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Chapter 7

Xeon Phi System Software

Intel Xeon Phi needs support from system software components to operate properly and interoperate with other 
hardware components in a system. The system software component of the Intel Xeon Phi system, known as the Intel 
Many Integrated Core (MIC) Platform Software Stack (MPSS), provides this functionality. Unlike other device drivers 
implemented to support PCIe-based hardware, such as graphics cards, Intel Xeon Phi was designed to support the 
execution of technical computing applications in the familiar HPC environment through the MPI environment, as 
well as other offload programming usage models. Because the coprocessor core is based on the traditional Intel P5 
processor core, it can execute a complete operating system like any other computer. The disk drive is simulated by a 
RAM drive and supports an Internet protocol (IP)-based virtual socket to provide networking communication with the 
host. This design choice allows the coprocessor to appear as a node to the rest of the system and allows a usage model 
common in the HPC programming environment. The operating system resides on the coprocessor and implements 
complementary functionalities provided by the driver layer on the host side to achieve its system management goals.

The system software layer is responsible for following functionalities:

Boots the Intel Xeon Phi card to a usable state. Works with the host to enumerate and •	
configure the card.

Manages memory address space for configuration, I/O, and memory.•	

Implements the device driver to run under the HOST OS to help system software functions •	
such as interrupt handling, power state management, data transfer, communication, and 
supporting application layer requests through API support.

The system software layer implements various protocols such as the socket protocol over •	
TCP/IP to support the HPC programming model, which can treat Intel Xeon Phi as an 
independent cluster node from the system point of view. It provides low-level virtual ethernet 
and Symmetric Communication Interface (SCIF) APIs to help implement the standard 
communication protocols.

The OS (also called coprocessor OS) running on the coprocessor manages the memory, I/O, •	
and the processes of the application and/or application-offloaded functions running on 
the coprocessor by implementing all the necessary OS functionalities to support massively 
parallel tasks. The OS is based on an open-source Linux kernel to provide these functionalities. 
The OS implements the file system sysfs to expose communicate-system states and provide 
configurability of the OS runtime parameters, such as whether to use automated 2MB pages 
support in the OS for transparent huge page (THP).

Allows users to develop their own applications and tools for value-added implementation, •	
such as an MPI on top of the supplied system functionalities. 

Provides underlying support layers for user-level application execution such as Intel MPI, •	
OpenCL, OpenMP 4.0, Cilk Plus, and the Intel proprietary shared memory and offload 
execution model. Some of these execution models were covered in Chapter 2 and others will 
be covered in Chapter 8 on tools.
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System Software Component
The high-level software components for Intel Xeon Phi are depicted in Figure 7-1. The Xeon Phi system software has 
symmetric architecture. The software components on the card are complemented by an equivalent component on the 
host side to help abstract communication between the host and the coprocessor. 

The application layer is built on top of the system software running at Ring 0 (the most protected mode of 
operation of the processor, where the OS kernel and drivers usually run) on both the host and the coprocessor card. 
The application layer uses runtime libraries to provide the communication and control necessary to send the code 
and data to the coprocessor and get the results back. The application layer also contains utilities and libraries that can 
be used to query the system status and allow socket communications and other communication supports (such as 
InfiniBand protocols).

The coprocessor tools and utilities are part of the MPSS that allows the platform user to query the device status, 
as shown in Figure 7-2. Here the application is known as MIC system management and configuration (micsmc) and 
is available with the MPSS. The application runs on the host at the Ring 3 user level and goes through the system 
drivers to communicate with the corresponding software piece on the coprocessor in order to retrieve such system 
information as core and memory utilization, core temperature, and power received from the system management 
component and controller (SMC) hardware on the coprocessor system, as discussed in Chapter 6.

Figure 7-1.  Xeon Phi software layers
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Applications running on the host side can also send computation and data over to the coprocessor via the 
PCIe bus using the system software layers on the host side. The data and code sent over to the coprocessor side are 
executed as a separate process (offload_main process) under the coprocessor OS. It is also possible to log in to the 
coprocessor OS with a remote shell such as the ssh command and run an application natively as one would run it 
on the host side. The MPSS subsystem also exposes common APIs to the applications running in the Ring 3 layer. 
These APIs include socket-level APIs over TCP/IP using a virtual ethernet interface and such MPI communication 
components as the Direct Access Programming Library (DAPL) provided to the fabric (communications hardware) 
independent API, Open Fabric Enterprise Distribution (OFED) verbs, and the Host Channel Adapter (HCA) library 
for InfiniBand technology. The coprocessor OS provides a command-line interpreter, such as the host Linux OS, to 
interact with the user connected directly to the coprocessor OS with tools such as secured shell functionality (ssh).

Ring 0 Driver Layer Components of the MPSS
The Ring 0 layers of the MPSS consist of the following basic components to support application and system 
functionalities (Figure 7-3):1

•	 Host-side Linux kernel device driver for the Xeon Phi card: The primary job of the host-side 
driver is to initialize the Xeon Phi coprocessor hardware. The driver is responsible for loading 
the OS in the coprocessor during the coprocessor boot process. 

•	 Symmetric Communication Interface: The SCIF layer provides low latency communications 
between the host and the coprocessor. Other communication abstractions such as an IP-based 
network depend on the SCIF layer to perform their functions.

Figure 7-2.  Application layer system utility showing Xeon Phi coprocessor runtime status

1Intel Xeon Phi Coprocessor System Software Developers Guide: http://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/xeon-phi-software-developers-guide.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
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•	 Xeon Phi coprocessor OS: The coprocessor OS is based on the Linux kernel from kernel.org 
modified to fit the specifics of Xeon Phi architecture.

•	 Symmetric virtual ethernet drivers: This software layer provides an IP-based networking 
communications protocol between the host and the client software. It uses a lower-level SCIF 
interface.

Various OFED components to support MPI over the InfiniBand (IB) interface.•	

Applications and tools communicate with these components to perform their functionalities. The software layers 
are available when the system is booted and in the running state. It is possible to boot the coprocessor card through 
tools provided as part of the MPSS stack without booting the host system itself. The tool can be used to reboot the 
coprocessor at any time. In a cluster environment, for security purposes, the card may be rebooted to reset all the 
memory contents, including the RAM drive, to bring the coprocessor to clean reboot state.

System Boot Process
For the system administrator, it may be useful to understand the bootstrap process of the card to debug a system 
failure. Bootstrap is the process of initializing the card and loading the coprocessor OS. The coprocessor card contains 
firmware (ROM) that helps boot the card when first powered on reset by the host utilities. After the card reset, one of 
the cores of the coprocessor, known as a boot strap processor (BSP), starts execution. The first instruction executed 
is located in the default location in all x86-family processors: 0xfffffff0. The instruction pointer of the coprocessor 
points to this memory location after the power reset. This location points to the firmware section known as fboot0. 
This section of code is trusted code and cannot be reprogrammed, as it serves as the root of trust. This section of code 
authenticates the second stage of the boot process fboot1. If the authentication fails, the power is cut off from the core 
and ring by the boot strap code in fboot1 ROM area. At this stage, the host can reprogram the fboot1 to recover a bad 
or compromised fboot1 code block. If the power is cut from the core and ring, the coprocessor goes into zombie state. 
A jumper on the card then needs to be physically reset for the card to be recovered from this zombie state. 

Figure 7-3.  Ring 0 components of the MPSS stack during runtime
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If the fboot1 passes the authentication check, the control is passed over to the fboot1 entry point and continues 
execution. Fboot1 code initializes the coprocessor cores, memory, and other coprocessor components. It copies 
code to the GDDR5 memory to improve performance. Then it moves on to boot the rest of the cores. Once all the 
cores are booted, the cores go into halt state. The coprocessor lets the host know when it is done with initialization. 
At this point, the host downloads the coprocessor OS image from the hard drive on the host side (Figure 7-4) to 
the predefined address location on the GDDR5 memory on the card. Once the download is complete, it signals the 
coprocessor through interrupt. The next step is to authenticate the coprocessor OS image. This is done by all the cores 
in parallel using an authentication code available in fboot0. If the authentication fails, the coprocessor OS is prevented 
from accessing sensitive registers and intellectual properties on the card. However, authentication will allow the 
coprocessor OS to boot by communicating necessary information—such as the number of CPUs, memory, and 
capabilities—to the OS loader code and handing control over to the OS for further execution. To be able to access the 
sensitive area in the coprocessor, one will need the maintenance OS released by Intel and signed with a special private 
key that matches the public key used by the authentication code in the fboot0 authentication code sequence.

Coprocessor OS
The coprocessor OS provides the execution environment and runtime support to execute applications on the 
manycore Xeon Phi hardware. It supports other components of the MPSS stack such as SCIF communication and 
virtual ethernet. The coprocessor OS shipped as part of the MPSS is based on the standard Linux kernel source from 
kernel.org with minimal changes. Some of the main modifications needed are specific to the Xeon Phi hardware.

The coprocessor provides the necessary support for applications running on the coprocessor. This includes 
process, memory, and device and power management. One can also add loadable kernel modules to increase the 
functionality of the OS through kernel drivers. Intel tools such as profiling tools and debugging tools use the loadable 
kernel modules to interact with the hardware.

The OS provides the standard Linux base libraries such as libc, libm, librt. It also implements a minimal Shell 
environment using BusyBox.2

Figure 7-4.  Coprocessor OS load during boot strap process. 1. Coprocessor cores intialize and notify host. 2,3. Host 
driver reads the coprocessor image from the disk. 4. Host loads the coprocessor OS image to the GDDR memory. 
Coprocessor starts executing coprocessor OS, completing the boot process

2Refer to http://www.busybox.net/about.html for details about BusyBox features.

http://www.busybox.net/about.html
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Creating a Third-Party Coprocessor OS
The Xeon Phi coprocessor supports third-party OSs developed for the Xeon Phi processor. A third-party OS may be 
desirable for a customized operating system, such as one needing real-time response, light-weight processes, or other 
requirements not satisfied by the manufacturer’s default OS. The boot strap code is written to conform to certain 
configurations required to boot the Linux OS as documented in the Linux kernel. 

There are 16-bit, 32-bit, and 64-bit entry points for the Linux kernel. Xeon Phi supports the 32-bit entry points. 
The 32-bit entry point requires certain structures, such as the boot parameter and core and other hardware-related 
structures defined in the Linux documentation. The CPU mode also needs to be set in 32-bit protected mode as 
expected for a 32-bit entry point with paging disabled. A global descriptor table (GDT) with the proper boot code and 
data segment selectors must be provided, and other conditions must be fulfilled by the custom coprocessor OS as 
written in the boot.txt of the Linux kernel documentation.

During the boot process described earlier, the Xeon Phi processor logs the power on selftest (POST) messages 
to the host kernel log. These messages help in debugging the card in case the card fails to start. So if you are having 
issues starting the card, look at the Linux dmesg command or look at the /var/log/messages output in the host system. 
This inspection will require superuser privilege. Table 7-1 deciphers some of the important POST codes for your 
reference, which can be handy when trying to understand various log messages the card generates while booting and 
resetting the card. 

Table 7-1.  POST Code Provided by Coprocessor to Signal Its State

POST Code Interpretations

01 Load Interrupt Descriptor table

02 Initialize System Components and PCIe interface

03 Set GDDR memory

04 Begin memory test

05 Creates a table to describe memory layout

06 Initialize other parts of the coprocessor

09 Enable caching

0b Initialize application processor (cores other than boot strap processor core-0)

0c Cache code

0d Program multiprocessor configuration table (MP table)

0E Copy application processor boot code to GDDR to speed up processing

0F Wakeup application processors (AP)

10 Wait for APs to boot

11 Signal host to download coprocessor OS

12 Coprocessor in ready state to receive OS

13 Signal received from host after the coprocessor OS download completed

15 Report platform information

17 Page table setup

(continued)
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If you do a sudo dmesg after a card reboot on the host, you may find the logged message in Listing 7-1, which you 
can interpreted using Table 7-1. Here you see the card going through GDDR training (POST code 3C-3F) and finally 
getting to ‘ready state’ (code ‘12’) to receive the coprocessor OS from the host. After the OS download, it starts the boot 
process and takes approximately 15 seconds to complete. 

Listing 7-1.  ‘dmesg’ output on host OS

mic0: Transition from state online to shutdown
host: scif node 1 exiting
mic0: Transition from state shutdown to resetting
mic0: Resetting (Post Code 3C)
mic0: Resetting (Post Code 3d)
mic0: Resetting (Post Code 3d)
mic0: Resetting (Post Code 3d)
mic0: Resetting (Post Code 3d)
mic0: Resetting (Post Code 3E)
mic0: Resetting (Post Code 3E)
mic0: Resetting (Post Code 3F)
mic0: Resetting (Post Code 09)
mic0: Resetting (Post Code 12)
mic0: Transition from state resetting to ready
mic0: Transition from state r eady to booting
MIC 0 Booting
Waiting for MIC 0 boot 5
Waiting for MIC 0 boot 10
MIC 0 Network link is up
 

POST Code Interpretations

30-3F GDDR Memory Training phase

40 Begin coprocessor authentication

50-5F Coprocessor OS load and setup

bP Interrupt 3 (int3) break point

EE Memory test failed

F0 GDDR parameter not found in flash

F2 GDDR failed memory training

F3 GDDR memory module query failed

F4 Memory preservation failed

FF Bootstrap finished execution

Ld Locking down hardware access

nA Coprocessor OS failed authentication

Table 7-1.  (continued)
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mic0: Transition from State Booting to Online Host Driver
The MPSS ships with several host-side Linux device drivers to provide the necessary functionality. As we have 
seen, the host-side driver is responsible for starting the boot process of each of the cards attached to the system, 
loading the coprocessor OS, and setting the required boot parameters for the cards. Host drivers provide the basic 
communication layer through the SCIF driver layer and virtual ethernet driver layer, supporting the interfaces 
necessary for power management, device management, and configuration. User-level programs interact with these 
drivers to expose the user interface to these functionalities. For example, ssh functionality is built on top of the  
TCP/IP, which in turn depends on the virtual ethernet layer of host or coprocessor drivers. 

The host driver load or unload functionality is provided through the standard Linux system service start/stop 
mechanism, which is provided by the commands service mpss start/stop/restart for booting and shutting down 
the card.

Linux Virtual File System (Sysfs and Procfs)
Two virtual file systems—Sysfs (/sys) and Procfs (/proc)—expose the coprocessor OS kernel and device status and 
control some of the behavior. 

Sysfs (/sys) is a standard mechanism in Linux 2.6 for exporting information about the kernel objects to the user space. 
The user can query this file system content to view and manipulate these objects that map back to the kernel entities they 
represent. To see the usefulness of such a setup, suppose that you want to turn on huge page support in the coprocessor 
OS. In Chapter 4 you saw that the coprocessor supports 2MB-page sizes to reduce the TLB pressure.  To reduce the TLB 
pressure as needed, the coprocessor can transparently promote memory pages to 2MB pages, controllable through the 
kernel parameter in the virtual file “enabled” located at /sys/kernel/mm/transparent_hugepage/.

If you cat the file, you see that the current configuration of the kernel is set to enable the transparent huge page 
support by default:

•	 Cat /sys/kernel/mm/transparent_hugepage/enabled, you can see the content

•	 [always] madvise never

In order to turn this default off, you can echo “never,” as shown in Figure 7-5. Once you have echoed “never” to 
the enabled file, it is set in the kernel “enabled” property. 

Figure 7-5.  Xeon Phi Coprocessor Sysfs virtual file system /sys
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The host also exposes some of the coprocessor information through its virtual file system. For example, on the 
Linux host with a Xeon Phi coprocessor, if you type the following cat command, it returns the memory size on  
the device in hex, which is 8GB in this case.

•	 cat /sys/class/mic/mic0/memsize

•	 7c0000

This useful interface may be used by system and card management software to query Xeon Phi configuration  
and status.

You can also use the /proc file system on the card to gather information related to the number of cores, memory 
usage, and so forth. You can type cat /proc/cpuinfo on the coprocessor command prompt to get information about 
the cores running on the coprocessor. Figure 7-6 captures the last fragment of the output of such a command on Xeon 
Phi. Because the hardware I was using had 61 cores with 4 threads per core, it had a total of 244 (processor id 243 since 
the first core is id = 0) logical processors.

Cluster management and monitoring software such as Ganglia3 can use the information exposed by the Sysfs/
Procfs virtual file system in the coprocessor OS and hosts to relay the data to its management interface to help manage 
the clusters containing Xeon Phi coprocessor cards. SCIF Layer

The SCIF layer sits above the coprocessor OS (Figure 7-3). It is a fast and lightweight communication layer 
that is responsible for abstracting PCIe data transfers between Xeon Phi devices and the host. It abstracts the end 
points (the host processor and the coprocessor) connected to the PCIe bus as “nodes” and thus can treat the nodes 
symmetrically. The symmetry means that the same interface is exposed to the host and the coprocessor. As a result, an 
application written against the SCIF interface can execute on both the host and the coprocessor. 

Figure 7-6.  /proc virtual file system listing CPU cores available on a Xeon Phi coprocessor

3Ganglia is open-source cluster management software (http://ganglia.sourceforge.net/).

http://ganglia.sourceforge.net/
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SCIF supports:

Reliability, accessibility, and serviceability (RAS). SCIF provides the communication channel •	
for RAS feature implementation.

Power management SCIF supports power management events to allow the coprocessor to •	
enter and exit PC6 states.

The Xeon Phi coprocessor supports direct-assignment virtualization. •	 Virtualization is 
the process of running multiple virtual machines (VM) and corresponding guest OS or 
applications simultaneously on the same hardware. In direct assignment, a guest OS has a 
dedicated Xeon Phi coprocessor and corresponding SCIF network. The SCIF networks of 
multiple guest OSs do not interfere with one another.

SCIF can support an arbitrary number of coprocessors by design. The current implementation •	
of SCIF is optimized for up to eight coprocessors.

Various MPSS system tools supported by SCIF are treated in this chapter.•	

SCIF layers are implemented on both the coprocessor and the host (Figure 7-3). SCIF supports communication 
between the host processor and a Xeon Phi coprocessor and among Xeon Phi coprocessors connected to separate 
physical PCIe buses. Although SCIF supports peer-to-peer communication, it needs support from the PCIe root 
complex implementation of the host platform to do so.

The SCIF kernel mode interface is exposed through a category of APIs, through which the other drivers and tools 
can make use of its capabilities.4

Networking on Xeon Phi
The MPSS implements a virtual ethernet driver that emulates the Linux hardware network driver underneath network 
stacks on the host and the coprocessor.

The Intel Xeon Phi MPSS stack implements a virtual TCP/IP stack over the virtual ethernet interfaces and allows 
many tools and applications to run on top of the TCP/IP interface (Figure 7-3). In addition to basic communication 
support between the host and the coprocessor, there is support for the bridge to connect two Xeon Phi coprocessors 
over the TCP/IP network.

The support assigns unique IP addresses to each of the cards, configurable by means of a configuration file 
default.cfg supported by the MPSS. Currently, connections are class C subnets by Internet protocol definition.

If required, it is possible to create a network bridge that allows multiple coprocessors to communicate with one 
another on a node. If communication is expected between multiple host nodes, it is possible to do so by assigning 
unique addresses to the cards through the configuration process.

The virtual ethernet (VE) uses the DMA operations to transfer packets over the PCIe bus. It uses the following 
procedure for data packet transfer using TCP/IP:

	 1.	 The host VE device creates descriptor rings as needed by the DMA on the host memory.

	 2.	 During initialization, the host and coprocessor provide receive-buffer space using Linux 
socket buffer structure (skbuffs).

	 3.	 The card maps the host descriptor ring to its address space.

	 4.	 The card allocates and posts a number of receive buffers to the host-side VE driver.

4Refer to Intel Xeon Phi software guides for details of the interfaces, such as Intel Xeon Phi Coprocessor System Software Developers 
Guide (http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-
guide.pdf).

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
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	 5.	 During host transfer, the host VE driver DMAs the TCP/IP buffers to the receive buffers on 
the coprocessor.

	 6.	 The host interrupts the coprocessor.

	 7.	 The coprocessor VE sends the data up to the TCP/IP stack and allocates a new receive 
buffer for host use.

	 8.	 On the coprocessor send, the skbuffs is DMAed to the receive buffer posted by the host 
and interrupts the host.

	 9.	 The host interrupt routine of the VE device driver sends the skbuff to the TCP/IP stack.

	 10.	 The host allocates a new receive buffer for the coprocessor to use.

Network File System
The coprocessor OS also supports the Network File System (NFS) to expose the host file system on the card. It is part 
of the MPSS. Because the NFS requires TCP/IP networking, it requires you to have the network set up so that the host 
can act as a file server for the NFS mount and allow access to the disks on the host. 

The NFS file system is extremely handy when using the native mode of execution or the symmetric mode of 
application execution. These modes require the application binaries, the dependent libraries, and input dataset to be 
available on the coprocessor. As copying these files over would waste time, it is often possible to mount the host file 
system onto the coprocessor for the run. The program will then write output to its local NFS-mounted drive so that 
the output can be used on the host side as well without explicit copying. It is important to be aware, however, that the 
NFS file system is slow on Xeon Phi, and performance-sensitive files may be copied over to the coprocessor RAM drive 
explicitly.

The process of mounting the NFS file system is similar to the Linux NFS mount process using NFS server–client 
architecture. The following steps need to be executed by a superuser on both the host and the coprocessor:

	 1.	 Export the file system you want to share with a Xeon Phi coprocessor through  
/etc/exports. As a superuser you can add an entry to export fs. For example, to export the 
/opt/intel folder on the host where the default Intel Compiler library is available to a Xeon 
Phi coprocessor, you could add the following line to your /etc/exports file. /opt/intel 
mic0(rw,no_root_squash). Then execute exportfs –a to make sure the modification to 
exportfs is seen by the NFS daemons.

	 2.	 Allow the file exported file system to be accessible to coprocessor. To allow the 
coprocessor to access the file system, set /etc/hosts.allow. You can do this by adding 
the following line, if 172.31.1.1 is your coprocessor card IP address. Add the appropriate 
address if your card address differs.
 
ALL:172.31.1.1
 

	 3.	 Mount the exported file system on the coprocessor. First create a folder /opt/intel on the 
coprocessor through the mkdir command. Then issue a mount command as follows:

mount -t nfs -o rsize=8192,wsize=8192,intr,nolock host:/opt/intel /opt/intel
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Open Fabrics Enterprise Distribution and Message Passing  
Interface Support
One of the key requirements for Intel Xeon Phi to be applicable to high-performance computing or technical 
computing applications is the support for MPI communication APIs and high-performance, low-latency 
communication fabrics. For this purpose, the MPSS stack has built-in support for OFED. The Intel MPI stack is built 
on top of the OFED module to implement the remote direct memory access (RDMA) transport available in the Xeon 
Phi coprocessor. The Intel MPI library on the coprocessor can use the SCIF or physical InfiniBand host channel 
adaptor (HCA) between various MPI ranks running on hosts and coprocessors. These allow a coprocessor to be 
treated like a node in a cluster of nodes. 

There are two ways to communicate with an HCA device in a node:

	 1.	 Coprocessor Communication Link (CCL): This is a hardware proxy driver that allows 
internode communication by allowing a Xeon Phi coprocessor to communicate with 
an InfiniBand HCA device directly. This can provide good performance in a cluster 
environment. The CCL provides the benefits of RDMA architecture, which allows 
applications to write buffers directly to a network device without kernel intervention, 
resulting in lower latency and higher performance data transfer. The CCL allows RDMA 
hardware devices on the host to be shared between the host and the Xeon Phi coprocessor. 
RDMA operations are performed as “verbs,” which are functions that are implemented 
by OFED package. The user-level verbs can be executed by the application running at the 
same time on the Xeon Phi and the host.

	 2.	 OFED/SCIF: The MPI can use the TCP/IP or OFED interface to communicate with other 
MPI processes. The OFED on top of the SCIF interface allows InfiniBand HCA (IBHCA) on 
the PCIe bus to directly access the physical memory on the Xeon Phi coprocessor. If the 
IBHCA device is not available, the OFED/SCIF driver emulates the IBHCA device to allow 
OFED-based applications such as Intel MPI to run on Intel Xeon Phi without a physical 
HCS device. OFED/SCIF is only used for intranode communication, whereas CCL can be 
used for internode communication. 

System Software Application Components
The MPSS provides various tools to help manage Xeon Phi–based compute nodes. These tools help in installing and 
managing the card, particularly in creating user accounts on the coprocessor OS and other utilities to query the cards’ 
status. The sections that follow will look at some important components of the MPSS system software that can help 
you manage system functions. 

micinfo
The micinfo utility, together with the micchek utility (discussed later in this section), can be used to see whether your 
Xeon Phi hardware is up and running and to collect information about the hardware and system software on your 
installation. By default, the system installed software puts it in the /opt/intel/mic/bin path. The command must be 
run in superuser mode to execute properly. The output of an instance of micinfo execution is displayed below. Here I 
invoked the micinfo command without any arguments, which tells it to print all the information about the device and 
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the system software. You can also invoke it with specific arguments, such as –listdevice or –deviceinfo, to display only 
part of the following output. The output is categorized in the following sections:

•	 System software information: The host OS version and the Xeon Phi coprocessor MPSS version 
numbers are displayed. Also displayed for each Xeon Phi device on the platform are the logical 
device number and name, the firmware version (flash version), the coprocessor OS version, 
and other information such as the SMC boot loader version and device serial number.

•	 Board information: Information relevant to the board is displayed, including the coprocessor 
stepping, board SKU, ECC mode on the card, vendor, and system.

•	 Core information: This section is specific to the coprocessor core, including information on 
the voltage, frequency, and number of active cores.

•	 Thermal section: Information includes the SMC firmware version and the die temperature.

•	 Memory section: This GDDR-related information includes supplier, size, and data  
transfer speed.

Listing 7-2 provides a sample micinfo utility log.

Listing 7-2.  Sample micinfo Utility Log

Created Wed May 15 09:26:02 2013
 
    System Info
            HOST OS                  : Linux
            OS Version               : 2.6.32-279.el6.x86_64
            Driver Version           : 5889-16
            MPSS Version             : 2.1.5889-16
            Host Physical Memory     : 65917 MB
 
Device No: 0, Device Name: mic0
 
    Version
            Flash Version            : 2.1.02.0383
            SMC Boot Loader Version  : 1.8.4326
            uOS Version              : 2.6.38.8-g9b2c036
            Device Serial Number     : [XXXXX]
 
    Board
            Vendor ID                : 8086
            Device ID                : 225c
            Subsystem ID             : 2500
            Coprocessor Stepping ID  : 3
            PCIe Width               : x16
            PCIe Speed               : 5 GT/s
            PCIe Max payload size    : 256 bytes
            PCIe Max read req size   : 4096 bytes
            Coprocessor Model        : 0x01
            Coprocessor Model Ext    : 0x00
            Coprocessor Type         : 0x00
            Coprocessor Family       : 0x0b
            Coprocessor Stepping     : B1
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            Board SKU                : B1QS-7110P
            ECC Mode                 : Enabled
            SMC HW Revision          : Product 300W Passive CS
 
    Cores
            Total No of Active Cores : 61
            Voltage                  : 1013000 uV
            Frequency                : 1100000 KHz
 
    Thermal
            Fan Speed Control        : N/A
            SMC Firmware Version     : 1.13.4570
            FSC Strap                : 14 MHz
            Fan RPM                  : N/A
            Fan PWM                  : N/A
            Die Temp                 : 55 C
 
    GDDR
            GDDR Vendor              : -----
            GDDR Version             : 0x1
            GDDR Density             : 2048 Mb
            GDDR Size                : 7936 MB
            GDDR Technology          : GDDR5
            GDDR Speed               : 5.500000 GT/s
            GDDR Frequency           : 2750000 KHz
            GDDR Voltage             : 1000000 uV

micflash
This utility is installed by default in the /opt/intel/mic/bin path and is used to update the coprocessor firmware, also 
known as flash memory. It can also be used to query and save the existing flash version before update. It is advisable 
to check compatibility of a given flash to the device in question by using –compatible switch before doing the flash 
update. 

micsmc
The micsmc utility shows the coprocessor status. It can run in graphical or text mode interface. In graphical mode, 
it displays for all the Xeon Phi coprocessors installed in the system the details of such features as core utilization, 
memory usage, temperature, and power and error log. This utility can also be used for setting coprocessor features 
like ECC, turbo, and others. For example to turn off ECC you can run the sequence provided in Listing 7-3.

Listing 7-3.  Sequence to Turn Off ECC

command_prompt_host > micctrl –r
command_prompt_host > micctrl –w
command_prompt_host > /opt/intel/mic/bin/micsmc  --ecc disable
command_prompt_host > service mpss restart
To check  ECC status:
command_prompt_host > /opt/intel/mic/bin/micsmc --ecc status
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miccheck
The miccheck utility is used to check the current install status of a Xeon Phi installation in a node. It detects all devices 
and checks for proper installation, driver load status, status of the Xeon Phi network stack, and successful boot by 
POST code. An instance of miccheck output is displayed in Listing 7-4. It shows that the test failed because the flash 
version did not match the install log file (the manifest).

Listing 7-4.  Sample miccehck Utility Output

miccheck 2.1.5889-16, created 17:08:24 Mar  8 2013
Copyright 2011-2013 Intel Corporation  All rights reserved
 
Test 1 Ensure installation matches manifest : OK
Test 2 Ensure host driver is loaded         : OK
Test 3 Ensure drivers matches manifest      : OK
Test 4 Detect all listed devices            : OK
MIC 0 Test 1 Find the device                       : OK
MIC 0 Test 2 Check the POST code via PCI           : OK
MIC 0 Test 3 Connect to the device                 : OK
MIC 0 Test 4 Check for normal mode                 : OK
MIC 0 Test 5 Check the POST code via SCIF          : OK
MIC 0 Test 6 Send data to the device               : OK
MIC 0 Test 7 Compare the PCI configuration         : OK
MIC 0 Test 8 Ensure Flash versions matches manifest : FAILED
MIC 0 Test 8> Flash version mismatch. Manifest: 2.1.01.0385, Running: 2.1.02.0383
Status: Test failed

micctrl
Micctrl is the Swiss army knife for the system administrator. This tool can be used to boot, control, and status check 
the coprocessor. After the system software is installed on a coprocessor host, micctrl --initdefaults is used to 
create the default set of the coprocessor OS boot configuration files. Any change in configuration can be reflected by 
using the micctrl  --resetconfig command. The coprocessor can be booted, shut down, reset, and rebooted using 
micctrl commands with --boot,--shutdown, --reset, and --reboot commands, respectively. Since the coprocessor runs 
an OS with full user access, the micctrl utility also allows the system administrator to add, remove, or modify users or 
groups by managing the /etc/passwd file on the coprocessor.

micrasd
The micrasd process can be run on the host to handle log hardware errors and test hardware in the maintenance 
mode. It can also run as a host Linux system utility as service micras start/stop commands.

micnativeloadex
Micnativeloadex is a handy utility to run a cross-compiled binary targeted for the Xeon Phi coprocessor to be 
launched from the host. It also allows the same functionality from inside the coprocessor to reverse offload. When 
executed, it copies the binary and dependent libraries to the destination without needing to do it explicitly, as would 
be the case when using the scp/ssh command.
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Summary
This chapter examined the system software layers needed to support the operations of the Intel Xeon Phi coprocessor. 
There are three major layers of the system software. Two of these layers run at Ring 0 protection level, which allows 
them to provide low-latency access to the Xeon Phi hardware. The bottommost layer is the Linux kernel or the Linux 
coprocessor OS, which interfaces with the hardware and provides basic OS supports, including memory and process 
management functionalities. The device-driver layer runs on top of the basic OS layer and provides interfaces for 
the applications and utilities running in Ring 3 layer to access and interact with the Xeon Phi hardware necessary to 
manage, query, and execute applications on the coprocessor.

The next chapter will look at the tools available for developing applications on Xeon Phi and provide some 
pointers on how to use these tools.
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