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Insulin stimulates SGLT2-mediated tubular
glucose absorption via oxidative stress generation
Nobutaka Nakamura, Takanori Matsui, Yuji Ishibashi and Sho-ichi Yamagishi*
Abstract

Background: Ninety percent of glucose filtered by the glomerulus is reabsorbed by a sodium-glucose cotransporter
2 (SGLT2), which is expressed mainly on the apical membrane of renal proximal tubules. Since SGLT-2-mediated
glucose reabsorption is enhanced under diabetic conditions, selective inhibition of SGLT2 has been proposed as
a potential therapeutic target for the treatment of patients with diabetes. However, it remains unclear which
diabetes-associated factors are involved in overexpression of SGLT2.

Methods: Therefore, in this study, we examined whether insulin, high glucose, advanced glycation end products
(AGEs), or H2O2 stimulated SGLT2 expression in human cultured proximal tubular cells, and then investigated the
underlying molecular mechanisms.

Results: High glucose or AGEs did not affect SGLT2 expression in tubular cells. Insulin significantly increased tubular
SGLT2 level in a dose-dependent manner, whereas bell-shaped dose-response curves were observed for H2O2-treated
cells. An anti-oxidant, N-acetylcysteine completely blocked insulin-induced up-regulation of SGLT2 as well as increase in
glucose absorption by tubular cells. Furthermore, insulin dose-dependently increased reactive oxygen species
generation in tubular cells.

Conclusions: Our present study demonstrated that insulin could stimulate SGLT-2-mediated glucose entry into
cultured proximal tubular cells via oxidative stress generation. Suppression of the insulin-induced overexpression
of SGLT2 in tubular cells might be a novel therapeutic strategy for the treatment of diabetic nephropathy.
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Introduction
Diabetic nephropathy is a leading cause of end-stage
renal disease, which could account for disabilities and
high mortality rates in patients with diabetes [1, 2]. Dia-
betic nephropathy is characterized by functional and
structural changes in the glomerulus such as glomerular
hyperfiltration, thickening of glomerular basement mem-
brane, and an expansion of extracellular matrix in the
mesangial areas, which could ultimately progress glom-
erular sclerosis associated with an increased urinary ex-
cretion rate of albumin and renal dysfunction [2, 3]. Indeed,
characteristic histological changes of diabetic nephropathy
are diffuse and nodular glomerulosclerosis [2, 3]. However,
it is supposed that changes within the tubulointerstitium
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are more important than glomerulopathy in terms of renal
dysfunction in diabetic nephropathy [4, 5].
Ninety percent of glucose filtered by the glomerulus is

reabsorbed by a low-affinity/high capacity sodium-glucose
cotransporter 2 (SGLT2), which is expressed mainly on S1
and S2 segment of renal proximal tubules [6–8]. Since
blockade of SGLT2 promotes urinary glucose excretion
and resultantly improves hyperglycemia in an insulin-
independent manner, SGLT2 inhibitors are now one of the
widely used agents for the treatment of diabetes [9–11].
Furthermore, we have previously shown that increased
glucose uptake into cultured renal proximal tubular cells
via SGLT2 stimulates oxidative stress generation and re-
sultantly potentiates the pro-apoptotic effects of advanced
glycation end products (AGEs), senescent macroprotein
derivatives formed acceleratedly under diabetes, on tubu-
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lar cells [12, 13]. Therefore, blockade of SGLT2 could also
be a therapeutic target for preventing tubular apoptosis
and atrophy in diabetic nephropathy. SGLT2 levels in
tubular cells harvested from the urine of diabetic subjects
are increased compared with non-diabetic subjects [14].
However, which diabetes-associated factors are involved in
SGLT2 overexpression in diabetic kidney remains unclear.
Therefore, in this study, we examined whether insulin,
high glucose, AGEs, or H2O2 stimulated SGLT2 expres-
sion in human cultured proximal tubular cells, and then
investigated the underlying molecular mechanisms.

Materials and methods
Materials
Insulin, bovine serum albumin (BSA) (essentially fatty
acid free and essentially globulin free, lyophilized pow-
der), N-acetylcysteine (NAC), and poly-L-lysine were
purchased from Sigma (St. Louis, MO, USA). D-Glucose
and H2O2 from Wako Pure Chemical Industries Ltd.
(Osaka, Japan). D-glyceraldehyde from Nakalai Tesque
(Kyoto, Japan). Antibodies (Abs) directed against human
SGLT2 and β-actin from Santa Cruz Biotechnology Inc.
(Santa Cruz, CA, USA).

Cells
Proximal tubular epithelial cells from human kidney
were maintained in complete medium (basal medium
supplemented with 5 % fetal bovine serum, 0.5 μg/ml
hydrocortisone, 10 ng/ml human epidermal growth factor,
0.5 μg/ml epinephrine, 6.5 ng/ml triiodo-L-thyronine,
10 μg/ml transferrin, 5 μg/ml insulin, and GA-1000) ac-
cording to the supplier’s instructions (Lonza Walkersville,
Inc. Walkersville, MD, USA) [15]. Cells at 3-5 passages
were used for the experiments. Insulin, H2O2, or other
treatments were carried out in a serum-free basal medium
containing 10 μg/ml transferrin and GA-1000.

Preparation of AGEs-BSA
AGEs-BSA was prepared as described previously [16]. In
brief, BSA (25 mg/ml) was incubated under sterile con-
ditions with 0.1 M D-glyceraldehyde in 0.2 M NaPO4

buffer (pH 7.4) for 7 days. Then unincorporated sugars
were removed by PD-10 column chromatography and
dialysis against phosphate-buffered saline. Control non-
glycated BSA was incubated in the same conditions ex-
cept for the absence of reducing sugars.

Western blot analysis
Tubular cells were treated with or without the indicated
concentrations of insulin and H2O2, 11, 22 or 33 mM
glucose, 100 μg/ml AGEs-BSA or non-glycated BSA in
the presence or absence of 1 mM NAC. After 24 h, pro-
teins were extracted from tubular cells with lysis buffer,
and then separated by SDS-PAGE and transferred to
nitrocellulose membranes as described previously [13].
Membranes were probed with Abs against SGLT2 or β-
actin, and then immune complexes were visualized with an
enhanced chemiluminescence detection system (Amer-
sham Bioscience, Buckinghamshire, United Kingdom).
Data were normalized by the intensity of β-actin-derived
signals and related to the value of non-treated control cells.

Assay for sodium-dependent glucose uptake
Tubular cells were treated with or without 50 ng/ml in-
sulin in the presence or absence of 1 mM NAC for 24 h.
Tubular cells were incubated with complete medium con-
taining 100 μM 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-
yl)amino]-2-deoxy-D-glucose (2-NBDG, Peptide Institute
Inc., Osaka, Japan), fluorescent derivative of glucose for
15 min. Then culture medium was removed and replaced
with Hanks’ balanced salt solution, and fluorescence in-
tensity in the cells was analyzed in an ARVO fluorescent
plate reader (PerkinElmer, Inc., Winter Street Waltham,
MA, USA) as described previously [13].

Measurement of reactive oxygen species (ROS) generation
Intracellular formation of ROS was detected using a
fluorescent probe carboxy-H2DFFDA (Life Technologies
Japan, Tokyo, Japan) as described previously [17]. In
brief, 96-well plates (FALCON, New York, NY, USA)
were coated with 0.01 % poly-L-lysin for 30 min at room
temperature. Then tubular cells were seeded into the
well, and incubated with 0.1 % dimethyl sulfoxide
(DMSO) in the presence or absence of 10 μM carboxy-
H2DFFDA for 1 h. Then the cells were washed with
phosphate-buffered saline, and treated with or without
the indicated concentrations of insulin. After 24 min,
intracellular ROS generation was measured with an
ARVO X3 fluorescent plate reader (PerkinElmer Japan,
Yokohama, Japan). ROS production was calculated by
subtracting the fluorescence for cells pre-incubated with
DMSO only from that with carboxy-H2DFFDA. Under
cell-free conditions, 10 μM carboxy-H2DFFDA was also
incubated with the indicated concentrations of H2O2 for
24 min, and then the fluorescence was measured.

Statistical analysis
All values are presented as mean ± standard deviation.
One-way analysis of variance followed Tukey’s test or
student’s t-test was performed for statistical comparisons;
p-values of less than 0.05 were considered significant.

Results
Effects of insulin, high glucose, AGEs, or H2O2 on SGLT2
expression
We first examined whether insulin, high glucose, AGEs,
or H2O2 stimulated SGLT2 expression in cultured prox-
imal tubular cells. High glucose up to 33 mM or 100 μg/ml
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AGEs, comparable levels with plasma concentrations
under diabetic situations [18], did not affect SGLT2 expres-
sion in tubular cells (data not shown). However, as shown
in Figs. 1a and b, insulin significantly increased tubular
SGLT2 expression level in a dose-dependent manner,
whereas bell-shaped dose-response curves were observed
for H2O2-treated cells. Since maximum response was ob-
tained in 50 ng/ml insulin-treated cells (Fig. 1a), we chose
the condition of 50 ng/ml insulin for the following
experiments.
Fig. 1 Effects of insulin (a) and H2O2 (b) on SGLT2 expression in
tubular cells. Tubular cells were treated with or without the indicated
concentrations of insulin and H2O2. After 24 h, proteins were extracted
from tubular cells with lysis buffer, and then separated by SDS-PAGE
and transferred to nitrocellulose membranes. Membranes were probed
with Abs against SGLT2 or β-actin, and then immune complexes were
visualized with an enhanced chemiluminescence detection system.
Each upper panel shows the representative bands of western blots.
Each lower panel shows the quantitative data. Data were normalized
by the intensity of β-actin-derived signals and related to the value of
non-treated control cells. N = 3. *, p < 0.05 compared with the values
of non-treated cells
Effects of NAC on insulin-induced SGLT2 expression and
glucose uptake by tubular cells
We next studied the effects of an anti-oxidant NAC on
insulin-induced SGLT2 expression and glucose uptake
by tubular cells. As shown in Fig. 2a, 1 mM NAC com-
pletely blocked the insulin-induced up-regulation of
SGLT2 level in tubular cells. Furthermore, 50 ng/ml in-
sulin significantly increased glucose entry into tubular
cells, which was also completely prevented by the treat-
ment with 1 mM NAC (Fig. 2b).

Effects of insulin on ROS generation in tubular cells
We investigated the effects of insulin on ROS generation
in tubular cells. As shown in Fig. 3, insulin dose-
Fig. 2 Effects of NAC on insulin-induced SGLT2 expression (a) and
glucose uptake (b) by tubular cells. Tubular cells were treated with or
without 50 ng/ml insulin in the presence or absence of 1 mM NAC for
24 h. a SGLT2 protein level was analyzed with western blot analysis.
Upper panel shows the representative bands. Lower panel shows the
quantitative data. N = 3. b Tubular cells were incubated with complete
medium containing 100 μM 2-NBDG for 15 min. Then fluorescence
intensity in the cells was analyzed. N = 6. Data of two independent
experiments were combined. # and ##, p < 0.05 and p < 0.01, respectively
compared with the values of 50 ng/ml insulin-treated cells



Fig. 3 Effects of insulin on ROS generation in tubular cells. Tubular
cells were incubated with 0.1 % DMSO in the presence or absence
of 10 μM carboxy-H2DFFDA for 1 h. Then the cells were treated with
or without the indicated concentrations of insulin. After 24 min, ROS
generation was measured. Under cell-free conditions, 10 μM carboxy-
H2DFFDA was incubated with the indicated concentrations of H2O2

for 24 min, and then the fluorescence was also measured. N = 6.
*, p < 0.05 compared with the values of non-treated cells. ##, p < 0.01
compared with the values under cell-free conditions without H2O2
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dependently increased ROS generation in tubular cells.
ROS production in tubular cells elicited by 50 ng/ml in-
sulin was comparable with that of 300 μM H2O2.

Discussion
In this study, we found that (1) 50 ng/ml insulin or
300 μM H2O2 significantly increased SGLT2 expression
level in cultured proximal tubular cells, (2) an anti-
oxidant NAC completely inhibited up-regulation of
SGLT2 level in, and subsequently blocked the increase
of glucose uptake by, 50 ng/ml insulin or exposed tubu-
lar cells, (3) 50 ng/ml insulin-evoked ROS generation in
tubular cells was comparable with that of 300 μM H2O2,
and (4) magnitude of increase in SGLT2 protein induced
by 50 ng/ml insulin was similar to that by 300 μM
H2O2. These observations suggest that insulin might
stimulate SGLT-2-mediated glucose entry into cultured
proximal tubular cells via oxidative stress generation.
There is some controversy about the expression level

of SGLT2 in the diabetic kidney of type 1 diabetic ani-
mals; SGLT2 were decreased, unchanged or increased in
streptozotocin-induced diabetic rats [19–22]. However,
in contrast to type 1 diabetic animals, increased SGLT2
expression was consistently observed in the kidney of
type 2 diabetic animals [23–25] and in tubular cells har-
vested from the urine of type 2 diabetic subjects [17],
the latter of which was correlated with glucose reabsorp-
tion capacity in these patients. Therefore, insulin resist-
ance and resultant hyperinsulinemia may contribute to
SGLT2 overexpression in the kidney of type 2 diabetes.
The ability of insulin to stimulate sodium reabsorption
in proximal tubules is preserved in insulin-resistant sub-
jects despite resistance to insulin metabolic effects [26].
So, the selective insulin resistance might be involved in
SGLT2 induction under hyperinsulinemic conditions.
In the present study, although high glucose or AGEs

have been reported to stimulate ROS generation in tubu-
lar cells [12, 13, 17], neither of them increased tubular
SGLT2 expression (data not shown). High glucose or
AGEs has been reported to induce apoptotic cell death
of cultured proximal tubular cells [12, 13, 17], whereas
insulin has anti-apoptotic properties in tubular cells and
stimulates proliferation of this cell type [27, 28]. Further-
more, while high level of ROS is toxic to various types of
cells, including proximal tubular cells [29–31], relatively
low level of intracellular ROS could function as a second
messenger in signaling cascades involved in gene expres-
sion [30–32]. Indeed, insulin-induced ROS generation
has been coupled with its action in insulin-sensitive cells
[30]. Therefore, the action of ROS on SGLT2 expression
in tubular cells might also depend on its concentration.
ROS generation evoked by high glucose or AGEs may be
higher than 300 μM H2O2 and toxic to cells, which
might partly explain the reason why these two agents
cannot induce tubular SGLT2 expression. In this study,
(1) SGLT2 level induced by 500 μM H2O2 was less than
that by 300 μM H2O2 (Fig. 1b), and (2) total protein
amounts obtained from 500 μM H2O2-exposed tubular
cells were decreased to about 70 % of those of non-
treated controls or 300 μM H2O2-exposed cells, thus
supporting the concept that toxic level of ROS could
affect SGLT2 expression in tubular cells.
We have previously shown that SGLT2-mediated glu-

cose overload in tubular cells could augment the cells’
susceptibility toward pro-apoptotic effects of AGEs via
overexpression of receptor for AGEs (RAGE) [13]. Fur-
thermore, we, along with others, have recently found that
empagliflozin, an inhibitor of SGLT2, suppresses oxidative,
inflammatory and fibrotic reactions in the kidney and
aorta of diabetic rats partly via suppression of the AGEs-
RAGE axis [21, 33]. Apoptosis of proximal tubular cells
plays a central role in tubular atrophy and atubular glom-
eruli of diabetic nephropathy [34, 35], which are most
closely correlated with declining creatinine clearance in
patients with diabetes [4, 5]. Given the pathological role of
the AGEs-RAGE axis in tubular cell apoptosis [12, 13, 17],
blockade of insulin-induced SGLT2 overexpression may
not just improve hyperglycemia by promoting urinary glu-
cose excretion, but could also directly inhibit glucotoxicity
to proximal tubular cells, thus protecting against tubuloin-
terstitial damage in diabetic nephropathy.

Limitations
We did experiments of Figs. 1a, b and 2a separately. So
the 50 ng/ml column in Figs. 1a and 2a was not the
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same data. Since exposure time of an enhanced chemilu-
minescence detection system in each experiment dif-
fered, we were not able to show the data with the same
units. This was a reason why we showed the data of
non-treated cells in each experiment as a control. The
physiological concentration of insulin in humans is 0.5-
5 ng/ml. Oral administration of NAC for the treatment
of acetaminophen poisoning obtained a plasma level of
NAC at 10 μM [36]. Therefore, the concentration of in-
sulin (50 ng/ml) and NAC (1 mM) having biological ef-
fects on tubular cells used in the present experiments
may be in the superphysiologic range. This study was
only analyzed in cell culture, not investigated about ani-
mal models and human. Therefore, further study is
needed to clarify whether hyperinsulinemia may contrib-
ute to SGLT2 overexpression in animal model or human
diabetic kidneys.

Conclusions
Our present study demonstrated that insulin could
stimulate SGLT-2-mediated glucose entry into cultured
proximal tubular cells via oxidative stress generation.
Suppression of the insulin-induced overexpression of
SGLT2 in tubular cells might be a novel therapeutic
strategy for the treatment of diabetic nephropathy.
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