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Abstract

In this paper, nanowire network anodized aluminum oxide (AAO) was fabricated by just adding a simple film-eroding
process after the production of porous AAO. After depositing 50 nm of Au onto the surface, nanowire network AAO
can be used as ultrasensitive and high reproducibility surface-enhanced Raman scattering (SERS) substrate. The average
Raman enhancement factor of the nanowire network AAO SERS substrate can reach 5.93 × 106, which is about 14%
larger than that of commercial Klarite® substrates. Simultaneously, the relative standard deviations in the SERS intensities
are limited to approximately 7%. All of the results indicate that our large-area low-cost high-performance nanowire
structure AAO SERS substrates have a great advantage in chemical/biological sensing applications.
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Background
Surface-enhanced Raman scattering (SERS) as a power-
ful and sensitive technique for the detection of chemical
and biological agents received more attention since
single-molecule detection with SERS was confirmed
[1,2]. The enhancement of Raman signal was mainly at-
tributed to the electromagnetic enhancement on the
metal surface which was induced by the surface plasmon
resonance (SPR). To obtain the huge Raman enhance-
ment, noble metal nanogap structures, especially of
sub-10-nm gap structures, have attracted considerable
scholarly attention, which can support strong SERS due
to the existence of enormous electromagnetic enhance-
ment in the gap of metal nanostructure [3-16]. The
enormous electromagnetic enhancement in the gap of
metal nanostructure is caused by the strong coupling of
the SPR, which is called ‘hot spot’. Apart from having a
huge Raman enhancement, the high-performance SERS
substrates should also be uniform and reproducible.
Taking into account the commercial application, the
high-performance SERS substrates should also be low
cost and should achieve high output. Fabrication of
high-performance SERS substrates has been the focus of
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attention [3-16]. Many low-cost methods and techniques
have been proposed, like self-assembly [17,18], indentation
lithography [6,19-24], corroding ultrathin layer [25], and
femtosecond laser fabrication [26-29]. However, to date,
for the existence of many limits for these low-cost tech-
niques, the fabrication of large-area high-performance
SERS substrate with sub-10-nm gap size is still critical for
the practical applications of SERS.
Porous anodized aluminum oxide (AAO) was widely

used in the SERS substrate fabrication for the existence
of large-area high-ordered array of nanopores and the
simple production process. Porous AAO can be used
directly as SERS substrate after depositing Au or Ag on
the surface [30] and can also be used as template to fabri-
cate ordered array nanostructure SERS substrate [31-36].
Previous studies have shown that nanorod array and nano-
wire network, with dense nanojunctions and nanogaps,
can support stronger SERS than porous structures
[37-41]. The question, whether the nanorod array and
nanowire network structure can be fabricated just by mak-
ing a simple change to the production process of porous
AAO, has not attracted the researcher's attention.
In this work, a simple film-eroding process was added

after the production process of porous AAO to fabricate
large-area low-cost nanowire network AAO which can
be used as high-performance SERS substrate after de-
positing 50 nm of Au onto its surface. The Raman
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spectra of benzene thiol on the nanowire network AAO
SERS substrates are measured and the average Raman
enhancement factors (EFs) are calculated. Comparing
with the porous AAO SERS substrates, the Raman peak
intensities and the average EFs of nanowire network
AAO SERS substrates have a significant enhancement.
The average EF of our sensitive SERS substrate can
reach 5.93 × 106, about 35 times larger than that of por-
ous AAO SERS substrate and about 14% larger than that
of Klarite® substrates (Renishaw Diagnostics, Glasgow,
UK), which indicates an enormous electromagnetic
enhancement that exists in the nanowire network AAO
SERS substrate. Repeated measurements and spatial
mapping show an excellent reproducibility of the nano-
wire network AAO SERS substrate. The relative stand-
ard deviations in the SERS intensities are limited to only
approximately 7%. Comparing with other fabrication
methods of the high-performance SERS substrates, our
method based on the mature production process of
porous AAO is simpler, has lower cost, and is easier for
commercial production. Therefore, we believe that our
nanowire network AAO SERS substrates have great
potential for applications.

Methods
Sample fabrication
We commissioned Hefei Pu-Yuan Nano Technology Ltd
to fabricate the porous AAOs and nanowire network
AAOs. Production process [36] of porous AAO is already
quite mature. The aluminum foil was first degreased with
acetone under an ultrasonic bath for 10 min and then
annealed at 350°C for 2 h. It was electropolished in a
mixed solution (20% H2SO4 + 80% H3PO3 + 2% K2CrO4)
Figure 1 SEM images of P-AAO (a), W-AAO1 (b), partial enlargement
under a constant voltage of 9 V and a temperature of 90°C
to 100°C for 10 min. During this process, the aluminum
was used as the anode and a platinum plate as the cath-
ode. To obtain ordered nanopore arrays, we used a two-
step anodizing process. The foil was anodized first in
0.3 M oxalic acid at 33 V at 0°C to 5°C for 14 h. It was
then immersed in a mixed solution of 5.0 wt.% phosphoric
acid and 1.8 wt.% chromic acid (1:1 in volume) at 60°C for
3 h to remove the alumina layer. In the second step, the
sample was again anodized for 2 h under the same condi-
tions and then, the underlying aluminum was removed in
a CuCl2/HCl (13.5 g CuCl2 in 100 ml of 35% HCl) solution
to expose the back-end AAO barrier. Finally, for pore wid-
ening, the sample was immersed in a 5.0 wt.% phosphoric
acid solution at 30°C for 1 h. The scanning electron micro-
scope (SEM) image of the fabricated porous AAO (sign
with P-AAO) is present in Figure 1a. According the meas-
urement result from the commercial software, the pore
diameter and the pore spacing are approximately 302 ±
47 nm and 381 ± 52 nm, respectively.
To obtain the nanowire network AAOs, we required

the manufacturer to add a film-eroding process after the
pore-widening process. The P-AAOs were immersed
again in mixed solution of 5.0 wt.% phosphoric acid and
1.8 wt.% chromic acid (1:1 in volume) at 60°C. The walls
of the nanopores were damaged by the mixed acid solu-
tion, the nanopore structure fell down, and leaf-like
nanowire cluster structure formed. Figure 1b shows the
sample with a film-eroding time of 5 min, signed as W-
AAO1. Figure 1c is the partial enlargement of W-AAO1,
which show that the nanowire formed from the broken
wall of nanopores. With further eroding, the nanowires
formed from walls of nanopores became longer and
of W-AAO1 (c), and W-AAO2 (d).
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thinner and could no longer prop each other. Therefore,
the nanowire cluster fell down, and the nanowires lied
on the surface as a uniform random layer. Figure 1d is
the SEM image of the AAO with a film-eroding time
of 10 min, called W-AAO2. The average diameter of
nanowire on W-AAO1 and W-AAO2 was measured to
be 68 ± 16 nm and 57 ± 15 nm, respectively. As shown in
Figure 1b,d, dense junctions between the nanowires exist
in W-AAO1 and W-AAO2. Previous studies have certif-
icated that great amount of sub-10-nm gaps exist in
these nanowire network structures [39-41].
After depositing 50 nm of Au onto the surface of

P-AAO, W-AAO1, and W-AAO2, large-area high-
performance SERS substrates were fabricated and were
assigned as P-AAO-Au, W-AAO1-Au, and W-AAO2-
Au, respectively.

Detail of SERS spectra measurement
The measurement of SERS is same with our previous work
[42]. Benzene thiol was used as the probe molecule. To
ensure that a complete self-assembled monolayer (SAM)
of benzene thiol was formed on the substrate surface, all of
the SERS substrates were immersed in a 1 × 10−3 M solu-
tion of benzene thiol in ethanol for approximately 18 h
Figure 2 Comparison of substrates and neat benzene thiol, Raman sp
substrates P-AAO-Au, W-AAO1-Au, and W-AAO2-Au. (b) Comparison of the
spectra (black) of benzene thiol collected at 785-nm incident. (c) Zoomed-
1,000 cm−1, with the 998 cm−1 used for calculation of the SERS enhanceme
measurement is probing is denoted in the figure. (d) Spatial mapping of th
area larger than 20 μm× 20 μm. The background is the optical reflection im
with a × 50 objective.
and were subsequently rinsed with ethanol and dried in
nitrogen [8,42]. All the Raman spectra were measured with
a confocal Raman spectroscopic system (model inVia,
Renishaw Hong Kong Ltd., Kowloon Bay, Hong Kong,
China). The spectrograph uses 1,200 g mm−1 gratings, a
785-nm laser and a scan type of SynchroScan. The incident
laser power was set to be 0.147 mW for all SERS
substrates. All the SERS spectra were collected using × 50,
NA = 0.5, long working distance objective and the laser
spot size is about 2 μm. SERS spectra were recorded with
an accumulation time of 10 s. After the SAM of benzene
thiol was formed on the substrate surface, a single scan
was performed. To get an accurate approximation of the
enhancement factors, we measured the neat Raman
spectrum of benzene thiol. For the measurement of the
neat Raman spectrum of benzene thiol, the power of the
785-nm laser was 1.031 mW, the accumulation time was
10 s, the spot size was 20 μm, and the depth of focus was
18 μm.
Figure 2a shows the Raman spectra of the benzene

thiol SAM on the P-AAO-Au (black), W-AAO1-Au
(green), and W-AAO2-Au (red) with all having been
normalized to account for the accumulation time and
laser power. To characterize the SERS performance of
ectra, and spatial mapping. (a) Comparison of the SERS of
SERS of substrates W-AAO2-Au (red), Klarite® (blue), and neat Raman
in region of the spectra showing the three primary modes located near
nt factor. The number of molecules of benzene thiol that each
e SERS intensity at 998 cm−1 of SERS substrate W-AAO2-Au over an
age of substrate W-AAO2-Au photographed through a microscope



Table 1 SERS performance parameters of SERS substrates

Sample Peak intensity
(counts/mW/s)

Number of
molecules

Average
EF

RSD (%)

P-AAO-Au 351.62 1.58 × 108 1.65 × 105 8.02

W-AAO1-Au 997.92 2.88 × 107 2.56 × 106 8.25

W-AAO2-Au 1295.04 1.62 × 107 5.93 × 106 6.43

Klarite® 772.58 1.10 × 107 5.21 × 106 7.12

The average peak intensity at 998 cm−1, the calculated number of molecules,
the average EFs and the RSD for P-AAO-Au, W-AAO1-Au, W-AAO2-Au, and
Klarite® SERS substrates.
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our substrates, commercial Klarite® substrates were used
as reference samples which consists of gold-coated
textured silicon (regular arrays of inverted pyramids of
1.5-μm wide and 0.7-μm deep) mounted on a glass micro-
scope slide. Figure 2b shows the normalized Raman spec-
tra of the benzene thiol SAM on the W-AAO2-Au (red),
on the Klarite® substrate (blue), and neat thiophenol
(black).

The calculation of EF
The average EFs were calculated from the following
equation [8,42]:

EF ¼ ISERS=IRamanð Þ � NRaman=NSERSð Þ
where ISERS and IRaman are the normalized Raman inten-
sity of SERS spectra and neat Raman spectrum of ben-
zene thiol, respectively. NSERS and NRaman represent the
numbers of molecules contributing to SERS signals and
neat Raman signals of benzene thiol, respectively. ISERS
and IRaman can be measured directly from the Raman
spectra. NRaman is defined as follows [42]:

NRaman ¼ ρ� V � NA

MW

where ρ = 1.073 g mL−1 and MW = 110.18 g mol−1 are
the density and molecular weight of benzene thiol, re-
spectively, and V is the collection volume of the liquid
sample monitor. NA is Avogadro's number. NSERS is de-
fined as follows [42]:

NSERS ¼ ρsurf � NA � Ssurf

where ρsurf is the surface coverage of benzene thiol which
has been reported as approximately 0.544 nmol cm−2

[8,42], and Ssurf is the surface area irradiated by exciting
laser. For a clear comparison, NSERS and NRaman were
quoted within Figure 2.
As shown in Figure 2, the average EFs based on the

neat benzene thiol are dependent on the choice of
Raman mode strongly. However, the relative Raman
enhancement between our SERS substrates (including
Klarite® substrate) was found to be relatively independ-
ent on the choice of Raman mode used for comparison.
For comparison, the three Raman modes associated with
vibrations about the aromatic ring are presented in
Figure 2c. So, to get an accurate and comparable estima-
tion of the average enhancement factor, Raman mode
used for the calculation of the average EF must be se-
lected carefully. Here, the intensities of the peak found
at 998 cm−1, carbon-hydrogen wagging mode which is
the furthest mode removed from the gold surface were
used to compute the average EFs [8,42]. In addition, the
average EF of Klarite® substrate was calculated to be
5.2 × 106, which is reasonable because the enhancement
factor for the inverted pyramid structure of Klarite® sub-
strates relative to a non-enhancing surface is rated to a
lower bound of approximately 106 [42].

Results and discussion
The average peak intensity at 998 cm−1, the number of
molecules contributing to the Raman signal, the calcu-
lated average EFs, and the relative standard deviation
(RSD) for all SERS substrates are presented in Table 1.
For each substrate, more than 80 spectra were collected
at various positions to ensure that a reproducible SERS
response was attained. Spatial mapping with an area
larger than 20 μm× 20 μm of the SERS intensity of
W-AAO2-Au was shown in Figure 2d as an example.
As shown in Figure 2a,b,c and Table 1, an obvious

enhancement of Raman signal of the nanowire network
AAO SERS substrates (W-AAO1-Au and W-AAO2-Au)
is found, compared to that of porous AAO SERS sub-
strate (P-AAO-Au). The Raman signal of W-AAO2-Au
is the strongest in all of the SERS substrates (including
the Klarite® substrate). Table 1 also shows a tremendous
increase of average EF of the nanowire network AAO
SERS substrate comparing with porous AAO SERS sub-
strate. The average EFs of W-AAO1-Au and W-AAO2-
Au are 2.56 × 106 and 5.93 × 106, about 14 and 35 times
larger than that of P-AAO-Au (1.56 × 105), respectively.
Moreover, the average EF of our best SERS substrate,
W-AAO2-Au, is larger than that of commercial Klarite®
substrate by about 14%. The enormous average EFs of
the nanowire network AAOs SERS substrates suggest
that a gigantic electromagnetic enhancement occurs in the
dense ‘hot junctions’ between the nanowires which exist
in W-AAO1-Au and W-AAO2-Au. Additionally, the
higher density of hot junctions that exist in W-AAO2-Au
is the reason the peak intensity and the average EF of
W-AAO2-Au are larger than that of W-AAO1-Au.
The spatial mapping with an area larger than 20 μm×

20 μm of the SERS intensity of W-AAO2-Au as shown
in Figure 2d and the RSDs that are shown in Table 1
point out that the nanowire structure AAOs, especially
W-AAO2-Au, are very uniform. Comparing with the
RSD of P-AAO-Au, the RSD of W-AAO1-Au is larger,
which is caused by the non-uniform leaf-like nanowire
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cluster structure on the surface of W-AAO1-Au, and
the RSD of W-AAO2-Au is smallest, which can be at-
tributed to the uniform random nanowire network
structure formed on the surface of W-AAO2-Au. The
reproducibility of our best SERS substrate, W-AAO2-
Au, is even better than that of commercial Klarite® sub-
strate. The RSDs of W-AAO2-Au in the SERS intensities
were limited to only approximately 7% within a given
substrate (that of Klarite® substrate is 7.12%), and the
maximum deviation in the SERS intensities was limited
to approximately 13%. The SERS response at a given
point on the substrate was found to be highly reprodu-
cible, with variations in the detected response being
limited to about 5%.

Conclusions
In conclusion, we provide a simple, low-cost, and high
output method, based on the riper production process
of porous AAO, to fabricate large-area nanowire struc-
ture AAO which can be used as high-performance SERS
substrate. The measured Raman spectra and the calcu-
lated average EFs show that compared with the porous
AAO and commercial Klarite® substrates, the nanowire
structure AAO SERS substrates are sensitive and uni-
form in large area. The average EF of our sensitive SERS
substrate can reach 5.93 × 106, which indicates the exist-
ence of enormous electromagnetic enhancement in the
nanowire network AAO substrate. Repeated measure-
ments and spatial mapping show an excellent uniformity
of the nanowire network AAO substrate. The RSDs in
the SERS intensities of W-AAO2-Au are limited to ap-
proximately 7%. For these superiorities, we believe that
our nanowire structure AAO SERS substrates are suit-
able choice for chemical/biological sensing applications.
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