗)-set is weakly sequentially

precompact. Indeed, if this were the case, then it would follow from Proposition 5.5
that there exists a continuous projection P : l∞ → Y from l∞ to a closed linear
subspace Y ⊆ l∞ which is isomorphic to l1. Since l1 is weakly sequentially complete,
a well-known theorem of A. Grothendieck (see [3], Chapter VI.2, Theorem 15) shows
that the projection P is weakly compact. From the open mapping theorem, it follows
that the unit ball of Y is contained the image under P of a multiple of the unit ball
in l∞ and is therefore relatively weakly compact. This implies that Y is reflexive, and
this is clearly a contradiction.

Corollary 5.7 If E ⊆ S(τ ), then the following statements are equivalent.

(i) Every (V ∗)-set in E is sequentially σ(E, E∗)-precompact.
(ii) E contains no isomorphic copy of l∞.

(iii) E has order continuous norm.

Proof The equivalence (ii)⇐⇒(iii)is given in Theorem 3.7, while the implication
(iii)�⇒(i) follows from Corollary 5.4. The implication (i)�⇒(ii), follows from the
fact that l∞ fails the assertion of (i), as is noted above ��
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In the case of Banach lattices, the preceding characterisation may be found in [2]
Corollary 2.4.

It is now possible to state the main result of this section.

Theorem 5.8 Suppose that E ⊆ S(τ ) is a strongly symmetric space with order con-
tinuous norm. If X ⊆ E is a closed subspace, then the following statements are
equivalent.

(i) X is weakly sequentially complete.
(ii) X contains no isomorphic copy of c0.

(iii) X has property (V ∗)

Proof It is clear that if X is weakly sequentially complete, then X can contain no
isomorphic copy of c0 and this establishes the implication (i)�⇒(ii). To see the impli-
cation (ii)�⇒(i), assume that X contains no isomorphic copy of c0. If X is not weakly
sequentially complete, there exists a σ(X, X∗)- Cauchy sequence {xn}∞n=1 ⊆ X which
is not convergent for the weak topology σ(X, X∗). Since E has order continuous norm,
it follows from Theorem 3.5 that E has property (u), and so also X has property (u).
Consequently, there exists a sequence {un}∞n=1 ⊆ X such that

∑∞
n=1 |φ(un)| < ∞ for

every φ ∈ X∗ with the property that xn − ∑n
k=1 uk →n 0 weakly. It follows that the

series
∑∞

n=1 un is not weakly convergent in X . By a well-known characterisation of
Bessaga–Pelczynski (see [5, Theorem V.8]), it follows that X contains an isomorphic
copy of c0.

The implication (iii)⇒(i) has already been observed in Lemma 4.6.
(i)⇒(iii). It follows from Proposition 5.3 that every (V ∗)-set in X is sequentially

σ(X, X∗)-precompact. Since X is weakly sequentially complete, this implies that X
has property (V ∗) (again by Lemma 4.6). ��

For separable subspaces of a Banach lattice with order continuous norm, the equiva-
lence (ii)⇐⇒(iii) is shown in [23]. That the restriction of separability could be removed
was noted in [16] Proposition 5.3.4. In the non-commutative setting, the assertion of
Theorem 5.8 is new.

Proposition 5.9 Suppose that E ⊆ S(τ ) is a strongly symmetric space with order
continuous norm. If X ⊆ E is a closed subspace, then the following statements are
equivalent.

(i) X is reflexive.
(ii) X contains no copy of c0 or l1.

Proof It is clear that if X is reflexive, then X can contain no isomorphic copy of either
c0 or l1. It will suffice, therefore, to prove only the implication (ii)�⇒(i). Suppose
then that X contains no copy of c0 or l1. Since X contains no copy of c0, it follows
from the preceding theorem that X is weakly sequentially complete. Since X contains
no copy of l1, Rosenthal’s l1- theorem (see [4, Chapter XI]) implies that the unit ball
of X is sequentially σ(X, X∗)-precompact. Consequently the unit ball of X is weakly
compact and so X is reflexive. ��

In the Banach lattice setting, the preceding proposition is due to Tzafriri [26].
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6 Order continuity of the norm and separability

We begin this section with an observation which must be surely well-known. Its proof
is based on the fact that every positive functional ϕ in the predual M∗ of a von
Neumann algebra M on a Hilbert space H may be represented as

ϕ(x) =
∞∑

i=1

〈xξi , ξi 〉, x ∈ M,

for some sequence {ξi }∞i=1 in H satisfying
∑∞

i=1 ‖ξi‖2 < ∞ (see, for example, [24,
Proposition 3.20]).

Proposition 6.1 IfM is a von Neumann algebra acting in a separable Hilbert spaceH,
then its predual M∗ is a separable Banach space.

We state some simple consequences.

Corollary 6.2 If (M, τ ) is a semi-finite von Neumann algebra acting on a separable
Hilbert space H, then:

(i) the Banach space L1(τ ) is separable;
(ii) the space L1(τ ) is separable with respect to the measure topology;

(iii) the set F(τ ) ∩ P(M) is separable with respect to the measure topology.

Proof Via trace duality, the space L1(τ ) is isometrically isomorphic with M∗ and
so, (i) follows immediately from Proposition 6.1. Since the embedding of L1(τ ) into
S(τ ), equipped with the measure topology, is continuous, (ii) is also clear. Statement
(iii) is now evident, as F(τ ) ∩ P(M) is a subset of L1(τ ). ��
Remark 6.3 Suppose that (M, τ ) is a semi-finite von Neumann algebra. If F(τ ) ∩
P(M) is separable for the measure topology, then F(τ ) is also separable for the mea-
sure topology. Indeed, it clearly follows that spanP(M) is separable. If 0 ≤ x ∈ F(τ ),
then it follows from the spectral theorem that there exists a sequence {xn}∞n=1 in
spanP(M) such that 0 ≤ xn ↑n x . Since, in particular, x ∈ S0(τ ), this implies that
xn → x with respect to the measure topology. This suffices to show that F(τ ) is
separable.

Lemma 6.4 Let E ⊆ S(τ ) be a strongly symmetric space with order continuous norm.
If {pn}∞n=1 is a sequence of finite trace projections in P(M) such that τ(pn) → 0 as
n → ∞, then ‖pn‖E → 0.

Proof Suppose that ‖pn‖E �→ 0 as n → ∞. Passing to a subsequence, if necessary,
we may assume that τ(pn) ≤ 2−n and ‖pn‖E ≥ ε for some ε > 0 and all n. Defining
qn ∈ P(M) by qn = ∨∞

k=n pk , it follows that qn ↓n and τ(qn) ≤ 2−n+1 for all n.
Hence, qn ∈ E and qn ↓n 0. By the order continuity of the norm, this implies that
‖qn‖E ↓n 0. Since pn ≤ qn , it is also clear that ‖pn‖E ≤ ‖qn‖E for all n, which
yields a contradiction. ��
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In the proof of the lemma which follows, the following notation will be used. For
α ≥ 0, define the real functions fα, gα by setting fα(t) = t ∧α and gα(t) = (t −α)+,
t ∈ [0,∞). If 0 ≤ x ∈ S(τ ), set x ∧ α1 = fα(x) and (x − α1)+ = gα(x). Note that
x = x ∧ α1 + (x − α1)+. Further, for all α > 0

μ( fα(x)) = fα(μ(x)), μ(gα(x)) = gα(μ(x))

as follows from [10, Lemma 2.5 (iv)]. It follows that (x − αk1)+ ↓k 0 holds in S(τ )

whenever αk ↑k ∞. In fact, if 0 ≤ z ∈ S(τ ) satisfies 0 ≤ z ≤ (x − αk1)+ for all k,
then

μ(z) ≤ μ((x − αk1)+) = (μ(x) − αk)
+) ↓k 0,

and this clearly implies that z = 0. Similarly, if αk ↓k 0, then x ∧ αk1 ↓k 0 in S(τ ).

Lemma 6.5 Let E ⊆ S(τ ) be a strongly symmetric space with order continuous norm.
Let {xn}∞n=1 be a sequence in E and y ∈ E be such that μ(xn) ≤ μ(y) for all n. If
xn → 0 for the measure topology, then ‖xn‖E → 0.

Proof For the proof of the lemma it may be assumed, without loss of generality, that
y ≥ 0 and xn ≥ 0 for all n. We assume first, in addition, that 0 ≤ xn ≤ N1 for all n
and some N ∈ N. Given δ > 0, we have

0 ≤ xn = xnexn [0, δ] + xnexn (δ,∞) ≤ xnexn [0, δ] + Nexn (δ,∞).

It follows from xn → 0 in measure that τ(exn (δ,∞)) → 0 and so, by Lemma 6.4,
‖exn (δ,∞)‖E → 0 as n → ∞. Hence,

lim sup
n→∞

‖xn‖E ≤ lim sup
n→∞

‖xnexn [0, δ]‖E .

Since μ(xnexn [0, δ]) ≤ δ and μ(xnexn [0, δ]) ≤ μ(y), it follows that

μ(xnexn [0, δ]) ≤ μ(y) ∧ δ1 = fδ(μ(y)) = μ( fδ(y)) = μ(y ∧ δ1)

and so, ‖xnexn [0, δ]‖E ≤ ‖y ∧ δ1‖E . Hence, lim supn→∞ ‖xn‖E ≤ ‖y ∧ δ1‖E for all
δ > 0. Since y∧δ1 ↓ 0 as δ ↓ 0, we have ‖y∧δ1‖E ↓ 0 and so, lim supn→∞ ‖xn‖E =
0.

Assume now that 0 ≤ xn ∈ E and 0 ≤ y ∈ E are such that xn → 0 in measure
and μ(xn) ≤ μ(y) for all n. Since (y − N1)+ ↓N 0 in E , it follows from the order
continuity of the norm that ‖(y − N1)+‖E ↓N 0. Given ε > 0, let N ∈ N be such
that ‖(y − N1)+‖E ≤ ε/2. For n ∈ N we have

μ
(
(xn − N1)+

) = μ(gN (xn)) = gN (μ(xn)) = (μ(xn) − N1)+

≤ (μ(y) − N1)+ = μ((y − N1)+)
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and so, ‖(xn − N1)+‖E ≤ ‖(y − N1)+‖E ≤ ε/2. Hence,

‖xn‖E ≤ ‖xn ∧ N1‖E + ‖(xn − N1)+‖E

≤ ‖xn ∧ N1‖E + ε/2.

for all n. Since 0 ≤ xn ∧ N1 ≤ N1 for all n and xn ∧ N1 → 0 as n → ∞ for the
measure topology (as μ(xn ∧ N1) ≤ μ(xn)), it follows from the first part of the proof
that ‖xn ∧ N1‖E → 0 as n → ∞. So, there is an M ∈ N such that ‖xn ∧ N1‖E ≤ ε/2
for all n ≥ M . Hence, ‖xn‖E ≤ ε for all n ≥ M . The proof is complete. ��

The following is now a simple consequence of the above lemma.

Lemma 6.6 Let E ⊆ S(τ ) be a strongly symmetric space with order continuous norm.
If {pn}∞n=1 is a sequence in P(M) ∩ F(τ ) and e ∈ P(M) ∩ F(τ ) such that pn → e
with respect to the measure topology, then ‖e − pn‖E → 0 as n → ∞.

Proof It follows from pn → e in measure, that

χ[0,τ (pn))(t) = μ(t; pn) → μ(t; e) = χ[0,τ (e))(t), n → ∞,

for all t > 0 where μ(e) is continuous, that is, for all t �= τ(e). Therefore, there exists
N ∈ N such that τ(pn) < τ(e) + 1 for all n ≥ N . Hence, τ(e ∨ pn) ≤ 2τ(e) + 1
for all n ≥ N . Let q ∈ P(M) ∩ F(τ ) be such that τ(e ∨ pn) ≤ τ(q) for all
n ≥ N (such a q always exists: if τ(1) < ∞, then we take q = 1; if τ(1) = ∞, then
P(M)∩F(τ ) contains projections of arbitrarily large trace). Since s(e− pn) ≤ e∨ pn

and ‖e − pn‖∞ ≤ 2, it is now clear that μ(e − pn) ≤ μ(2q) for all n ≥ N . The
statement of the lemma now follows from Lemma 6.5. ��
Corollary 6.7 Let E ⊆ S(τ ) be a strongly symmetric space with order continu-
ous norm. If P(M) ∩ F(τ ) is separable with respect to the measure topology, then
P(M) ∩ F(τ ) is separable with respect to the norm topology in E.

Proof If C is a countable subset of P(M)∩F(τ ) which is dense in P(M)∩F(τ ) for
the measure topology, then it follows immediately from Lemma 6.6 that C is dense in
P(M) ∩ F(τ ) for the norm topology in E . ��
Proposition 6.8 If E ⊆ S(τ ) is a strongly symmetric space with order continuous
norm, then the following two statements are equivalent:

(i) E is separable;
(ii) P(M) ∩ F(τ ) is separable for the measure topology.

Proof (i)⇒(ii). Separability of E clearly implies that of P(M) ∩ F(τ ) for the norm
of E and hence, also for the measure topology, by the continuity of the embedding
of E into S(τ ).

(ii)⇒(i). By Corollary 6.7, the set P(M) ∩ F(τ ) is norm separable. If 0 ≤ x ∈ E ,
then 0 ≤ x ∈ S0(τ ) (as the norm in E is order continuous) and hence, by the spectral
theorem, there exists a sequence {xn}∞n=1 in span(P(M)∩F(τ )) such that 0 ≤ xn ↑ x .
This implies that ‖x − xn‖E → 0 as n → ∞. This shows that span(P(M) ∩ F(τ ))

is dense in E and we may conclude that E is separable. ��
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Proposition 6.9 If E ⊆ S(τ ) is a strongly symmetric space, then the following state-
ments are equivalent:

(i) E has order continuous norm and P(M) ∩ F(τ ) is separable for the measure
topology;

(ii) E is separable.

Proof The implication (i)⇒(ii) follows immediately from Proposition 6.8.
If E is separable, then E cannot contain a copy of 
∞ and hence, E has order

continuous norm (see [Theorem 3.8]). Furthermore, P(M) ∩ F(τ ) is separable in E
and hence with respect to the measure topology (as the embedding of E into S(τ ) is
continuous. This shows that (ii) implies (i). ��

The following result is now an immediate consequence of Proposition 6.9 (and of
Corollary 6.2).

Corollary 6.10 Suppose that P(M) ∩ F(τ ) is separable for the measure topology
(which is, in particular, the case if the underlying Hilbert space H is separable). If
E ⊆ S(τ ) is a strongly symmetric space, then the following statements are equivalent:

(i) E has order continuous norm;
(ii) E is separable.

We conclude the paper with several results which relate separability to reflexivity.

Proposition 6.11 Let E ⊆ S(τ ) be a strongly symmetric space. If the Banach dual
E∗ is separable and if E has the Fatou property, then E is reflexive.

Proof As is well-known, separability of E∗ implies that of E . Theorem 3.7 now
implies that the norm on E is order continuous. This implies that the Banach dual E∗
coincides with the Köthe dual E×. Separability of E∗ again implies that the norm on
E× = E∗ is order continuous. Since E has the Fatou property and the norm on E is
order continuous, it follows that E is a K B space. Since E× has the Fatou property,
order continuity of the norm on E× implies that E× is also a K B space and the
reflexivity of E now follows from [8, Theorem 5.15]. ��
Corollary 6.12 Let E ⊆ S(τ ) be a strongly symmetric space. If E∗∗ is separable,
then E is reflexive.

Proof Since E∗∗ is separable, it follows that each of E, E∗ are separable. In partic-
ular, E∗ = E× ⊆ S(τ ) is a strongly symmetric space with the Fatou property and
(E×)∗ = E∗∗ is separable. It follows from Proposition 6.11 that E∗, and hence also E ,
is reflexive. ��
Remarks Proposition 6.11 and Corollary 6.12 are valid for in the setting of Banach lat-
tices and may be found in [14], where the Banach lattice counterpart of Corollary 6.12
is attributed to Ogasawara [18]. In the Banach function space setting, Proposition 6.11
goes back to the thesis of Luxemburg [13]. That Corollary 6.12 fails in the setting of
general Banach spaces is a well-known result of R.C. James.



594 P. G. Dodds, B. de Pagter

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, London (1985)
2. Bombal, F.: (V ∗) sets and Pelczynski’s property (V ∗). Glasg. Math. J. 32, 109–120 (1990)
3. Diestel, J., Uhl, J.J. Jr.: Vector Measures. In: Math. Surveys, vol. 15. American Mathematical Society,

Providence (1977)
4. Diestel, J.: Sequences and series in Banach spaces. In: Graduate Texts in Mathematics, vol. 92. Springer,

Berlin (1984)
5. Dixmier, J.: von Neumann Algebras. In: Mathematical Library, vol. 27. North Holland, Amsterdam

(1981)
6. Dodds, P.G., Dodds, T.K., de Pagter, B.: Non-commutative Banach function spaces. Math. Z. 201,

583–597 (1989)
7. Dodds, P.G., Dodds, T.K., de Pagter, B.: Weakly compact subsets of symmetric operator spaces. Math.

Proc. Camb. Philos. Soc. 110, 169–182 (1991)
8. Dodds, P.G., Dodds, T.K., de Pagter, B.: Non-commutative Köthe duality. Trans. Am. Math. Soc.

339, 717–750 (1993)
9. Dodds, P.G., de Pagter, B., The non-commutative Yosida–Hewitt decomposition revisited. Trans. Am.

Math. Soc (in press)
10. Fack, T., Kosaki, H.: Generalized s-numbers of τ -measurable operators. Pac. J. Math. 123, 269–300

(1986)
11. Krein, S.G., Petunin, Ju.I., Semenov, E.M.: Interpolation of linear operators. In: Translations of Math-

ematical Monographs, vol. 54. American Mathematical Society, Providence (1982)
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