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Abstract
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1 Introduction
There are a lot of generalizations of the concept of metric space. The concepts of b-metric
space and partial metric space were introduced by Czerwik [] and Matthews [], respec-
tively. Combining these two notions, Shukla [] introduced another generalization which
is called a partial b-metric space. Also, in [], Mustafa et al. introduced a modified version
of partial b-metric spaces. In fact, the advantage of their definition of partial b-metric is
that by using it one can define a dependent b-metric which is called the b-metric associ-
ated with the partial b-metric.

Definition . [] Let X be a (nonempty) set and s ≥  be a given real number. A function
pb : X × X → R

+ is a partial b-metric if, for all x, y, z ∈ X, the following conditions are
satisfied:

(pb) x = y⇐⇒ pb(x,x) = pb(x, y) = pb(y, y),
(pb) pb(x,x)≤ pb(x, y),
(pb) pb(x, y) = pb(y,x),
(pb) pb(x, y)≤ s(pb(x, z) + pb(z, y) – pb(z, z)) + ( –s )(pb(x,x) + pb(y, y)).

The pair (X,pb) is called a partial b-metric space.

Example . [] Let X =R
+, q >  be a constant, and pb : X ×X →R

+ be defined by

pb(x, y) =
[
max{x, y}]q + |x – y|q for all x, y ∈ X.
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Then (X,pb) is a partial b-metric space with the coefficient s = q– > , but it is neither a
b-metric nor a partial metric space.

Some more examples of partial b-metrics can be constructed with the help of following
propositions.

Proposition . [] Let X be a nonempty set and let p be a partial metric and d be a
b-metric with the coefficient s ≥  on X. Then the function pb : X × X → R

+ defined by
pb(x, y) = p(x, y) + d(x, y), for all x, y ∈ X, is a partial b-metric on X with the coefficient s.

Proposition . [] Let (X,p) be a partial metric space and q ≥ .Then (X,pb) is a partial
b-metric space with the coefficient s = q–, where pb is defined by pb(x, y) = [p(x, y)]q.

Proposition . [] Every partial b-metric pb defines a b-metric dpb , where

dpb (x, y) = pb(x, y) – pb(x,x) – pb(y, y)

for all x, y ∈ X.

Now, we recall some definitions and propositions in a partial b-metric space.

Definition . [] Let (X,pb) be a partial b-metric space. Then for an x ∈ X and an ε > ,
the pb-ball with center x and radius ε is

Bpb (x, ε) =
{
y ∈ X | pb(x, y) < pb(x,x) + ε

}
.

Proposition . [] Let (X,pb) be a partial b-metric space, x ∈ X, and r > . If y ∈ Bpb (x, r)
then there exists a δ >  such that Bpb (y, δ) ⊆ Bpb (x, r).

Thus, from the above proposition the family of all pb-balls

� =
{
Bpb (x, r) | x ∈ X, r > 

}

is a base of a T topology τpb on X which we call the pb-metric topology.
The topological space (X,pb) is T, but it does not need to be T.

Definition . [] A sequence {xn} in a partial b-metric space (X,pb) is said to be:
(i) pb-convergent to a point x ∈ X if limn→∞ pb(x,xn) = pb(x,x).
(ii) A pb-Cauchy sequence if limn,m→∞ pb(xn,xm) exists (and is finite).
(iii) A partial b-metric space (X,pb) is said to be pb-complete if every pb-Cauchy

sequence {xn} in X pb-converges to a point x ∈ X such that
limn,m→∞ pb(xn,xm) = limn,m→∞ pb(xn,x) = pb(x,x).

Lemma . []
() A sequence {xn} is a pb-Cauchy sequence in a partial b-metric space (X,pb) if and

only if it is a b-Cauchy sequence in the b-metric space (X,dpb ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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() A partial b-metric space (X,pb) is pb-complete if and only if the b-metric space
(X,dpb ) is b-complete.Moreover, limn→∞ dpb (x,xn) =  if and only if

lim
n→∞pb(x,xn) = lim

n,m→∞pb(xn,xm) = pb(x,x).

Definition . [] Let (X,pb) and (X ′,p′
b) be two partial b-metric spaces and let f :

(X,pb) → (X ′,p′
b) be a mapping. Then f is said to be pb-continuous at a point a ∈ X if

for a given ε > , there exists δ >  such that x ∈ X and pb(a,x) < δ + pb(a,a) imply that
p′
b(f (a), f (x)) < ε+p′

b(f (a), f (a)). Themapping f is pb-continuous onX if it is pb-continuous
at all a ∈ X.

Proposition . [] Let (X,pb) and (X ′,p′
b) be two partial b-metric spaces. Then a map-

ping f : X → X ′ is pb-continuous at a point x ∈ X if and only if it is pb-sequentially contin-
uous at x; that is, whenever {xn} is pb-convergent to x, {f (xn)} is p′

b-convergent to f (x).

Definition . A triple (X,�,pb) is called an ordered partial b-metric space if (X,�) is a
partially ordered set and pb is a partial b-metric on X.

The following crucial lemma is useful in proving our main results.

Lemma . [] Let (X,pb) be a partial b-metric space with the coefficient s >  and sup-
pose that {xn} and {yn} are convergent to x and y, respectively. Then we have


s
pb(x, y) –


s
pb(x,x) – pb(y, y) ≤ lim inf

n→∞ pb(xn, yn)≤ lim sup
n→∞

pb(xn, yn)

≤ spb(x,x) + spb(y, y) + spb(x, y).

In particular, if pb(x, y) = , then we have limn→∞ pb(xn, yn) = .
Moreover, for each z ∈ X we have


s
pb(x, z) – pb(x,x)≤ lim inf

n→∞ pb(xn, z) ≤ lim sup
n→∞

pb(xn, z)

≤ spb(x, z) + spb(x,x).

In particular, if pb(x,x) = , then we have


s
pb(x, z) ≤ lim inf

n→∞ pb(xn, z) ≤ lim sup
n→∞

pb(xn, z) ≤ spb(x, z).

One of the interesting generalizations of the Banach contraction principle was given by
Kirk et al. [] in  by introducing the notion of cyclic representation.

Definition . [] Let A and B be nonempty subsets of a metric space (X,d) and T :
A∪ B→ A∪ B. Then T is called a cyclic map if T(A) ⊆ B and T(B) ⊆ A.

The following interesting theorem for a cyclic map was given in [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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Theorem . [] Let A and B be nonempty closed subsets of a complete metric space
(X,d). Suppose that T : A∪ B → A∪ B is a cyclic map such that

d(Tx,Ty) ≤ kd(x, y)

for all x ∈ A and y ∈ B, where k ∈ [, ) is a constant. Then T has a unique fixed point u
and u ∈ A∩ B.

Berinde initiated in [, ] the concept of almost contractions and obtained several inter-
esting fixed point theorems for Ćirić strong almost contractions. Babu et al. introduced
in [] the class of mappings which satisfy ‘condition (B)’. Moreover, they proved the exis-
tence of fixed points for such mappings on complete metric spaces. Finally, Ćirić et al. in
[], and Aghajani et al. in [] introduced the concept of almost generalized contractive
conditions (for two, resp. four mappings) and proved some important results in ordered
metric spaces. Let us recall one of these definitions.

Definition . [] Let f and g be two self-mappings on a metric space (X,d). They are
said to satisfy almost generalized contractive condition, if there exist a constant δ ∈ (, )
and some L ≥  such that

d(fx, gy)≤ δmax

{
d(x, y),d(x, fx),d(y, gy),

d(x, gy) + d(y, fx)


}

+ Lmin
{
d(x, fx),d(y, gy),d(x, gy),d(y, fx)

}
,

for all x, y ∈ X.

Definition . [] A function ϕ : [,∞)→ [,∞) is called an altering distance function,
if the following properties hold:
() ϕ is continuous and nondecreasing.
() ϕ(t) =  if and only if t = .

Definition . [] Let (X,�) be a partially ordered set and A and B be closed subsets
of X with X = A∪ B. Let f , g : X → X be two mappings. The pair (f , g) is said to be (A,B)-
weakly increasing if fx � gfx, for all x ∈ A and gy � fgy, for all y ∈ B.

In [], Hussain et al. introduced the notion of ordered cyclic weakly (ψ ,ϕ,L,A,B)-
contractive pair of self-mappings as follows.

Definition . [] Let (X,�,d) be an ordered b-metric space, let f , g : X → X be two
mappings, and let A and B be nonempty closed subsets of X. The pair (f , g) is called an
ordered cyclic weakly (ψ ,ϕ,L,A,B)-contraction if
() X = A∪ B is a cyclic representation of X w.r.t. the pair (f , g); that is, fA ⊆ B and

gB ⊆ A;
() there exist two altering distance functions ψ , ϕ and a constant L ≥ , such that for

arbitrary comparable elements x, y ∈ X with x ∈ A and y ∈ B, we have

ψ
(
sd(fx, gy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
+ Lψ

(
N(x, y)

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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where

Ms(x, y) =max

{
d(x, y),d(x, fx),d(y, gy),

d(x, gy) + d(y, fx)
s

}

and

N(x, y) =min
{
d(x, fx),d(y, gy),d(x, gy),d(y, fx)

}
.

Also, in [] the authors proved the following results.

Theorem . [] Let (X,�,d) be a complete ordered b-metric space and A and B be
closed subsets of X. Let f , g : X → X be two (A,B)-weakly increasing mappings with respect
to �. Suppose that:
(a) the pair (f , g) is an ordered cyclic weakly (ψ ,ϕ,L,A,B)-contraction;
(b) f or g is continuous.
Then f and g have a common fixed point u ∈ A∩ B.

An ordered b-metric space (X,�,d) is called regular if for any nondecreasing sequence
{xn} in X such that xn → x ∈ X, as n→ ∞, one has xn � x for all n ∈N.

Theorem . [] Let the hypotheses of Theorem . be satisfied, except that condition
(b) is replaced by the assumption

(b′) the space (X,�,d) is regular.

Then f and g have a common fixed point in X.

In this paper, first we prove some fixed point results for α-admissible mappings in the
context of partial b-metric spaces. Then we express some common fixed point results for
cyclic generalized almost contractive mappings. Our results extend and generalize some
recent results in [] and []. In fact, they are cyclic variants of the results in [].

2 Fixed point results via α-admissible mappings in partial b-metric spaces
Samet et al. [] defined the notion of α-admissible mappings and proved the following
result.

Definition . [] Let T be a self-mapping on X and α : X × X → [,∞) be a function.
We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y)≥  �⇒ α(Tx,Ty)≥ .

Denote by 
 ′ the family of all nondecreasing functions ψ : [,∞) → [,∞) such that∑∞
n= ψ

n(t) < ∞ for all t > , where ψn is the nth iterate of ψ .

Theorem . [] Let (X,d) be a complete metric space and T be an α-admissible map-
ping. Assume that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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where ψ ∈ 
 ′. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x,Tx) ≥ ;
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥  for all

n ∈N∪ {} such that xn → x as n→ ∞, we have α(xn,x)≥  for all n ∈ N∪ {}.
Then T has a fixed point.

We now recall the concept of (c)-comparison functionwhich was introduced by Berinde
[].

Definition. (Berinde []) A function ϕ : [,∞)→ [,∞) is said to be a (c)-comparison
function if

(c) ϕ is increasing,
(c) there exist k ∈ N, a ∈ (, ), and a convergent series of nonnegative terms

∑∞
k= vk

such that ϕk+(t) ≤ aϕk(t) + vk , for k ≥ k and any t ∈ [,∞).

Later, Berinde [] introduced the notion of (b)-comparison function as a generalization
of a (c)-comparison function.

Definition . (Berinde []) Let s ≥  be a real number. A mapping ϕ : [,∞) → [,∞)
is called a (b)-comparison function if the following conditions are fulfilled:
() ϕ is monotone increasing;
() there exist k ∈N, a ∈ (, ), and a convergent series of nonnegative terms

∑∞
k= vk

such that sk+ϕk+(t) ≤ askϕk(t) + vk , for k ≥ k and any t ∈ [,∞).

Let 
b be the class of (b)-comparison functions ϕ : [,∞) → [,∞). It is clear that the
notion of (b)-comparison function coincides with (c)-comparison function for s = .
We now recall the following lemma, which will simplify the proofs.

Lemma . (Berinde []) If ϕ : [,∞) → [,∞) is a (b)-comparison function, then we
have the following.
() the series

∑∞
k= skϕk(t) converges for any t ∈R+;

() the function bs : [,∞)→ [,∞), defined by bs(t) =
∑∞

k= skϕk(t), t ∈ [,∞), is
increasing and continuous at .

Theorem . Let (X,pb) be a pb-complete partial b-metric space, f be a continuous α-
admissible mapping on X, there exists x ∈ X such that α(x, fx) ≥  and if any sequence
{xn} in X pb-converges to a point x, where α(xn,xn+) ≥  for all n, then we have α(x,x)≥ .
Assume that

sα(x, y)pb(fx, fy) ≤ ψ
(
Ms(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ 
b and

Ms(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),

d(x, fy) + d(fx, y)
s

}
.

Then f has a fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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Proof Let x ∈ X be such that α(x, fx) ≥ . Define a sequence {xn} by xn = f nx for all
n ∈ N. Since f is an α-admissible mapping and α(x,x) = α(x, fx) ≥ , we deduce that
α(x,x) = α(fx, fx) ≥ . Continuing this process, we get that α(xn,xn+) ≥  for all n ∈
N∪ {}.
Now, we will finish the proof in the following steps.
First, we prove that

pb(xn,xn+) ≤ ψ
(
pb(xn–,xn)

)
, (.)

for each n = , , , . . . .
If xn = xn+, for some n ∈ N, then xn = fxn. Thus, xn is a fixed point of f . Therefore, we

assume that xn �= xn+, for all n ∈N.
Using condition (.) as α(xn–,xn) ≥  for all n ∈N∪ {}, we obtain

spb(xn,xn+) ≤ sα(xn–,xn)pb(fxn–, fxn) ≤ ψ
(
Ms(xn–,xn)

)
.

Here,

Ms(xn–,xn)

=max

{
pb(xn–,xn),pb(xn–, fxn–),pb(xn, fxn),


s

[
pb(xn–, fxn) + pb(xn, fxn–)

]}

=max

{
pb(xn–,xn),pb(xn–,xn),pb(xn,xn+),


s

[
pb(xn–,xn+) + pb(xn,xn)

]}

≤ max
{
pb(xn–,xn),pb(xn,xn+)

}
.

If pb(xn,xn+) ≥ pb(xn–,xn), then

Ms(xn–,xn) ≤ pb(xn,xn+),

which yields

spb(xn,xn+) ≤ ψ
(
pb(xn,xn+)

)
< pb(xn,xn+),

a contradiction.
Hence,

pb(xn,xn+) ≤ ψ
(
pb(xn–,xn)

)
.

So (.) holds.
By induction, we get

pb(xn,xn+) ≤ ψ
(
pb(xn–,xn)

)
≤ ψ(pb(xn–,xn–)) ≤ · · · ≤ ψn(pb(x,x)). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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Then, by the triangular inequality and (.), we get

pb(xn,xm) ≤ spb(xn,xn+) + spb(xn+,xn+) + · · · + sm–n–pb(xm–,xm)

≤
m–∑
k=n

sk–n+ψk(pb(x,x))

≤
∞∑
k=n

skψk(pb(x,x)) −→ ,

as n−→ ∞.
Since {xn} is a pb-Cauchy sequence in the pb-complete partial b-metric space X, from

Lemma ., {xn} is a b-Cauchy sequence in the b-metric space (X,dpb ). pb-Completeness
of (X,pb) shows that (X,dpb ) is also b-complete. Then there exists z ∈ X such that

lim
n→∞dpb (xn, z) = . (.)

Since limm,n→∞ pb(xn,xm) = , from Lemma .

lim
n→∞pb(xn, z) = lim

m,n→∞pb(xn,xm) = pb(z, z) = . (.)

From the continuity of f we have

lim
n→∞pb(xn+, fz) = pb(fz, fz)

and hence we get

pb(z, fz) ≤ lim
n→∞ spb(z,xn+) + lim

n→∞ spb(xn+, fz) = spb(fz, fz).

So, we get pb(z, fz) ≤ spb(fz, fz). As α(z, z) ≥ , we have

pb(z, fz) ≤ sα(z, z)pb(fz, fz) ≤ ψ

(
max

{
pb(z, z),pb(z, fz),pb(z, fz),

pb(z, fz) + pb(fz, z)
s

})
.

Hence, pb(z, fz) ≤ ψ(pb(z, fz)). Thus, pb(z, fz) = , that is, z = fz. �

In Theorem ., we omit the continuity of the mapping f and we replace α(xn,x) ≥ 
instead of α(x,x)≥  and rearrange it as follows.

Theorem. Let (X,pb) be a pb-complete partial b-metric space and f be an α-admissible
mapping on X such that

sα(x, y)pb(fx, fy) ≤ ψ
(
Ms(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ 
b. Assume that the following conditions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x as n→ ∞,

then α(xn,x)≥  for all n ∈ N∪ {}.
Then f has a fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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Proof Let x ∈ X be such that α(x, fx) ≥  and define a sequence {xn} in X by xn =
f nx = fxn– for all n ∈ N. Following the proof of Theorem ., we have α(xn,xn+) ≥ 
for all n ∈ N ∪ {} and there exists z ∈ X such that xn → z as n → ∞ which pb(z, z) = .
Hence, from (ii) we deduce that α(xn, z) ≥  for all n ∈ N ∪ {}. Therefore, by (.), we
obtain

spb(fz,xn+)≤ sα(xn, z)pb(fz, fxn) ≤ ψ
(
Ms(z,xn)

)
.

Here,

Ms(z,xn) =max

{
pb(z,xn),pb(z, fz),pb(xn, fxn),


s

[
pb(z, fxn) + pb(xn, fz)

]}

=max

{
pb(z,xn),pb(z, fz),pb(xn,xn+),


s

[
pb(z,xn+) + pb(xn, fz)

]}
.

Taking the upper limit as n → ∞ in the above inequality from Lemma . we ob-
tain

s
[

s
pb(fz, z)

]
≤ s lim sup

n
pb(fz, fxn) ≤ ψ

(
lim sup

n
Ms(z,xn)

)
≤ ψ

(
pb(z, fz)

)
,

which implies that z = fz. �

Definition . [] Let f : X → X and α : X × X → R. We say that f is a triangular α-
admissible mapping if
(T) α(x, y)≥  implies α(fx, fy)≥ , x, y ∈ X ,
(T)

{
α(x, z) ≥ 
α(z, y) ≥  implies α(x, y)≥ , x, y, z ∈ X .

Example . [] LetX =R, fx = √x, and α(x, y) = ex–y, then f is a triangular α-admissible
mapping. Indeed, if α(x, y) = ex–y ≥ , then x ≥ y which implies that fx ≥ fy, that is,
α(fx, fy) = efx–fy ≥ . Also, if

{
α(x, z) ≥ 
α(z, y) ≥  , then

{ x – z ≥ 
z – y ≥  , that is, x – y ≥  and therefore α(x, y) =

ex–y ≥ .

Example . [] Let X = R, fx = ex , and α(x, y) = √x – y + . Hence, f is a triangular
α-admissible mapping. Indeed, if α(x, y) = √x – y +  ≥  then x ≥ y which implies that
fx ≥ fy, that is, α(fx, fy) ≥ .
Moreover, if

{
α(x, z) ≥ 
α(z, y) ≥  , then x – y≥  and hence α(x, y)≥ .

Example . [] Let X = [,∞), fx = x + ln(x + ), and

α(x, y) =
x

 + x
–

y

y + 
+ .

Then f is a triangular α-admissible mapping. In fact, if

α(x, y) =
x

 + x
–

y

y + 
+  ≥ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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then x ≥ y. Hence, fx ≥ fy, that is, α(fx, fy) ≥ . Also,

α(x, z) + α(z, y) =
x

 + x
–

z

z + 
+  +

z

 + z
–

y

y + 
+ 

=
x

 + x
–

y

y + 
+ ≤ 

(
x

 + x
–

y

y + 
+ 

)
= α(x, y).

Thus, α(x, z) + α(z, y) ≤ α(x, y). Now, if
{

α(x, z) ≥ 
α(z, y) ≥  , then α(x, y)≥ .

Example . [] Let X =R, fx = x + √x, and α(x, y) = x – y + . Then f is a triangular
α-admissible mapping.

Lemma . [] Let f be a triangular α-admissible mapping. Assume that there exists
x ∈ X such that α(x, fx) ≥ . Define the sequence {xn} by xn = f nx. Then

α(xm,xn) ≥  for all m,n ∈N with m < n.

A mapping ψ : [,∞) → [,∞) is called a comparison function if it is increasing and
ψn(t)→ , as n→ ∞ for any t ∈ [,∞).

Lemma . (Berinde [], Rus []) If ψ : [,∞) → [,∞) is a comparison function,
then:
() each iterate ψk of ψ , k ≥ , is also a comparison function;
() ψ is continuous at ;
() ψ(t) < t, for any t > .

Denote by 
 the family of all continuous comparison functions ψ : [,∞) → [,∞).
In the sequel, ψ ∈ 
 , α : X ×X → [,∞) is a function and

Ms(x, y) =max

{
pb(x, y),pb(x, fx),pb(y, fy),


s

[
pb(x, fy) + pb(y, fx)

]}
.

Theorem . Let (X,pb) be a pb-complete partial b-metric space, f be a continuous tri-
angular α-admissible mapping on X, there exists x ∈ X such that α(x, fx)≥  and if any
sequence {xn} in X pb-converges to a point x, where α(xn,xn+) ≥  for all n, then we have
α(x,x)≥ . Assume that

sα(x, y)pb(fx, fy) ≤ ψ
(
Ms(x, y)

)
(.)

for all x, y ∈ X. Then f has a fixed point.

Proof Let x ∈ X be such that α(x, fx) ≥ . Define a sequence {xn} by xn = f nx for all
n ∈ N. Since f is an α-admissible mapping and α(x,x) = α(x, fx) ≥ , we deduce that
α(x,x) = α(fx, fx) ≥ . Continuing this process, we get α(xn,xn+) ≥  for all n ∈N∪{}.
Now, we will finish the proof in the following steps.
Step I. We will prove that

lim
n→∞pb(xn,xn+) = .
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First, we prove that

pb(xn,xn+) ≤ ψ
(
pb(xn–,xn)

)
, (.)

for each n = , , , . . . .
If xn = xn+, for some n ∈ N, then xn = fxn. Thus, xn is a fixed point of f . Therefore, we

assume that xn �= xn+, for all n ∈N.
Using condition (.) as α(xn–,xn) ≥  for all n ∈N∪ {}, we obtain

spb(xn,xn+) ≤ sα(xn–,xn)pb(fxn–, fxn) ≤ ψ
(
Ms(xn–,xn)

)
.

Here,

Ms(xn–,xn)

=max

{
pb(xn–,xn),pb(xn–, fxn–),pb(xn, fxn),


s

[
pb(xn–, fxn) + pb(xn, fxn–)

]}

=max

{
pb(xn–,xn),pb(xn–,xn),pb(xn,xn+),


s

[
pb(xn–,xn+) + pb(xn,xn)

]}

≤ max
{
pb(xn–,xn),pb(xn,xn+)

}
.

If pb(xn,xn+) ≥ pb(xn–,xn), then

Ms(xn–,xn) ≤ pb(xn,xn+),

which yields

spb(xn,xn+) ≤ ψ
(
pb(xn,xn+)

)
< pb(xn,xn+),

a contradiction.
Hence,

pb(xn,xn+) ≤ ψ
(
pb(xn–,xn)

)
.

So (.) holds.
By induction, we get

pb(xn,xn+) ≤ ψ
(
pb(xn–,xn)

) ≤ ψ(pb(xn–,xn–)) ≤ · · · ≤ ψn(pb(x,x)). (.)

As ψ ∈ 
 , we conclude that

lim
n→∞pb(xn,xn+) = . (.)

So by (pb) we get

lim
n→∞pb(xn,xn) = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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Step II. We will show that {xn} is a pb-Cauchy sequence in X. For this, we have to show
that {xn} is a b-Cauchy sequence in (X,dpb ) (see Lemma .). Suppose the contrary; that
is, {xn} is not a b-Cauchy sequence. Then there exists ε >  for which we can find two
subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni >mi > i and dpb (xmi ,xni )≥ ε. (.)

This means that

dpb (xmi ,xni–) < ε. (.)

From (.) and using the triangular inequality, we get

ε ≤ dpb (xmi ,xni ) ≤ sdpb (xmi ,xni–) + sdpb (xni–,xni ).

Using (.), (.), and from the definition of dpb and (.), and taking the upper limit
as i→ ∞, we get

ε

s
≤ lim sup

i→∞
dpb (xmi ,xni–) ≤ ε. (.)

Also,

ε ≤ lim inf
i→∞ dpb (xmi ,xni )≤ lim sup

i→∞
dpb (xmi ,xni ) ≤ sε. (.)

Further,

ε

s
≤ lim sup

i→∞
dpb (xmi+,xni ) ≤ sε (.)

and

lim sup
i→∞

dpb (xmi+,xni–)≤ sε. (.)

On the other hand, by the definition of dpb and (.)

lim sup
i→∞

dpb (xmi ,xni–) =  lim sup
i→∞

pb(xmi ,xni–).

Hence, by (.),

ε

s
≤ lim sup

i→∞
pb(xmi ,xni–) ≤

ε


. (.)

Similarly,

ε


≤ lim inf

i→∞ pb(xmi ,xni )≤ lim sup
i→∞

pb(xmi ,xni ) ≤
sε

, (.)

ε

s
≤ lim sup

i→∞
pb(xmi+,xni ) ≤

sε


, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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and

lim sup
i→∞

pb(xmi+,xni–)≤
sε

. (.)

From (.) and Lemma . as α(xmi ,xni–) ≥ , we have

spb(xmi+,xni ) ≤ sα(xmi ,xni–)pb(fxmi , fxni–) ≤ ψ
(
Ms(xmi ,xni–)

)
, (.)

where

Ms(xmi ,xni–) = max

{
pb(xmi ,xni–),pb(xmi , fxmi ),pb(xni–, fxni–),

pb(xmi , fxni–) + pb(fxmi ,xni–)
s

}

= max

{
pb(xmi ,xni–),pb(xmi ,xmi+),pb(xni–,xni ),

pb(xmi ,xni ) + pb(xmi+,xni–)
s

}
. (.)

Taking the upper limit as i → ∞ in (.) and using (.), (.), (.), and (.), we
get

lim sup
i→∞

Ms(xmi ,xni–) = max

{
lim sup
i→∞

pb(xmi ,xni–), , ,

lim supi→∞ pb(xmi ,xni ) + lim supi→∞ pb(xmi+,xni–)
s

}

≤ max

{
ε


,

εs+εs

s

}
=

ε


. (.)

Now, taking the upper limit as i→ ∞ in (.) and using (.) and (.), we have

s
ε

s
≤ s lim sup

i→∞
pb(xmi+,xni )≤ ψ

(
lim sup
i→∞

Ms(xmi ,xni–)
)
<

ε


,

a contradiction.
Step III. There exists z such that fz = z.
Since {xn} is a pb-Cauchy sequence in the pb-complete partial b-metric space X, from

Lemma ., {xn} is a b-Cauchy sequence in the b-metric space (X,dpb ). pb-Completeness
of (X,pb) shows that (X,dpb ) is also b-complete. Then there exists z ∈ X such that

lim
n→∞dpb (xn, z) = . (.)

Since limm,n→∞ dpb (xn,xm) = , from the definition of dpb and (.), we get

lim
m,n→∞pb(xn,xm) = .

Again, from Lemma .,

lim
n→∞pb(z,xn) = lim

m,n→∞pb(xn,xm) = pb(z, z) = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/345
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From the continuity of f we have

lim
n→∞pb(xn+, fz) = pb(fz, fz)

and hence we get

pb(z, fz) ≤ lim
n→∞ spb(z,xn+) + lim

n→∞ spb(xn+, fz) = spb(fz, fz).

So, we get pb(z, fz) ≤ spb(fz, fz). As α(z, z) ≥ , we have

pb(z, fz) ≤ sα(z, z)pb(fz, fz)

≤ ψ

(
max

{
pb(z, z),pb(z, fz),pb(z, fz),

pb(z, fz) + pb(fz, z)
s

})
.

Hence, pb(z, fz) ≤ ψ(pb(z, fz)). Thus, pb(z, fz) = , that is, z = fz. �

If in Theorem . we take α(x, y) =  then we deduce the following corollary.

Corollary . Let (X,pb) be a pb-complete partial b-metric space and f be a continuous
mapping on X. Assume that

spb(fx, fy) ≤ ψ
(
Ms(x, y)

)
(.)

for all x, y ∈ X. Then f has a fixed point.

In Theorem ., we omit the continuity of the mapping f and we replace α(xn,x) ≥ 
instead of α(x,x)≥  and rearrange it as follows.

Theorem . Let (X,pb) be a pb-complete partial b-metric space and f be a triangular
α-admissible mapping on X such that

sα(x, y)pb(fx, fy) ≤ ψ
(
Ms(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ 
 . Assume that the following conditions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x as n→ ∞,

then α(xn,x)≥  for all n ∈ N∪ {}.
Then f has a fixed point.

Proof Let x ∈ X be such that α(x, fx) ≥  and define a sequence {xn} in X by xn = f nx =
fxn– for all n ∈ N. Following the proof of Theorem ., we have α(xn,xn+) ≥  for all
n ∈ N ∪ {} and there exists z ∈ X such that xn → z as n → ∞ which pb(z, z) = . Hence,
from (ii) we deduce that α(xn, z) ≥  for all n ∈N∪ {}. Therefore, by (.), we obtain

spb(fz,xn+)≤ sα(xn, z)pb(fz, fxn) ≤ ψ
(
Ms(z,xn)

)
.
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Here,

Ms(z,xn) =max

{
pb(z,xn),pb(z, fz),pb(xn, fxn),


s

[
pb(z, fxn) + pb(xn, fz)

]}

=max

{
pb(z,xn),pb(z, fz),pb(xn,xn+),


s

[
pb(z,xn+) + pb(xn, fz)

]}
.

Taking the upper limit as n → ∞ in the above inequality from Lemma . we obtain

s
[

s
pb(fz, z)

]
≤ s lim sup

n
pb(fz, fxn) ≤ ψ

(
lim sup

n
Ms(z,xn)

)
≤ ψ

(
pb(z, fz)

)
,

which implies that z = fz. �

Example . Let X = [, ] and pb(x, y) = |x – y| be a pb-metric on X. Define f : X → X
by fx = ln( x + ) and α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
, if (x, y) ∈ [,  ]× [,  ],

, otherwise,

and ψ(t) = t
 for all t ∈ [,∞). Now, we prove that all the hypotheses of Theorem . are

satisfied and hence f has a fixed point.
First, we see that (X,pb) is a pb-complete partial b-metric space. Let x, y ∈ X. If α(x, y)≥

, then x, y ∈ [,  ]. On the other hand, for all x ∈ [, ], we have fx ≤ x
 ≤ 

 and hence
α(fx, fy) = . This implies that f is a triangular α-admissible mapping on X. Obviously,
α(, f ) = .
Now, if {xn} is a sequence in X such that α(xn,xn+) =  for all n ∈ N∪ {} and xn → x as

n→ ∞, it is easy to see that α(xn,x) = .
Using the Mean Value Theorem for the function fx = ln( x + ) for any x, y ∈ X, we have

sα(x, y)pb(fx, fy) ≤ spb(fx, fy) = |fx – fy|

= 
∣∣∣∣ln

(
x

+ 

)
– ln

(
y

+ 

)∣∣∣∣


≤ 

|x – y| = ψ

(
pb(x, y)

) ≤ ψ
(
Ms(x, y)

)
.

Thus, all the conditions of Theorem . are satisfied and therefore f has a fixed point
(z = ).

3 Common fixed points of generalized almost cyclic weakly
(ψ ,ϕ,L,A,B)-contractivemappings

In this section, we consider the notion of ordered cyclic weakly (ψ ,ϕ,L,A,B)-contractions
in the setup of ordered partial b-metric spaces and then obtain some common fixed point
theorems for these cyclic contractions in the setup of complete ordered partial b-metric
spaces. Our results extend some fixed point theorems from the framework of ordered
metric spaces and ordered b-metric spaces, in particular Theorems . and ..
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We shall call an ordered partial b-metric space (X,�,pb) regular if for any nonde-
creasing sequence {xn} in X such that xn → x ∈ X, as n → ∞, one has xn � x, for all
n ∈N.

Definition . Let (X,�,pb) be an ordered partial b-metric space, let f , g : X → X be two
mappings, and let A and B be nonempty closed subsets of X. The pair (f , g) is called an
ordered cyclic almost generalized weakly (ψ ,ϕ,L,A,B)-contraction if
() X = A∪ B is a cyclic representation of X w.r.t. the pair (f , g); that is, fA ⊆ B and

gB ⊆ A;
() there exist two altering distance functions ψ , ϕ and a constant L ≥ , such that for

arbitrary comparable elements x, y ∈ X with x ∈ A and y ∈ B, we have

ψ
(
spb(fx, gy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
+ Lψ

(
N(x, y)

)
, (.)

where

Ms(x, y) =max

{
pb(x, y),pb(x, fx),pb(y, gy),

pb(x, gy) + pb(y, fx)
s

}
(.)

and

N(x, y) =min
{
dpb (x, fx),dpb (x, gy),dpb (y, fx),dpb (y, gy)

}
. (.)

Theorem . Let (X,�,pb) be a pb-complete ordered partial b-metric space and A and B
be two nonempty closed subsets of X. Let f , g : X → X be two (A,B)-weakly increasing map-
pings with respect to �. Suppose that the pair (f , g) is an ordered cyclic almost generalized
weakly (ψ ,ϕ,L,A,B)-contraction. Then f and g have a common fixed point z ∈ A∩ B.

Proof First, note that u ∈ A ∩ B is a fixed point of f if and only if u is a fixed point of g .
Indeed, suppose that u is a fixed point of f . As u � u and u ∈ A∩ B, by (.), we have

ψ
(
spb(u, gu)

)
= ψ

(
spb(fu, gu)

)

≤ ψ

(
max

{
pb(u,u),pb(u, fu),pb(u, gu),


s

(
pb(u, gu) + pb(u, fu)

)})

– ϕ

(
max

{
pb(u,u),pb(u, fu),pb(u, gu),


s

(
pb(u, gu) + pb(u, fu)

)})

+ Lmin
{
dpb (u, gu),dpb (u, fu)

}
= ψ

(
pb(u, gu)

)
– ϕ

(
pb(u, gu)

)
≤ ψ

(
spb(u, gu)

)
– ϕ

(
pb(u, gu)

)
.

It follows that ϕ(pb(u, gu)) = . Therefore, pb(u, gu) =  and hence gu = u. Similarly, we can
show that if u is a fixed point of g , then u is a fixed point of f .
Let x ∈ A and let x = fx. Since fA ⊆ B, we have x ∈ B. Also, let x = gx. Since gB ⊆ A,

we have x ∈ A. Continuing this process, we can construct a sequence {xn} in X such that
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xn+ = fxn, xn+ = gxn+, xn ∈ A and xn+ ∈ B. Since f and g are (A,B)-weakly increasing,
we have

x = fx � gfx = x = gx � fgx = x � · · · � xn+ = fxn � gfxn = xn+ � · · · .

If xn = xn+, for some n ∈ N, then xn = fxn. Thus xn is a fixed point of f . By the first
part of the proof, we conclude that xn is also a fixed point of g . Similarly, if xn+ = xn+,
for some n ∈N, then xn+ = gxn+. Thus, xn+ is a fixed point of g . By the first part of the
proof, we conclude that xn+ is also a fixed point of f . Therefore, we assume that xn �= xn+,
for all n ∈N. Now, we complete the proof in the following steps.
Step . We will prove that

lim
n→∞pb(xn,xn+) = .

As xn and xn+ are comparable and xn ∈ A and xn+ ∈ B, by (.), we have

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
spb(xn+,xn+)

)
= ψ

(
spb(fxn, gxn+)

)
≤ ψ

(
Ms(xn,xn+)

)
– ϕ

(
Ms(xn,xn+)

)
+ Lψ

(
N(xn,xn+)

)
,

where

Ms(xn,xn+) = max

{
pb(xn,xn+),pb(xn, fxn),pb(xn+, gxn+),

pb(fxn,xn+) + pb(xn, gxn+)
s

}

= max

{
pb(xn,xn+),pb(xn+,xn+),

pb(xn+,xn+) + pb(xn,xn+)
s

}

≤ max

{
pb(xn,xn+),pb(xn+,xn+),

s[pb(xn,xn+) + pb(xn+,xn+)]
s

}

= max
{
pb(xn,xn+),pb(xn+,xn+)

}

and

N(xn,xn+) =min
{
dpb (xn, fxn),dpb (xn, gxn+),dpb (xn+, fxn),dpb (xn+, gxn+)

}
=min

{
dpb (xn,xn+),dpb (xn,xn+),dpb (xn+,xn+),dpb (xn+,xn+)

}
= .

Hence, we have

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
max

{
pb(xn,xn+),pb(xn+,xn+)

})
– ϕ

(
max

{
pb(xn,xn+),pb(xn+,xn+)

})
. (.)
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If

max
{
pb(xn,xn+),pb(xn+,xn+)

}
= pb(xn+,xn+),

then (.) becomes

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
pb(xn+,xn+)

)
– ϕ

(
pb(xn+,xn+)

)
< ψ

(
pb(xn+,xn+)

)
,

which gives a contradiction. So,

max
{
pb(xn,xn+),pb(xn+,xn+)

}
= pb(xn,xn+)

and hence (.) becomes

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
pb(xn,xn+)

)
– ϕ

(
pb(xn,xn+)

)
< ψ

(
pb(xn,xn+)

)
. (.)

Similarly, we can show that

ψ
(
pb(xn+,xn)

)
< ψ

(
pb(xn,xn–)

)
. (.)

By (.) and (.), we see that {d(xn,xn+) : n ∈ N} is a nonincreasing sequence of positive
numbers. Hence, there is r ≥  such that

lim
n→∞pb(xn,xn+) = r.

Letting n → ∞ in (.), we get

ψ(r)≤ ψ(r) – ϕ(r),

which implies that ϕ(r) =  and hence r = . So, we have

lim
n→∞pb(xn,xn+) = . (.)

Step . We will prove that {xn} is a pb-Cauchy sequence. Because of (.), it is sufficient
to show that {xn} is a pb-Cauchy sequence. By Lemma ., we should show that {xn} is
b-Cauchy in (X,dpb ). Suppose the contrary, i.e., that {xn} is not a b-Cauchy sequence in
(X,dpb ). Then there exists ε >  for which we can find two subsequences {xmi} and {xni}
of {xn} such that ni is the smallest index for which

ni >mi > i and dpb (xmi ,xni ) ≥ ε. (.)

This means that

dpb (xmi ,xni–) < ε. (.)
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From (.) and using the triangular inequality, we get

ε ≤ dpb (xmi ,xni )≤ sdpb (xmi ,xmi+) + sdpb (xmi+,xni ).

Using (.) and from the definition of dpb and taking the upper limit as i→ ∞, we get

ε

s
≤ lim sup

i→∞
dpb (xmi+,xni ). (.)

On the other hand, we have

dpb (xmi ,xni–) ≤ sdpb (xmi ,xni–) + sdpb (xni–,xni–).

Using (.), (.), and taking the upper limit as i→ ∞, we get

lim sup
i→∞

dpb (xmi ,xni–) ≤ εs. (.)

Again, using the triangular inequality, we have

dpb (xmi ,xni ) ≤ sdpb (xmi ,xni–) + sdpb (xni–,xni )

≤ sdpb (xmi ,xni–) + sdpb (xni–,xni–) + sdpb (xni–,xni )

and

dpb (xmi+,xni–) ≤ sdpb (xmi+,xmi ) + sdpb (xmi ,xni–).

Taking the upper limit as i→ ∞ in the above inequalities, and using (.), (.), and (.)
we get

lim sup
i→∞

dpb (xmi ,xni ) ≤ εs (.)

and

lim sup
i→∞

dpb (xmi+,xni–) ≤ εs. (.)

From the definition of dpb and (.), (.), (.), (.), and (.) we have the following
relations:

ε

s
≤ lim inf

i→∞ pb(xmi+,xni ), (.)

lim sup
i→∞

pb(xmi ,xni–) ≤
sε

, (.)

lim sup
i→∞

pb(xmi ,xni )≤
sε

, (.)

lim sup
i→∞

pb(xmi+,xni–) ≤
sε


. (.)
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Since xmi ∈ A and xni– ∈ B are comparable, using (.) we have

ψ
(
spb(xmi+,xni )

)
= ψ

(
spb(fxmi , gxni–)

)
≤ ψ

(
Ms(xmi ,xni–)

)
– ϕ

(
Ms(xmi ,xni–)

)
+ Lψ

(
N(xmi ,xni–)

)
, (.)

where

Ms(xmi ,xni–) = max

{
pb(xmi ,xni–),pb(xmi ,xmi+),pb(xni–,xni ),

pb(xmi ,xni ) + pb(xmi+,xni–)
s

}
(.)

and

N(xmi ,xni–) = min
{
dpb (xmi , fxmi ),dpb (xmi , gxni–),dpb (xni–, fxmi ),

dpb (xni–, gxni–)
}

= min
{
dpb (xmi ,xmi+),dpb (xmi ,xni ),dpb (xni–,xmi+),

dpb (xni–,xni )
}
. (.)

Taking the upper limit in (.) and (.), and using (.) and (.)-(.), we get

lim sup
i→∞

Ms(xmi ,xni–) = max

{
lim sup
i→∞

pb(xmi ,xni–), , ,

lim supi→∞ pb(xmi ,xni ) + lim supi→∞ pb(xmi+,xni–)
s

}

≤ max

{
sε

,

εs+εs

s

}
=
sε


(.)

and

lim sup
i→∞

N(xmi ,xni–) = . (.)

Now, taking the upper limit as i→ ∞ in (.) and using (.), (.), and (.), we have

ψ

(
sε


)
= ψ

(
s

ε

s

)
≤ ψ

(
s lim sup

i→∞
pb(xmi+,xni )

)

≤ ψ
(
lim sup
i→∞

Ms(xmi ,xni–)
)
– ϕ

(
lim inf
i→∞ Ms(xmi ,xni–)

)

≤ ψ

(
sε


)
– ϕ

(
lim inf
i→∞ Ms(xmi ,xni–)

)
,

which implies that ϕ(lim infi→∞ Ms(xmi ,xni–)) = . By (.), it follows that

lim inf
i→∞ pb(xmi ,xni ) = ,
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which is in contradictionwith (.). Thus, we have proved that {xn} is a b-Cauchy sequence
in the metric space (X,dpb ). Since (X,pb) is pb-complete, from Lemma ., (X,dpb ) is a b-
complete b-metric space. Therefore, the sequence {xn} converges to some z ∈ X, that is,
limn→∞ dpb (xn, z) = . Since limm,n→∞ dpb (xn,xm) = , from the definition of dpb and (.),
we get

lim
m,n→∞pb(xn,xm) = .

Again, from Lemma .,

lim
n→∞pb(z,xn) = lim

m,n→∞pb(xn,xm) = pb(z, z) = .

Step . In the above steps, we constructed an increasing sequence {xn} in X such that
xn → z, for some z ∈ X. As A and B are closed subsets of X, we have z ∈ A ∩ B. Using the
regularity assumption on X, we have xn � z, for all n ∈ N. Now, we show that fz = gz = z.
By (.), we have

ψ
(
spb(xn+, gz)

)
= ψ

(
spb(fxn, gz)

)
≤ ψ

(
Ms(xn, z)

)
– ϕ

(
Ms(xn, z)

)
+ Lψ

(
N(xn, z)

)
, (.)

where

Ms(xn, z) =max

{
pb(xn, z),pb(xn, fxn),pb(z, gz),

pb(xn, gz) + pb(fxn, z)
s

}

=max

{
pb(xn, z),pb(xn,xn+),pb(z, gz),

pb(xn, gz) + pb(xn+, z)
s

}
(.)

and

N(xn, z) =min
{
dpb (xn, fxn),dpb (z, gz),dpb (z, fxn),dpb (xn, gz)

}
=min

{
dpb (xn,xn+),dpb (z, gz),dpb (z,xn+),dpb (xn, gz)

}
. (.)

Letting n → ∞ in (.) and (.), and using Lemma ., we get

lim sup
i→∞

Ms(xn, z) ≤ max

{
pb(z, gz),

spb(z, gz)
s

}
= pb(z, gz), (.)

andN(xn, z) → . Now, taking the upper limit as n→ ∞ in (.), and using Lemma .
and (.) we get

ψ
(
spb(z, gz)

)
= ψ

(
s

s
pb(z, gz)

)
≤ ψ

(
s lim sup

n→∞
pb(xn+, gz)

)

≤ ψ
(
lim sup
n→∞

Ms(xn, z)
)
– ϕ

(
lim inf
n→∞ Ms(xn, z)

)

≤ ψ
(
spb(z, gz)

)
– ϕ

(
lim inf
n→∞ Ms(xn, z)

)
.
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It follows that ϕ(lim infn→∞ Ms(xn, z)) = , and hence, by (.), that pb(z, gz) = . Thus, z
is a fixed point of g . On the other hand, from the first part of the proof, fz = z. Hence, z is
a common fixed point of f and g . �

Theorem . Let (X,�,pb) be a pb-complete ordered partial b-metric space and A and B
be nonempty closed subsets of X. Let f , g : X → X be two (A,B)-weakly increasing mappings
with respect to �. Suppose that

ψ
(
spb(fx, gy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
. (.)

Also, let f and g be continuous. Then f and g have a common fixed point z ∈ A∩ B.

Proof Repeating the proof of Theorem ., we construct an increasing sequence {xn} in X
such that xn → z, for some z ∈ X. As A and B are closed subsets of X, we have z ∈ A ∩ B.
Now, we show that fz = gz = z.
Using the triangular inequality, we get

pb(z, fz) ≤ spb(z, fxn) + spb(fxn, fz)

and

pb(z, gz) ≤ spb(z, gxn+) + spb(gxn+, gz).

Letting n → ∞ and using continuity of f and g , we get

pb(z, fz) ≤ s lim
n→∞pb(z, fxn) + s lim

n→∞pb(fxn, fz) = spb(fz, fz),

pb(z, gz) ≤ s lim
n→∞pb(z, gxn+) + s lim

n→∞pb(gxn+, gz) = spb(gz, gz).

Therefore,

max
{
pb(z, fz),pb(z, gz)

} ≤ max
{
spb(fz, fz), spb(gz, gz)

} ≤ spb(gz, fz). (.)

From (.) as z ∈ A∩ B, we have

ψ
(
spb(fz, gz)

) ≤ ψ
(
Ms(z, z)

)
– ϕ

(
Ms(z, z)

)
, (.)

where

Ms(z, z) =max

{
pb(z, z),pb(z, fz),pb(z, gz),

pb(z, gz) + pb(z, fz)
s

}

=max
{
pb(z, fz),pb(z, gz)

}
.

As ψ is nondecreasing, we have spb(fz, gz) ≤ max{pb(z, fz),pb(z, gz)}. Hence, by (.)
we obtain spb(fz, gz) = max{pb(z, fz),pb(z, gz)}. But then, using (.), we get ϕ(Ms(z,
z)) = . Thus, we have fz = gz = z and z is a common fixed point of f and g . �
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As consequences, we have the following results.
By putting A = B = X in Theorems . and . and L =  in Theorem ., we obtain the

main results (Theorems  and ) of Mustafa et al. [].
Taking ϕ = ( – δ)ψ ,  < δ <  in Theorem ., we get the following.

Corollary . Let (X,�,pb) be a pb-complete ordered partial b-metric space and A and
B be closed subsets of X. Let f , g : X → X be two (A,B)-weakly increasing mappings with
respect to �. Suppose that:

(a) X = A∪ B is a cyclic representation of X w.r.t. the pair (f , g);
(b) there exist  < δ < , L ≥ , and an altering distance function ψ such that for any com-

parable elements x, y ∈ X with x ∈ A and y ∈ B, we have

ψ
(
spb(fx, gy)

) ≤ δψ
(
Ms(x, y)

)
+ Lψ

(
N(x, y)

)
, (.)

where Ms(x, y) and N(x, y) are given by (.) and (.), respectively;
(c) f and g are continuous, or
(c′) the space (X,�,pb) is regular.

Then f and g have a common fixed point z ∈ A∩ B.

Taking s =  and L =  in Corollary ., we obtain the partial version of Theorems .
and . of Shatanawi and Postolache [].
In Definitions . and . and Theorems . and ., if we take f = g , then we have the

following definitions and results.

Definition . Let (X,�) be a partially ordered set and A and B be closed subsets of X
with X = A ∪ B. The mapping f : X → X is said to be (A,B)-weakly increasing if fx � f x,
for all x ∈ A and fy� f y, for all y ∈ B.

Definition . Let (X,�,pb) be an ordered partial b-metric space, let f : X → X be a
mapping, and let A and B be nonempty closed subsets of X. The mapping f is called an
ordered cyclic almost generalized weakly (ψ ,ϕ,L,A,B)-contraction if
() X = A∪ B is a cyclic representation of X w.r.t. f ; that is, fA ⊆ B and fB ⊆ A;
() there exist two altering distance functions ψ , ϕ and a constant L ≥ , such that for

arbitrary comparable elements x, y ∈ X with x ∈ A and y ∈ B, we have

ψ
(
spb(fx, fy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
+ Lψ

(
N(x, y)

)
,

where

Ms(x, y) =max

{
pb(x, y),pb(x, fx),pb(y, fy),

pb(x, fy) + pb(y, fx)
s

}

and

N(x, y) =min
{
dpb (x, fx),dpb (x, fy),dpb (y, fx),dpb (y, fy)

}
.
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Corollary . Let (X,�,pb) be a pb-complete ordered partial b-metric space and A and B
be two nonempty closed subsets of X. Let f : X → X be a (A,B)-weakly increasing mapping
with respect to�. Suppose that themapping f is an ordered cyclic almost generalizedweakly
(ψ ,ϕ,L,A,B)-contraction. Then f has a fixed point z ∈ A∩ B.

Corollary . Let (X,�,pb) be a pb-complete ordered partial b-metric space and A and B
be nonempty closed subsets of X. Let f : X → X be a (A,B)-weakly increasing mapping with
respect to �. Suppose that

ψ
(
spb(fx, fy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
.

Also, let f be continuous. Then f has a fixed point z ∈ A∩ B.

We illustrate our results with the following example.

Example . Consider the partial b-metric space X = [, ] by pb(x, y) = [max{x, y}]. De-
fine an order � on X by

x � y ⇐⇒ x = y∨ (
x, y ∈ [, ]∧ x ≥ y

)
.

Obviously, (X,�,pb) is a pb-complete ordered pb-metric space. Indeed, if we have
limn,m→∞ pb(xn,xm) = u, for some u ∈ [,∞), then we have

lim
m,n→∞

(
max{xn,xm}) = u �⇒ max

{(
lim
n→∞xn

)
,
(
lim

m→∞xm
)}

= u

�⇒
(
lim
n→∞xn

)
=

(
lim

m→∞xm
)

= u.

So, we have limn→∞ xn =
√
u, which convergence holds in the case of the usualmetric inX.

Now, it is easy to see that limn,m→∞ pb(xn,xm) = limn→∞ pb(xn,
√
u) = pb(

√
u,

√
u) = u.

Let f : X → X be given by

fx =

⎧⎨
⎩

x
(+x) , x ∈ [, ],
x
 , x > ,

ψ(t) = t and ϕ(t) = 
 t for all t ∈ [,∞). Also, let A = [, ] and B = [, ]. In order to check

the conditions of Corollary ., take x, y ∈ X such that x � y and consider the following
two possible cases.
◦ x ≤ . Then obviously also y≤  and x≥ y. It is easy to check that

pb(fx, fy) = 
[
max

{
x

( + x)
,

y

( + y)

}]

= 
[

x

( + x)

]

= 
[

x
( + x)

· x
]

≤ 
[
x


]

=


pb(x, y)

≤ Ms(x, y) – ϕ
(
Ms(x, y)

)
.
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◦ x > . Then x = y >  and

pb(fx, fy) = 
[
max

{
x

,
y


}]

= 
[
y


]

=


pb(x, y)

≤ pb(x, y)

≤ Ms(x, y) – ϕ
(
Ms(x, y)

)
.

Hence, all the conditions of Corollary . are satisfied and f has a fixed point (which is
z = ).
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