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Abstract: Let B p, p′,H
N,n be a conformal block, with n consecutive channels χι, ι = 1, · · · , n,

in the conformal field theory M p, p′

N ×MH, where M p, p′

N is a WN minimal model, generated

by chiral spin-2, · · · , spin-N currents, and labeled by two co-prime integers p and p′,

1 < p < p′, while MH is a free boson conformal field theory. B p, p′,H
N,n is the expectation

value of vertex operators between an initial and a final state. Each vertex operator is

labelled by a charge vector that lives in the weight lattice of the Lie algebra AN−1, spanned

by weight vectors ~ω1, · · · , ~ωN−1. We restrict our attention to conformal blocks with vertex

operators whose charge vectors point along ~ω1. The charge vectors that label the initial

and final states can point in any direction.

Following the WN AGT correspondence, and using Nekrasov’s instanton partition

functions without modification to compute B p, p′,H
N,n , leads to ill-defined expressions. We

show that restricting the states that flow in the channels χι, ι = 1, · · · , n, to states labeled

by N partitions that we call N -Burge partitions, that satisfy conditions that we call N -

Burge conditions, leads to well-defined expressions that we propose to identify with B p, p′,H
N,n .

We check our identification by showing that a non-trivial conformal block that we compute,

using the N -Burge conditions satisfies the expected differential equation. Further, we check

that the generating functions of triples of Young diagrams that obey 3-Burge conditions

coincide with characters of degenerate W3 irreducible highest weight representations.
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1 Introduction

We propose a modification of the WN AGT correspondence so that it applies to WN minimal

models, and use it compute WN minimal model conformal blocks that are expectation values

of vertex operators whose charge vectors are vectors in the AN−1 weight lattice, that point

along the direction of the fundamental weight vector ~ω1.

1.1 The AGT correspondence

The original AGT correspondence, or simply AGT, is the statement that the instanton

partition functions of 4D linear and cyclic U(2) quiverN =2 supersymmetric gauge theories

are equal, up to a Heisenberg factor, to Virasoro conformal blocks on the sphere and on

the torus, respectively, with non-minimal central charges [1]. It was conjectured by Alday,

Gaiotto and Tachikawa in [1], proven in important special cases in [2–6], then proven in

full generality by Alba, Fateev, Litvinov and Tarnopolskiy in [7].

1.2 The WN AGT correspondence

The correspondence was extended to an identification, also up to a Heisenberg factor, of

the instanton partition functions of 4D linear and cyclic U(N) quiver N = 2 supersym-

metric gauge theories and conformal blocks in WN conformal field theories1 on the sphere

and on the torus, with non-minimal central charges [9–11]. However, the latter identifi-

cation is restricted to a class of WN conformal blocks, with non-minimal central charges,

characterised by a condition discussed by Fateev and Litvinov [12] and by Wyllard [9].

1.3 The condition of Fateev, Litvinov and Wyllard

Consider a WN Toda conformal block that consists of n consecutive channels, that is, the

expectation value of (n+ 3) WN vertex operators. Each vertex operator represents a WN

highest weight state that is labelled by an (N − 1)-component charge-vector that lives in

the AN−1 weight lattice spanned by the fundamental weight vectors {~ω1, · · · , ~ωN−1}.
1We take WN to be the infinite-dimensional algebra generated by chiral spin-2, · · · , spin-N currents,

referred to as W(2, 3, · · · , N) in [8].

– 1 –
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The WN AGT correspondence applies to n-channel WN conformal blocks that involve

(n+3) vertex operators that consist of a WN factor and a Heisenberg factor, such that the

AN−1 charge-vector of two of these operators can point in any direction along the AN−1

weight lattice, while the charge vectors of the remaining (n + 1) operators are restricted

to point along the same direction, for example ~ω1, or directions that are related to ~ω1 by

Weyl reflections. In the sequel, we refer to this condition as the FLW condition.

1.4 WN AGT in non-minimal WN models

Applying the AGT prescription to WN conformal blocks, that is, identifying U(N) in-

stanton partition functions with conformal blocks, up to Heisenberg factors, makes perfect

sense for conformal field theories with non-minimal central charges.

The instanton partition functions are in the form of sums over products of rational

functions of the parameters of the theory, as in (3.1). Each sum corresponds to a gauge

group in the quiver gauge theory. The terms in a sum are parameterised by the set of all

possible N -partitions. There are no conditions on the partitions that we are allowed to

sum over.

On the conformal field side of the AGT correspondence, each term in a sum corresponds

to a state in a Verma module of the algebra WN×H, where H is the Heisenberg algebra.

The fact that we sum over all possible N partitions corresponds to allowing all possible

states that live in a WN Verma module, times a Heisenberg module, to flow in the channels

of the conformal block.

1.5 WN AGT in minimal WN models

Choosing the parameters of the instanton partition functions such that one obtains minimal

models on the conformal field theory side of AGT leads to zeros in the denominators of

the instanton partition functions. These singularities are non-physical and can be traced

to the fact that by summing over all possible states in the WN modules that flow through

the channels of the conformal blocks, one allows for the flow of null states that should

decouple.

One approach to remove these non-physical singularities is to enforce the fusion rules

at the level of the instanton partition functions. This requires that we analytically continue

the instanton partition functions, in a way that preserves the fusion rules, then show that to

each zero in the denominator of a summand, there is a higher order zero in the numerator of

the same factor, such that the corresponding null state decouples in the appropriate limit.

1.6 Restricting the Young diagrams

In this work, we choose to follow a different approach. That is, we characterise the sets

of N partitions that lead to null states and exclude them from the sums. This is the

approach that was followed in [13, 14] to obtain conformal blocks in Virasoro minimal

models. In [13, 14], this procedure led to well-defined expressions. The proposal of [13, 14]

is that these expressions can be identified with minimal model conformal blocks, up to

Heisenberg factors, which was checked to be the case in a number of non-trivial examples.

– 2 –
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The present work is an extension of the proposal of [13, 14] to U(N) instanton partition

functions and WN conformal blocks.

1.7 N-Burge partitions

Our goal is to provide AGT relations for B p, p′,H
N,n . The difficulty is that naively apply-

ing (3.1) to minimal WN model, one gets singular expressions, as explained in detail in the

context of W2 in [13, 14]. The origin of these singularities is related to the existence of

zero-norm states in the WN Verma modules with central charge (2.8) and associated to the

vectors (2.15). Summation in (3.1) includes states in a Verma module rather than in an

irrep of W p, p′

N × H and therefore containing the contribution of zero-norm states. These

states should be removed when computing minimal model conformal blocks.

In this work, as in [13, 14], we avoid these zeros by restricting the summations over the

N -partitions that appear in the sum (3.1). We provide an expression of B p, p′,H
N,n in terms of

a sum of the type (3.1) that consists of products of factors Zι
bb. Each Zι

bb is an expectation

value of an WN×H vertex operator Oι, characterised by a charge vector ~amιnι . This charge

vector lives in the A2 weight lattice and points in the direction of the fundamental weight

~ω1. The expectation value of Oι is computed between WN ×H basis states, an in-state

labeled by a charge vector ~P~rι−1 ~sι−1
, and N partitions ~Y ι−1, and an out-state labeled by

a charge vector ~P~rι ~sι , and N partitions ~Y ι.

The charge vectors ~P~rι−1 ~sι−1
and ~P~rι ~sι are chosen such that degenerateWN×H highest

weight modules flow in the intermediate channels. Given this choice, Zι
bb which is a rational

function of its parameters, can have zeros in the denominators, leading to ill-defined ex-

pressions. We characterize the singularities in Zι
bb that lead to ill-defined expressions, and

attribute these singularities to zero-norm states that should not be allowed to propagate in

the channels of the minimal model conformal blocks. We eliminate these zero-norm states

by restricting the N -partitions that label the states that flow in the ι-th channel in a min-

imal model conformal block, and that appear in (3.1) to N -partitions ~Y = {Y1, · · · , YN},
that satisfy the conditions

Yi, R − Yi+1, R+si−1 > −ri + 1 (1.1)

where Yi, R is the R-row of Yi, i = 1, · · · , N , ri and si, i = 1, · · · , N ,
∑N

i=1 ri = p,
∑N

i=1 si =

p′, are parameters that characterise the WN irreducible highest weight module that flows

in the ι-th channel under consideration, and YN+1 = Y1.
2

These restricted N -Burge partitions were introduced, in case N = 2, in [15], further

studied in [16] and appeared in full generality in [17, 18]. We show that when used to

restrict AGT to compute B p, p′,H
N,n , that is when we sum over N -Burge partitions rather

than on all possible N -partitions, we obtain

B p, p′,H
N,n =

′∑

~Y 1,··· ,~Y n

n+1∏

ι=1

q|
~Y ι|
ι Zι

bb


~P~rι−1 ~sι−1

, ~Y ι−1 | ~amιnι | ~P~rι ~sι ,
~Y ι


 (1.2)

where
∑′ indicates that the sum is restricted to N -partitions that satisfy the N -Burge

conditions (1.1), we obtain well-defined expressions. Brief explanations of the meaning of

2For explicit examples of partitions that satisfy N -Burge conditions, see subsection 5.5.
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the various terms in equation (1.2) were given in earlier paragraphs. More details definitions

can be found in section 2.

1.8 Outline of contents

In section 2, we recall the basics of WN algebras and conformal field theories, and in 3, we

do the same for the original, unmodified WN AGT correspondence. In 4, we discuss the

restrictions that we need to impose on the N -partitions that are summed over in Nekrasov’s

instanton partition functions in order to compute conformal blocks in minimal WN models.

In 5, we recall basic facts related to the W3 minimal models, then we check the N -Burge

conditions obtained in 4, in the context of W3 minimal models, by considering conformal

blocks that satisfy differential equations. In 6, we discuss the derivation of the characters

of W3 minimal models from the 3-Burge partitions. Finally section 7 contains a number

of remarks.

2 WN algebras and conformal field theories

We recall basic definitions related to WN algebras, with focus on W3, followed by basic

definitions related to WN conformal field theories, with focus on W3 minimal models.

2.1 WN algebras

The Virasoro algebra is generated by the Laurent components of the holomorphic part of

stress-energy tensor T (z) which is a spin-2 chiral field [19]. The W algebras are extensions

of the Virasoro algebra, generated by higher-spin chiral fields. For a comprehensive review,

see [8]. In this work, we use WN to indicate the infinite-dimensional algebra generated by

chiral fields of spin 2, 3, · · · , N , referred to as W(2, 3, · · · , N) in [8].

2.1.1 The W3 algebra

The WN algebra, for large N , is a complicated object. To be concrete, we choose to work

in terms of examples from W3, which is the simplest WN algebra beyond Virasoro, and

that has the basic features of higher N WN algebras, particularly the fact that it is not a

Lie algebra.

W3 is generated by the Laurent components of the chiral spin-2 stress-energy tensor

T (z), Ln, n ∈ Z, and the Laurent components of a chiral spin-3 current W(z), Wn, n ∈
Z [20]. Following the notation and conventions of [21], the defining relations of the W3

algebra are

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, (2.1)

[Lm,Wn] = (2m− n)Wm+n,

[Wm,Wn] = (m− n)


 1

15
(m+ n+ 3)(m+ n+ 2)− 1

6
(m+ 2)(n+ 2)


 Lm+n

+

 c

360


m(m2 − 4)(m2 − 1)δm+n,0 + β (m− n) Λm+n,

– 4 –
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where

β =
16

22 + 5c
, Λm =

∑

p>−1

Lm−p Lp +
∑

p6−2

Lp Lm−p −
3

10
(m+ 2)(m+ 3)Lm, (2.2)

and c is the Virasoro central charge.

2.1.2 W3 heighest weight states and eigenvalues

Consider a vector ~P in the weight lattice of the Lie algebra A2, spanned by the fundamental

weight vectors ~ω1 and ~ω2,

~P = P1 ~ω1 + P2 ~ω2, (2.3)

where P1, P2 ∈ R. The W3 highest weight state |~P 〉, associated to ~P , is defined by

L0|~P 〉 = ∆~P |~P 〉, W0|~P 〉 = w~P |~P 〉 (2.4)

The eigenvalues ∆~P and w~P are given in terms of ~P by

∆~P =
c− 2

12
+

1

2
~P 2, w~P =

√
−3β

3∏

i=1

〈~P |~hi〉, (2.5)

where ~hi, i = 1, 2, 3, are the weight vectors of the first fundamental representation of the Lie

algebra A2, and 〈~P |~hi〉 is a scalar product on the A2 weight lattice. The vertex operator

O~P is associated to the W3 highest weight state |~P 〉.
Another standard parametrisation of the highest weight vectors, and the corresponding

W3 vertex operators, is in terms of the vector charge ~a~P ,

~a~P =

b+ b−1





~ω1 + ~ω2


+ ~P (2.6)

In the above Toda-like notation, b parametrizes the central charge

c = 2 + 24

b+ b−1


2

(2.7)

2.1.3 Higher rank WN algebras

TheW4, orW(2, 3, 4) algebra generated by spin 2, 3, and 4 chiral fields is defined in [22, 23].

The definition of the algebras for higher N is involved. We refer to [8] for a complete

discussion.

2.2 WN conformal field theories

We take MN ×MH to be the 2-dimensional conformal field theory that consists of a

factor MN based on the infinite-dimensional WN algebra, and a factor MH based on the

Heisenberg algebra H. In this work, we focus on minimal models, and write MN = Mp, p′

N .

– 5 –
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O1 O2 On On+1

O0 On+2χ1 χn

· · ·

· · ·

Figure 1. The comb diagram of an n-channel linear conformal block. The initial and final states,

O0 and On+2, the vertex operators Oi, i = 1, · · · , n + 1, and the WN irreducible highest weight

representation that flows in the ι-th channel χι, ι = 1, · · · , n, are defined in the text.

2.2.1 The labels of the minimal WN models, the background charge parameter

and the screening charge parameters

A minimal WN model, M p,p′

N , is labeled by two coprime integers, p and p′, 1 < p < p′.

More precisely, the central charge c p, p
′

N , of M p,p′

N , is

c p, p
′

N = (N − 1)

1−N(N + 1)α2

0


 , (2.8)

where α0 is the background charge parameter

α0 = α+ + α−, (2.9)

and α+ and α− are the screening charge parameters

α+ =


p′

p




1
2

, α− = −

 p

p′




1
2

(2.10)

2.2.2 Remarks

1. The definition (2.9) of the background charge parameter α0, as well as the defini-

tion (2.15) of the AN−1 charge vector, below, are appropriate for minimal models based

on WN algebras, such that N > 3, but differ from the definitions used in minimal models

based on the Virasoro algebra W2. In this work, we focus on WN minimal models, such

that N > 3. 2. The WN AGT correspondence is discussed in [9, 10] in the context of

non-minimal WN models. These models are not labeled by coprime integers, and their

central charges do not satisfy (2.8).

2.2.3 Minimal WN conformal blocks B p,p′

N,n

We are interested in computing linear conformal blocks B p,p′

N in WN minimal models M p,p′

N

that can be represented schematically as in figure 1.

An n-channel conformal block B p,p′

N,n is an expectation value of (n + 2) WN vertex

operators, Oi, i = 1, · · · , n+1, inserted at different points on a Riemann surface, which in

this work we take to be a Riemann sphere,3 between an initial state and a final state, such

3Except in section 6, when we discuss the characters of degenerate W3 irreducible highest weight repre-

sentations, which are essentially 0-point conformal blocks on the torus.

– 6 –
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that the states that flow in channel χι, ι = 1, · · · , n, between two consecutive insertions,

belong to one and only one WN irreducible highest weight representation, Hι. In the

following, we specify the parameters that label the vertex operators Oi and the highest

weight representations χι.

2.2.4 Labels of vertex operators

A vertex operator Oi of M p, p′

N is labelled by two sets of non-zero positive integers ~r =

{r1, · · · , rN−1} and ~s = {s1, · · · , sN−1}, that satisfy

1 6




N−1∑

i=1

ri


 6 p, 1 6




N−1∑

i=1

si


 6 p′ (2.11)

It is useful to define two more non-zero positive integers rN and sN , such that

N∑

i=1

ri = p,
N∑

i=1

si = p′ (2.12)

2.2.5 Charge vectors of vertex operators

The vertex operators Oi, i = 1, · · · , n+1, are represented by external vertical line segments

in figure 1. Each Oi(zi) is labelled by a vector charge a~ri ~si , that has (N − 1) components,

parameterised in terms of the screening charge parameters as

~a~ri ~si =
N∑

i=1




1− ri


α+ +


1− si


α−


 ~ωi, (2.13)

where the parameters ~r and ~s were discussed in paragraph 2.2.4.4 We include these details

by writing Oi as O~ri ~si(zi). The initial and final states correspond to the vertex operators

O0(z0) and On+2(zn+2). In this work, we take the charge vectors of O0(z0) and On+2(zn+2)

to be arbitrary, the charge vectors of all remaining vertex operators to satisfy the FLW

condition, and we write

~a~ri ~si = a r1s1~ω1 =



1− r1


α+ +


1− s1


α−


 ~ω1, i = 1, · · · , n+ 1 (2.14)

2.2.6 Charges of the highest weight states that flow in the channels

The channels χι, ι = 1, · · · , n, are represented by internal line segments in figure 1. In WN

minimal models, each channel χι carries states that belong to a degenerate WN irreducible

highest weight representation H p,p′

~rι ~sι
. Each of these representations consists of a highest

weight state and infinitely-many descendents. The highest weight state of H p,p′

~rι ~sι
is labelled

by a charge that flows between a vertex operator at zi and a vertex operator at zi+1,

i = 1, · · · , n.
4The indices i in ~ri and ~si on the left hand side of (2.13) refer to the corresponding vertex operator

and are not summed over. The indices i in ri, si and ~ωi on the right hand side refer to the fundamental

weight vectors of the AN−1 and are summed over. The integers ri and si on the right hand side are the

components of the vectors ~ri and ~si on the left hand side, respectively.

– 7 –
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2.2.7 The charge vectors

The AN−1 charge vector ~P~r ~s, of a degenerate WN irreducible highest weight representation

H p,p′

~r ~s , is defined as

~P~r ~s = −
N−1∑

i=1


riα+ + siα−


 ~ωi, (2.15)

where ~ωi, i = 1, · · · , N , are the AN−1 fundamental weight vectors.

2.2.8 The conformal dimensions

The conformal dimension ∆~r ~s of the vertex operatorO~r ~s that carries a charge vector ~P~r ~s is

∆~r ~s =
1

2


~P~r ~s + α0 ~ρ


 ·


~P~r ~s − α0 ~ρ


 =

1

2


~P 2

~r ~s − α2
0 ~ρ

2

 (2.16)

where the product in the middle term of equation (2.16) is a scalar product of two vectors,
~P 2 and ~ρ2 are the squares of the norms of the charge vector ~P and the Weyl vector ~ρ,

~ρ =
n−1∑

i=0

~ωi (2.17)

2.2.9 The degenerate irreducible highest weight representations of M p, p′

N

These are obtained from the corresponding Verma modules by factoring out the submodules

that consist of zero-norm states and their descendants. It can be shown that in the rep-

resentation associated to O~r ~s there are (N − 1) zero-norm states of conformal dimensions

∆~r ~s + risi, i = 1, · · · , N − 1.

Following [1, 9], we introduce an auxiliary free boson theory MH, compute conformal

blocks B p,p′,H
N,n in M p,p′

N ×MH, then factor out the Heisenberg contribution MH, which is

known. Before we do that, we need to recall basic definitions related to B p,p′

N,n .

2.2.10 M p, p′

N vertex operators

A vertex operator O~r ~s, in M p, p′

N , located at z on the Riemann sphere, is represented, at

operator level, as a vertex operator. In the Coulomb gas representation of WN minimal

models, a vertex operator is represented as an exponential of (N − 1) free bosons, φi, i =

1, · · · , N − 1, that live in the AN−1 root lattice,

O~r,~s(z) = ei~a ·
~φ(z), ~a =

N−1∑

i=1

ai ~ωi, ~φ(z) =

N−1∑

i=1

φi(z) ~αi, (2.18)

where ~αi and ~ωi, i = 1, · · · , N − 1, are the fundamental root and weight vectors of AN−1.

In this work, we focus on vertex operators that satisfy the FLW condition discussed in

subsection 1.3, that is

~aFLW = a1~ω1 (2.19)
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2.2.11 MH vertex operators

As we will see in the sequel, a modification of the WN AGT prescription, obtained by

restricting the Young diagrams that we sum over, will provide us with well-defined ex-

pressions that we identify with WN conformal blocks that satisfy the FLW condition, in

M p, p′

N ×MH conformal field theories. These conformal blocks are expectation values of

holomorphic vertex operators that consist of two factors. One factor belongs to M p, p′

N and

was discussed in paragraph 2.2.10. The other factor belongs to MH and has, at this stage,

the form5

OH(z) = e
i


α0−αN



φ+
N
(z)

eiαNφ−

N
(z), (2.20)

where φ+
N and φ−

N are the positive frequency and negative frequency components of the

holomorphic factor of an N -th, independent free boson φN , and the charges of the expo-

nentials of these components are chosen to different, as in equation (2.20), where α0 is the

background charge parameter. This vertex operator, in which no zero-mode appears, first

appeared in [24] and was studied further in [7].

2.2.12 M p, p′

N ×MH conformal blocks

A conformal block is an expectation value of holomorphic vertex operators. We use B p, p′

N,n ,

BH
n and B p, p′,H

N,n , for a linear conformal block, with n consecutive channels in M p, p′

N , MH,

and M p, p′

N ×MH, respectively. Only conformal blocks that live on the Riemann sphere,

with n consecutive channels, as in figure 1, are considered in this work. The extension

to cyclic conformal blocks on the torus is straightforward by allowing the initial and final

states to be descendants, identifying them, then summing over all possible descendants.

Our notation is such that an n-channel conformal block B indices
N,n , is the expectation

value of (n+3) chiral vertex operators O same indices
ι (zι), ι = 0, · · · , (n+2), in M same indices

and zι are the coordinates of the vertex insertions.

We wish to compute B p, p′,H
N,n . In this case, each vertex operator is a product of two

vertex operators, O p, p′
ι (zι)×OH(zι), where O p, p′

ι (zι) is in M p, p′

N , OH(zι) is in MH, and

the charge of OH(zι) is completely determined by that of O p, p′
ι (zι), by setting

αN = α1, (2.21)

where α1 is the charge parameter of O p, p′
ι (zι), as in equation (2.18), which satisfies the

FLW condition as in equation (2.19), and αN is the charge parameter of OH(zι), as in

equation (2.20).

A holomorphic linear conformal block that consists of n consecutive channels is the

expectation value of (n+ 3) holomorphic vertex operators at positions zi, i = 0, · · · , n+ 3,

B p, p′

N,n = 〈O~r0 ~s0(z0)O r1 s1(z1) · · · O rn+1 sn+1(zn+1)O~rn+2 ~sn+2
(zn+2) 〉, (2.22)

5As we will see shortly, in the case that we are interested in, the charge αN of the MH vertex operator

is completely fixed by the charge of the M p, p′

N vertex operator that will multiply it, at the same point on

the Riemann sphere.
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where the vertex operators O ri, si , i = 1, · · · , n+1, are specified below. When the positions

zi are generic, global conformal invariance on the sphere can be used to set z0 = 0, zn+1 = 1,

zn+2 = ∞, then to scale the positions of the remaining points such that6

qι =
|zι|
|zι+1|

< 1, ι = 1, · · · , n (2.23)

2.2.13 The parameters that appear in B p, p′

N,n

We can summarise the above discussion as follows. B p, p′

N,n depends on three sets of

parameters,7

B p, p′

N,n = B p, p′

N,n


q1, · · · , qn | ~P~r0 ~s0 , · · · , ~P~rn+2 ~sn+2

|~a r1 s1 , · · · ,~arn+1 sn+1


 (2.24)

The parameters {q1, · · · , qn} are the ratios of consecutive positions defined in (2.23). The

charge vectors ~P~r0 ~s0 and ~P~rn+2 ~sn+2
label the WN initial and final states. They do not need

to satisfy the FLW condition. The charge vectors ~P~rι ~sι , ι = 1, · · · , n, label the highest

weight states of the WN irreducible highest weight representations that flow in the ι-th

channel. The charges ~ar1 s1 , · · · ,~arn+1 sn+1 label the vertex operator insertions. They need

to satisfy the FLW condition, so as vectors on the A2 weight lattice, they point in th

edirection of the fundamental weight ~ω1 only.

2.2.14 The Heisenberg factor

The conformal block B p, p′,H
N,n , which includes the contribution of the Heisenberg algebra,

depends on the same parameters as B p, p′

N,n , in (2.24). The two expressions are related by

B p, p′,H
N,n =

n∏

ι=1

n∏

l=ι


1− qι · · · ql




aι+1



α0−al+2





N B p, p′

N,n , (2.25)

where the variables qι, ι = 1, · · · , n, were defined in (2.23), and aι is an abbreviation of

arιsι . The factor that multiplies B p, p′

N,n , on the right hand side of (2.25), is the Heisenberg

factor. It follows directly from the contribution of the Heisenberg vertex operators in (2.20)

to the expectation value in (2.22).

3 WN AGT correspondence

We recall basic definitions related to partitions, then discuss the WN AGT correspondence.

3.1 Partitions

A partition π of an integer |π| is a set of non-negative integers {π1, · · · , πp}, where p is the

number of parts, πi > πi+1, and
∑p

i=1 πi = |π|. π is represented by a Young diagram Y ,

which is a set of p rows {Y1, · · · , Yp}, such that the R-th row has YR = πR cells, YR > YR+1,

and |Y | = ∑
R
YR = |π|. We use YR for the R-th row as well as for the number of cells in

that row. Y ⊺ is the transpose of Y .

6We take z1 to be closest to z0 = 0, followed by z2, etc. and zn+2 to be farthest.
7As pointed out earlier, the subscript i for ~ri and ~si is the position of the corresponding operator

insertion, and should not be confused with a component of the vector ri and si.
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Y1

Y2

Y ⊺
1 Y ⊺

2 Y ⊺
3 Y ⊺

4 Y ⊺
5

X

Figure 2. The 2-row Young diagram Y of the partition 5+4. The rows are numbered from top to

bottom. The 5-row transpose Young diagram Y ⊺ of the partition 2 + 2 + 2 + 2 + 1, which are the

columns of Y , are numbered from left to right. From the viewpoint of Y , the marked cell �X has

A
�X,Y

= 2, A+

�X,Y
= 3, and L�X,Y

= 0. From the viewpoint of Y ⊺, �X has A
�X,Y ⊺

= 0, A+

�X,Y ⊺
= 1,

and L�X,Y ⊺
= 2.

X X

Figure 3. A 2-partition {Y1, Y2}. Y1 is on the left, Y2 is on the right. The cell �X has coordinates

(2, 3), A
�X,Y1

= 1, A+

�X,Y1

= 2, L
�X,Y1

= 0, A
�X,Y2

= −3, A+

�X,Y2

= −2, and L
�X,Y 1

= −1.

3.1.1 Cells and coordinates

We use � for a cell in a Young diagram Y , which is a square in the south-east quadrant

of the plane, with coordinates {R, C}, such that R is the row-number, counted from top to

bottom, and C is the column number, counted from left to right.

3.1.2 Arms and legs

A�,Yi
is the arm of � in Yi, that is, the number of cells in the same row as, but to the

right of � in Yi, and L�,Wj
to be the leg of � with respect its position in Wj , that is the

number of cells in the same column as, but below � in Yi. We define A+
�,Yi

= A�,Yi
+ 1.

3.1.3 N-partitions

The AGT representation of B p, p′,H
N,n involves a multi-sum over (n + 2) N -partitions ~Y ι,

ι = 0, · · · , n + 1, where ~Y ι is a set of of N Young diagrams, {Y ι
1 , · · · , Y ι

N}, and |~Y ι| =
|Y ι

1 | + · · · + |Y ι
N | is the total number of cells in ~Y ι. The N -partitions {Y ι

1 , · · · , Y ι
N}, ι ∈

1, · · · , n, are non-empty Young diagrams, while {Y ι
1 , · · · , Y ι

N}, ι = 0, n + 1 are empty,8

~Y (0) = ~Y (n+1) = ~∅, where ~∅ is an N -partition that consists of N empty Young diagrams.

8We work in terms of (n+2) linearly-ordered N -partitions. Since we consider conformal blocks of vertex

operators, the initial and final N -partitions are always empty, but we prefer to work in terms of (n + 2)

rather than n non-empty N -partitions to make the notation in the sequel more uniform.
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3.2 Extending AGT to WN

The AGT correspondence of Alday, Gaiotto and Tachikawa [1], extended to WN ⊕ H
by Mironov and Morozov [10] and Wyllard [9], identifies a class of conformal blocks in

M non.min,H
N , that we specify below, with instanton partition functions in 4-dimensional

N =2 supersymmetric quiver U(N) gauge theories [25].

3.2.1 AGT in non-minimal WN models

The WN AGT expression for a conformal block B non.min,H
N,n , that has n consecutive channels

χι, ι = 1, · · · , n, is an n-fold sum,9

B non.min,H
N,n =

∑

~Y 1,··· ,~Y n

n+1∏

ι=1

q|
~Y ι|
ι Zι

bb


~P(ι−1), ~Y

ι−1 | aι | ~P(ι), ~Y
ι

 , (3.1)

the factors q
|~Y ι|
ι Zι

bb[
~P (ι−1), ~Y ι−1 | µι | ~P (ι), ~Y ι], ι = 1, · · · , n + 1, are defined in subsec-

tion 3.2.2. Each factor Zι
bb is a rational function that depends on two N -partitions of

‘unrestricted’ Young diagrams {Y ι−1
1 , · · · , Y ι−1

N } and {Y ι
1 , · · · , Y ι

N}. In other words, there

are no conditions on these Young diagrams and all possible N -partitions are allowed. The

denominator zιden of Zι
bb is a product of the norms of the states that flow in the pre-

ceding channel χι−1 and the subsequent channel χι. Since Zι
bb is labeled by unrestricted

N -partitions, and the sums are over all possible unrestricted N -partitions, the states that

flow in each channel belong to a Verma module of W non.min,H
N .

3.2.2 AGT for non-minimal WN

The decomposition of conformal blocks in (3.1) follows that in [26] and is represented as a

comb diagram in figure 1. The function Zbb is

Zbb


~a, ~Y | µ | ~b, ~W


 =

znum


~a, ~Y | µ | ~b, ~W




zden


~a, ~Y | ~b, ~W




, (3.2)

and has the following ingredients. N -component vector ~aι = {aι1, · · · , aιN}, such that∑N
i=1 aιi = 0, is the charge of the highest weight state of the WN irrep that flows in the

intermediate channel χι. Each of the two N -partition sets ~V ι = {V ι
1 , · · · , V ι

N}, and ~W ι

= {W ι
1, · · · , W ι

N}, labels the elements of the special orthogonal basis in the MN ×MH

Verma module associated with the vertex operator in channel χι. In equation 3.1, ~Y and
~W are attached to the line segments on the left and the right of a given vertex, respectively,

see figure 1. The scalar µι is the charge of the vertex operator that connects channels χι

and χι+1. In the following, we study the structure of the right hand side of (3.2).

9Recall that the N -partitions ~Y 0 and ~Y n+1 are empty.
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3.2.3 The numerator

znum


~a, ~Y | µ | ~b, ~W




=
N∏

i,j=1

∏

�∈Yi


E[ai − bj , Yi,Wj ,�]− µ


 ∏

�∈Wj


ǫ1 + ǫ2 − E[bj − ai,Wj , Yi,�]− µ


 ,

(3.3)

where the elementary function E[x, Yi,Wj ,�] is defined as

E[xij , Yi,Wj ,�] = xij +A+
�,Yi

ǫ2 − L�,Wj
ǫ1, (3.4)

xij is an indeterminate, and {ǫ1, ǫ2} are complex parameters related to the central charge

to be specified below.

3.2.4 The denominator

zden


~a, ~Y | ~b, ~W


 =


znorm


~a, ~Y


 znorm


~b, ~W






1
2
, (3.5)

znorm


~a, ~Y


 = znum


~a, ~Y | 0 | ~a, ~Y


 (3.6)

In gauge theory, znorm is a normalization factor related to the contribution of the vector

multiplets [1]. In conformal field theory, it accounts for the norms of the states that

propagate into and out of the vertex operator insertion in Zbb.

4 AGT for minimal models. Finiteness and the N -Burge conditions

We consider the building block partition function introduced in (3.2) and subsequent equa-

tions, and set the parameters to those relevant to M p, p′,H
N . We show that by restricting

the Young diagrams, we obtain well-defined expressions that we identify with minimal WN

conformal blocks.

4.1 Minimal model parameters

Since we focus on the minimal models, we choose to work in terms of the screening charge

parameters {α−, α+} rather than Nekrasov’s deformation parameters {ǫ1, ǫ2}, by setting

α− = ǫ1, α+ = ǫ2, (4.1)

where α− and α+ are real and satisfy α− < 0 < α+. We write

E[xi, xj , Yi,Wj ,�] = xi − xj +A+
�,i α+ − L�,j α− (4.2)
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4.2 WN parameters

The parameters xi and xj in (4.2) are scalar components of the vector of gauge theory

Coulomb parameters {x1, · · · , xN}, that satisfy
∑N

i=1 xi = 0 and A+
�,i = A�,i + 1. We

identify the Coulomb parameters with the minimal model parameters by setting

xi = x+i α+ + x−i α−, i = 1, · · · , N (4.3)

and choosing

x+i = −
N−1∑

j=1

〈~ωj |~hi〉 rj , x−i = −
N−1∑

j=1

〈~ωj |~hi〉 sj (4.4)

where ~ωi, i = 1, · · · , N −1, are the AN−1 fundamental weight vectors, ~hi, i = 1, · · · , N −1,

are the weight vectors of the first fundamental representation of the Lie algebra AN−1, and

〈~ωj |~hi〉 is the scalar product of ~ωj and ~hi, regarded as N -component vectors in the weight

lattice of AN−1. Noting that ~hi−~hi+1 = ~αi, i = 1, · · · , N −1, where ~αi are the simple root

vectors of AN−1, and that 〈~ωi|~αj〉 = δij , where δii = 1, and δij = 0, for i 6= j, the above

definitions allow us to write

x+i − x+i+1 = −ri, x−i − x−i+1 = −si, i = 1, · · · , N − 1 (4.5)

4.3 Scanning products for zeros

Consider the denominator zden of Zbb, defined in 3.2.4. To look for zeros in zden, it is

sufficient to look for zeros in znorm[~x, ~Y ], defined in (3.6). Consider B p, p′,H
N,n and focus on

a channel that carries states that belong to the degenerate Wn irreducible highest weight

representation H p, p′
r,s , where p and p′ are coprime, 0 < p < p′, r = r1, · · · , rN−1, and

s = s1, · · · , sN−1. Recall that we also define rN = p −∑N−1
i=1 ri, and sN = p′ −∑N−1

i=1 si,

and that 0 < ri < p, and 0 < si < p′, i = 1, · · · , N .

Proposition 4.1 znorm[~x, ~Y ] 6= 0, if and only if

Yi+1, R − Yi, R+si−1 > −ri + 1 (4.6)

where Yi, R is the R-row in Yi, i = 1, · · · , N , ri and si, i = 1, · · · , N , are the integers that

parameterise the degenerate WN irreducible highest weight representation that flows in the

channel under consideration, rN = p−∑N−1
i=1 ri and sN = p′ −∑N−1

i=1 si.

4.4 Zero-conditions

The proof of Proposition 4.1 is based on checking the factors that appear in znorm[~x, ~Y ] for

zeros. This requires introducing a number of elementary concepts that were first introduced

in [14].

4.4.1 Two zero-conditions

As we will show, a factor in znorm has a zero when an equation of type

C+ α+ + C− α− = 0, (4.7)
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is satisfied, where C+ and C− are non-zero positive integers, and α− < 0 < α+. Since

α− = −p/
√
p p′, α+ = p′/

√
p p′, p and p′ are coprime, the same factor in znorm has a zero

when the two conditions

C+ = c p, C− = c p′, (4.8)

are satisfied, where c is a proportionality constant that remains to be determined.

4.4.2 From two zero-conditions to one zero-condition

This paragraph contains the core of the proof. Consider the two conditions

A+
�,i = A′ > 1, −L�,j = L′ > 1 (4.9)

where A+
�,i = A�,i + 1. These conditions are satisfied if and only if � ∈ Yi, and � 6∈ Yj .

If � is in row-R and column-C in Yi, then the first condition in (4.9) implies that there is

a cell ⊞ ∈ Yi, that may be � or lies to the right of �, with coordinates {R, C + A′ − 1},
such that, this cell ⊞ lies on a vertical boundary of Yi. The latter statement means that,

1. there are no cells to the right of ⊞, and 2. there may or may not be cells below ⊞.

The latter two statements imply that the [C + A′ − 1]-column in Yi, or equivalently, the

[C+A′ − 1]-row in Y ⊺
i , has length at least R,

Y ⊺
i, C+A′−1 > R (4.10)

Using the definition of L�,j in 3.1.2, we see that L�,j = Y ⊺
j, C − R, and we can write the

equality in the second condition in (4.9) as

− L�,j = −Y ⊺
j, C + R = L′ (4.11)

In other words,

R = L′ + Y ⊺
j, C, (4.12)

and from (4.10), we obtain

Y ⊺
i, C+A′−1 − Y ⊺

j, C > L′, (4.13)

where L′ > 0, which is one condition that is equivalent to the two conditions in (4.9).

4.5 Non-zero condition

Consider a function F [Yi, Yj ], of a pair of Young diagrams {Yi, Yj}, such that F [Yi, Yj ] = 0,

if and only if (4.13) is satisfied. This implies that F [Yi, Yj ] 6= 0, if and only if {Yi, Yj}
satisfies the complementary condition

Y ⊺
i, C+A′−1 − Y ⊺

j, C < L′, (4.14)

which we choose to write as

Y ⊺
j, C − Y ⊺

i, C+A′−1 > 1− L′ (4.15)

which, following [14], can be written in the form10

Yj, R − Yi, R+L′−1 > 1−A′ (4.16)
10The proof that (4.15) is equivalent to (4.16) is in subsection 4.10 of [14].
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4.5.1 Remarks

1. It is useful, for the purposes of the calculations in the sequel, to note that re-writing (4.15)

as (4.16) is equivalent to transposing each of the partitions Yi and Yj , replacing the shift

in the row number of Yj by the negative of the right hand side, and vice versa. 2. The

subscripts C and C+A′ − 1 on the left hand side of (4.15) refer to the row-numbers of the

Young diagrams Y ⊺
j and Y ⊺

i , respectively. 3. The Young diagram that the cell � lives in,

in this case Yi, appears with a minus sign in (4.16). We frequently meet such equations

in the sequel, and we need such observations to be able to make simple, quick checks of

their consistency. 4. We refer, in the sequel, to equations such as (4.9) and (4.15) as

‘zero-conditions’, and ‘non-zero-conditions’, respectively.

4.6 Products in the denominator

Two types of products appear in znorm. These are 1. products in the form
∏

�∈Yi
E[ai −

aj , Yi, Yj ,�], that we denote by {Yi, Yj}, and 2. products in the form
∏

�∈Yi
[α+ + α− −

E[ai − aj , Yi, Yj ,�]] that we denote by {Yi, Yj}′.

4.6.1 Remark

As we will show, it is sufficient to consider {Yi, Yi+1}, i = 1, · · · , N , where YN+1 = Y1. The

conditions that remove these zeros are sufficient to remove the zeros of the other products.

4.6.2 In search of zeros

We plan to proceed as follows. 1. We consider the products in zden, one at a time, 2.

search for possible zeros, as in subsection 4.4.1, 3. find the conditions that imposed on the

pair {Yi, Yj} in order to avoid the zeros, and 4. when there is more than one of condition

to avoid a zero, we choose the strongest condition. That is, we choose the condition that

eliminates more zeros than any other condition. To do this, we use the fact that ri, and

si, i = 1, · · · , N , are non-zero positive integers.

4.6.3 Products that have no zeros

{Yi, Yi}, i = 1, · · · , N , has no zeros since that requires a factor that satisfies

E[0, Yi, Yi,�] = A+
�,i α+ − L�,i α− = 0, (4.17)

which is not possible since � ∈ Yi, thus A
+
�,i > 0, L�,i > 0, α+ > 0, and α− < 0. {Yi, Yi}′,

i = 1, · · · , N , has no zeros for the same reason.

4.6.4 Products that have zeros

Next, we consider {Yi, Yj}, such that i 6= j, of which there are N(N − 1) products. To do

that, we need to introduce some simple definitions.
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4.6.5 Periodic N-partitions

It is convenient to regard the set of N -partitions {Y1, · · · , YN} as a subset of a set of

infinitely-many partitions with periodicityN . More precisely, we consider a set of infinitely-

many partitions, Yi, i ∈ Z, and define Yi+kN = Yi, i ∈ 1, · · · , N , k = Z. The N -partitions

that we start with correspond to the ‘fundamental subset’ Yi, i = 1, · · · , N .11

4.6.6 An N-site circle CN

Since Yi = Yi+kN , i ∈ 1, · · · , N , k ∈ Z, we regard Yi, i ∈ Z as assigned to the sites σi,

i = 1, · · · , N , of an N -site circle CN , and assign partition Yi+kN to site iσi.

4.6.7 Periodic x
+

i , x
−

i , ri and si parameters

Similarly to the partitions Yi, i ∈ 1, · · · , N , whose definition is extended to all i ∈ Z, we

extend the definition of the parameters x+i , x
−
i , ri and si, i, 1, · · · , N , defined in 2.2.4, to

x+i , x
−
i , ri and si, i ∈ Z, and define

x+i+kN = x+i , x−i+kN = x−i , ri+kN = ri, si+kN = si, i = 1, · · · , N, k ∈ Z (4.18)

We attach x+i+kN , x−i+kN , ri+kN and si+kN , i = 1, · · · , N , k ∈ Z, to site σi in CN . The

parameters that we start with correspond to those in the fundamental subset x+i , x
−
i , ri

and si, i = 1, · · · , N .

4.7 Conditions from {Yi, Yi+1}

Each of these products, for i = 1, · · · , N , vanishes if it contains a factor that satisfies

E[xi, xi+1, Yi, Yi+1,�] =

x+i − x+i+1 +A+

�,i


 α+ +


x−i − x−i+1 − L�,i+1


 α−

=

−ri +A+

�,i


 α+ +


−si − L�,i+1


 α− = 0, (4.19)

which, using (4.5), leads to the conditions

A+
�,i = ri + c p, −L�,i+1 = si + c p′ (4.20)

where c remains to be determined. Since A�,i, L�,i+1, ri and si, i = 1, · · · , N , are non-zero

positive integers, and p and p′ are positive co-primes, c must be an integer. Since ri < p,

i = 1, · · · , N , if c < 0, A+
�,i < 0, which is not possible, hence c = 0, 1, 2, · · · In other words,

conditions (4.20) are possible for c = 0, 1, 2, · · · , � ∈ Yi and � 6∈ Yi+1.

4.7.1 From two zero-conditions to one non-zero-condition

Following paragraph 4.4.2 and subsection 4.5, the two zero-conditions in (4.20) can be

translated to one non-zero-condition,

Y ⊺
i+1, C − Y ⊺

i, C+


ri−1


+c p
> −


si − 1


− c p′ (4.21)

11As explained in paragraph 4.12.2, we actually end up with cylindric partitions [17], since adjacent

partitions Yi and Yi+1, i ∈ Z, are related by conditions of the type discussed in [17].
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4.7.2 The strongest condition

Since the row-lengths of a partition are weakly decreasing, condition (4.21) is satisfied if

Y ⊺
i+1, C − Y ⊺

i, C+


ri−1




> −

si − 1


− c p′ (4.22)

which is the case if

Y ⊺
i+1, C − Y ⊺

1, C+


ri−1




> −

si − 1


 (4.23)

Thus, we should set c = 0, which is an allowed value for c, in (4.21), and following [14],

re-write it in the simpler form

Yi+1, R − Y
i, R+



si−1




> −

ri − 1


 (4.24)

4.8 Conditions from {Yi, Yi+1}, {Yi+1, Yi+2}, · · · , {Yi+n−1, Yi+n}

Since condition (4.24) relates the partitions Yi and Yi+1, it also relates, by adjacency, the

partitions Yi and Yi+n, n ∈ Z > 1. For example, the two conditions

Yi+2, R − Yi+1, R+si+1−1 > −ri+1 − 1, Yi+1, R − Yi, R+si−1 > −ri − 1 (4.25)

imply

Yi+2, R − Y
i, R+





∑1
j=0 si+j



−2
> 2−

1∑

j=0

ri+j (4.26)

and, in the same way, the n adjacent {Yi, Yi+1} conditions imply

Yi+n, R − Y
i, R−n+





∑n−1
j=0 si+j





> n−



n−1∑

j=0

ri+j


 (4.27)

We refer to condition (4.27) as an ‘n-adjacent’ {Yi, Yi+1} condition, since it comes from n

conditions of type {Yi, Yi+1} that involve (n+ 1) adjacent partitions.

4.8.1 Remarks

1. Note the shift by −n of the row-number of partition Yi on the left hand side of (4.27),

and by n of the term on the right hand side. Condition (4.27) makes sense since −n +∑n−1
j=0 si+j > 0, and n −∑n−1

j=0 ri+j 6 0. 2. In the following, we show that it is sufficient

to impose condition (4.25) to eliminate the zeros of {Yi, Yi+n}, rather than any condition

obtained from any another product involving these two partitions. Since condition (4.25)

follows from the {Yi, Yi+1} conditions (4.23), the latter are sufficient to eliminate the zeros

in {Yi, Yi+n}.
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4.8.2 A consistency check

{Yi, Yi+N} leads to the condition

Yi+N, R − Y
i, R+

∑N−1
j=0



si+j−1




> −
N−1∑

j=0


ri+j − 1


 (4.28)

which can be written, using (2.12), as

Yi, R − Y
i, R+



p′−N




> −

p−N


 (4.29)

which are trivial conditions on Yi, i = 1, · · · , N , since p′ > p > N , by definition of the

WN minimal models. This agrees with the fact that such products do not have zeros, and

therefore should not be restricted by any conditions.

4.9 Conditions from {Yi, Yi+n}

Each of these products, for i = 1, · · · , N , and n > 0, vanishes if it contains a factor that

satisfies

E[xi, xi+n, Yi, Yi+n,�] =

x+i − x+i+n +A+

�,i


 α+ +


x−i − x−i+n − L�,i+n


 α−

=


A+

�,i −
n−1∑

j=0

ri+j


α+ +


−L�,i+n −

n−1∑

j=0

si+j


α− = 0, (4.30)

which leads to the conditions

A�,i = c p− 1 +
n−1∑

j=0

ri+j , −L�,i+1 = c p′ +
n−1∑

j=0

si+j , (4.31)

where c remains to be determined. Following the same arguments used in 4.7, c must be

a non-negative integer. In other words, conditions (4.31) are possible for c = {0, 1, · · · },
� ∈ Yi and � 6∈ Yi+n.

4.9.1 From two zero-conditions to one non-zero-condition

Following paragraphs 4.4.2 and 4.5, the two zero-conditions in (4.31) can be translated to

one non-zero-condition,

Y ⊺
i+n, C − Y ⊺

i, C+c p−1+
∑n−1

j=0 ri+j
> 1− c p′ −

n−1∑

j=0

si+j (4.32)

4.9.2 The strongest condition

Following the arguments in paragraph 4.7.2, the strongest version of condition (4.32) is

obtained by setting c = 0, which is an allowed value for c. Following [14], the result can be

re-written in the simpler form

Yi+n, R − Yi, R−1+
∑n−1

j=0 si+j
> 1−

n−1∑

j=0

ri+j (4.33)
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4.9.3 Comparing the {Yi, Yi+n} conditions and the n adjacent {Yi, Yi+1}

conditions

Since the row-lengths of a partition are weakly-decreasing, condition (4.33) is satisfied if

Yi+n, R − Yi, R−n+
∑n−1

j=0 si+j
> 1−

n−1∑

j=0

ri+j , (4.34)

where n > 1, which is satisfied if

Yi+n, R − Yi, R−n+
∑n−1

j=0 si+j
> n−

n−1∑

j=0

ri+j , (4.35)

which is condition (4.27). Thus, the n adjacent {Yi, Yi+1} conditions (4.27), which follow

from the {Yi, Yi+1} conditions (4.24), are stronger than the {Yi, Yi+n} conditions (4.33),

and it is sufficient to impose the underlying {Yi, Yi+1} conditions (4.24) to eliminate the

zeros in the {Yi, Yi+n}.

4.10 Conditions from {Yi, Yi−n}

Each of these products, for i = 1, · · · , N , n > 0, vanishes if it contains a factor that satisfies

E[xi, xi−n, Yi, Yi−n,�] =

x+i − x+i−n +A+

�,i


 α+ +


x−i − x−i−n − L�,i−n


 α−

=


A+

�,i +
n∑

j=1

ri−j


α+ +


−L�,i−n +

n∑

j=1

si−j


α− = 0, (4.36)

which leads to the conditions

A�,i = −1 + c p−
n∑

j=1

ri−j − L�,i−n = c p′ −
n∑

j=1

si−j , (4.37)

where c remains to be determined. Following the same arguments used in 4.7, c must be

a non-zero positive integer. In other words, conditions (4.37) are possible for c = 1, 2, · · · ,
� ∈ Yi and � 6∈ Yi−n.

4.10.1 From two zero-conditions to one non-zero-condition

Following paragraphs 4.4.2 and 4.5, the two zero-conditions in (4.37) can be translated to

one non-zero-condition,

Y ⊺
i−n, C − Y ⊺

i, C−1+c p−
∑n

j=1 ri−j
> 1− c p′ +

n∑

j=1

si−j (4.38)

4.10.2 The strongest condition

Following the arguments in paragraph 4.7.2, the strongest version of condition (4.32) is

obtained by setting c = 1, which is an allowed value for c. Following [14], the result can be

re-written in the simpler form

Yi−n, R − Yi, R−1+p′−
∑n

j=1 si−j
> 1− p+

n∑

j=1

ri−j (4.39)
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4.10.3 Comparing the conditions from {Yi, Yi−n} and from n-adjacent

{Yi, Yi−1}

Using the N -periodicity of the partitions Yi, i ∈ Z, as well as the sum conditions (2.12),

we can re-write (4.39) as

Yi+N−n, R − Y
i,


R−1+
∑N

j=n+1 si−j





>


1−

N∑

j=n+1

ri−j


 , (4.40)

then using the N -periodicity of the integers ri and si, i ∈ Z, we re-write (4.40) as

Yi+N−n,R − Y
i,


R−1+
∑N−n−1

j=0 si+j





>


1−

N−n−1∑

j=0

ri+j


 , (4.41)

which is identical to the conditions (4.33), upon a trivial change of labels. Thus, the

conditions from {Yi, Yi+1} (4.24) are stronger than the conditions from {Yi, Yi+n} (4.39),

and it is sufficient to impose the former to eliminate the zeros in {Yi, Yi−n}, n < 0.

4.11 Conditions from {Yi, Yi+1}
′

Each of these products, for i = 1, · · · , N , vanishes if it contains a factor that satisfies

−α+−α−+E[xi, xi+1, Yi, Yi+1,�]=

x+i −x+i+1+A+

�,i−1

α++


x−i −x−i+1−L�,i+1−1


α−

=

−ri +A�,i


α++


−si − L+

�,i+1


α− = 0, (4.42)

which, using (4.5), leads to the conditions

A�,i = ri + c p, −L�,i+1 = si + 1 + c p′, (4.43)

where c remains to be determined. Following the same arguments used in 4.7, c must be

a non-negative integer. In other words, conditions (4.43) are possible for c = 0, 1, 2, · · · ,
� ∈ Yi and � 6∈ Yi+1.

4.11.1 From two zero-conditions to one non-zero-condition

Following paragraphs 4.4.2 and 4.5, the two zero-conditions in (4.43) can be translated to

one non-zero-condition,

Y ⊺
i+1, C − Y ⊺

i, C+ri+c p > −si − c p′ (4.44)

4.11.2 The stronger condition

Since the row-lengths of a partition are weakly decreasing, condition (4.44) is satisfied if

Y ⊺
i+1, C − Y ⊺

i, C+ri
> −si − c p′, (4.45)

which is the case if

Y ⊺
i+1, C − Y ⊺

1, C+ri
> −si (4.46)

Thus, we should set c = 0, which is an allowed value for c, in (4.44), and following [14],

re-write it in the simpler form

Yi+1, R − Yi, R+si > −ri (4.47)
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4.11.3 Comparing conditions

Using the arguments of paragraph 4.7.2, one finds that conditions (4.24) are stronger than

conditions (4.47). Thus conditions (4.24) that eliminate the zeros in {Yi, Yi+1} are sufficient

to eliminate the zeros in {Yi, Yi+1}′.

4.12 Conjugate products leads to weaker conditions

It is straightforward to see that all remaining conjugate products lead to conditions that

are weaker than those of the corresponding products. The reason is that every {Yi, Yj}′ is
related to the corresponding product {Yi, Yj} by replacing each elementary factor

E[xi, xj , Yi, Yj ,�] in {Yi, Yj} by a factor −α+ − α− + E[xi, xj , Yi, Yj ,�], up to an over-

all minus sign. As can be seen, by comparing the expressions in subsection 4.7 to the

corresponding expressions in this subsection, this amounts to changing

A+
�,i → A�,i, L�,j → L+

�,j , (4.48)

where we have used Yi and Yj for generality. This leads to changing the final expressions

for the non-zero conditions,

ri → ri + 1, si → si + 1, (4.49)

which, following the arguments in paragraph 4.7.2, leads to weaker conditions. In partic-

ular, the conditions obtained from {Yi, Yi+n}′ and from {Yi, Yi−n}′ are weaker than those

discussed in subsections 4.9 and 4.10, respectively.

4.12.1 The conditions from {Yi, Yi+1} are sufficient

From the above, we conclude that the N -Burge conditions (4.24), which we recall for

convenience,

Yi+1, R − Y
i, R+



si−1




> −

ri − 1


 (4.50)

are sufficient to eliminate all zeros in all products in zden.

4.12.2 Cylindric partitions. N-Burge conditions

The conditions (4.24) form a special case of those that were introduced and studied in [17].

A set of N partitions that satisfy such conditions are called ‘cylindric partitions’ in [17].

They have appeared in this specific form in [18].

5 W3 minimal model conformal blocks from AGT with restricted Young

diagrams

We check the validity of the expression in equation (1.2) by computing a non-trivial con-

formal block in a W3 minimal model. To do that, we consider a W3 conformal block that

is known to satisfy a third-order ordinary differential equation of Pochammer type, that is

solved in terms of 3F2 Hypergeometric functions [27]. To be reasonably self-contained, we

outline the derivation of this differential equation in some detail.
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5.1 A family of holomorphic 4-point functions

Consider the W3 holomorphic 4-point functions

F{z} = 〈
3∏

i=0

O~Pi
(zi) 〉, (5.1)

where {z} = {z0, · · · , z3} is a set of four points on the Riemann sphere, O~Pi
(zi), i =

0, · · · , 3, is a vertex operator insertion at zi. O~Pi
is a vertex operator that inserts a W3

highest weight state labeled by the charge vector ~Pi. At this point, the charge vectors ~Pi,

i = 0, · · · , 3, could be any vectors in the weight lattice of the Lie algebra A2, spanned by

the fundamental weight vectors (~ω1, ~ω2),

~P0 = c1,i ~ω1 + c2,i ~ω2, (5.2)

where c1,i, c2,i ∈ R.

5.2 Specialising the 4-point functions

For the purposes of this section, we chose to keep ~P0 and ~P3 arbitrary, and set ~P1 and ~P2

to point in the direction of ~ω1 only, such that

~P1 = −b ~ω1, ~P2 = a ~ω1, (5.3)

where b is the parameter that determines the Virasoro central charge, see equation (2.7),

while a ∈ R is arbitrary. Using global conformal invariance [28], the holomorphic 4-point

function in equation (5.1), with the charge vectors chosen as in equations (5.2) and (5.3),

can be written in the form12

F{z} = z−2∆1
31 z



∆1+∆2−∆3−∆0





30 z



∆1+∆0−∆2−∆3





32 z



∆3−∆1−∆2−∆0





20

B

z|~P0, ~P int, ~P3| − b, a


 , (5.4)

where B is the factor in F{z} that depends only on z,13 the projective invariant cross-ratio

of the coordinates,

z =
z10z23
z13z20

, zij = zi − zj , (5.5)

and ∆i is the conformal dimension of O~Pi
(zi), see equation (2.5).

The relevant factor on the right hand side of equation (5.4) is B[z|~P0, ~P int, ~P3| − b, a],

all parameters of which are initial data that specify the 4-point function that we wish to

compute, except ~P int which remains to be determined. Following [10, 27], B[z|~P0, ~P int, ~P3|−
12The subscripts {0, 12, 3} that we use to label the points of the 4-point function on the Riemann sphere,

correspond to the subscripts {2, 1, 3, 4} used to label the same points in [28].
13At this stage, we are working in the context of generic WN models.In particular, we did not choose the

parameter b in equation (5.3) such that we obtain a minimal WN model. Since we have specialised to W3,

that is N = 3, and we focus on 4-point functions, that is n = 1, once we choose the parameters in F{z}

to be those of a minimal model labeled by the coprimes p and p′, B in equation (5.4) becomes B p,p′

3,1 in the

notation of equation (2.24).
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b, a] satisfies a third-order ordinary differential equation with respect to z. Requiring that

B satisfies this differential equation, determines the three possible values of the charge

vector ~P int of the W3 highest weight representation that flows in the internal channel of

the conformal block. In the rest of this section, we derive, this equation in six steps.

5.2.1 Step 1

The W3 Verma module of highest weight vector (−2b ~ω1−b−1 ~ω2), associated to the vertex

operator O~P1
, contains a W3 null-state at level 3. This implies that F{z} in equation (5.4)

satisfies the null state condition

W

(1)
−3 − 16w1

∆1(∆1 + 1)(5∆1 + 1)


L

(1)
−1


3

+

12w1

∆1(5∆1 + 1)
L
(1)
−1L

(1)
−2 +

3w1(∆1 − 3)

2∆1(5∆1 + 1)
L
(1)
−3


F{z} = 0, (5.6)

where the generators L
(1)
−m, m = 1, 2, 3, and W

(1)
−3 act on O~P1

(z1). We need to express this

action in terms of the differential operator action.

5.2.2 Step 2

We use the W3 Ward identity

W
(1)
−3F{z} =

3∑

j=0
j 6=1




wj

(zi − zj)3
+

W
(j)
−1

(zi − zj)2
+

W
(j)
−2

(zi − zj)


F{z}, (5.7)

to express the action of W
(1)
−3 on F{z} in equation (5.6), in terms of the action of the six

lower-degree generators W
(j)
−1 , and W

(j)
−2 , j = 0, 2, 3, which act on the other three vertex

operators in F{z}.

5.2.3 Step 3

We use the five W3 Ward identities [27],

3∑

j=0

W
(j)
−2 = 0, (5.8)

3∑

j=0


zj W

(j)
−2 + W

(j)
−1


 = 0, (5.9)

3∑

j=0


z2j W

(j)
−2 + 2zj W

(j)
−1 + wj


 = 0, (5.10)

3∑

j=0


z3j W

(j)
−2 + 3z2j W

(j)
−1 + 3zjwj


 = 0, (5.11)

3∑

j=0


z4jW

(j)
−2 + 4z3jW

(j)
−1 + 6z2jwj


 = 0. (5.12)
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to express the five generators W
(0)
−1 , W

(0)
−2 , W

(3)
−1 , W

(3)
−2 and W

(2)
−2 in terms of the three

generators W
(1)
−1 , W

(1)
−2 , and W

(2)
−1 .

5.2.4 Step 4

We use the fact that there are null-states at level-1 and level-2 in the Verma module with

highest weight vector (−2b ~ω1 − b−1 ~ω2), and that there is a null-state at level-1 in the

Verma module with highest weight state vector (−(b + a) ~ω1 − b−1 ~ω2), to obtain the

relations

W
(1)
−1F{z} =

3w1

2∆1
∂z1F{z} (5.13)

W
(1)
−2F{z} =


 12w1

∆1(5∆1 + 1)
∂2
z1 −

6w1(∆1 + 1)

∆1(5∆1 + 1)
L
(1)
−2


F{z} (5.14)

W
(2)
−1F{z} =

3w2

2∆2
∂z2F{z}, (5.15)

5.2.5 Step 5

To express the action of the Virasoro generators L
(1)
−m, m = 1, 2, 3, in above equations, in

terms of differential operators, we use the conformal Ward identity

L
(i)
−mF{z} = −

3∑

j=0
j 6=i


(m− 1)∆j

(zi − zj)m
+

∂zj
(zi − zj)


F{z} (5.16)

5.2.6 Step 6

To obtain an ordinary differential equation for the 4-point function F{z}, it is convenient to
work in terms of B simple, that is defined in terms of B, the projective-invariant component

of F{z} in equation (5.4),

B simple

z|~P0, ~Pint, ~P3| − b, a


=


z−

b(2ℓ1+ℓ2)
3 (1− z)−

3+3b2−ba
3


B


z|~P0, ~Pint, ~P3| − b, a


 ,

(5.17)

ℓi = 〈~P0|~αi〉+

b+

1

b


 , i = 1, 2 (5.18)

5.3 The differential equation

Following [27], we combine the above equations and find that B simple satisfies the Pochham-

mer generalised hypergeometric differential equation

DzB simple

z|~P0, ~Pint, ~P3|−b, a


= 0, (5.19)

Dz≡z

∂z+A1




∂z+A2




∂z +A3


−


∂z+B1−1




∂z+B2−1


∂z,

(5.20)

Ai =
b2 + 3− b a

3
+ b 〈~P0|~h1〉+ b 〈~P3|~hi〉, i = 1, 2, 3, (5.21)

B1 = 1 + b 〈~P0|~α1〉, B2 = 1 + b 〈~P0|~α1 + ~α2〉
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Recalling that ~P int is the only undetermined parameter in B simple, and requiring that

B simple satisfies equation (5.19), implies that there are at most three possible values for
~P int, and correspondingly, at most three possible W3 highest weight modules are allowed

to propagate in the intermediate channel of the 4-point function. The solution of equa-

tion (5.19) is known to be a hypergeometric function of type 3F2 [27].

The differential equation that B satisfies is obtained by composing the factor on the

right hand side of equation (5.17) and Dz in equation (5.19),


Dz ◦


z−

b(2ℓ1+ℓ2)
3 (1− z)−

3+3b2−ba
3




 B


z|~P0, ~Pint, ~P3| − b, a


 = 0 (5.22)

Proposing the z expansion

B

z|~P0, ~Pint, ~P3| − b, a


 = zγ


1 +O(z)


 , (5.23)

one looks for the possible values of γ that satisfy equation (5.22) to leading order. The

values γi, i = 1, 2, 3, that solve the third-order algebraic characteristic equation can be

written as

γi = ∆~P int,i
−∆0 −∆1, (5.24)

where ~P int,i, i = 1, 2, 3, are the charge vectors of the W3 highest weight modules that are

allowed to floow in the internal channel. The values of ~Pint,i that we obtain are

~Pint,1 = ~P0 − b ~ω1, ~Pint,2 = ~P0 + b ~ω2, ~Pint,3 = ~P0 + b ~ω1 − b ~ω2, (5.25)

where the charge vector ~P0, which is an arbitrary vector in the A2 weight lattice, the

parameter b that determines the Virasoro central charge, and the arbitrary real parameter

a, are the external data that specify B.
In the following, we focus on the solution of (5.22) that corresponds to the internal

channel that carries the W3 module with highest weight vector ~P int,1. In this specific case,

we obtain

B

z|~P0, ~P0 − b, ~P3| − b, a


 =


z

b(2ℓ1+ℓ2)
3 (1− z)

3+3b2−ba
3


 3F2


A1, A2, A3;B1, B2; z




(5.26)

5.4 Minimal M p, p′

3 models

The above results, obtained from general properties of W3 algebra, are valid for all values

of the Virasoro central charge c. To check equation (1.2), we specialize to the W3 minimal

models M p, p′

3 , where p and p′ are coprime integers that satisfy 3 6 p < p′. To do this,

we set

b → iα+, b−1 → iα−, α+ =


p′

p




1
2

, α− = −

 p

p′




1
2

(5.27)

so that, from equation (2.8), we obtain the Virasoro central charge

c p, p
′

3 = 2

1− 12α2

0


 , α0 = α+ + α− (5.28)
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Further, we associate each vertex operator O~P to a highest weight vector ~P~r ~s, where

~r = {r1, r2}, ~s = {s1, s2}, such that r1, r2, s1 and s2 are integers that satisfy

1 6




2∑

i=1

ri


 6 p, 1 6




2∑

i=1

si


 6 p′ (5.29)

In the sequel, we simplify the notation by writing the charge vector ~P~r,~s as ~P r1,r2;s1,s2 ,

and the corresponding Virasoro and W3 eigenvalues ∆~P~r, ~s
and w~P~r, ~s

as ∆~r,~s and w~r,~s.

5.5 Checking the modified AGT expression

We want to check equation (1.2) for the non-trivial conformal block, computed in (5.26),

after specializing the parameters to minimal model ones. We choose N = 3, p = 8 and

p′ = 9, and consider the function (5.26) for the unitary minimal model M 8, 9
3 , with

~P0 = ~P11;12, ~P3 = ~P11;21, a = −b, ~Pint,1 = ~P0 − b ~ω1 = ~P21;12 (5.30)

and compare with the result obtained by applying equation (1.2) to B 8, 9
3,1 [z|~P0

~Pint,1
~P3| −

b,−b], see equation (2.24). The W3 irreducible highest weight module that flows in the

intermediate channel in this case is characterised by {p, p′, r1, r2, s1, s2} = {8, 9, 2, 1, 1, 2},
and the triples of Young diagrams that are allowed by the 3-Burge conditions, in this case,

for |Y | = 0, 1, 2, 3 and 4, where |Y | is

|Y | =
3∑

i=1

|Yi| (5.31)

and |Yi|, i = 1, 2, 3, is the number of cells in the i-th Young diagram, are

|Y | = 0 :

∅,∅,∅


 , |Y | = 1 :


∅,∅,


 ,


∅, ,∅


 ,


 ,∅,∅




|Y | = 2 :

∅,∅,


 ,


∅, ,


 ,


∅, ,∅


 ,


 ,∅,


 ,


 , ,∅


 ,


 ,∅,∅


 ,


 ,∅,∅




|Y | = 3 :

∅,∅,


 ,


∅, ,


 ,


∅, ,


 ,


∅, ,


 ,


∅, ,∅


 ,


 ,∅,


 ,


 , ,


 ,


 , ,∅


 ,


 , ,∅


 ,


 ,∅,


 ,


 ,∅,


 ,


 , ,∅


 ,


 , ,∅


 ,


 ,∅,∅


 ,


 ,∅,∅


 ,


 ,∅,∅



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|Y | = 4 :

∅,∅,


 ,


∅, ,


 ,


∅, ,


 ,


∅, ,


 ,


∅, ,


 ,


∅, ,


 ,


∅, ,∅


 ,


 ,∅,


 ,


 , ,


 ,


 , ,


 ,


 , ,


 ,


 , ,


 ,


 , ,∅


 ,


 , ,∅


 ,


 ,∅,


 ,


 ,∅,


 ,


 , ,


 ,


 , ,


 ,


 , ,∅


 ,


 , ,∅


 ,


 , ,∅


 ,


 , ,∅


 ,


 ,∅,


 ,


 ,∅,


 ,


 ,∅,


 ,


 , ,∅


 ,


 , ,∅


 ,


 , ,∅


 ,


 ,∅,∅


 ,


 ,∅,∅


 ,


 ,∅,∅


 ,


 ,∅,∅


 ,


 ,∅,∅




Considering the contribution of the allowed Young diagrams only, we obtain

B 8, 9
3,1


z|~P0

~P
(1)
1

~P3| − b,−b

= 1 +

32

135
z +

101

729
z2 +

64576

649539
z3 +

124748

1594323
z4

+
30730880

473513931
z5+

970725028

17433922005
z6+

4604400320

94143178827
z7+O(z8),

(5.32)

which coincides with 3F2 on the right hand side of equation (5.26). In other words, B 8, 9
3,1

coincides with B in equation (5.4) up to the normalisation factor z−
b(2ℓ1+ℓ2)

3 and the Heisen-

berg factor. (1− z)−
3+3b2−ba

3 .

6 W3 minimal model characters from 3-Burge partitions

We compare the characters of degenerate W3 irreducible highest weight representations with

the generating functions of triples of Young diagrams that obey 3-Burge conditions.

6.1 W3 minimal model characters

Expressions for the characters of degenerate irreducible WN highest weight representations

were computed in [29]. In the following, we specialise these expressions to the N = 3 case,

explain what the various terms are, how to evaluate them, then compute examples of the

characters in q-series form.14

The W3 minimal model character, labeled by two coprime integers p, p′, such that

2 < p < p′, and dominant integral weight vectors η and ξ, of level-[p-3] and level-[p′-3],

14The notation used in this section is close to that in [30].
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respectively is

χ p, p′

η,ξ (q) =
1

η(q)2

∑

σ∈S3

(−1)Lσ

∞∑

r,s=−∞

q
pp′

2

〈
rα1+sα2, rα1+sα2

〉

× q

〈
p′σ





∑2
i=0 ni~ωi



−p




∑2
i=0 mi~ωi



, rα1+sα2

〉
+
〈
∑2

i=0 ni~ωi−σ




∑2
i=0 ni~ωi



,
∑2

i=0 mi~ωi

〉

(6.1)

We need to explain what the various terms in equation (6.1) stand for, and how to

compute them. As mentioned above, p and p′ are coprime integers that satisfy 2 < p < p′.

η is a level-[p-3] dominant integral weight vector, and ξ is a level-[p′-3] dominant integral

weight vector. They are defined as

η = (n0 − 1)~ω0 + (n1 − 1)~ω1 + (n2 − 1)~ω2, n0 + n1 + n2 = p, (6.2)

ξ = (m0 − 1)~ω0 + (m1 − 1)~ω1 + (m2 − 1)~ω2, m0 +m1 +m2 = p′ (6.3)

q is an indeterminate, and η(q) is the Dedekind function

η(q) = q1/24
∞∏

i=1

(1− qi) (6.4)

S3 is the symmetric group of degree 3, generated by the permutation operators s1 and s2,

S3 = {1, s1, s2, s1s2, s2s1, s1s2s1} (6.5)

Lσ is the length function of a permutation σ, that is, the minimal number of S3 generators

required to generate σ. Denoting the integral vector
∑2

i=0 ni~ωi, ni ∈ N, i = 0, 1, 2, by

[n0, n1, n2], the action of σ on integral vectors in the Â2 weight lattice is

1[n0, n1, n2] = [n0, n1, n2], (6.6)

s1[n0, n1, n2] = [n0 + n1,−n1, n1 + n2],

s2[n0, n1, n2] = [n0 + n2, n1 + n2,−n2],

s1s2[n0, n1, n2] = [n0 + 2n2 + n1,−n1 − n2, n1],

s2s1[n0, n1, n2] = [n0 + 2n1 + n2, n2,−n1 − n2],

s1s2s1[n0, n1, n2] = [n0 + 2n1 + 2n2,−n2,−n1]

The Â2 simple root vectors satisfy

〈~α1, ~α1〉 = 〈~α2, ~α2〉 = 2, 〈~α1, ~α2〉 = −1 (6.7)

The Â2 fundamental weight vectors satisfy

〈~ω0, ~ω0〉 = 〈~ω0, ~ω1〉 = 〈~ω0, ~ω2〉 = 0, 〈~ω1, ~ω1〉 = 〈~ω2, ~ω2〉 =
2

3
, 〈~ω1, ~ω2〉 =

1

3
(6.8)

From

α1 = −~ω0 + 2~ω1 − ~ω2, α2 = −~ω0 − ~ω1 + 2~ω2, (6.9)
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we have

〈~ω1, α1〉 = 〈~ω2, α2〉 = 1, 〈~ω1, α2〉 = 〈~ω2, α1〉 = 0 (6.10)

From the above equations, it is straightforward to show that

χ p, p′

η,ξ (q) = F

n1,m1|n2,m2


− qn1m1F


n1,m1|n1 + n2,m2




− qn2m2F

n1 + n2,m1| − n2,m2


+ q(n1+n2)m1+n2m2F


n1 − n2,m1|n1,m2




+q(n1+n2)m2+n1m1F

n2,m1|−n1−n2,m2


−q(n1+n2)(m1+m2)F


n2,m1|−n1,m2




(6.11)

F

x1, x2|y1, y2


=

1

η(q)2

∑

r,s∈Z

qpp
′(r2+s2−rs)+(p′x1−py1)r+(p′x2−py2)s, (6.12)

6.2 Examples

We find the following q-series expansions

χ3,7
11|11 = 1 + q2 + 2q3 + 3q4 + 3q5 + 6q6 + 7q7 + 11q8 + 14q9 + 20q10 + · · · ,

χ3,7
21|11 = χ3,7

11|21 = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 14q7 + 21q8 + 28q9 + 39q10 + · · · ,
χ3,7
21|21 = 1 + 2q + 3q2 + 5q3 + 8q4 + 11q5 + 17q6 + 24q7 + 34q8 + 47q9 + 64q10 + · · · ,

χ3,7
31|11 = χ3,7

11|31 = 1 + q + 3q2 + 3q3 + 6q4 + 8q5 + 13q6 + 17q7 + 25q8 + 33q9 + 47q10 + · · ·
(6.13)

Comparing the above expressions with those obtained from counting triples of Young

diagrams that satisfy the 3-Burge conditions, we find that they coincide.

7 Summary and comments

We propose a modified WN AGT prescription to allow one to compute conformal blocks

B p, p′,H
N,n , from which one can extract WN minimal model conformal blocks B p, p′

N,n .

7.1 WN AGT leads to ill-defined expressions in minimal model conformal

blocks

Applying the original, unmodified WN AGT correspondence to the minimal WN models,

times contributions from a free boson, by setting the gauge theory mass and Coulomb

parameters to minimal WN model values, and leaving all else the same, leads to ill-defined

expressions in the form of zero divided by zero. The origin of these ill-defined expressions

was explained in the context of W2 in [13, 14]. We review it below.

7.1.1 Norms and couplings of states that flow in channels

The original prescription allows for all states in a specific WN Verma module to flow in

each specific channel. The norms of these states appear in the denominators of Nekrasov’s

instanton partition function. Their coupling to other states are given by matrix elements of

the WN×H algebra. These matrix elements appear as the factors in the numerators. When
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the central charge is non-minimal, there are no zero-norm states in the Verma module, all

terms in the denominators are non-vanishing, the expressions are well defined regardless of

whether the corresponding matrix elements that describe the couplings to other states are

zero or not, and one obtains the correct result. When the central charge is minimal, the

situation is drastically different.

7.1.2 The zeros in the denominators

When the central charge is minimal, there are zero-norm states in the Verma module.

Including these states in the sums, one obtains zeros in the denominators. This is the

origin of the zeros that appear in the denominators of Nekrasov’s partition functions if we

apply the AGT prescription without modification. They indicate that we have included

zero-norm states among the states that flow in the channels of the conformal blocks.

7.1.3 The zeros in the numerators

These zeros are due to the vanishing of the coupling of the zero-norm states and all other

states. In [14], it was shown, in the case of Virasoro minimal models, that for every zero

in a denominator, there is a zero in the numerator, but the reverse is not true. In other

words, the set of terms that contain a zero in the denominator is a proper subset of the

set of terms that contain a zero in the numerator. We have not shown that this is the case

here, since we do not need it for the purposes of this paper, but it is a straightforward,

albeit tedious exercise to show that this is the case. This ensures that one never has terms

in the form of a finite number divided by zero, that are strictly infinite, but that one has

ill-defined terms in the form of zero divided by zero.

7.1.4 Resolving the ambiguities

Assuming that for every zero in a denominator, there is a higher-degree zero in the numera-

tor, one way to avoid the ill-defined expressions described above is to deform the conformal

field theory away from minimality, such that all denominators become non-zero, then care-

fully prove that the minimal limit exists, presumably by showing that the numerators are

always zero, or always vanish faster than the denominators. We are able to do this in

simple, specific examples, but we have no proof that this is always the case. In this work,

we pursue a different approach.

7.2 Modifying WN AGT to apply to minimal model conformal blocks

In this work, as in [13, 14], we avoid the ill-defined expressions by restricting the summations

over the N -partitions that appear in the sum (3.1). We start from the original expression

for B p, p′,H
N,n in terms of sums of type (3.1), each of which is a product of building blocks Zι

bb.

We characterize the singularities in Zι
bb that lead to ill-defined expressions, and eliminate

these zero-norm states by restricting the N -partitions that appear in (3.1) to N -partitions
~Y = {Y1, · · · , YN}, that satisfy the conditions N -Burge conditions, which we recall here,

Yi, R − Yi+1, R+si−1 > −ri + 1 (7.1)
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where Yi, R is the R-row of Yi, i = 1, · · · , N , rι and sι are parameters that characterise

the WN irreducible highest weight module that flows in a channel in a minimal model

conformal block, and satisfy equation (2.12), and YN+1 = Y1. Note that we characterise

the Young diagrams that do not lead to zeros, and only these. In other words, the Burge

conditions are sufficient and necessary conditions for the procedure to work. This is the

reason why in section 6, we obtain the correct character expressions.

For N = 2, the N -Burge partitions were introduced in [15], and further studied in [16].

They appeared in full generality in [17], and in the form used in this work in [18]. We

have shown that when used to restrict AGT to compute B p, p′,H
N,n , we obtain the expressions

which we recall here,

B p, p′,H
N,n =

′∑

~Y 1,··· ,~Y n

n+1∏

ι=1

q|
~Y ι|
ι Zι

bb


~P~rι−1 ~sι−1

, ~Y ι−1 | amιnι | ~P~rι ~sι ,
~Y ι


 (7.2)

where
∑′ indicates that the sum is restricted to N -partitions that satisfy the N -Burge

conditions (7.1), which are well-defined expressions that we identify with WN minimal

model conformal blocks, times Heisenberg factors. We check our identification in a non-

trivial case, and show that it produces the correct 0-point conformal blocks on the torus,

in specific cases.

7.3 Related works

1. In [31], Santachiara and Tanzini apply AGT to compute conformal blocks of {r, s} =

{1, 2} and {2, 1} vertex operators in Virasoro minimal models. The ill-defined ex-

pressions were circumvented using an analytic continuation scheme that was tested

to low orders in the combinatorial expansion of the instanton partition functions.

If one can extend the analytic continuation scheme used in [31] to the full instanton

partition functions of the most general conformal blocks, and obtain the same result

as in the present work, then this would amount to a proof that the proposed modified

AGT expression for B p, p′,H
N,n in equation (1.2) is indeed the required minimal model

conformal block up to a Heisenberg factor.

2. In [32], Estienne, Pasquier, Santachiara and Serban study conformal blocks of vertex

operators such that r1 = 2, and ri = 1, i = 2, · · · , N − 1, and si = 1, i = 1, · · · , N ,

or ri = 1, i = 1, · · · , N , s1 = 2, and si = 1, i = 2, · · · , N − 1. in W p,p′

N ⊕H minimal

models. From the null-state conditions of these vertex operators, Estienne et al. show

that these specific conformal blocks are labeled by N -partitions that satisfy specific

conditions. While the notation used in [32] is different from that in this work, one

can check, in simple cases, that their N -partitions are equivalent to those that appear

in this work.

3. In [33], Fucito, Morales and Poghossian show that N =2 supersymmetric Yang-Mills

gauge theories on the squashed S4, with rational deformation parameters, are dual

to Virasoro minimal models. Ill-defined expressions are handled using a deformation
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scheme, akin to that used in [31], and rested to low orders in the combinatorial

expansion of the instanton partition functions.

4. In [13, 14], as outlined in section 1, Virasoro minimal model conformal blocks are

derived, via a modification of the AGT prescription, from the instanton partition

functions of N =2 supersymmetric U(2) quiver gauge theories. In [34], the building

block of the instanton partition functions that appeared in [13, 14] is derived by

gluing four copies of refined topological vertices [35] to form the partition function of

a strip geometry, then choosing the gluing parameters and the partitions that label

the unglued external legs of the strip appropriately. In [36], the building block of

the instanton partition function that is used in the present work to generate WN

minimal model conformal block is derived from refined topological vertices, using

vertex operator methods, along the lines of [37, 38].

5. In [43], Fukuda, Nakamura, Matsup and Zhu studied the representation theory of

SHc, the central extension of the degenerate double affine Hecke algebra [6, 26] in

the context of the minimal WN models. They found, among other results, that the

states are labelled by N -partitions that satisfy the N -Burge conditions discussed in

this work.

7.4 Open problems

1. This work may be regarded as an attempt to understand WN minimal model confor-

mal blocks, that is, expectation values of degenerate WN vertex operators, in 2D con-

formal field theories, in terms of instanton partition functions in 4D

N = 2 supersymmetric gauge theories. However, the meaning of the choice of gauge

theory parameters that lead to minimal WN theories, as well the interpretation of the

N -Burge conditions at the level of 4D gauge theories remains unclear. One way to

address these issues is to use the interpretation of the 2D degenerate vertex operators

in terms of 4D surface operators along the lines of [39, 40], where the expectation

value of an elementary surface operator, in a 4D N = 2 supersymmetric gauge theory,

is shown to be equal to the expectation value of vertex operators in a 2D Liouville

conformal field theory, in the presence of a degenerate vertex operator of type O2,1(z).

The literature on the 2D degenerate vertex operator/4D surface operator connection

is extensive, and beyond the limited scope of this work, see [41] for a review. But we

expect that the adaptation of 2D degenerate operator/4D surface operator connection

to AGT in the context of minimal models will help clarify the issues outlined above.

2. In the present work, we have restricted our attention to WN conformal blocks that

satisfy the FLW conditions of subsection 1.3. In [42], Gomis and LeFloch propose

that one can obtain WN Toda conformal blocks that are expectation values of ver-

tex operators that include degenerate WN vertex operators that do not satisfy the

FLW conditions, in addition to non-degenerate vertex operators, and interpret the

degenerate operators at the gauge theory level as surface operator insertions. More

precisely, the proposal of Gomis and LeFloch is that one can obtain the degenerate
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vertex operator insertions that do not satisfy the FLW conditions by starting from

vertex operators insertions that satisfy the conditions, then bringing the latter to-

gether in a form of operator product expansion. While formally plausible, it is not

clear to us at this stage whether the proposal of Gomis and LeFloch leads to tractable

results along the lines of the WN AGT results presented in this work.
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