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1 Introduction and summary

To understand the properties of 4d N=2 supersymmetric theories, it is extremely useful to

realize them as twisted compactifications of the 6d N=(2, 0) superconformal field theories

(SCFTs) on Riemann surfaces C with punctures [1, 2]. These 4d theories are now called

class S theories, and they are closely associated to certain 2d theories defined on C. For

example, class S theories on S4 are related to the Liouville/Toda CFT on C [3, 4] and

when considered instead on S3×S1 they give rise to 2d q-deformed Yang-Mills on C [5–7].

How do supersymmetric defects1 appear under these 4d-2d duality relations? In this

paper, we only consider one-dimensional objects, loops, on the 4d side. Since 6d N=(2, 0)

SCFTs have codimension-two defects and codimension-four defects, a loop operator on the

4d side should come from a codimension-four defect on a codimension-one defect on the

2d side.

For class S theories of type SU(2), or equivalently A1, dyonic charges of loops on the

4d side is in one-to-one correspondence with topologies of non-intersecting loops on the

2d side [8]. When the 2d theory is the Liouville/Toda theory, these loops on the 2d side

have an explicit realization in terms of the Verlinde operators [9] as shown in [10, 11].

When the 2d theory is the q-deformed Yang-Mills, these loops are instead realized as 2d

Wilson loops.2

We only have to consider non-intersecting loops on the Riemann surface for the A1

case, thanks to the existence of a skein relation resolving each crossing into a sum of two

non-crossing ones:

= q−1/2 + q1/2 , (1.1)

where q = eπib
2

in the Liouville theory and q = q1/2 in the q-deformed Yang-Mills.

However, in the higher rank cases, namely for SU(N) with N > 2 or equivalently

for Ak with k = N − 1 > 1, there is no such simple skein relation, since junctions of

lines inevitably appear. This results in the networks3 of lines on the Riemann surface, as

already mentioned in [12, 13]. Such networks were treated and discussed in [14, 15], putting

special emphasis on the SU(3) case. In [14] the analysis was mainly carried out using the

approach of the higher Teichmüller theory classically (q = 1), and in [15] the study was

1In this paper we use the words defects and operators interchangeably.
2This fact was not explicitly mentioned in the literature to the authors’ knowledge, but apparently it

has been known to many practitioners in the field. We spell this out in section 5.2.
3The same objects are also called as webs or spiders. In this paper, we only use the terminology networks.
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done mainly in the framework of Toda CFTs for general q. These analyses gave rise to the

skein relations that had been discovered in the context of mathematics before [16].

Our aim in this paper is to describe the skein relations of the networks in the general

SU(N) case. We have, for example, the relation

��

= q
1
N
−1

��

+ q
1
N

��

∧2�

� �

(1.2)

that reduces to the equation (1.1) when N = 2. These skein relations were first found

in [17] in the context of knot invariants.

The guiding principle for us is that the representation theory of the quantum group

SUq(N) underlies these networks and their skein relations. The relation of the loop oper-

ators of 2d CFTs and the quantum group has been known for quite some time, mainly in

the context when q is a root of unity, see e.g. [18]. In the case of 2d q-deformed Yang-Mills,

the relation of their loops and the quantum group is very direct, because the q-deformed

Yang-Mills is a gauge theory whose gauge group is the quantum group [19, 20].

We have two applications of the skein relations. The first concerns the dyonic loop

operators of N=4 SU(N) Yang-Mills theory. From the 4d gauge theory perspective, their

classification was performed in [21]. When the electric charge and the magnetic charge of a

dyonic loop are parallel in the weight system, there is an obvious realization of such dyonic

loop in the class S language as a loop wrapping the torus. When they are not parallel, it

was expected that they are represented by networks on the torus. We will give a complete

description in the case of SU(3).

The second application is the study of a particular loop operator of the T3 theory.

The TN theory is a strongly-coupled class S theory that does not have a useful Lagrangian

description, and there is no direct method to describe a loop operator using the path

integral language. Still, using the class S language, it is easy to see that there is a loop

operator described by a nontrivial network on a three-punctured sphere. We compute the

superconformal index of the T3 theory in the presence of this loop operator, and confirm

that it indeed has an enhanced E6 symmetry, as expected from the fact [1] that the T3

theory is in fact the E6 theory of Minahan and Nemeschansky [22].

The rest of the paper is organized as follows: in section 2, we start by reviewing the

relation of the operator product expansion of the loop operators on the 4d side and the skein

relation on the 2d side. We emphasize the universality of the skein relation, independent

of the choice of the 4d spacetime. Next, in section 3, we describe the skein relations

explicitly for general SU(N). We also explain how they can be understood in terms of the

representation theory of quantum groups. In section 4, we turn to an application on 4d

N=4 gauge theory. We discuss the operator product expansion of a pure Wilson loop and

a pure ’t Hooft loop in the general SU(N) theory. We also describe all the dyonic loops

in the SU(3) theory in terms of networks, and point out a relation to the brane tiling. In

section 5, we first explain how the 4d Wilson loop is mapped to the 2d Wilson loop in the

– 2 –
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γA

γB ↔ LγALγB 6= LγBLγA ↔

γA

γB

Figure 1. Non-commutativity of actions of loop operators.

context of the q-deformed Yang-Mills. We then use one of the skein relations to compute

the superconformal index of the T3 theory in the presence of a loop operator corresponding

to the simplest nontrivial network. In the appendix A, we have more examples of the

realization of dyonic loops by networks in the general SU(N) theory.

2 Loop operators in 4d and skein relations in 2d

In the Liouville theory, a Verlinde loop operator is defined in terms of monodromy actions

on the conformal block F along a loop γ. It is possible to insert more than one Verlinde

operator and LγALγBF 6= LγBLγAF in general when γA and γB intersect each other, as we

see from the concrete calculations. See figure 1 for an illustration.

Under the 2d-4d correspondence, the Verlinde operators map to loop operators of the

4d theory. Therefore, there should be a concept of ordering of loops on the 4d side, such

that the product becomes non-commutative. In this section we review how this ordering

arises, following [23–26]. See also the recent reviews [27, 28].

2.1 Sums and products of loops

We consider the 4d setups where some kind of localization computations is possible. Typ-

ically there is a supercharge preserved in the background, whose square involves a linear

combination of two isometries k1,2. Supersymmetric loops wrap along the direction of k1

and sit at the fixed point of k2.

In the neighborhood of the loop, we can approximate the geometry as S1 × C × R,

where k1 shifts the coordinate along S1 and k2 is the phase rotation of C. The loop now

wraps S1 and sits at the origin of C, and the position x ∈ R is arbitrary. Therefore, we

can place multiple loops L1,2,... on x1,2,... preserving the same supercharge.

This gives an intrinsic ordering of loops on the 4d side, and furthermore, the expec-

tation values are unchanged under infinitesimal changes of the positions xi. The choice of

the local supersymmetric background at a loop can be characterized by a single parame-

ter which we denote by q. These statements can be explicitly checked in the case of the

localizations on S1 × S3 [12], S1 × R3 [26] and S4
b [29].

Given two types of loop defects L1 and L2, we denote loops placed at x ∈ R by Li(x).

We define a formal sum L1 + L2 of two loops by

〈· · · (L1 + L2)(x)〉 := 〈· · ·L1(x)〉+ 〈· · ·L2(x)〉 (2.1)

– 3 –
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γ2γ1

←→ Lγ1Lγ2 |a〉 ←→

x

Lγ2

Lγ1

networks in 2d operators on H loops in 4d

Figure 2. Left: the part of networks γ1 and γ2. For any other crossing of γ1,2, γ1 is always above

γ2. Middle: the expressions acting on H = Hconf = Hhemi. Right: the ordering on the 4d side,

along R.

where the ellipses stand for other operator insertions. The product L1 ·L2 of two loops are

now defined by

〈· · · (L1 · L2)(x)〉 := 〈· · ·L1(x1)L2(x2)〉 (2.2)

where we demand x1 > x > x2 so that L1 and L2 are the loops closest to x from the left

and from the right. Since the expectation values depend only on the order but independent

of the relative distance, this gives a consistent definition.

At this stage, we can make sense of the operator product expansion for defects. Suppose

that there is a set L1,2,... of loops which cannot be decomposed into any sum of other simpler

ones. We then have the following expansion of correlation functions

〈· · ·Li · Lj(x)〉 =
∑
k

ckij(q)〈· · ·Lk(x)〉 (2.3)

that can be written succinctly as

Li · Lj =
∑
k

ckij(q)Lk. (2.4)

The OPE coefficients ckij(q) are asymmetric under the exchange i↔ j due to the intrinsic

ordering along R. However, we can simultaneously flip the R direction and S1 direction

in the local S1 × C × R geometry to obtain another supersymmetric background. The

background is parameterized by q as remarked before, and we use the parameterization

such that this flip is represented by q 7→ q−1. Then we should have the relation

ckij(q) = ckji(q
−1). (2.5)

There is also an order for the defect networks on the two dimensional geometry side.

In order to make the relation between two orders, let us consider the case when the 4d side

is S4
b and the 2d side is the Liouville/Toda theory [3, 4]. In this case the Verlinde operators

associated to the networks on the 2d side act on the space Hconf of conformal blocks, and

the loop operators on the 4d side act on the space Hhemi of holomorphic Nekrasov partition

functions defined on a hemisphere [10, 11, 15, 30]. Since Hconf and Hhemi are naturally

isomorphic, we can see the relations among three orderings as shown in figure 2.

Corresponding to (2.4), there should be the operator product expansions of defect

networks which are indeed skein relations as resolutions of the crossings. In section 4, we

will see that we can calculate many OPE coefficients in terms of defect networks.

– 4 –
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2.2 Non-commutativity and the angular momentum

Let us recall the origin of the non-commutativity when the geometry is globally S1×C×R,

following the discussions in [24, 26]. Considering the S1 as the time direction, the partition

function of S1 × C× R is given by

Ω = TrH
[
(−1)F e2πiλJ3

]
(2.6)

where H is the Hilbert space of the system, J3 = J3 + I3 is the sum of the spin along R
and the Cartan of the SU(2) R-symmetry. Our parameter q is then given by q = eπiλ.

Suppose now that we have a U(1) gauge theory, that the first loop L1 is purely elec-

trically charged with electric charge e and that the second loop L2 is purely magnetically

charged with magnetic charge m. Then there appears the Poynting vector carrying the

angular momentum JP = (~/2)em along the R direction. The magnitude of JP is inde-

pendent of the distance between two particles but the sign depends on the ordering, and

therefore we have

L1 · L2 = q−2emL2 · L1. (2.7)

In the classical limit (q→ 1), this product becomes commutative.

3 Networks and skein relations in 2d

In this section we discuss possible types of networks in class S theories of type SU(N) and

their skein relations. Our guiding principle is that they are described by the structure of the

quantum groups underlying both the q-deformed Yang-Mills and the Liouville/Toda CFT,

and that the skein relations are universal under an appropriate parameter identification.

The skein relations exhibited below already appear in the mathematical works [17, 31, 32],

up to the overall factors and the changes in conventions.

Skein relations introduce equivalence relations among all possible networks, and it

would be extremely useful if we can pick a natural representative element out of a given

equivalence class of networks allowing linear combinations of networks. In this paper we

at least give a general method to simplify a given network:

• In principle, edges in a network can carry arbitrary representations of SU(N). We

will first rewrite them in terms of representations ∧k� for k = 1, . . . , N − 1. These

are the fundamental representations in the mathematical terminology,4 and within

the diagrams we just denote them by 1, 2, . . . , N − 1.

• Then we rewrite all crossings in terms of linear combinations of junctions that are

at most rectangular. The concrete formulas are given in (3.36). We call this process

crossing resolutions.

In the A1 case, these procedures eliminate all the crossings and no junctions remain,

thus reproducing the classification in [8]. In the A2 case, we will see that all digons

4Contrary to the standard physics usage, we do not restrict the fundamental representation to be the

defining N -dimensional representation in this paper.
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and rectangles can be eliminated, and we will find a natural representative for a given

equivalence class of networks. We will detail this process in section 4.4.

Hereafter we use a version of the standard quantum number defined as

〈n〉 := (−1)n−1[n] := (−1)n−1 q
n − q−n

q− q−1
(3.1)

and the factorial defined as

〈0〉! = 1, 〈n〉! = 〈n〉〈n− 1〉!. (3.2)

As this section is rather long, let us pause here to explain the organization: in sec-

tion 3.1, we start by recalling that codimension-4 operators of the 6d N=(2, 0) theory

are labeled by representations and they can have junctions corresponding to the invariant

tensors. In section 3.2, we describe how an arbitrary representation can be rewritten in

terms of just the fundamental representations of the form ∧k�. In section 3.3, we then

describe the trivalent junctions where three edges labeled by fundamental representations

meet. In section 3.4, we show how a crossing of two edges can be rewritten in terms of

junctions. We start from the crossing of two edges labeled by � and then describe the

general case. In section 3.5 we summarize the Reidemeister moves that are fundamental

equivalence relations guaranteeing the isotopy invariance. In section 3.6 we note other

useful skein relations that can be used to simplify networks. Finally in section 3.7, we

explicitly display the skein relations for A2 and A3.

In general, it would also be important in the class S theory to study skein relations

with full and other punctures in [1] or networks ending on other punctures. We do not,

however, consider such objects in this paper.

3.1 Generalities

Before proceeding, let us first recall the fact that a codimension-4 operator of the 6d

N=(2, 0) theory of type SU(N) has a label given by a representation of SU(N), and how

a multiple number of such operators can be joined.

A cylinder of the N=(2, 0) theory gives rise to a 4d N=2 vector multiplet with gauge

group SU(N). On the 4d side, then, we can consider the Wilson loop operator in a represen-

tation R of SU(N). This should come from some codimension-4 operator of the N=(2, 0)

theory wrapped around the cylinder. Then this codimension-4 operator also needs to be

labeled by a representation R.

When we multiply two parallel Wilson loops with representations R1 and R2, we get

a Wilson loop with representation R1 ⊗ R2, and the product is commutative. The same

should be then true among codimension-4 operators of the N=(2, 0) theory.

On the 4d side, three Wilson loops in representations R1,2,3 can be joined at a point

consistently if R1 ⊗ R2 ⊗ R3 contains an SU(N) invariant subspace, or equivalently when

there is an invariant tensor in this triple tensor product. The number of independent ways

to join them is given by the number of linearly independent invariant tensors. Then, three

codimension-4 operators of the N=(2, 0) theory labeled by R1,2,3 can be joined along a

– 6 –
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one-dimensional subspace when there are invariant tensors in R1 ⊗R2 ⊗R3. The number

of distinct ways to connect is given by the number of linearly independent invariant tensors.

Since this should be an intrinsic property of codimension-4 operators of the 6d theory,

we can join three codimension-4 operators along a one-dimensional loop on the 4d side.

This gives a junction of three edges labeled by R1, R2, R3 on the 2d side. Using many

such junctions, we end up having networks on the 2d side, which are our main interest in

this paper.

3.2 Restriction of labels

First, note that Wilson loop on the 4d side in a representation R in a direction can be

thought of as a Wilson loop in the representation R̄ in the opposite direction. This feature

should also be carried over to the codimension-4 defects of the N=(2, 0) theory, and to the

networks on the 2d side. This can be represented diagrammatically as

R = R∗ . (3.3)

As it is cumbersome to use arbitrary representations R as labels, we next rewrite

them in terms of fundamental representations ∧k�, k = 1, . . . , N − 1. An irreducible

representation R can be specified by a Young diagram (`i) where `i is the number of boxes

in the i-th row, so that
∑
`i = N . For example, ∧k� is represented by (1 1 1 . . . 1︸ ︷︷ ︸

k

) = (1k).

Note that any symmetric polynomial of N variables x1, x2, . . . , xN , under a constraint

x1x2 . . . xN = 1, can be written as a polynomial of the elementary symmetric polynomials.

As a character χR(diag(x1, . . . , xN )) of SU(N) in a representation R is such a symmetric

polynomial, and χ(1k)(diag(x1, . . . , xN )) for k = 0, 1, 2, . . . , N − 1 are exactly elementary

symmetric polynomials, this means that any representation R can be decomposed as the

direct sum (allowing negative integral coefficients) of the tensor products of ∧k�.

For example, we have the equalities

χ(2) = χ2
(1) − χ(12), χ(21) = χ(12)χ(1) − χ(13), (3.4)

χ(3) = χ3
(1) − 2χ(12)χ(1) + χ(13), χ(22) = χ(12)χ(12) − χ(1)χ(13) (3.5)

which we can diagrammatically depict, in the case of closed loops, as

= 1

1

−
2

, = 1

2

−
3

, (3.6)

= 2

2

− 1

3

, =
1

1

1

− 2 1

2

+

3

.

(3.7)

These relations are locally applicable on parallel edges. Therefore, we can insert some

punctures or networks inside the circle, for example.

– 7 –
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b

c a = b+ c

b = a+ c

c
a

canonical junctions

b

c N − b− c

b

c N − b− c

non-canonical junctions

Figure 3. Canonical and non-canonical junctions.

3.3 Canonical junctions and removal of digons

3.3.1 Canonical junctions

Now our edges are labeled by the fundamental representations ∧k�, k = 0, 1, . . . , N − 1.

We can just use the integer k to label the edge, and an edge labeled by 0 can be removed.

Reversing the orientation now corresponds to replacing the label k by N − k. An edge

labeled by k has charge k under the center of SU(N), and therefore we call these integer

labels as the charge.5

For each trivalent junction, the sum of three inflowing charges must equal to zero

modulo N . Say we have three edges labeled by a, b and c = a + b. There is only a

single invariant tensor in ∧a� ⊗ ∧b� ⊗ ∧N−c�, and this corresponds to the projection

from ∧a�⊗∧b� to ∧c=a+b�. Therefore, there is no need to place a label on a junction to

distinguish the possible invariant tensors.

Sometimes these labels k are then taken to be defined modulo N as in [14, 15], but it

is useful to consider them just as integers between 0 and N − 1. This is because we can

write down the invariant tensor rather explicitly using the quantum group representation

theory when the net inflowing charge to a junction vanishes in Z. We call such a junction

canonical. We call a junction non-canonical if the net inflowing charge vanishes only in

ZN . See figure 3 for examples.

Let us now describe the invariant tensors associated to the canonical junctions. Let �
be spanned by the vectors e1, . . . , eN . We define the q-deformed wedge product by the rule

ei ∧ ej = −qej ∧ ei, (i ≤ j) (3.8)

where in particular ei ∧ ei = 0 where we do not sum over i. This defines the projection π

from �⊗� to ∧2� by

π1,1→2 : ei ⊗ ej 7→ ei ∧ ej . (3.9)

Furthermore, ∧2� can be naturally embedded within �⊗� by the rule

ι2→1,1 : ei ∧ ej 7→ −qei ⊗ ej + ej ⊗ ei, (i < j). (3.10)

More generally, we associate to any canonical junction that combines labels a, b to

a+ b the projection

πa,b→a+b : ei1 ∧ · · · ∧ eia ⊗ ej1 ∧ · · · ∧ ejb 7→ ei1 ∧ · · · ∧ eia ∧ ej1 ∧ · · · ∧ ejb (3.11)

5Note that it is a special property of Ak that there is the one-to-one correspondence of the set of the

fundamental representations ∧k� including the trivial one and the charge under the center.

– 8 –
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and to any canonical junction that splits the label a + b to two labels a, b the map

ιa+b→a,b where

ιa+b→a,b : ek1 ∧ · · · ∧ eka+b

7→ (−q)ab
∑

i1<···<ia, j1<···<jb
(−q−1)n(i,j;k)ei1 ∧ · · · ∧ eia ⊗ ej1 ∧ · · · ∧ ejb (3.12)

where we assume k1 < · · · < ka+b, the sum is over the disjoint split of indices

{k1, . . . , ka+b} = {i1, . . . , ia} t {j1, . . . , jb}, (3.13)

and n(i, j; k) is the minimal number of adjacent transpositions to bring the sequence

i1, . . . , ia, j1, . . . , jb to k1, . . . , ka+b. These maps are described in more detail mathemati-

cally in [33].

Then these maps πa,b→a+b and ιa+b→a,b naturally combine according to the following

diagrams together with the ones with reversed arrows:

a b c

x

d

=

a b c

y

d

(3.14)

or equivalently

cb

x

a d

=

cb

y

a d

. (3.15)

Here x = a+ b = d− c, y = b+ c = d− a and d = a+ b+ c.

3.3.2 Removal of digons

Now, we can check that any digons can be removed as

i1 i2 i3 i`

k

k

=
〈k〉!

〈i1〉!〈i2〉! . . . 〈il〉!
k (3.16)

where
∑`

a=1 ia = k.

Note that in the classical limit q→ 1 the prefactor becomes

(−1)
∑

a<b iaib
k!

i1!i2! · · · il!
(3.17)

– 9 –
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due to the fact that the classical limit of ιa+b→a,b is (−1)ab times the standard map that

follows from the classical epsilon symbol.

This somewhat unusual sign is however necessary to match with the known skein

relations in the Liouville/Toda theory, and it also simplifies the signs appearing in the

general crossing resolutions (3.36). In the q-deformed Yang-Mills theory it would be more

conventional to drop this sign and the canonical junctions would be defined to be πa,b→a+b

and (−1)abιa+b→a,b. We will stick to the Liouville/Toda convention in this paper, except

in section 5.

When the sum of il is N , we can use the rule to evaluate a network with two trivalent

junctions, since edges labeled by N can be removed. For example, when i + j + k = N ,

we have

i j k =
〈N〉!

〈i〉!〈j〉!〈k〉! . (3.18)

More simply, we can evaluate a closed loop with label k by considering it as a digon with

edges labeled by k and N − k:

k

=
〈N〉!

〈k〉!〈N − k〉!
= (−1)k(N−k)χ∧k�(diag(qN−1, qN−3, . . . , q1−N )) = (−1)k(N−k) dimq ∧k�. (3.19)

Again, this shows that our convention is different by a factor of (−1)k(N−k) from the

convention in the q-deformed Yang-Mills. We also see at this point that, to compare with

the skein relation of the Toda theory or the q-deformed Yang-Mills theory, we need to use

the relation

q = eπib
2

= q
1/2
SCI. (3.20)

3.4 Crossing resolutions

3.4.1 The R matrix

Let us first discuss the best-known case: the R-matrix for � ⊗ � of SU(N), which is

given by

R = A(Q+ q−1I�⊗�). (3.21)

Here, IV is the identity operator on a vector space V , Q is an operator

Q =
∑
i 6=j

eij ⊗ eji − q
∑
i<j

eii ⊗ ejj − q−1
∑
i>j

eii ⊗ ejj (3.22)

where eij is a matrix whose only non-zero entry is 1 at the i-th row and j-th column and

A is the overall normalization which we will be fixed later.
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The action of Q on the base ea ⊗ eb of �⊗� is

Q(ea ⊗ eb) =


eb ⊗ ea − qea ⊗ eb, (a < b)

0, (a = b)

eb ⊗ ea − q−1ea ⊗ eb, (a > b)

. (3.23)

The resulting entries are the basis vectors of the second rank antisymmetric representation

of SUq(N). Indeed, the operator Q is the composition of the projection π1,1→2 : �⊗�→
∧2
q� and the natural embedding ι2→,1,1 : ∧2

q�→ �⊗�:

Q = ι2→1,1π1,1→2. (3.24)

Note also that Q satisfies

Q2 = −(q + q−1)Q = 〈2〉Q. (3.25)

This is a special case of the digon elimination.

We can now represent the R-matrix R diagrammatically as

��

= A

 ��

∧2�

� �

+ q−1

��

 . (3.26)

The inverse of the R-matrix R is

R−1 = A−1(Q+ qI�⊗�) (3.27)

that we represent as

� �

= A−1

 ��

∧2�

� �

+ q

��

 (3.28)

Below, we call the crossing (3.26) as positive and the crossing (3.28) as negative.

The A1-case: in this case, ∧2� is the trivial one-dimensional representation and there

is the pseudo-reality condition � ' � which we can diagrammatically write as

� = � =: . (3.29)

Then the general equation (3.26) reduces to

= q−1/2 + q1/2 . (3.30)
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where we have set A = q1/2. We then have

q−1/2 − q1/2 = (q−1 − q) (3.31)

These reproduce the standard skein relations of the Liouville theory found in [10, 11] under

the identification q = eiπb
2
.

The relation Q2 = 〈2〉Q shows

= 〈2〉 = −χ�(diag(q, q−1)). (3.32)

From this we see that q = q
1/2
SCI where qSCI is the parameter used commonly in the liter-

ature on the superconformal index. The minus sign here is a convention common in the

Liouville/Toda literature, i.e. the definition of a loop in the representation � differs by an

overall minus sign between the Liouville theory and the q-deformed Yang-Mills.

The A2-case: here we have � = ∧2�, and therefore we have

� = ∧2� . (3.33)

As we now only have one type of the label �, we can drop it altogether. The general

R-matrix (3.26) then becomes

= q1/3 + q−2/3 (3.34)

where we have set A = q1/3. This reproduces the fundamental skein relations of the SU(3)

Toda theory found in [15], again under the identification q = eiπb
2
.

General case: the analysis so far suggests that we should take

A = q
1
N (3.35)

in general. As we will see soon, this is consistent with the general crossing resolutions (3.36).

3.4.2 General crossing resolutions

Now let us move on to the crossing resolutions in the general case. The expression was

found in [17] up to an overall factor, which we quote here:

a b

= q
ab
N

s∑
i=0

q−i i a+ b− i

b− i

a− i
a b

b a

(3.36)
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where s = min(a, b,N − a,N − b) and a, b = 0, 1, 2, . . . , N − 1. With this choice of the

overall factor, this equality is invariant with a reversal of an arrow and the rotation of

the diagrams by 90◦. Note also that when a = b = 1, this equality reduces to (3.26) we

already discussed.

Let us introduce the names to the fundamental objects on the right hand side of (3.36):

Qab(i) := i a+ b− i

b− i

a− i
a b

b a

= a+ b− i i

b− i

a− i

a b

b a

. (3.37)

Note that the number of possible choices of i matches with the number of irreducible

summands of the decomposition of the tensor product ∧a� ⊗ ∧b�. We expect that all

these Qab(i) cannot be further decomposed as parts of networks.

3.4.3 The intersection number and the powers of q

Let us briefly discuss the significance of the prefactor q
ab
N in (3.36). In general, two loop

operators in a class S theory of type SU(N) can be mutually nonlocal, and the nonlocality

can be measured in terms of the Dirac pairing that takes values in ZN [34]. In terms of the

2d networks realizing the 4d loop operators, the Dirac pairing is given by their intersection

number. We can define it by assigning a local intersection number to a crossing as follows:

a b

: + ab,

ba

:− ab. (3.38)

This is consistent with the reversal of arrows, since it sends the label a to N − a.

The intersection number I(Γ1,Γ2) of two networks Γ1 and Γ2 is then defined by sum-

ming the contributions from all the crossings:∑
c : crossing

sign(c)a(1)
c a(2)

c ∈ ZN (3.39)

where sign(c) is the sign of the crossing c and a
(i)
c is the charge of Γi at c.

In the Liouville/Toda setup, we expect the expectation value of any network without

crossings is a single-valued function of q = eπib
2

invariant under q → e2πiq. Similarly, in

the superconformal index, the expectation value of a loop operator on the 4d side is a

single valued function of q = q
1/2
SCI, since the index is a trace Tr(−1)F q∆−I3 and the scaling

dimensions ∆ of a class S theory are integral or half-integral.

Non-invariance of the expectation value under q → e2πiq then captures the mutual

non-locality, and we can think of the prefactor q
ab
N in (3.36) as encoding the difference in

the local intersection number between the left hand side and the right hand side, to keep

track of this non-locality. The difference in the powers of q among different summands in

the resolutions of the crossings should be integral, and the relation (3.36) indeed satisfies

this requirement.
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3.4.4 SL(2,Z) action on the torus

We can define the operation I which we call the inversion by reversing all the arrows

simultaneously. This is an involution that we can identify with the charge conjugation on

the 4d side.

When the network is on a torus, we can also consider the action of SL(2,Z) on the

networks. Two basic actions are the T -action and the S-action. T corresponds to sending

α 7→ α, β 7→ β + α and S corresponds to α 7→ β, β → −α, where α, β are two bases of the

1-cycles on the torus.

The operation C = S2 generates the center of SL(2,Z) and is the charge conjugation

action in the 4d N=4 SYM theory. Then we need to have two operations, C and I, to be

consistent on the torus. The relation (3.37) relating two forms of the networks representing

the same object Qab(i) is exactly the one required to have C = I, when these networks are

put on the torus and open edges are connected to the opposite ones.

3.5 Reidemeister moves

In knot theory, a projective representation in two dimension of knots and links in a three

dimensional space is not unique, and any different representations can be mapped to each

other by a combination of three so-called Reidemeister moves, see e.g. [35]. The move I

straightens a twist in an edge, the move II slides one edge over another edge to two parallel

edges, and the move III changes the order of three crossings. In the presence of junctions,

we need to add another move, where we move an edge over a junction. We call this as the

move IV.

Since we expect that the charge of a loop in the 4d theory is determined by the isotropy

class of networks, we would like to require that a network is invariant under these moves.

This is indeed possible for the moves II, III and IV, but the move I results in a q-dependent

factor. In the context of 3d Chern-Simons theory, this can be understood from the change

in the framing of the link [36]. Let us describe these moves explicitly below.

R-Move II: this relation says that the the negative crossing is given by the inverse R−1

of the R-matrix R corresponding to the positive crossing.

V2V1

=

V2V1

=

V1 V2

. (3.40)

R-Move III: this is the Yang-Baxter equation which the R-matrix R should satisfy.

V1 V3V2

=

V1 V3V2

. (3.41)
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R-Move IV: this is the additional move for the networks with junctions.

V1

V2
V3 W

= V1

V2 V3

W
=

W

V1

V2
V3

. (3.42)

R-Move I: finally, this move involves a nontrivial factor.

V

= CV (q)

V

,

V

= CV (q−1)

V

. (3.43)

When the representation V is ∧k�, the coefficient Ck(q) can be calculated using the

general crossing resolution (3.36) and the relation (3.16) removing digons. The i-th network

on the right hand side of (3.36) gives a coefficient 〈N−k+i〉!
〈i〉!〈k−i〉!〈N+i−2k〉! thanks to (3.16). We

then find

Ck(q) = (−1)k(N+1)q−(1+
1
N )k(N−k). (3.44)

A direct understanding of this coefficient in 4d or 6d would be an interesting problem.

3.6 More simplifying relations

Let us list various other skein relations that can be used to simplify networks. All relations

except (3.48) are known in [31, 32] and references therein.

3.6.1 Triangle contraction relations

We have rules to remove triangles. In order to express the rules, we first map all the junc-

tions so that they are canonical. Then, there are four possibilities up to the mirror images:

a

b c
ji =

〈a〉!
〈i〉!〈j〉!

a

b c
,

a

b c
ji =

〈N − a〉!
〈N − i〉!〈j〉!

a

b c
,

(3.45)

a

b c
ji =

〈a〉!
〈i〉!〈j〉!

a

b c
,

a

b c
ji =

〈N − a〉!
〈i〉!〈N − j〉!

a

b c
.

(3.46)

Note that whether three vertices are totally ordered by arrows or not changes the look of

the factors.
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3.6.2 Rectangle decaying relations

The rectangles Q
(i)
ab that we had in (3.37) can not be further simplified, but there are many

other rectangles that are equivalent to sums of simpler ones. Let us show one class:

k + j `− j

j

j
k `

k `

=

min(j,k)∑
s=max(0,j−`+k)

〈`− k〉!
〈`− k + s− j〉!〈j − s〉! k − s `+ s

s

s

k `

k `

. (3.47)

This is valid for k ≤ l and 0 ≤ j ≤ min(k,N − `) or k ≤ j ≤ ` ≤ N − k.

These relations assure that any network constructed from only rectangles around a

tube can always be decomposed into a sum of closed loops around the tube. For example,

using (3.47) recursively, we can see

q−
k2

N

k k

= q−k
k∑

i=−k
(−1)iqi

2+i

k − ik + i

, (3.48)

where the two horizontal thin parallel lines signify that they are to be identified so that

the network is on a tube.

There are various other relations. Here we just note one example:

1 k 2

k − 1

1

2

k − 2
3 k

k 3

= 〈3〉 k + 1 2

1

k − 2
3 k

k 3

+ 〈2〉 k + 2 1

2

k − 1
3 k

k 3

. (3.49)

3.7 Examples: A2 and A3

The skein relations of the A1 case and the A2 case have already been described in the lit-

erature.

3.7.1 A2

Let us record the A2 case as a summary. We have two types of junctions:

1

1 2
= ,

1

1 2
= . (3.50)

The basic skein relation was (3.34), which we copy here [14–16]:

= q1/3 + q−2/3 . (3.51)
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The following two relations are useful to simplify the networks:

= 〈2〉 , = + . (3.52)

3.7.2 A3

Let us now discuss the next nontrivial case of A3. Note that the label 3 can be traded with

1 by reversing the arrow, and since 2 is a real representation we do not have to exhibit the

direction for edges labeled by 2. In this case, there are also two types of junctions as we

see below.

There are three types of crossing resolutions:

1 1

= q1/4

11

2

1 1

+ q−3/4

11

, (3.53)

1 2

= q1/2

12

3

1 2

+ q−1/2

12

1

1 2

, (3.54)

2 2

= q

22

22

+ 1 3

1

1
2 2

2 2

+ q−1

22

. (3.55)

There are three decaying relations for one rectangle:

1 2

1

1
2 1

2 1

=

12

+

12

1

2 1

, (3.56)

2 2

1

1
1 1

1 1

= 〈2〉

1

1

+
1

1

, (3.57)

2 2

1

1
1 1

11

= 〈2〉

1

1

2

1

1

. (3.58)
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4 Networks for N=4 Yang-Mills

As the fundamental aspects of defect networks in the two dimensional theories have been

discussed, we can move on to the discussion of the correspondence between networks on the

2d side and loops on the 4d side. In this section, we restrict ourselves to the most familiar

N=4 case. On the gauge theory side, the charges of the loop operators were classified

in [21]. It is not easy to construct the corresponding networks for the general Ak case,

but we will see that the skein relations allow us to describe and classify the networks for

A2 concretely.

Before proceeding, let us quickly recall the possible charges of the loop operators of

N=4 SU(N) Yang-Mills, following [21]. We denote the weight lattice by Λ. We use the

notations ωi for the fundamental weights and hi for the weight vectors in the defining

N -dimensional representation. They are explicitly given by

ωi =

(
1− i

N
, . . . ,

i

1− i

N
,

i+1

− i

N
, . . . ,− i

N

)
, (4.1)

hi =

(
− 1

N
, . . . ,− 1

N
,

i

1− 1

N
,− 1

N
, . . . ,− 1

N

)
. (4.2)

Note that ω1 = h1 and ωN−1 = −hN .

Let us consider a Wilson loop labeled by an irreducible representation R. We can

also use its highest weight λ as the label, and possible highest weights are in one-to-one

correspondence with Λ/W where W is the Weyl group. Similarly, a ’t Hooft loop can be

characterized by a charge vector in Λ, considered up to the action of the Weyl group.

For a dyonic loop operator, we need to specify a pair of electric and magnetic charges

(µ, λ) ∈ Λ×Λ but the charges need to be identified under a simultaneous action of the Weyl

group. Therefore a dyonic charge corresponds to an element in (Λ × Λ)/W and represent

the element as [(µ, λ)]. We also call it [(µ′, λ′)] lower than [(µ, λ)] if µ′ and λ′ are lower

than µ and λ respectively when mapped to Λ/W.

4.1 The product of Wilson loops and ’t Hooft loops

It is well known how pure Wilson loops and pure ’t Hooft loops are represented as loops

on the torus:

Wωa ⇐⇒
a

, Tωb
⇐⇒ b (4.3)

where we identify each pair of parallel opposite edges to make the parallelogram the torus.

Here WR is the Wilson loop in the representation R, and we identify an irreducible repre-

sentation and its highest weight vector. We use a similar notation for the ’t Hooft loop.

We also fix the horizontal one cycle as α-cycle and the vertical one as β-cycle. Note that

the S transformation on the torus is naturally identified with S duality transformation of

N=4 gauge theory.
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We can now decompose the product Wωa · Tωb
using the crossing resolution (3.36).

Here we express it in a form to make the data of electromagnetic charges manifest:

b a

=
∑

[(µ
(i)
b ,λ

(i)
a )]∈D(ωb,ωa)

q−〈µ
(i)
b ,λ

(i)
a 〉

i a+ b− i

a− i

b− i
b a

a b

(4.4)

where

D(µ, λ) := (W(µ)×W(λ))/W (4.5)

is the set parameterizing the possible ways to combine a magnetic charge W(µ) Weyl-

conjugate to µ and an electric charge W(ν) Weyl-conjugate to ν.

The number of elements in the set D(ωb, ωa) is given by s = min(a, b,N − a,N − b)
and is in a one-to-one correspondence with the label i in the summation (3.36). The label

i and a representative [(µ
(i)
b , ν

(i)
a )] ∈ D(ωb, ωa) can be naturally related by the equation

i =
ab

N
+ 〈µ(i)

b , λ
(i)
a 〉. (4.6)

Recalling the fact reviewed in section 2.2 and that 〈µ(i)
b , λ

(i)
a 〉 is the x-component of

the classical angular momentum associated to the Poynting vector under electric charge

λ
(i)
a and magnetic charge µ

(i)
b in the Coulomb phase with the gauge group U(1)N−1, we

naturally expect the following correspondence:6

i

b

aa

b

⇐⇒ D
[(µ

(i)
b ,λ

(i)
a )]

(4.7)

where we use the symbol D[(µ,ν)] to denote the dyonic loop operator with the charge

[(µ, ν)] ∈ (Λ × Λ)/W. We also use a simple symbol Db,a
(i) for D

[(µ
(i)
b ,λ

(i)
a )]

. Below, we call

these dyonic loops Db,a
(i) and the corresponding networks elementary.

4.2 Analysis in the Liouville/Toda theory

Let us now connect our analysis so far with a computation on the Liouville/Toda theory

side, using the localization in the gauge theory [30, 37].

Hereafter we use symbols a = (a1, a2, . . . , aN ) under the constraint
∑N

i=1 ai = 0,

Ai(a) := exp[2πib〈a, hi〉] and A(a) = diag(A1(a), A2(a), . . . , AN (a)). We also denote the

N=4 holomorphic partition function by Z(a).

6There are other three equivalent networks connected to each other under (3.14) or (3.15).
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As seen in [37] and [30], Wilson loop WR and ’t Hooft loop TR are written in the form

of matrix model:

〈WR〉 =

∫
iRN−1

[da]Z(a)∗χR(A(a))Z(a), (4.8)

〈TR〉 =

∫
iRN−1

[da]Z(a)∗
∑

λ∈Π(R)

T
(R)
λ (a)Z(a− bλ) (4.9)

where χR is the character of R and Π(R) is the set of weights corresponding to the irre-

ducible representation R. T
(R)
λ (a) are some functions of a related to the character χR via a

Fourier transformation in a [12, 30] but the concrete expressions are unnecessary hereafter.

In general, any loop operator is expected to be represented as

〈X〉 =

∫
iRN−1

[da]Z(a)∗
∑
ν

Xν(a)Z(a− bν) (4.10)

where ν runs over some finite set in the weight lattice Λ and Xν(a) are some functions the

detail of which we do not need either. The additions of WR and TR in the ordering of loops

seen in section 2.1 are written as follows:

〈WRX〉 =

∫
iRN−1

[da]Z(a)∗WR

∑
ν

Xν(a)Z(a− bν)

=

∫
iRN−1

[da]Z(a)∗
∑
ν

Xν(a)χR(A(a− bν))Z(a− bν), (4.11)

〈TRX〉 =

∫
iRN−1

[da]Z(a)∗TR
∑
ν

Xν(a)Z(a− bν)

=

∫
iRN−1

[da]Z(a)∗
∑

µ∈Π(R)

∑
ν

T (R)
µ (a− bν)Xν(a)Z(a− bν − bµ). (4.12)

In particular, let us choose R as one of the fundamental representations ∧n� and

introduce W (k) := W∧k� and T (`) := T∧`�. Then consider insertions both of W (k) and of

T (`). One way to insert is

〈· · ·T (`)W (k)X〉 =

∫
iRN−1

[da]Z(a)∗ · · ·∑
µ∈Π(∧`�)

∑
ν

T (`)
µ (a− bν)Xν(a)χ∧k�(A(a− bν))Z(a− bν − bµ) (4.13)

where the ellipsis represents further insertions of other loops.

Recalling χR(A(a)) =
∑

λ∈Π(R) exp[2πib〈a, λ〉], then define the following operators

labeled by m = 1, 2, . . . ,min(k, `):

〈· · · [TW ](`,k)
m X〉 :=

∫
iRN−1

[da]Z(a)∗ · · ·
∑

(λ,µ)∈Π(∧`�,∧k�)m

∑
ν

T (`)
µ (a− bν)Xν(a) exp[2πib〈a− bν, λ〉]Z(a− bν − bµ).

(4.14)
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where we decompose the set Π(∧`�) × Π(∧k�) = W(ω`) × W(ωk) into several sectors

defined by

Π(∧`�,∧k�)m :=

{
(µ, λ) ∈ Π(∧`�)×Π(∧k�)

∣∣∣ 〈µ, λ〉 = m− k`

N

}
= D(ω`, ωk). (4.15)

We then have

〈· · ·T (`)W (k)X〉 =
∑
m

〈· · · [TW ](`,k)
m X〉. (4.16)

Note that the decomposition of T (`)W (k) is independent of the ellipsis . . . and X assuring

that this expansion is local and represent the product as T (`) ·W (k) or T (`) ×W (k).

On the other hand, the insertion in the opposite order is

〈· · ·W (k)T (`)X〉 =

∫
iRN−1

[da]Z(a)∗ · · ·∑
µ∈Π(∧`�)

∑
ν

T (`)
µ (a− bν)Xν(a)χ∧k�(A(a− bµ− bν))Z(a− bν − bµ)

(4.17)

and we also have

〈· · ·W (k)T (`)X〉 =
∑
m

〈· · · q2
(
k`
N −m

)
[TW ](`,k)

m X〉 (4.18)

where we use

exp[2πib〈a− bµ− bν, λ〉] = q
2
(
k`
N −m

)
exp[2πib〈a− bν, λ〉]. (4.19)

In summary, we have found the relations

T (`) ×W (k) =

min(k,`)∑
m=0

[TW ](`,k)
m , W (k) × T (`) =

min(k,`)∑
m=0

q
2
(
k`
N −m

)
[TW ](`,k)

m . (4.20)

Comparing the product expansion (4.20) and the graphical expansion (4.4) we find the

following identification:

(Q`k(m) on T 2) ↔ D`,k
(m) ↔ [(µ

(m)
` , λ

(m)
k )] ↔ q−〈µ

(m)
` ,λ

(m)
k 〉[TW ]

(`,k)
m

network 4d loop charge operator
. (4.21)

Here the pair of weights [(µ
(m)
` , λ

(m)
k )] was chosen as in (4.4), and therefore we have

〈µ(m)
` , λ

(m)
k 〉 = m− k`

N .

Let us see how T transformation of the SL(2,Z) duality action acts on these loop

operators. The θ dependence originally comes from the classical part of N=4 partition

function Z(a) = exp[−πiτ〈a, a〉] where holomorphic gauge coupling τ = θ
2π + 4πi

g2Y M
and the

monodromy action under the change θ → θ + 2π is following:

Z(a)∗Z(a− bλ) −→
τ→τ+1

exp[−πi(〈a− bλ, a− bλ〉 − 〈a, a〉)]Z(a)∗Z(a− bλ)

= q−〈λ,λ〉e2πib〈λ,a〉Z(a)∗.Z(a− bλ) (4.22)
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The Witten effect on the partition function can be re-expressed in the loop operators which

acts on the partition functions. In particular, when λ is in Π(∧`�) =W(ω`), Z(a)∗Z(a−bλ)

is accompanied by

q−`+
`2

N e2πib〈λ,a〉 (4.23)

as θ shifts by 2π. Summing it up over Π(∧`�),

T (`) −→ q−`+
`2

N [TW ]
(`,`)
` = D[(ω`,ω`)] = D`,`

(`) (4.24)

under θ → θ + 2π. Since D[ω`,ω`] = D`,`
(`) is given by

`` . (4.25)

This θ → θ + 2π action is graphically represented as

T : ` −→ ``

Tω`
D[(ω`,ω`)].

(4.26)

and matches with the T transformation on the torus.

4.3 Examples of products of loops in A2

Let us focus on the A2 case and perform some explicit computations. The examples in the

general Ak case will be given in appendix A. We will see the geometric SL(2,Z) action on the

torus is nicely mapped to the SL(2,Z) action on the electric and magnetic weight systems.

Example 1. The simplest case is W�×T�, which corresponds to the equation (4.4) with

a = 1 and b = 1:

W� × T� = q1/3D1,1
(0) + q−2/3D1,1

(1) (4.27)

where D1,1
(0) = D[(ω1,h2)] = D[(ω1,h3)] and D1,1

(1) = D[(ω1,ω1)]. This was originally found

in [14, 15] in the context of class S theory.

The dyonic loop D1,1
(1) is obtained from the ’t Hooft loop T� by an application of the

T operation. In particular this loop can be mapped to a Wilson loop in some duality

frame. The object D1,1
(0) cannot be mapped into a network localized on any one cycle by the

torus modular transformations. In the language of charges, this means that the electric

weight and the magnetic weight are not parallel. We can now work out how the SL(2,Z)

transformations act on this particular network and the pair of weights, see figure 4.
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S

S
C C

T−1

S, T

S, T

T−1

T T−1

T T−1

(ω2, h1) (ω2, h2) (ω2,−h1) (ω2,−h2)

(ω1,−h3) (ω1,−h2) (ω1, h2) (ω1, h3)

Figure 4. The SL(2,Z) duality orbit of D1,1
(0) (below right) and their dyonic charges. Two adjacent

expressions of a pair of weights are equivalent via some Weyl reflections. Red weights correspond

to electric weights and green’s to magnetic ones.

Example 2. The next example is W�� × T�:

�

�� = q2/3

 −

+ q−1 + q−2

 . (4.28)

In this example, the first term on the right hand side is a network that cannot be

mapped by SL(2,Z) to any of the networks we already studied explicitly. It is natural to

posit the following expansion

W�� × T� = q2/3D[(ω1,2h2)] + q−1/3D[(ω1,h1+h2)] + q−4/3D[(ω1,2ω1)]

+ (loops with lower weights) (4.29)

since we expect that the exponent of q multiplying D[(λm,λe)] equals −〈λm, λe〉 to capture

the angular momentum. Then we can identify

D[(ω1,2h2)] ∼ (4.30)

up to the lower contribution D[(ω1,hi+hj(>i))] from lower weights. Hereafter, we try to map

networks and charges of the dyonic loops up to the contributions from lower weights.7

7The complication comes from two sources. One is common with what we encountered in section 3.2:
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(ω1, 2h1 + h2) (ω1, h1 + 2h2) (ω1, h2 − h1)

Figure 5. Representative weights in D(ω1, ω1 + ω2).

Example 3. The third example is WAdj × T�: the skein relation gives us

�

Adj = q + + q−1 (4.31)

while from gauge theory we expect

WAdj × T� = qD[(ω1,h2−h1)] +D[(ω1,h1+2h2)] + q−1D[(ω1,2h1+h2)]

+ (loops with lower weights). (4.32)

For a graphical representation of weights involved, see figure 5.

The first term and the third term can be obtained by SL(2,Z) transformations on D1,1
(0).

The second term is a new type:

D[(ω1,h1+2h2)] ∼ . (4.33)

Example 4. Our final example is WAdj × TAdj. The skein relation gives

Adj

Adj = 4(2 + q2 + q−2) +

2
Adj

+ 2 Adj + q−2

Adj
+ q2

Adj

+ q−1

 +

+ q

 +


(4.34)

irreducible representations are linear combinations of networks even in the Wilson loop case. Another is

related to the bubbling effect of the monopole moduli space. See the related works to this subject [30, 38–40].
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λAdj

λ2−

λ2+λ1−

λ1+

Figure 6. Representative weights in D(ω1 + ω2, ω1 + ω2).

while the gauge theory computation yields

WAdj × TAdj = q−2D[(λAdj,λAdj)] + q2D[(λAdj,−λAdj)]

+ q−1D[(λAdj,λ1+)] + q−1D[(λAdj,λ2+)] + qD[(λAdj,λ2−)] + qD[(λAdj,λ1−)]

+ (loops with the lower weights) (4.35)

where λAdj = ω1 + ω2 is the highest weight of the adjoint representation and see figure 6

for λ1,2±. It would be interesting to reproduce the terms with lower weights from a purely

4d gauge theoretic computations.

4.4 Classification of networks on T 2 for A2

We have seen some basic examples of products of loops and the identification of the charge

and the network. Here we establish the general mapping between the networks and the

charges in the case of the A2 theory on the torus, or equivalently the N=4 SU(3) Yang-

Mills. This is a minimal extension of the dictionary of Drukker, Morrison and Okuda [8].

Let us first classify the possible A2 networks on the torus purely in terms of the

skein relation. First, recall that all networks with crossings are resolved into those with

junctions only. In particular, for the A2 case, there are only two types of junctions, namely

the one where the heads of three arrows meet and another one where the tails of three

arrows meet. Therefore the networks are bipartite [14] and there appear only polygons

with degree-even vertices.

We now use the skein relations we discussed so far. Recall the basic conventions we

discussed in section 3.7. All digons can be contracted, and all rectangles are resolved to

two pairs of curves, as we discussed in (3.52).

At this point, the network might contain several disconnected components. If there

are no vertices at all, the network consists of parallel loops wrapping the same one-cycle

on T 2. Assume now there is at least one vertex. Pick a connected component. It has the

topology of either a disk, an annulus or a torus.

Now, let us denote the number of edges, or equivalently the number of vertices, of

the i-th polygon in this connected component by pi(= 2, 4, 6, . . .). Denote the number

of polygons by f . The total number of vertices, edges and faces of the network is then

given by

V =
1

3

∑
i

pi, E =
1

2

∑
i

pi, F = f. (4.36)
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e1

e2

Figure 7. The infinite bipartite hexagonal tiling and its basis vectors.

Furthermore, denote the number of boundary edges by B which vanish if the connected

component has the topology of torus. From Euler’s theorem we should have

χ+
1

6
B = V − E + F = F − 1

6

∑
i

pi ≥ 0 (4.37)

since the connected component is either a disk (χ = 1, B > 0), an annulus (χ = 0, B > 0),

or a torus (χ = 0, B = 0). Since we removed all digons and rectangles, pi ≥ 6, and therefore

we have

F − 1

6

∑
i

pi ≤ 0. (4.38)

From this we see that the connected component has the topology of the torus, and every

polygon is a hexagon. Therefore, the possible A2 networks on T 2 are mapped into the

bipartite hexagon tilings with three corner condition at every vertex.

It is interesting to note at this point that bipartite hexagon tilings of the torus appeared

in the string theory literature in the context of brane tilings [41–43]. In this case the

bipartite hexagon tilings corresponded to Abelian orbifolds of C3.

Now let us make the dictionary between the bipartite hexagon tilings and the dyonic

charges. Instead of thinking of filling a torus by hexagons, we can take the quotient of the

bipartite hexagon tiling filling the entire plane, and then we define the vectors e1 and e2

there, see figure 7. To specify a bipartite hexagon tiling, we choose the α and the β cycles

of the torus from Ze1⊕Ze2 so that they are linearly independent. In figure 8 we show the

hexagonal tilings and the dyonic charges that already appeared in our analysis so far.

From these examples, we can find the general map. We first naturally identify the A2

weight lattice Λ and the dual lattice of the hexagonal tiling. Then, the rule is

(λe, λm) 7→ (α, β) = (λm,−λe). (4.39)

under the condition q1p2 − q2p1 > 0 where λe = q1ω1 + q2ω2 and λm = p1ω1 + p2ω2.

It is clear that the action of the Weyl group is consistent. Because the cycles α, β define

the basis of charges, the action of SL(2,Z) on the dyonic charges (λe, λm) and that on the

cycles (α, β) should be transpose of each other, and indeed the mapping (4.39) satisfies

this condition. Let us end this section by exhibiting some more examples of the mapping

between the dyonic charges and the hexagonal tilings, see figure 9.

In this section we only discussed the A2 case. It would be interesting to find a general

map from the charge of the dyonic loops to the networks for or general Ak>2 cases.
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(ω1, h2) (ω1, ω2)

(ω1, 2h2)
(ω1,−2h3)

Figure 8. Some examples of the hexagonal tilings and the dyonic charges that we have already

identified.

(ω1 + ω2, h3)
(ω1 + ω2, 2h2 + h1)

Figure 9. Some more examples of the hexagonal tilings and the dyonic charges.

5 Some examples in the superconformal index

So far we have been studying the properties of the networks of the class S theories. In

this section, we would like to study a few concrete manifestations of our analysis when the

four-dimensional side is S1×S3, or equivalently, in the setting of the superconformal index.

As has been well established, the superconformal index of a class S theory of type

SU(N), defined by a Riemann surface C of genus g with n full punctures, is given by

the (zero-area limit of the) (p, q, t)-deformed Yang-Mills theory on the same Riemann sur-

face [5–7]. Here we consider the case q = t where the p dependence automatically drops

out, and the superconformal index becomes the standard q-deformed Yang-Mills theory,

defined in [19, 20, 44]. In this case, the supercharge defining the superconformal index is

compatible with the presence of a half-BPS line wrapping the S1 direction [25, 45].

Therefore, in this setup, a defect of a class S theory, specified by a network with labels

on the Riemann surface C should be realized as a concrete object in the q-deformed Yang-

Mills theory, defined by the same network with labels on C. Below, we show that they

are just given by the Wilson lines8 and the Wilson junctions in the q-deformed Yang-Mills

8This statement was independently obtained by W. Peelaers and L. Rastelli.
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theory. In particular, we compute the superconformal index of the nontrivial line operator

of the T3 theory, namely the 6d N=(2, 0) theory of type SU(3) compactified on a sphere

with three full punctures. Reassuringly, we will find that the result shows an enhancement

of the symmetry from SU(3)3 to E6, as it should be, since the T3 theory is the E6 theory

of Minahan and Nemeshcansky.

Below, we will first very briefly review the relation between the superconformal index

and the q-deformed Yang-Mills in section 5.1. Then we check that the superconformal

index with a Wilson line in the 4d gauge theory is given by the Wilson line in the 2d gauge

theory in section 5.2. Finally, we will compute the superconformal index of a network in the

T3 theory in section 5.3. Note that in this section we use the 2d Yang-Mills normalization

of the junctions as discussed in section 3.3.2.

5.1 The superconformal indices without lines

Consider the class S theory Sg,n for a genus g surface with n full punctures. Its supercon-

formal index is defined as

Ig(a1, . . . , an) = Tr(−1)F q∆−I3a1 · · · an (5.1)

where the trace is over the Hilbert space of the system on S3 or equivalently on the space of

the operators, ∆ is the scaling dimension, I3 is the Cartan generator of SU(2)R symmetry,

and ai ∈ SU(N)i is a group element of the flavor symmetry SU(N)i of the theory associated

to the i-th full puncture.

This is known to be given by the following explicit expression:

Ig(a1, . . . , an) =
∑
λ

∏
iK(ai)χλ(ai)

K2g−2+n
0 χλ(qρ)2g−2+n

(5.2)

where the sum is over all the irreducible representations λ of SU(N), χλ(a) is the character

of a in the representation λ, qρ is the element

qρ = diag(q(N−1)/2, q(N−3)/2, . . . , q(1−N)/2), (5.3)

and K(a), K0 are given by

K(a) = PE

[
q

1− q

(
N − 1 +

∑
i 6=j

ai/aj

)]
, K0 = PE

[
q2 + q3 + · · ·+ qN

1− q

]
. (5.4)

Here we took a to be diagonal,

a = diag(a1, . . . , aN ) ∈ SU(N), (5.5)

and PE is the plethystic exponential, defined by

PE

∑
n≥1

ant
n


t

=
∏
n≥1

(1− tn)−an . (5.6)
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Take two class S theories Sg,n and Sg′,n′ , pick one full puncture from each, say the last

one from Sg,n and the first one from Sg′,n′ . Let us then couple SU(N) gauge multiplets to

the diagonal combination of the SU(N) symmetries carried by the two full punctures thus

chosen. The combined system has the superconformal index

Ig,g′(a1, . . . , an−1; b2, . . . , bn′)

=

∫
[dz]HaarK(z)−2Ig(a1, . . . , an−1, z)Ig′(z−1, b2, . . . , bn′) (5.7)

where [dz]Haar is the natural measure on the Cartan of SU(N) given by

[dz]Haar =
1

N !

N−1∏
i=1

dzi

2π
√
−1zi

∏
i 6=j

(1− zi/zj). (5.8)

Plugging in the expression (5.2) to (5.7) and using the orthogonality of characters∫
[dz]Haarχλ(z)χµ(z−1) = δµλ, (5.9)

we see that the equation (5.7) reduces to (5.2) for the genus g + g′ surface and n+ n′ − 2

full punctures. This is as it should be.

When g = 0 and n = 3, what we have is the TN theory. For N = 3, the symmetry

SU(N)3 enhances to E6. The decomposition is

IT3(q, α) = 1+qχ 1
00000

+q2(χ 2
00000

+χ 1
00000

)+q3(χ 3
00000

+χ 0
00100

+χ 2
00000

+2χ 1
00000

+2)q3 + · · · (5.10)

where α = (a, b, c) is the fugacity for E6 flavor symmetry, and χλ = χλ(α) is the character

of E6 in the irreducible representation with Dynkin label λ.

5.2 4d Wilson lines

Let us move on to the superconformal index in the presence of a loop operator wrapping

S1 [45, 46]. In this subsection, for simplicity, we only study a loop operator that is just

a Wilson line with respect to a 4d gauge group. For class S theories, this covers every

operator that is a genuine loop L labeled by a representation R on the Riemann surface

(i.e. all networks without junctions), since we can always cut the Riemann surface along L

to go to a duality frame where that particular loop wraps a tube once.

To compute the superconformal index with a Wilson loop, let us first consider a more

general situation. Take a theory X with G flavor symmetry whose superconformal index is

IX(a). Suppose we can couple it with the G vector multiplet, such that the gauge coupling

is exactly marginal. Let us insert a BPS Wilson line in the representation R of G. The

resulting index is simply

IR(q) =

∫
[dz]HaarK(z)−2χR(z)IX(z). (5.11)

This reduces to the formula (5.7) when R is a trivial representation, as it should be.
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Figure 10. Wilson line around a tube corresponding to a gauge group.

Now consider the case when X consists of two copies of the TN theory, such that we

gauge a diagonal combination of G symmetries. We have

IR(q) =

∫
[dz]Haar

K(a1)K(a2)K(z)

K0

[∑
λ

χλ(a1)χλ(a2)χλ(z)

χλ(qρ)

]
χR(z)

×K(z)−2K(z−1)K(a3)K(a4)

K0

[∑
λ′

χλ′(z
−1)χλ′(a3)χλ′(a4)

χλ′(qρ)

]
(5.12)

=
K(a1)K(a2)K(a3)K(a4)

K0
2

∑
λ,λ′

χλ(a1)χλ(a2)nλ
′
λRχλ′(a3)χλ′(a4)

χλ(qρ)χλ′(qρ)

 (5.13)

where

nλ
′
λR =

∫
[da]HaarχR(a)χλ(a)χλ′(a

−1) (5.14)

counts how many times the irreducible representation λ′ appear in the tensor product λ⊗R.

The result (5.13) is, up to the prefactor involving K, the unnormalized correlator of

the q-deformed Yang-Mills theory with the Wilson line with the representation R, around

the tube associated to the gauge group, see figure 10. There, we displayed full punctures

as boundaries, as would be more common in the 2d Yang-Mills viewpoint.

For non-deformed 2d Yang-Mills theory, this is an immediate consequence from the

fact that the Hilbert space of the system on S1 is the space of class functions on G, that

is spanned by χλ(z), and the Wilson loop in the representation R acts by a multiplication

by χR(z) almost by definition. For q-deformed 2d Yang-Mills theory, we need to use the

fact that the structure of the tensor product decomposition of the representations of the

quantum group Gq is not deformed as long as q is generic.

5.3 A network in the T3 theory

As an example of the network that is not just a loop, let us consider the T3 theory and the

2d network shown in figure 11.

The superconformal index is given by

IT3,network =
K(a1)K(a2)K(a3)

K0

∑
R1,R2,R3

cR1,R2,R3χR1(a1)χR2(a2)χR3(a3) (5.15)
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Figure 11. A line operator of T3 theory, represented as a Wilson junction on the 2d side.

where cR1,R2,R3 is the amplitude of the q-deformed Yang-Mills, coupling three states χRi(ai)

(i = 1, 2, 3) on the three boundaries.

In the undeformed 2d Yang-Mills theory, cR1,R2,R3 is given by the integral

cR1,R2,R3 =

∫
[dU1][dU2][dU3]χR1(U2U

−1
3 )χR2(U3U

−1
1 )χR3(U1U

−1
2 )

× εijkεīj̄k̄(U1)iī(U2)j
j̄
(U3)kk̄, (5.16)

where U1,2,3 are holonomies of the 2d gauge field from one junction point to the other

junction point, along three different segments.

In the q-deformed Yang-Mills theory, we need to perform the integral above in the

sense of the quantum group [19, 20]. The U3 integral gives a nonzero result only when

R1 is contained in R2 ⊗ V , where V is the standard three-dimensional representation of

SU(3)q. Since the rules of irreducible decompositions of tensor products are unchanged

under the q deformation, we see that cR1,R2,R3 is nonzero only when the highest weight of

R1 is given by adding to the highest weight of R2 one of the three weights of V . This means

that there is an arrow connecting R1 → R2 in the diagram of irreducible representations

as shown in figure 12. We immediately see that there we should have arrows similarly for

R2 → R3 and R3 → R1. Therefore cR1,R2,R3 is nonzero only when R1 → R2 → R3 → R1

forms a triangle in figure 12.

Next, consider what happens when the holonomy at a puncture a3 is set to the special

value a3 = qρ = (q, 1, q−1). This is equivalent to the absence of the puncture, and we

have the situation in figure 13. Using the skein relation, we see that the left hand side

and the right hand side should be proportional by a factor of [2]. The right hand side is

just
∑

R1→R2
χR1(a1)χR2(a2). Therefore, cR1,R2,R3 is determined by an overconstrained set

of equations ∑
R2→R3→R1→R2

cR1,R2,R3χR3(qρ) = [2]qδR1→R2 (5.17)

where the sum on the right hand side is over R3 that fit in the triangle. This equation can

be recursively solved starting from the triangle closest to the origin. We can check that
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Figure 12. An arrow R→ R′ connects two highest weights R, R′ of SU(3) if R′ ⊗ V contains R.

cR1,R2,R3
is nonzero only when the arrows form a triangle R1 → R2 → R3 → R1.

Figure 13. A trick.

the following gives the general solution:9

dimq(nω1 +mω2) = χnω1+mω2(qρ) =
[n+ 1][m+ 1][n+m+ 2]

[2]
, (5.18)

c

(n−1)ω1+mω2 nω1+(m−1)ω2

nω1+mω2
=

[2]

[n+ 1][m+ 1][n+m+ 1]
, (5.19)

c

nω1+mω2

nω1+(m+1)ω2 (n+1)ω1+mω2
=

[2]

[n+ 1][m+ 1][n+m+ 3]
. (5.20)

Plugging them into (5.15), we find it nicely becomes a sum of representations of E6:

IT3,Line(q, α) = q1/2χ 0
10000

+ q3/2(χ 1
10000

)

+ q5/2(χ 0
10000

+ χ 0
00010

+ χ 1
10000

+ χ 2
10000

) + · · · . (5.21)
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A Examples of OPE and charge/network dictionary

Here we present some more examples of the OPE and the correspondence of the dyonic

charge and the networks for the N=4 theory, or equivalently for the torus. The results of

the OPE are for AN−1>2 unless otherwise stated. For the A2 case, the edges with 3 should

be removed and those with 2 can be replaced by the reversed ones with 1. We use the

convention that the magnetic weight lies in the fundamental Weyl chamber Λ/W but the

electric one is unrestricted.

A.1 Pure dyonic loops

Dyonic loops can be roughly classified into two, which we call pure and complex. The pure

ones are those that can be mapped to a Wilson loop in a duality frame, and the complex

ones are those without any such duality frame. Let us first discuss the representation of

the pure ones as loops on the torus.

We abbreviate a bundle of arrows with charges s1, s2, . . . , sr−1 and sr as an single

arrow without any label:

:=

s1 s2 s3 sr−1 sr

. (A.1)

Let ωI =
∑r

i=1 ωsi . Then there are four types as follows:

(µm, λe) = (pωI , qωI), (µm, λe) = (pωI ,−qωI)

q ≥ p : q

p

, q

p

, (A.2)

p ≥ q : q

p

, q

p

. (A.3)

This is essentially the same as the discussion in [8].

A.2 W�� × T�

Let us compute the skein relation of W�� and T�. Comparing with what we expect from

the gauge theory, we can then identify various networks with complex dyonic loops. From
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the skein relation, we have

�

�� = q2/N

 2

2
− 2 2

3

+ q−1
2 2 + q−2


(A.4)

The first term is a new one, the second and third ones are elementary and the final one is

pure. Then we identify:

D[(ω1,2hi( 6=1))] ∼
2

2
, D[(ω1,hi( 6=1)+hj(>i))] ∼ 2 2

3
, (A.5)

D[(ω1,h1+hi( 6=1))] ∼ 2 2 , D[(ω1,2ω1)] ∼ . (A.6)

A.3 W(2,1) × T�

Let us next consider W(2,1) × T�:

�

= q3/N

 2
23

2
− 3 3

4

+ q−1 2

2

2
+ q−2

2
2

 (A.7)

The first and the third terms are new, the second one is elementary and the fourth one is

obtained by a T action of some elementary one. When N = 3, the second one does not

appear and indeed this case is the same as Example A.5.
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We can therefore identify:

D[(ω1,2hi( 6=1)+hj(>i))] ∼ 2
23

2
, D[(ω1,hi( 6=1)+hj(>i)+hk(>j))] ∼ 3 3

4
,

(A.8)

D[(ω1,h1+2hi( 6=1))] ∼
2

2

2
, D[(ω1,2h1+hi( 6=1)] ∼

2
2

.

(A.9)

A.4 W��� × T�

Our next example is W��� × T�:

�

��� = q3/N

 2

2

2

− 2
2

23

2
+ 3 3

4

+ q−1

 2

2

2
−

3

3
2



+ q−2

2
2

+ q−3

 (A.10)

The first term is new, the fifth one is elementary, the seventh one is pure and others have

appeared in the previous case. When N = 3, the third one does not appear. We therefore
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identify:

D[(ω1,3hi( 6=1))] ∼
2

2

2

, D[(ω1,h1+hi( 6=1)+hj(>i))] ∼
3

3
2

, (A.11)

D[(ω1,3ω1)] ∼ . (A.12)

A.5 WAdj × T�

As a further example, let us consider WAdj × T�:
�

Adj =

q

2

+ 2

2

+ q−1

2

(A.13)

The second term is new, and the first and the third ones are obtained by some duality

actions of some elementary one. Our identifications are:

D[(ω1,hi( 6=1)−h1)] ∼
2

, D[(ω1,hi( 6=1)−hj( 6=i)+hj(>i))] ∼
2

2

,

(A.14)

D[(ω1,h1−hi( 6=1))] ∼
2

. (A.15)
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A.6 WAdj × TAdj

We now move on to the example WAdj × TAdj:

Adj

Adj =

2 2

22

+
Adj

+ Adj

+ q−2

Adj

Adj

+ q2

Adj

Adj

+ (2[N − 2] + [N − 4]) + (3 + q2 + q−2)

+ q−1


2

22

+

2 2

2



+ q


2

22

+

2 2

2

 (A.16)

The first one does not appear when N = 3 but reduces to a sum of simpler ones.

Then the charge/network dictionary for the new ones is:

D[(λAdj,hi( 6=1,N)−h1)] ∼
2 2

22

, (A.17)

D[(λAdj,hi( 6=1)−hN )] ∼
2

22

, D[(λAdj,h1−hi( 6=1,N))] ∼
2 2

2

, (A.18)

D[(λAdj,−h1+hi( 6=1,N))] ∼
2

22

, D[(λAdj,hN−hi( 6=1,N))] ∼
2 2

2

(A.19)

where λAdj = h1 − hN is the highest weight of the adjoint representation.
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A.7 An OPE of complex dyonic loops

Finally we give an example of the OPE of two elementary dyonic loops D1,1
(0) and D`,k

(0) for

`, k ≤ N/2 in N=4 SYM:

1

1

2

1

1

k

`

k + `

`

k

= qk−`/N

 1

1

2

k

`

k + 1

`+ 1

k + `

`

k

+ q−1

k

`+ 1

1

1
`+ 2

+ q

`

k + 1

1

1

k + 2


(A.20)

where

• the first term corresponds to D[(ω`+ω1,2hjs=1
+
∑k

s=2 hjs )] where js > `,

• the second one to D[(ω`+1,hi(≤`+1)+2hjs=1
+
∑k−1

s=2 hjs )] where js > `+ 1,

• the third one to D[(ω`+ω1,h(1<)i(≤`)+
∑k

s=1 hjs )] where js > `.

Here we require js differ for each s. It would be interesting to apply the diagrammatic

approach to more complicated OPEs and read off the charge information from networks in

general.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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