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Long non-coding RNAs (lncRNAs), which represent a new frontier in molecular biology, play important roles in regulating 
gene expression at epigenetic, transcriptional and post-transcriptional levels. More and more lncRNAs have been found to play 
important roles in normal cell physiological activities, and participate in the development of varieties of tumors and other dis-
eases. Previously, we have only been able to determine the function of lncRNAs through multiple mechanisms, including ge-
netic imprinting, chromatin remodeling, splicing regulation, mRNA decay, and translational regulation. Application of techno-
logical advances to research into the function of lncRNAs is extremely important. The major tools for exploring lncRNAs in-
clude microarrays, RNA sequencing (RNA-seq), Northern blotting, real-time quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), RNA interference (RNAi), RNA-binding protein im-
munoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), crosslinking-immunopurification (CLIP), and bi-
oinformatic prediction. In this review, we highlight the functions of lncRNAs, and advanced methods to research 
lncRNA-protein interactions. 
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Long non-coding RNAs (lncRNAs), which are widely dis-
tributed in mammals, are a class of RNA molecules with 
more than 200 bases that function as RNAs with little or no 
protein-coding capacity [1]. Large-scale analyses of the 
mammalian transcriptome have shown that the number and 
types of lncRNAs far exceed those of protein-coding 
mRNAs [2–5]. However, a small proportion of lncRNAs 
have been reported to have biological functions. Increasing 
evidence indicates that lncRNAs play important roles in a 
variety of biological processes through complicated mecha-
nisms [6–10]. Aberrant expression of lncRNAs has been 
shown to be associated with several types of cancer, Alz-
heimer’s disease, Huntington’s disease and cardiovascular 

diseases [11–22]. Therefore, understanding the biological 
roles of lncRNAs will advance our understanding of this 
frontier of molecular biology. 

Despite their wide distribution within mammals, the 
functions of lncRNAs remain poorly understood. Estab-
lishment of research technologies to decode the functions of 
lncRNAs is an area of focus in genomics research. Here, we 
will highlight methods to research interactions between 
lncRNAs and protein. 

1  Characteristics of lncRNAs 

As with the vast majority of gene transcripts, lncRNAs are 
mRNA-like transcripts ranging from 200 nucleotides (nt) 
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to >100 kilobases (kb), with little or no protein-coding ca-
pacity [1]. These lncRNAs may be located within the cellu-
lar nucleus or cytoplasm, may or may not be polyadenylated, 
and are transcribed by RNA polymerase from either strand 
within a coding locus [3,5]. The biogenesis process of many 
currently identified lncRNAs is similar to mRNAs [23]. To 
facilitate research and academic exchange, many relevant 
databases providing expression and other data concerning 
lncRNAs have been built. The data collected in these data-
bases come from GenBank and published papers [24–37] 
(Table 1). 

Unlike protein-coding genes, which arise by a process of 
wholesale or partial duplication and subsequent sequence 
divergence, most lncRNAs exhibit a low degree of evolu-
tionary constraint and therefore evolve very differently [38]. 
There are various sources for the emergence of lncRNAs 
[38]: (i) frame disruption of protein-coding genes can form 
lncRNAs that incorporate some previous coding sequences. 
For example, it has been identified that the exons and pro-
moter of the Xist gene derive from the protein-coding gene 
Lnx3 [39]; (ii) chromosomal rearrangements could cause 
lncRNAs to emerge from previously untranscribed se-
quences; (iii) retro-transposition of ncRNA in the duplica-
tion process can generate a reverse transcription gene or a 
retropseudogene; (iv) local tandem repeat sequences may 
also generate a new lncRNA. This phenomenon is observed 
in the 5′ regions of Kcnq1ot1 and Xist transcripts; (v) inser-
tion of a transposable element can also generate lncRNAs, 
such as the transcripts of brain cytoplasmic RNA 1 (BC1) 
and brain cytoplasmic RNA 200-nucleotide (BC200). Ac-
cording to their positional relationship with protein-coding 
genes, lncRNAs can be divided into the following catego-
ries [40]: (i) sense; (ii) antisense: the lncRNA transcript 
overlaps the exons of another transcript; (iii) bidirectional: 
expression of lncRNAs is in the same direction as a neigh-
boring coding transcript in the same chain; (iv) intronic: 
lncRNAs derive wholly from introns of another transcript; 
(v) intergenic: lncRNAs lie within the interval between two 
genes. 

lncRNAs are widely distributed in different tissues, and 

some lncRNAs are found to be preferentially expressed in 
specific tissues [41]. The cellular localization of lncRNAs is 
also varied. lncRNAs can be observed in a full range of 
sub-cellular compartments, such as in the nucleus, cyto-
plasm, or at one or more foci of cells [42]. However, locali-
zation patterns of some lncRNAs are unusual or unique. For 
example, Gomafu is exclusively located in nuclear speckles 
[43]. The location of a lncRNA may imply its function. 

Previous studies on ribozymes have shown that particular 
structures within these RNAs are important for their func-
tions [44]. Similarly, distinct RNA structures are critical for 
the function of the steroid receptor RNA [45]. Therefore, 
prediction of stem-loop secondary structures is helpful for 
identifying functions of lncRNAs. Approaches that predict 
the structure of lncRNAs have yet to be developed [46]. A 
widely used computer program, Mfold, was established to 
predict RNA secondary structure [47,48]. Some newer pro-
grams, such as PPfold and CompaRNA, have been estab-
lished [49,50]. The complete repertoire of structured 
ncRNA elements remains to be determined. 

In summary, we conclude that the characteristics of 
lncRNAs consist of multiple types, modes of action and 
numbers. Although the characteristics of lncRNAs are com-
plicated, it has been shown that they play similar roles in 
regulating gene expression [51]. Recent studies have ex-
plored several functions and mechanistic roles of these 
lncRNAs. An emerging model is that that lncRNAs might 
regulate specificity through assembling distinct regulatory 
components, including diverse combinations of proteins, 
RNA, and DNA interactions [52]. 

2  Biological functions of lncRNAs 

lncRNAs, initially considered to be non-functional byprod-
ucts of RNA polymerase II transcripts, have been argued to 
be spurious transcriptional noise [53]. However, accumu-
lated evidence suggests that lncRNAs have a great diversity 
of important functions in cellular development and metabo-
lism, including genetic imprinting, genome rearrangement,  

Table 1  Publicly available lncRNA online databases 

Database Species Contain miRNA and snoRNA
 a)

 Website References 

lncRNAdb Multiple N http://www.lncrnadb.org/ [27] 
fRNA Multiple Y http://www.ncrna.org/ [26] 

Noncode Multiple Y http://www.noncode.org/ [29] 
Rnadb Multiple Y http://research.imb.uq.edu.au/rnadb/ [30,31] 

Non-coding Multiple Y http://www.man.poznan.pl/5SData/ncRNA/index.html [24] 

NRED 
Human 
Mouse 

N http://jsm-research.imb.uq.edu.au/nred/cgi-bin/ncrnadb.pl [25] 

Rfam Multiple Y http://rfam.sanger.ac.uk/ [32–34] 
ncFANs Human, mouse N http://www.noncode.org/ncFANs/ [28] 

lncRNADisease Human N http://cmbi.bjmu.edu.cn/lncrnadisease [35] 
LNCipedia Human N http://www.lncipedia.org [37] 
ChIPBase Multiple Y http://deepbase.sysu.edu.cn/chipbase/ [36] 

a) Y, this database contains miRNA and snoRNA besides lncRNA. N, this database does not contain miRNA and snoRNA. 
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chromatin modification, regulation of the cell cycle, tran-
scription, splicing, mRNA decay, and translation [8,9,54–67] 
(Table 2). Thousands of lncRNAs have been found to be 
involved in mammalian gene regulation [10], using similar 
mechanisms. A wealth of information about lncRNAs has 
been discovered as time progresses, especially in recent 
years [8,10,15,63,6884]. Various mechanisms of action of 
lncRNAs have been discovered, increasing our understanding 
of lncRNAs (Figure 1). Generally, lncRNAs regulate gene 
expression at three levels: epigenetics, transcriptional regula-
tion and post-transcriptional regulation [40]. 

2.1  Imprinted lncRNA genes 

Intriguingly, a high proportion of ncRNA genes are located 
in imprinted regions. Over the past 10 years, a number of 
lncRNAs, such as H19, Xist and Meg3, were found to be 
located in imprinted genomic loci [18,85,86]. Aberrant gene 
expression resulting from loss of imprinting is a key feature 
of cancer [87,88].  

H19 is a 2.3 kb lncRNA that is exclusively maternally 
expressed [89]. H19 and its reciprocally imprinted neighbor 
insulin-like growth factor 2 (IGF2) are both located at 
11p15.5, and the distance between these two genes is only 

about 90 kb [68,90]. H19 is highly expressed during verte-
brate embryo development, but is rapidly down-regulated in 
most tissues shortly after birth [90]. DNA methylation is 
involved in the establishment and maintenance of genomic 
imprinting, which occurs in the imprinting control region 
(ICR). The ICR exists between H19 and IGF2. As the ICR 
on the maternal allele is not methylated, it can be bound by 
the transcription factor CTCF (CCCTC-binding factor), 
resulting in expression of H19 and silencing of IGF2. The 
opposite expression of these two genes is seen on the pater-
nal allele, because the ICR is methylated [56,91,92]. 

In female cells, the 17 kb lncRNA XIST plays an im-
portant role in X-chromosome inactivation [69]. The 
X-inactivation center (Xic) controls the silencing of one of 
the two X chromosomes in female cells, thereby maintain-
ing dosage compensation [57]. A 1.6 kb lncRNA called 
Repeat A (Rep A) is encoded by the 5′ end of the XIST gene. 
Rep A can directly interact with the Polycomb repressive 
complex 2 (PRC2), move to Xic, and activate XIST expres-
sion [93,94]. Transcription of XIST physically coating one 
X chromosome, accompanied by a large number of methyl-
ated histones, may eventually lead to X-chromosome inac-
tivation [57]. Additionally, Xist is regulated by Tsix, Xist’s 
antisense counterpart that antagonizes Xist [58,70]. 

Table 2  Partial biological function of lncRNAs 

lncRNA Size (kb) Biological function 

H19 2.3 Genomic imprinting 

RepA 1.6 X chromosome inactivation 

HOTAIR 2.2 Recruitment and binding of chromatin remodeling complexes to HOXD 

lincRNA-p21 3.1 Represses many genes transcriptionally regulated by P53 

Gas5 0.6 Bait of glucocorticoid receptor 

PANDA 1.5 Limits apoptosis through binding to transcription factor NF-YA 

1/2-sbsRNA 0.532 Mediates decay of mRNA 

BACE1-AS 2.0 Increases stability of mRNA 

MALTA1 6.9 Controls cell cycle progression by regulating B-MYB 

LALR1 1.1 Accelerates hepatocyte proliferation by activating Wnt/β-Catenin signaling 

TINCR 3.7 Controls human epidermal differentiation by interacting with a range of differentiation mRNAs 

slincRAD 136 Causes lipid accumulation in abiogenesis 

 

 

Figure 1  Timeline of important lncRNA discoveries (modified from reference [85]). 
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2.2  Chromatin modification by lncRNAs  

By formatting silencing complexes that can result in chro-
matin remodeling, lncRNAs can precisely control transcrip-
tion [95]. Recruitment of chromatin remodeling complexes 
is the main mechanism of gene regulation mediated by 
lncRNAs. A variety of molecular investigations authenticate 
the association between lncRNAs, such as HOTAIR, 
Kcnq1ot1, and Air, and chromatin remodeling complexes, 
such as PRC1 and PRC2, which mediate ubiquitination and 
histone methylation, respectively [54,96–101]. 

At the Kcnq1 locus, the lncRNA Kcnq1ot1 interacts with 
members of the PRC1 and PRC2 complexes [96,99,102]. At 
the Igf2r locus, Air associates with the histone methyltrans-
ferase G9a [99]. At the HOXD locus, HOTAIR recruits 
PRC2 to induce silencing of target genes [97]. Further stud-
ies imply that association with lncRNAs is essential for tar-
get specificity of these chromatin remodeling complexes 
[93,97,103,104]. 

HOTAIR is a 2.2 kb lncRNA located in the HOXC locus 
on chromosome 12q13.13 [97]. This lncRNA has been 
demonstrated to interact with PRC2 and LSD1/CoREST/    
REST complexes [54]. As a molecular scaffold, the 5′ re-
gion of HOTAIR binds to PRC2, which is responsible for 
histone methylation, and its 3′ region binds to LSD1, a his-
tone demethylase [54,105]. HOTAIR functions in the re-
cruitment and binding of chromatin remodeling complexes to 
the HOXD locus on chromosome 2, resulting in re-targeting 
of PRC2. The consequence is the transcriptional silencing 
of a roughly 40 kb region of HOXD [97]. Enforced expres-
sion of HOTAIR has been shown to induce re-targeting of 
PRC2, leading to altered gene expression and chromatin 
state, and to promote cancer metastasis [14]. 

2.3  lncRNAs regulate cell cycle and apoptosis 

It has been shown that lncRNAs also have a role in cell 
growth control, mainly through regulation of the cell cycle 
and apoptosis. Growth arrest-specific 5 (Gas5) non-coding 
RNA accumulates in growth-arrested cells [106] and sensi-
tizes mammalian cells to apoptosis by suppressing genes 
responsive to glucocorticoid [16,60]. Gas5 interacts with the 
DNA-binding domain (DBD) of the glucocorticoid receptor 
(GR) through a decoy “glucocorticoid response element” 
(GRE), and suppresses GR-induced transcriptional activity 
by competing with the GREs of target genes. 

Long intergenic non-coding RNA-p21 (lincRNA-p21), 
activated by p53, plays an important role in the p53 path-
way, triggering apoptosis. Transcriptional repression by 
lincRNA-p21 is mediated through binding to heterogenous 
nuclear ribonucleoprotein-K (hnRNP-K). This interaction is 
required for directing hnRNP-K to repressed genes [9]. 

PANDA lncRNA, located approximately 5 kb upstream 
of the CDKN1A transcriptional start site (TSS), is tran-
scribed antisense to CDKN1A and is involved in the 

DNA-damage response. After DNA damage, p53 activates 
transcription of CDKN1A as well as PANDA and lin-
cRNA-p21. Binding of PANDA to the transcriptional factor 
NF-YA blocks apoptosis. These three activated genes func-
tion synergistically to arrest cell cycle and survival [8]. 

2.4  lncRNAs regulate mRNA decay 

The abundance of mRNA has a direct relationship to the 
protein output, with the main factors affecting mRNA 
abundance being transcriptional intensity and degradation 
rate. The amount of mRNA transcription is mainly deter-
mined by transcriptional regulation and post-transcriptional 
processes, and mRNA is decayed through a variety of path-
ways. Staufen 1 (STAU1)-mediated mRNA decay (SMD) 
involves decay of active mRNAs. Base-pairing between Alu 
elements in the Half-STAU1-binding site RNA (1/2-     
sbsRNA), and Alu elements in the 3′UTR of the SMD target, 
can form STAU1-binding sites. This results in the activation 
of STAU1, and binding of STAU to mRNA. This finding 
uncovers a novel strategy that is used to recruit proteins to 
mRNA and mediate mRNA decay [55]. 

2.5  lncRNAs regulate protein translation 

Recent studies reveal that lncRNAs are also involved in 
protein translation. A lncRNA antisense to mouse ubiquitin 
carboxy-terminal hydrolase L1 (UCHL1) can specifically 
increase UCHL1 protein synthesis. Its activity depends on 
an embedded SINEB2 repeat [74]. BACE-AS is a natural 
antisense transcript of BACE1 (β-site APP cleaving enzyme 
1). Base-pairing between BACE-AS and BACE1 mRNA 
can enhance the stability of BACE1 mRNA, thereby in-
creasing the amount of the BACE1 protein, which is in-
volved in Alzheimer’s disease [63]. 

3  Research strategies of lncRNAs 

A variety of research methods to explore the function and 
molecular mechanisms of action of lncRNAs have gradually 
become areas of much interest. Currently, essential schemes 
for exploring the function of lncRNAs include (i) high-      
throughput analysis of lncRNA expression; (ii) verification 
of high-throughput data; (iii) research into the lncRNAs-      
protein interactions. 

3.1  High-throughput analysis of lncRNA expression 

Microarrays and RNA-seq are effective tools for high-    
throughput analysis of lncRNA expression [107,108]. Ørom 
and colleagues [7] have detected 3019 kinds of lncRNAs 
through microarrays for profiling lncRNAs in a variety of 
human cell lines. Ng et al. [109] have adopted a cus-
tom-designed microarray to identify expression profiles of 
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human embryonic stem cells (hESCs). They identified some 
hESC-specific lncRNAs involved in the maintenance of 
pluripotency. Moreover, microarrays have been used to 
identify the lncRNA expression profiles in breast cancer 
[110], pancreatic cancer [111], hepatocellular carcinoma 
(HCC) [112], and peripheral blood mononuclear cells [113]. 
RNA-seq is used to perform transcriptome analysis. The 
advantage of this method is low background signal and pos-
sible discovery of new transcripts [108,114,115]. With the 
aid of RNA-seq, Lin et al. [116] have found that some 
lncRNAs are involved in neuropsychiatric disorders. Huang 
et al. [117] have conducted RNA-seq to analyze transcrip-
tome complexity in HCC. Because of the difficulty of iden-
tifying lncRNAs from high-throughput RNA-sequencing 
data, Sun et al. [118] have implemented iSeeRNA, which is 
a support vector machine-based classifier for identification 
of lincRNA. 

3.2  Verification of high-throughput data 

Northern blots, qRT-PCR, FISH, and RNAi are used to ver-
ify the authenticity of high-throughput data. Furuno et al. 
[119] have conducted Northern blots and qRT-PCR to vali-
date the existence of eight novel lncRNAs. Similar to 
Northern blotting, the underlying principle of FISH is mo-
lecular hybridization [120]. Researchers have used this 
technology to detect and locate lncRNAs such as Xist, 
MALAT1, MEN /, and Kcnq1ot1 [62,121–123]. For ex-
ample, Chureau et al. [121] have analyzed the location of 
Xist in female ES cells. RNAi silencing of specific 
lncRNAs has been widely used in cell culture and living 
organisms [124]. HOTAIR is a molecular scaffold that has 
binding domains for PRC2 and LSD1 in the 5′ region and 3′ 
region, respectively. Tsai et al. [54] have found that RNAi 
of HOTAIR can abrogate this interaction, suggesting that 
HOTAIR is essential for bringing about this interaction. 
Depletion of gadd7 by shRNA can significantly delay and 
diminish endoplasmic reticulum stress induced by reactive 
oxygen species [125]. Chakraborty et al. [126] have report-
ed combined RNAi and localization analysis of lncRNAs 
(c-KLAN) for functionally dissecting lncRNAs. Using this 

technique, they have identified transcripts involved in regu-
lating the identity of mouse ES cells. The rate and stability 
of the base-pairing reaction is enforced by using locked 
nucleic acids (LNAs) formed of standard base pairs [127]. 
Sarma et al. [128] have also used LNAs to reveal the rela-
tive location of Xist. 

3.3  Research on lncRNA-protein interactions 

It is currently believed that lncRNAs conduct their regula-
tory functions in the form of RNA-protein complexes, such 
as chromatin-modifying complexes, transcriptional factors 
and RNP complexes. Therefore, techniques to study 
lncRNA-protein interactions can uncover the mechanisms 
of action of lncRNAs in biological processes. Proteins in-
teract with RNA through manners similar to protein-DNA 
interactions. The most common methods and the latest re-
ported methods for studying protein-RNA interactions are 
discussed below. We have summarized the characteristics of 
methods for identifying lncRNA-protein interactions in Ta-
ble 3. 

3.3.1  RNA-pulldown assay 
An RNA-pulldown assay, which used high affinity tags 
such as biotin, selectively extracts a protein-RNA complex 
from a sample in vitro. RNA probes can be biotinylated, 
incubated with cell lysate or recombinant protein, and then 
purified with streptavidin agarose or magnetic beads. The 
proteins are detected by Western blotting or mass spectrom-
etry.  

This is a preliminary in vitro method of stimulating in-
teraction between protein and RNA. Rinn et al. [9] have 
used this method to identify proteins that are possibly asso-
ciated with lincRNA-p21. 

3.3.2  RIP and RIP-chip/seq 
RNA immunoprecipitation (RIP) is a powerful technique 
that can be used to detect the interaction between individual 
proteins and specific ncRNA molecules in vivo [129]. Fol-
lowing immunoprecipitation of the protein of interest, rele-
vant RNAs can be isolated and quantitated by qRT-PCR.  

Table 3  Characteristics of methods for identifying lncRNA-protein interactionsa) 

Method RNA pulldown RIP and RIP-chip/seq ChIRP and CHART CLIP 

Mode One RNA to many proteins One protein to many RNA species One RNA to many proteins 
and DNAs 

One protein to many RNA 
species 

Characteristics A. Transcribed RNAs or 
synthetic RNAs in vitro for 
labeling.  
B. Capture RBPs with labeled 
RNA. 
C. Enrich endogenous, over- 
expressed, and in vitro trans-
lated protein. 

A. Detect interaction of individual 
protein with specific RNA or RNA 
species. 
B. High-throughput finding of 
RNA species with microarray and 
high throughput sequencing. 
C. Detect RNAs by qRT-PCR. 

A. Short complementary DNA 
oligonucleotide probes target 
RNA. 
B. High-throughput discovery 
of RNA-bound proteins and 
DNAs. 

A. Crosslinking RNA and 
protein by photoreaction or 
chemical reaction. 
B. Capture RNA-protein in-
teractions in vivo. 
C. High-throughput discovery 
of protein-bound RNAs. 

a) RIP, RNA-binding protein immunoprecipitation; ChIRP, chromatin isolation by RNA purification; CHART, capture hybridization analysis of RNA 
targets; CLIP, crosslinking-immunopurification. 
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The basic mechanisms of RIP are very similar to ChIP. 
Pandey et al. [96] have found that Kcnq1ot1 interacts with 
both H3K9 methyltransferase and the PRC2 complex by 
RIP. Rinn et al. [9] performed RIP with an antibody against 
hnRNP-K, and validated the interaction between endoge-
nous lincRNA-p21 and hnRNP-K in nuclear extracts. Na-
tive RIP previously identified Xist, Tsix, and RepA as 
PRC2-interacting ncRNAs [93]. RIP-Chip and RIP-seq in-
volve RIP coupled with microarray and high-throughput 
sequencing, respectively. These techniques have been used 
to find interactions between one specific protein and a pool 
of RNA species [130,131]. Chromatin-modifying complex-
es, especially Polycomb proteins, play important roles in 
cell biology and human disease. Many lncRNAs interact 
with chromatin-modifying complexes and regulate gene 
expression. Ahmad et al. have used RIP-Chip to reveal that 
many lincRNAs interact with chromatin-modifying com-
plexes [98]. Zhao et al. [131] developed the RIP-seq method 
and captured a genome-wide pool of >9000 RNAs interact-
ing with PRC2 in ES cells. 

3.3.3  ChIRP and CHART 
Chromatin isolation by RNA purification (ChIRP) allows 
high-throughput discovery of RNA-bound proteins and 
DNA [132]. The RNA of interest is hybridized to biotinyl-
ated complementary oligonucleotides, and isolated using 
streptavidin beads. Co-purified chromatin is eluted for pro-
tein or DNA. These are identified in downstream assays, 
such as deep sequencing, which is termed ChIRP-seq. Chu 
et al. [132] have found that ChIRP-seq of three lncRNAs, 
Drosophila roX2, human TERC and HOTAIR, reveal that 
RNA occupancy sites in the genome are numerous, se-
quence-specific and focal. roX2 occupancy is enriched over 
the X chromosome, and increases tendency toward the 3′ 
end of each gene. In addition, motif analyses of the se-
quencing data have revealed a significantly enriched DNA 
motif that is identical to the male-specific lethal (MSL) mo-
tif. TERC ChIRP-seq has shown significant enrichment of 
telomeric DNA and Wnt receptor signaling pathway genes. 
HOTAIR genome-wide occupancy sites are enriched for 
genic regions, notably regions of promoters and introns. 
Focal sites of HOTAIR occupancy suggest that HOTAIR 
may nucleate Polycomb domains [132]. Simon et al. [133] 
have developed a method termed capture hybridization 
analysis of RNA targets (CHART) to determine the ge-
nomic binding sites of a specific ncRNA. CHART is a hy-
bridization-based technique that is used to specifically en-
rich the protein and DNA targets of endogenous lncRNAs. 
This method is similar to ChIRP; however, the main differ-
ence lies in the design of probes to target lncRNA. They 
have been inspired by RNA FISH to design dozens of short 
complementary DNA oligonucleotide probes to tile the en-
tire length of the lncRNA [134,135]. These short probes are 
called C-oligos. Simon et al. have adapted an RNaseH map-
ping assay to probe sites on lncRNA that are available to 

hybridization [133,136138]. 

3.3.4  CLIP 
Interaction between individual RNA-binding proteins or 
large complexes and different types of RNA is critical in 
gene regulation. The Crosslinking-immunopurification (CLIP) 
strategy is a breakthrough in the detection of RNA–protein 
interactions in vivo [139–141]. CLIP has three variants: 
high-throughput sequencing of CLIP (HITS-CLIP) [142,143], 
photoactivatable ribonucleoside-enhanced CLIP (PAR-    
CLIP) [144], and individual nucleotide resolution CLIP 
(iCLIP) [145]. In the CLIP procedure, whole tissues or in-
dividual cells are irradiated with ultraviolet light (UV), 
which generates covalent bonds between the RNA and pro-
tein when RNA–protein complexes are in close contact. 
Following UV-crosslinking, RNA-binding proteins (RBPs) 
can be purified under stringent conditions. The first CLIP 
experiment demonstrated NOVA-dependent splicing regu-
lation [141]. HITS-CLIP has provided new insights into 
genome-wide NOVA binding sites in the brain [143]. Yeo 
and colleagues [142] have applied HITS-CLIP to study 
binding sites of FOX2 in hESCs, and found the most en-
riched hexamer was UGCAUG by motif analysis. Fink et al. 
[146] have performed a HITS-CLIP study of the yeast 
KHD1 protein, an RBP hypothesized to play a role in the 
development of diploid yeast. Application of CLIP has also 
uncovered ternary interactions among proteins, small RNAs 
and RNA. Ago HITS-CLIP analyses identified Ago-   
microRNA (miRNA) interactions, and revealed a footprint 
of Ago–mRNA binding sites. These two datasets were 
overlaid to decode which miRNAs bound to specific sites 
within mRNAs [147]. Another database, starBase (small 
non-coding RNAs target base), facilitates miRNA-target 
interaction maps from high-throughput data of CLIP-seq 
and degradome-seq [148]. Multiple RBPs, cooperatively 
modulating the stability, localization and modification of 
RNA, are critical parts of the cellular machinery that affect 
the regulative activity of these RNAs. CLIP-seq provides 
transcriptome-wide coverage for mapping RBP-binding 
sites. Khorshid et al. [149] have developed the CLIPZ data-
base, which includes binding site data for multiple RBPs. 

3.3.5  Bioinformatics 
Bioinformatic prediction of the functions of lncRNAs gives 
helpful information for further exploration. This method 
avoids blindness of functional research and reduces experi-
mental cost. Based on microarray expression profiles, Liao 
et al. [150] annotated the functions of about 340 lncRNAs. 
catRAPID (http://big.crg.cat/gene_function_and_evolution/ 
services/catrapid), an online algorithm, mainly predicts as-
sociations of proteins and RNA [151]. This algorithm eval-
uates the interaction tendency between proteins and RNA, 
based on the secondary structure, hydrogen bonding and 
intermolecular force. Recent advances have shown that tar-
get RNAs can be post-transcriptionally regulated by com-
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binatorial actions of RBPs and miRNAs. Anders et al. [152] 
have provided a database, doRiNA, that facilitates deci-
phering this post-transcription regulatory code. 

4  Perspectives 

Compared with protein-coding mRNA or small ncRNAs, 
studies into the functions of lncRNAs remain in infancy. (i) 
The definition of lncRNAs remains controversial. It is too 
arbitrary to define lncRNAs as a class of RNA molecule 
with more than 200 bases, because there are many ncRNAs 
with a length less than 200 bases that are neither small 
RNAs nor structural RNAs [1]. (ii) Elucidation of the bio-
logical functions of lncRNAs is difficult. lncRNAs are as-
sociated with gene regulation, and lncRNA deregulation has 
been shown to be involved in many diseases. Because of 
complications of the types and functions of lncRNAs, and 
poor conservation of lncRNAs between species, fully un-
derstanding the functions of lncRNAs remains difficult. (iii) 
Databases on lncRNAs are insufficient. (iv) Functional pre-
diction tools for lncRNAs are few. (v) Research fields re-
main to be expanded. (vi) New technology for studying 
lncRNAs is inadequate. (vii) The potential applications of 
lncRNAs in the medical field are not clear. 

With increasing attention on this field, the understanding 
of lncRNAs is gradually deepening. lncRNAs exert their 
biological functions on organisms through a variety of 
mechanisms, and their dysfunctions are related to the de-
velopment of many diseases. To elucidate the more subtle 
regulatory roles of lncRNAs, technological advances are 
required in high-throughput imaging of RNAs, and high-    
resolution identification of proteins, RNA and DNA-      
binding partners of lncRNAs. This will allow further resolu-
tion of the functions of lncRNAs, their molecular mecha-
nisms, and their pathological mechanisms in the develop-
ment of diseases. 
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