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Abstract 

Background: Studies to identify markers associated with beef tenderness have focused on Warner–Bratzler shear 
force (WBSF) but the interplay between the genes associated with WBSF has not been explored. We used the associa‑
tion weight matrix (AWM), a systems biology approach, to identify a set of interacting genes that are co‑associated 
with tenderness and other meat quality traits, and shared across the Charolaise, Limousine and Blonde d’Aquitaine 
beef cattle breeds.

Results: Genome‑wide association studies were performed using ~500K single nucleotide polymorphisms (SNPs) 
and 17 phenotypes measured on more than 1000 animals for each breed. First, this multi‑trait approach was applied 
separately for each breed across 17 phenotypes and second, between‑ and across‑breed comparisons at the AWM 
and functional levels were performed. Genetic heterogeneity was observed, and most of the variants that were 
associated with WBSF segregated within rather than across breeds. We identified 206 common candidate genes 
associated with WBSF across the three breeds. SNPs in these common genes explained between 28 and 30 % of 
the phenotypic variance for WBSF. A reduced number of common SNPs mapping to the 206 common genes were 
identified, suggesting that different mutations may target the same genes in a breed‑specific manner. Therefore, it is 
likely that, depending on allele frequencies and linkage disequilibrium patterns, a SNP that is identified for one breed 
may not be informative for another unrelated breed. Well‑known candidate genes affecting beef tenderness were 
identified. In addition, some of the 206 common genes are located within previously reported quantitative trait loci 
for WBSF in several cattle breeds. Moreover, the multi‑breed co‑association analysis detected new candidate genes, 
regulators and metabolic pathways that are likely involved in the determination of meat tenderness and other meat 
quality traits in beef cattle.

Conclusions: Our results suggest that systems biology approaches that explore associations of correlated traits 
increase statistical power to identify candidate genes beyond the one‑dimensional approach. Further studies on the 
206 common genes, their pathways, regulators and interactions will expand our knowledge on the molecular basis 
of meat tenderness and could lead to the discovery of functional mutations useful for genomic selection in a multi‑
breed beef cattle context.
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Background
Ruminant production is of considerable economic value, 
since meat and milk are important agricultural prod-
ucts and major sources of protein for humans. In France, 
beef cattle production mainly uses purebred specialized 
breeds such as the Charolaise, Limousine and Blonde 
d’Aquitaine breeds [1, 2]. As a complex phenotype, beef 
quality is determined by both environmental and genetic 
factors [3–5]. Moreover, different criteria and/or percep-
tions are used to define meat quality: sensory, nutritional, 
technological or hygienic quality. Sensory traits such as 
palatability, juiciness and consumer eating satisfaction 
depend highly on beef tenderness [6]. Several studies 
have focused on Warner–Bratzler shear force (WBSF) 
as a relevant trait to identify genetic markers associated 
with beef tenderness [7–9] and have led to the develop-
ment of a DNA-based commercial test that targets the 
calpain 1 (CAPN1) and calpastatin (CAST) genes. How-
ever, these markers explain only a fraction of the pheno-
typic variance and for some breeds (including the main 
French beef cattle) these tests are not informative [2, 8, 
10].

Currently, there is an emerging consensus about the 
relevance of taking biological information into con-
sideration for genomic selection [11, 12] and thus, it is 
important to identify functional single nucleotide poly-
morphisms (SNPs) to increase the accuracy of genomic 
predictions. System-based approaches have emerged 
as an alternative to study complex traits and to identify 
candidate genes. In this study, we used the association 
weight matrix (AWM), a systems biology approach that 
integrates information of genome-wide association stud-
ies (GWAS) with network inference algorithms, to iden-
tify candidate genes and their regulatory elements that 
could affect phenotype [13, 14]. This multi-trait approach 
was applied to 17 traits to identify a common set of inter-
acting genes associated with meat tenderness and other 
meat quality traits across the Limousine, Charolaise and 
Blonde d’Aquitaine breeds.

Methods
Phenotypic traits, animals and genotypes
We used data resources on three French purebred spe-
cialized beef breeds, Blonde d’Aquitaine (n  =  981), 
Charolaise (n  =  1114) and Limousine (n  =  1254) that 
were previously reported [1]. In brief, 17 traits were col-
lected on young beef bulls: four traits were related to 
muscle conformation, three to carcass fatness, and 10 
to meat quality (Table  1). Most of the young bulls were 
genotyped using the Illumina BovineSNP50 Genotyp-
ing BeadChip, i.e. 947 Blonde d’Aquitaine, 1059 Charo-
laise, and 1219 Limousine. All 114 sires (30, 48 and 36 
for the Blonde d’Aquitaine, Charolaise, and Limousine 

breeds, respectively) were genotyped with the Illumina 
BovineHD BeadChip (777K SNPs). After quality control, 
50K genotypes were imputed to HD within breed using 
the FImpute software [15] and pedigree information. 
Imputation was based on their respective reference pop-
ulations of 672, 462, and 327 sires from the Charolaise, 
Limousine, and Blonde d’Aquitaine breeds, respectively, 
which were chosen based on their marginal contribution 
to the whole population of each breed [16].

Association weight matrix approach and network analyses
After quality control, SNPs with a minor allele frequency 
(MAF) lower than 5  %, SNPs that mapped to the sex 
chromosomes or that were not mapped to the UMD3.1 
bovine genome assembly were excluded. Details regard-
ing models and the fixed effects that were fitted for each 
trait are available in [17]. Fifty-one GWAS were per-
formed (17 traits for each of the three breeds) by single-
trait-single-SNP association analysis, using the option 
mlma of the GCTA software [18] and the following 
model:

where yljm is a vector of performance records adjusted for 
contemporary groups effects; u represents the infinitesi-
mal genetic effect with u ∼N(0,Gσ2

u ); G is the genomic 
relationship matrix (GRM) calculated using the autoso-
mal SNPs based on the methodology of Yang et al. [18], 
with σ2

u representing the additive genetic variance; sl is a 
indicator variable depending on the l-th individual geno-
type for the k-th SNP, ak represents the additive associa-
tion of the kth SNP on the j-th trait, and eljm is a vector of 
random residual effects.

Subsequently, three independent association weight 
matrices (AWM) (one per breed) were built from the 
GWAS results. An AWM is a matrix with rows repre-
sented by genes and columns represented by phenotypes 
[13]. To construct an AWM, two matrices are required 
that both contain row-wise SNPs and column-wise phe-
notypes. The {i,j}th element of the first matrix is equal 
to the p value of the association of the i-th SNP with 
the j-th phenotype. In the second matrix, the {i,j}th ele-
ment is equal to the z-score standardized additive effect 
of the i-th SNP for the j-th phenotype. Warner–Brat-
zler shear force (WBSF) was selected as the key phe-
notype and SNPs that were associated with WBSF (p 
value ≤0.01) were included in the AWM. In the next 
step, the dependency among phenotypes was explored 
by estimating the average number of other phenotypes 
(Ap) that were associated with these SNPs at a p value 
≤ 0.01 (Ap =  2). Subsequently, all SNPs that were asso-
ciated with at least two phenotypes at a p value ≤0.01 
were included in the AWM. To build the AWM, in the 

yljm = ul + slak + eljm,
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next steps we followed the procedure described by Fortes 
et al. [13], which was modified as follows: (1) only SNPs 
within genes or located close to intergenic SNPs (within 
10  kb of the coding region) were selected; and (2) to 
identify putative regulators, in addition to the transcrip-
tion factors (TF) reported by Vaquerizas et al. [19], genes 
that encoded microRNA (miRNA) and long non-coding 
RNA (lnRNA) and that were mapped to the UMD 3.1 
bovine genome assembly (GenBank assembly accession: 
GCA_000003055.3) were also considered in this analysis.

The proportion of the phenotypic variance explained 
by the SNPs was estimated using GCTA through a 
genomic restricted maximum likelihood (GREML) 
approach, as described in the model description. To esti-
mate the variance explained by the AWM-SNPs, a first 
GRM was constructed based only on the SNPs that were 
selected for the AWM. Then, a second GRM was built 
using SNPs that were localized within genes found for 
all three breeds. The same numbers of randomly selected 
SNPs were used to made 10,000 GRM (10,000 replicates), 
to estimate the variance explained by those randomly 
selected SNPs. All these GRM were created for each 
breed.

Hierarchical clustering of traits (AWM columns) 
and genes (AWM rows) was estimated and visualized 
using the ‘hclust’ R function [20]. Significant gene–gene 

interactions (co-associations) were inferred using the 
partial correlation and information theory (PCIT) algo-
rithm [21]. In the network, each node represents a gene, 
whereas each edge that connects two nodes represents 
a significant gene–gene interaction. Cytoscape software 
[22] was used to visualize the gene network and the Cen-
tiScaPe plug-in [23] was used to calculate specific node 
centrality values and network topology parameters.

Identification of key regulators, functional classification 
and pathway analyses
To identify potential regulators of the candidate genes 
across the three breeds, we applied an information loss-
less approach [24] that explored the connectivity of all 
regulators (TF, miRNA and lnRNA) in the network. We 
also used the iRegulonv1.3 Cytoscape plugin [25] to in 
silico identify TF binding site motifs in the cis-regulatory 
elements that were shared among the identified common 
candidate genes. Gene functional classification and path-
way analyses were performed using Ingenuity Pathways 
Analysis software (IPA; Ingenuity Systems, Redwood 
City, CA). Over-represented gene ontology (GO) terms 
were identified using ClueGO, Cytoscape plug-in [26]. 
The cut-off for considering a significant over-representa-
tion was established by Benjamini and Hochberg multi-
ple-test correction [27] (p value ≤0.05).

Table 1 Description and summary statistics for the 17 traits analyzed in the three breeds

a Average reciprocal ultra‑sound speeds measured on the back, just behind the shoulder and at the 3rd lumbar [57]

Trait Acronym Blonde d’Aquitaine Charolaise Limousine

N Mean SD N Mean SD N Mean SD

Muscle conformation related traits

Live muscle score (/100) LMS 981 58.5 10.0 1114 62.0 11.4 1254 59.5 11.5

Carcass muscle score (/18) CMS 981 10.9 1.4 1114 10.0 1.5 1254 10.9 1.6

Carcass yield (%) CY 981 65.0 1.5 1113 57.7 1.9 1254 62.0 1.3

Rib eye area (cm2) RIBE 978 54.5 7.9 1114 53.4 8.9 1252 49.2 6.7

Carcass fatness related traits

Internal cavity fat weight (kg) CIFW 980 4.9 1.7 1107 8.7 2.2 1253 7.0 2.0

Dissected 6th rib fat (%) RIB6 981 12.8 2.8 1113 20.4 3.9 1254 17.2 3.0

Velocity of sounda (10−3s/cm) VOS 964 6.253 0.017 990 6.302 0.031 1251 6.288 0.023

Meat quality related traits

Warner–Bratzler shear force (N/cm2) WBSF 977 40.5 11.5 1114 38.1 7.5 1252 41.0 8.4

Tenderness score (/100) TEND 970 61.4 11.2 1113 62.4 8.4 1241 58.7 8.3

Juiciness score (/100) JUIC 970 58.0 9.6 1113 60.0 6.6 1241 56.6 8.1

Flavor score (/100) FLAV 970 75.8 5.5 1113 55.3 5.8 1241 59.6 6.4

Intramuscular lipid content (%) CS 981 0.56 0.38 1114 1.53 0.86 1254 1.18 0.51

Insoluble collagen content (%) CI 871 0.25 0.04 1114 0.30 0.05 1254 0.26 0.04

Muscle fiber section mean area (10−6 mm2) TAMF 971 2863 594 1101 2921 820 1248 2983 686

Rib eye area/muscle fiber area (103) TFIB 968 1989 525 1101 1959 614 1246 1732 449

Muscle lightness La 979 33.1 4.4 1114 34.8 4.6 1253 32.8 4.2
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Results and discussion
Phenotype statistics and GWAS results
We used a systems biology approach to identify candi-
date genes that were co-associated with WBSF and 16 
other phenotypes across the Charolaise, Limousine and 
Blonde d’Aquitaine breeds. Summary statistics, number 
of records available for each trait, and a brief description 
of the 17 traits are in Table  1. GWAS were performed 
for these 17 traits using the BovineHD BeadChip (777K) 
genotypes for each of the three breeds. The results of 
these GWAS served as the basis for the AWM approach 
and other analyses which are discussed below.

Single‑breed analyses
After quality control, 533,604 (Blonde d’Aquitaine), 
539,337 (Limousine) and 543,682 (Charolaise breed) 
informative SNPs remained for analysis. After applying a 
further set of selection criteria (see Methods section), the 
numbers of SNPs that were retained to build the AWM 
were equal to 2339 (Blonde d’Aquitaine), 2331 (Limou-
sine) and 2518 (Charolaise). Cluster distributions were in 
agreement with the physiological similarities and genetic 
correlation among traits (see Additional file 1: Figure S1). 
Hence, a clear separation between WBSF and sensory 
traits such as tenderness sensory score (TEND), juiciness 
sensory score (JUIC) and flavor sensory score (FLAV) was 
observed. Opposite directionality of the estimated addi-
tive values was also observed between WBSF, intramus-
cular composition (IMF), fatness and conformations traits 
(see Additional file 1: Figure S1). In agreement with previ-
ous studies [28], SNPs detected with the AWM approach 
explained between 68 and 74  % of the phenotypic vari-
ance for WBSF (Table 2). Moreover, previously estimated 
genetic correlations agreed moderately well with AWM-
based correlations (see Additional file 2: Table S1).

Breed‑specific candidate genes
Consistent with previous reports [13, 29], which support 
the reliability of our results, relevant biological informa-
tion was captured by the within-breed AWM. SNPs that 
map to well-known candidate genes for tenderness and 
meat quality traits were identified (Table 3). Most of these 
SNPs were breed-specific in agreement with [17]. For 
example, using the AWM approach, we identified genes 
that encode proteins displaying differential abundance in 
the muscle of animals with extreme meat tenderness phe-
notypes [30]. These included for the Charolaise breed: 
phosphoglucomutase 1 (PGM1), stress-induced phospho-
protein 1 (STIP1) and capping protein muscle Z-line, beta 
(CAPZB); for the Blonde d’Aquitaine breed: ankyrin 1 
erythrocytic (ANK1), Ki-67 (MKI67) and myosin regula-
tory light chain 2 skeletal muscle isoform (MYLPF); and 
for the Limousine breed: glutathione S-transferase alpha 

4 and 5 (GSTA4, GSTA5), leptin (LEP) and fatty acid 
binding protein 4 (FABP4).

Breed‑specific networks and regulators
Gene–gene interactions were predicted using PCIT 
[21] and three marker-derived gene networks (one per 
breed) were inferred. Predicted interactions were based 
on partial correlations between SNP effects across traits 
that were detected as significant by the PCIT algorithm. 

Table 2 Proportion of  phenotypic variance explained 
by  SNPs identified with  the AWM approach, by  the 206 
common genes, and by the 206 randomly selected SNPs

Breed AWM SNPs 206 common  
genes

206 random 
SNPs

Limousine 0.74 ± 0.03 0.28 ± 0.03 0.04 ± 0.02

Charolaise 0.68 ± 0.04 0.28 ± 0.03 0.05 ± 0.02

Blonde d’Aquitaine 0.72 ± 0.04 0.30 ± 0.04 0.09 ± 0.03

Table 3 Candidate genes identified for  meat tenderness 
and related meat quality traits by breed and across breeds

Breed Candidate gene

Limousine Glutathione S‑transferase alpha 4 (GSTA4)

Glutathione S‑transferase alpha 5 (GSTA5)

Leptin (LEP)

Fatty acid binding protein 4 (FABP4)

Charolaise Homogentisate 1,2‑dioxygenase (HGD)

Lysyl oxidase (LOX)

Somatostatin (SST)

Phosphoglucomutase 1 (PGM1)

Stress‑induced phosphoprotein 1 (STIP1)

Capping protein muscle Z‑line, beta (CAPZB)

Blonde d’Aquitaine Ankyrin 1 (ANK1)

Ki‑67 (MKI67)

Myosin regulatory light chain 2, skeletal muscle 
isoform (MYLPF)

Transcription termination factor, RNA polymerase I 
(TTF1)

Between two breeds Myostatin (MSTN)

Calpastatin (CAST)

Calpain 5 (CAPN5)

Growth hormone receptor (GHR)

RAR‑related orphan receptor C (RORC)

ArfGAP with SH3 domain, ankyrin repeat and PH 
domain 1 (ASAP1)

Thyroglobulin (TG)

Calpain 1 (CAPN1)

Across‑breeds Collagen type XI alpha 1 (COL11A1)

RAB11 family interacting protein 5 (RAB11FIP5)
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To facilitate a posteriori analysis, network reduc-
tion was applied by considering only correlations that 
were greater than the mean ± 2 × SD in absolute value 
(rBlonded’Aquitaine ≥ 0.83, rCharolaise ≥ 0.84, rLimousine ≥ 0.83). 
Topological parameters were similar across the three 
breeds and the numbers of nodes connected by the largest 
correlations were equal to 2063 nodes connected by 8869 
edges for the Blonde d’Aquitaine breed, 2116 nodes con-
nected by 10,248 edges for the Charolaise breed, and 1979 
nodes connected by 5734 edges for the Limousine breed.

To identify potential regulators, we focused on TF, 
miRNA and lnRNA. In agreement with its relevant 
role as a regulator of muscle cell growth and differen-
tiation, myostatin (MSTN) was identified among the top 
TF for two of the three breeds (Charolaise and Blonde 
d’Aquitaine). Specifically for the Blonde d’Aquitaine 
breed, MSTN co-associated with the largest number of 
traits (eight traits, including WBSF), while MSTN co-
associated with five traits for the Charolaise breed. More-
over, for both these breeds, a co-operative role of MSTN 
with two different miRNA was predicted in the transcrip-
tional regulation of tenderness and meat quality traits: 
bta-mir-488 for Charolaise and ENSBTAG00000037365 
for Blonde d’Aquitaine. Among the top regulators identi-
fied for the Limousine breed, we found the proline, glu-
tamate and leucine rich protein 1 (PELP1) and the cAMP 
responsive element binding protein 3-like 3 (CREB3L3) 
genes. CREB3L3 is a TF that is activated by cyclic AMP 
stimulation and is linked to triglyceride metabolism 
and acute inflammatory response [31]. Interestingly, a 
relationship between acute stress and WBSF has been 
reported in Angus cattle [31]. PELP1 is a member of the 
chromatin remodeling complexes and a coactivator of the 
estrogen receptor and it plays an important role in the 
ER/growth factor cross-talk [32].

Multi‑breed analyses
Beyond identifying within-breed candidate genes, the 
main goal of our study was to identify a common set of 
interacting genes, biological pathways and functions asso-
ciated with meat tenderness and meat quality across the 
three breeds. Therefore, comparisons at the AWM and 
functional levels were performed as follows. At the gene 
level, the AWM approach revealed only a few common 
genes across the three breeds, their number decreasing 
from ~22  % of the total number of genes between two 
breeds to only ~8 % across the three breeds (representing 
206 genes) (Fig. 1a). Previous studies had already reported 
that the number of quantitative trait locus (QTL) regions 
that overlap between bovine breeds is small [33, 34]. It 
should be noted that the number of common SNPs iden-
tified by the AWM approach was very small, ranging 
from 37 to 48 SNPs between two breeds, and not a single 

common SNP was identified when all three breeds were 
compared (see Additional file  3: Figure S2A). This can 
be explained by breed differences in allele frequencies 
and/or linkage disequilibrium (LD) and also by the pos-
sibility of different mutations in the same candidate gene 
between breeds. In agreement with previous reports, 
there was more overlap at the pathway and GO functional 
levels [35]. We found 24 over-represented pathways and 
22 GO terms that were shared between the three breeds 
(see Additional file 3: Figure S2A) and Fig. 1b, including 
biological processes such as cell morphogenesis involved 
in differentiation (GO:0000904), calcium ion transmem-
brane transport (GO:0070588), Rho protein signal trans-
duction (GO:0007266), positive regulation of GTPase 
activity (GO:0043547) and Rac protein signal transduc-
tion (GO:0016601) (see Additional file 4: Table S2).

Across‑breed candidate genes
Among the candidate genes that have been reported to be 
associated with meat quality traits, calpastatin (CAST), 
calpain 5 (CAPN5), growth hormone receptor (GHR), RAR-
related orphan receptor C (RORC), myostatin (MSTN), and 
ArfGAP with SH3 domain, ankyrin repeat and PH domain 
1 (ASAP1) were identified in at least two of the three 
breeds (Table 3), and calpain 1 (CAPN1), collagen type XI 
alpha 1 (COL11A1), and RAB11 family interacting protein 
5 (RAB11FIP5) were identified in all three breeds. The 
estimated proportion of phenotypic variance for WBSF 
explained by the SNPs that mapped to the 206 genes that 
were common across the three breeds ranged from 28 
to 30  % and was significantly larger (p value <0.01) than 
the variance explained by the same number of randomly 
(10,000 replicates) selected SNPs (Table 2; Fig. 2).

To identify other candidate genes, we examined the 
position of each SNP located within the 206 genes against 
the bovine QTL database (http://www.animalgenome.
org/cgi-bin/QTLdb/BT/index). In spite of differences 
in the genetic background of the animals included in 
our study and in the methods used to measure WBSF, 
there were several overlapping QTL for WBSF between 
our study and those previously reported across five tau-
rine cattle breeds [8] (see Additional file  5: Table S3). 
We identified several interesting candidate genes within 
these QTL regions, i.e. the RNA binding motif protein 20 
(RBM20) gene, which is predominantly expressed in stri-
ated muscle and the expression of which correlates with 
sarcomere assembly [36]. Genes involved in adipogenesis 
(EBF1), calcium metabolism (MRVI1, KCNIP4, PCDH7, 
and CUBN), muscle metabolism, growth retardation 
and bone metabolism (WWOX and AKAP6) were also 
observed.

It is interesting to note that 29 % (60/206) of the com-
mon genes that we detected in our multi-breed analysis 

http://www.animalgenome.org/cgi-bin/QTLdb/BT/index
http://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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have been reported to be associated with WBSF in Bra-
zilian Nelore beef cattle using a Bayesian approach [37] 
(see Additional file 6: Table S4) and ~39 % (80/206) of the 
common genes have been reported to be associated with 
intramuscular fat (IMF) deposition in Australian beef 
cattle [38] (see Additional file 7: Table S5). Oury et al. [39] 
reported the existence of a relationship of meat tender-
ness with IMF content, as well as with total and insoluble 
collagen content, glycolytic metabolism and mean cross-
sectional fibre area. IMF explains part of the variability in 
sensory tenderness score of longissimus dorsi muscle in 
beef cattle [4]. In total, 23 genes were common across the 
Brazilian, Australian and French datasets (see Additional 
file 8: Table S6). This overlap of genes and QTL for WBSF 
suggests that some of the identified candidate genes may 
be useful in multi-breed gene-assisted selection pro-
grams for meat tenderness. Further studies to identify the 
functional mutations are warranted.

Key regulators across breeds
Among the 206 genes, 22 were predicted as putative 
regulators (21 TF + 1 miRNA). Analysis of the literature 

showed that some of these 22 putative regulators belong 
to biological pathways and relevant functions that are 
related to muscle development. For example, RAR-related 
orphan receptor A (RORA) encodes a nuclear receptor that 
is essential for the activation of myogenic-specific markers 
and regulates a number of genes involved in lipid metabo-
lism [40, 41]. Zinc finger protein 423 (ZNF423) encodes a 
TF that is involved in metal ion binding and was recently 
reported as a potential candidate gene for skeletal muscle 
growth rate and major cell types in cattle [42]. Regulators 
involved in epigenetic modifications, such as histone dea-
cetylase 4 (HDAC4), were also identified. HDAC4 is asso-
ciated with cell differentiation and tissue development 
and interestingly, it was shown to be involved in muscle 
maturation via an interaction with the myocyte enhancer 
factor [43, 44]. We identified only one microRNA among 
the common regulators, i.e. bta-let-7i, which was initially 
characterized from bovine adipose tissue and mammary 
gland [45]. This microRNA maps to bovine chromosome 
5 (between 51,209,080 and 51,209,164 bp) and, to the best 
of our knowledge, there is no report on an association of 
bta-let-7i with meat quality traits.

Fig. 1 Number of overlapping genes (a) and overlapping GO biological processes (b)
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To detect potential candidate regulators among the 206 
common genes that were identified in our study, we per-
formed in silico identification of enriched TF binding 
motifs and TF with the iRegulon Cytoscape plugin [25]. We 
detected different enriched motifs that can bind directly to 
candidate TF (see Additional file 9: Table S7) such as the 
interferon regulatory factor 1 (IRF1) TF (enriched motif 
ID =  transfac_pro-M00747; NES =  3.860; Targets =  57), 
which was previously identified as a master regulator in the 
bovine skeletal muscle of two beef cattle breeds (Piedmon-
tese x Hereford and Wagyu x Hereford) [46]; the nuclear 
factor of activated T-cells, cytoplasmic, calcineurin-depend-
ent 4 (NFATC4) TF (enriched motif ID  =  transfac_pro-
M01734; NES  =  3.717, Targets  =  50), which encodes a 
member of the nuclear factor of activated T cells (NFAT) 
DNA-binding transcription complex protein family that 
plays an important role in skeletal muscle development and 
growth [47] and in glucose and insulin homeostasis [48]; 
the core-binding factor, beta subunit (CBFB) TF (enriched 
motif ID = hdpi-CBFB; NES = 3.339; Targets = 43), which 
encodes a beta subunit of a heterodimeric PEBP2/CBF TF 
family that regulates genes involved in osteogenesis [49]; 
the serum response factor (SRF) (enriched motif ID = yet-
fasco-145; NES  =  3.295; Targets  =  23), the adenosine 
deaminase, RNA-specific, B1 (ADARB1) (enriched motif 
ID = hdpi-ADARB1; NES = 3.231; Targets = 63) and the 

mex-3 RNA binding family member C (MEX3C) (enriched 
motif ID  =  hdpi-RKHD2; NES  =  3.339; Targets  =  43), 
which play a crucial role in skeletal muscle growth and 
maturation [50], skeletal myogenesis [51], and postnatal 
growth and energy balance regulation [52, 53], respectively. 
Finally, iRegulon identified the GATA binding protein 2 
(GATA2) (NES = 4.887) as an enriched TF that can bind 73 
of the 206 analyzed genes. Interestingly, GATA factors play 
a key role in the regulation of adipogenesis and GATA2 is 
included in the top TF that were detected in a genome-
wide analysis aimed at linking transcriptional and regula-
tory information in bovine skeletal muscle [54].

Implications and conclusions
Consumer eating satisfaction and palatability attributes 
depend highly on meat tenderness and, thus, improve-
ment of meat tenderness is relevant to the beef indus-
try. In this study, we used a systems biology approach to 
explore dependencies among traits, identify pleiotropic 
SNPs, and infer networks of interacting genes that affect 
correlated traits. Genetic heterogeneity among breeds 
was observed and most SNPs were significantly associ-
ated with WBSF within rather than across breeds, with 
only 8  % of the total number of genes revealed by the 
AWM approach found to be co-associated in all three 
breeds. Compared to the within-breed AWM, the com-
mon set of genes explained between 38 and 42 % of the 
phenotypic variance (Table 2). This decrease in % of vari-
ance explained is expected as a consequence of the exclu-
sion of relevant breed-specific variants.

Multivariate approaches that exploit correlations 
between traits have been used, for example in humans, to 
increase the prediction accuracy for schizophrenia, bipo-
lar disorder, and major depressive disorder [55]. Using 
the AWM approach, Snelling et al. [28] reported that the 
accuracy of functionally-informed genomic predictions 
is higher than that of classical genomic predictions for 
beef tenderness. In addition, in agreement with recent 
reports [11], Snelling et  al. [28] underline the impor-
tance of properly choosing the a priori biological infor-
mation to obtain an increase in prediction accuracy. Our 
results also suggest that breed-specific mutations may 
affect differently the same genes. Therefore, it is likely 
that, depending on allele frequencies and LD patterns, 
a marker that is identified to be associated with a trait 
for one breed may not be informative for another breed. 
We hypothesize that for multi-breed programs, strate-
gies that use the LD between markers (such as the use of 
haplotypes), together with functional information, will be 
more accurate for genomic predictions than using func-
tionally-guided single-markers.

We demonstrate that the use of systems biol-
ogy approaches that explore the association between 

Fig. 2 Distribution of the proportion of phenotype variance for WBSF 
explained by 206 randomly selected SNPs in 10,000 replicates. The 
black vertical line represents the proportion of the phenotype vari‑
ance for WBSF explained by the 206 common SNPs identified for the 
Limousine and Charolaise breeds. The green vertical line represents 
the proportion of the phenotype variance for WBSF explained by the 
206 common SNPs identified for the Blonde d’Aquitaine breed
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correlated traits can increase the power to identify candi-
date genes beyond the classical one-dimensional approach 
also in a multi-breed context. However, it is possible that 
other important SNPs for meat tenderness were not cap-
tured by our approach, for example, because their impact 
is breed-specific. In this study, we implemented the AWM 
approach in a cis gene-centered manner. As recently dem-
onstrated by the human ENCODE project, most biologi-
cally meaningful variants are likely to have a regulatory 
function, which suggests that most causative SNPs will 
be non-coding [56]. The same is expected for other spe-
cies, including cattle. Improvement of the functional 
annotation of the bovine genome should facilitate the 
identification of functional mutations. Studies to better 
understand the genetic basis of complex traits is an active 
area of research and a priority to improve the accuracy of 
genomic predictions. In this regard, the use of integrative 
approaches that combine multiple sources of complemen-
tary information (e.g. intermediate phenotypes) could 
improve our understanding of the biological processes 
underlying phenotypes of interest to support technologi-
cal development towards the improvement of beef quality.

Additional files

Additional file 1: Figure S1. Hierarchical cluster analysis for the Lim‑
ousine, Charolaise and Blonde d’Aquitaine breeds. The figure represents 
the distribution of clusters for the 17 traits analyzed on the x‑axis and the 
distribution of clusters for co‑associated genes on the y‑axis. Abbrevia‑
tions for traits are described in Table 1.

Additional file 2: Table S1. Comparison of genetic correlations between 
traits and SNP‑based correlations (777K, AWM and 206 common genes). 
The data summarize the comparison between genetic correlations and 
SNP‑based correlations across the three beef cattle breeds.

Additional file 3: Figure S2. (A) Number of overlapping SNPs. (B) Over‑
lapping pathways. The figure represents the number of overlapping SNPs 
and pathways identified across the three beef cattle breeds.

Additional file 4: Table S2. Description of the 22 common overrepre‑
sented GO biological processes identified across the three breeds.

Additional file 5: Table S3. Description of the genes that overlap with 
the QTL for Warner‑bratzler shear force (WBSF) according to the Cattle 
QTLdb.

Additional file 6: Table S4. List of 60 common genes that are associated 
with WBSF in Brazilian Nelore beef cattle. The data describe the 60 com‑
mon genes that were previously reported to be associated with WBSF in 
Brazilian Nelore beef cattle.

Additional file 7: Table S5. List of 80 common genes that are associated 
with intramuscular fat deposition in Australian beef cattle.

Additional file 8: Table S6. Description of the 23 common genes across 
the Brazilian, Australian and French datasets.

Additional file 9: Table S7. Enriched TF binding motifs and candidate 
TF that can bind these motifs identified by iRegulon (default parameters) 
for the 206 common genes. The data describe the in silico identified TF 
binding sites motifs in the cis‑regulatory elements of the co‑associated 
genes identified across the three breeds. The TF that present a direct motif 
similarity and are functionally related with skeletal muscle development 
are highlighted in black.
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