-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Springer - Publisher Connector

Algorithmica @ CrossMark
DOI 10.1007/s00453-017-0290-8

Solving Problems on Graphs of High Rank-Width

Eduard Eiben! - Robert Ganian'® - Stefan Szeider!

Received: 3 May 2016 / Accepted: 2 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract A modulator in a graph is a vertex set whose deletion places the considered
graph into some specified graph class. The cardinality of a modulator to various graph
classes has long been used as a structural parameter which can be exploited to obtain
fixed-parameter algorithms for a range of hard problems. Here we investigate what
happens when a graph contains a modulator which is large but “well-structured” (in
the sense of having bounded rank-width). Can such modulators still be exploited to
obtain efficient algorithms? And is it even possible to find such modulators efficiently?
We first show that the parameters derived from such well-structured modulators are
more powerful for fixed-parameter algorithms than the cardinality of modulators and
rank-width itself. Then, we develop a fixed-parameter algorithm for finding such well-
structured modulators to every graph class which can be characterized by a finite set
of forbidden induced subgraphs. We proceed by showing how well-structured modu-
lators can be used to obtain efficient parameterized algorithms for MINIMUM VERTEX
COVER and MAXIMUM CLIQUE. Finally, we use the concept of well-structured mod-
ulators to develop an algorithmic meta-theorem for deciding problems expressible in
monadic second order logic, and prove that this result is tight in the sense that it cannot
be generalized to LInEMSO problems.

3 Eduard Eiben
eduard.eiben @gmail.com

B Robert Ganian
rganian @gmail.com

B Stefan Szeider
stefan @szeider.net

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Published online: 13 February 2017 &)\ Springer

https://core.ac.uk/display/81879844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0290-8&domain=pdf
http://orcid.org/0000-0002-7762-8045

Algorithmica

Keywords Fixed-parameter algorithms - Rank-width - Monadic second-order logic -
Parameterized complexity

1 Introduction

Many important graph problems are known to be NP-hard, and yet admit efficient
solutions in practice due to the inherent structure of instances. The parameterized
complexity [16,34] paradigm allows a more refined analysis of the complexity of var-
ious problems and hence enables the design of more efficient algorithms. In particular,
given an instance of size n and a numerical parameter k which captures some property
of the instance, one asks whether the instance can be solved in time f (k) 190 Param-
eterized problems which admit such an algorithm are called fixed-parameter tractable
(FPT), and the algorithms themselves are often called fixed-parameter algorithms.

Given the above, it is natural to ask what kind of structure can be exploited to obtain
fixed-parameter algorithms for a wide range of natural graph problems. There are two
very successful, mutually incomparable approaches which tackle this question.

A: Widthmeasures Treewidth has become an extremely successful structural param-
eter with a wide range of applications in many fields of computer science. However,
treewidth is not suitable for use in dense graphs. This led to the development of
algorithms that use the parameter clique-width [11], which can be viewed as a
relaxation of treewidth towards dense graphs. However, while there are efficient
theoretical algorithms for computing tree decompositions, this is not the case for
decompositions for clique-width. This shortcoming has later been overcome by
the notion of rank-width [35], which improves upon clique-width by allowing the
efficient computation of rank-decompositions while retaining all of the positive
algorithmic results previously obtained for clique-width.

B: Modulators A modulator is a vertex set whose deletion places the considered
graph into some specified graph class. A substantial amount of research has been
placed into finding as well as exploiting small modulators to various graph classes
[3,18]. Popular notions such as vertex cover and feedback vertex set are also special
cases of modulators (to the classes of edgeless graphs and forests, respectively).
One advantage of parameterizing by the size of modulators is that it allows us
to build on the vast array of research of polynomial-time algorithms on specific
graph classes (see, for instance, [10,33]). In other fields of computer science,
modulators are often called backdoors and have been successfully used to obtain
efficient algorithms for, e.g., satisfiability and constraint satisfaction [21,22].

Our primary goal in this paper is to push the boundaries of tractability for a wide range
of problems beyond the state of the art for both of these approaches. We summarize
our contributions below.

1. We introduce a family of “hybrid” parameters that combine approaches A and B.

Given a graph G and a fixed graph class H, the new parameters capture (roughly
speaking) the minimum rank-width of any modulator of G into H. We call this the
well-structure number of G or wan(G). The formal definition of the parameter also
relies on the notion of split decompositions [13] to restrict the edges between the

@ Springer

Algorithmica

modulator and the rest of the graph; it is provided in Sect. 3, where we also prove that
for any graph class H of unbounded rank-width, wsn is not larger and in many cases
much smaller than both rank-width and the size of a modulator to 7.

2. We develop a fixed-parameter algorithm for computing wsn™t.

As with most structural parameters, virtually all algorithmic applications of the
well-structure number rely on having access to an appropriate decomposition. In Sect. 4
we provide a fixed-parameter algorithm for computing the wsn't along with the corre-
sponding decomposition for any graph class H which can be characterized by a finite
set of forbidden induced subgraphs (obstructions). This is achieved by building on the
polynomial algorithm for computing split-decompositions [27] in combination with
the fixed-parameter algorithm for computing rank-width [29].

3. We design fixed-parameter algorithms for Minimum Vertex Cover (MINVC) and
Maximum Clique (MAXCLQ) parameterized by wsn't.

Specifically, in Sect. 5 we show that for any graph class H characterizable by a finite
obstruction set and admitting a polynomial-time algorithm for MINVC or MAXCLQ,
there is a fixed-parameter algorithm solving MINVC or MAXCLQ (respectively) when
parameterized by wsn . We also give an overview of possible choices of H for MINVC
and MAXCLQ.

4. We develop a meta-theorem to obtain fixed-parameter algorithms for problems

definable in monadic second order (MSO) logic [11] parameterized by wsn’?.

The meta-theorem requires that the problem is FPT when parameterized by the
cardinality of a modulator to H. We prove that this condition is not only necessary but
also tight, in the sense that the weaker condition of polynomial-time tractability on H
used for MINVC and MAXCLQ is not sufficient for FPT-time MSO model checking.
Formal statements and proofs can be found in Sect. 6.

5. We show that, in general, solving LinEMSO problems [11,19] is not FPT when
parameterized by wsn™.

In particular, in Sect. 7 we give a proof that these problems remain NP-hard even
on graphs of fixed wsn’t under the same conditions as those used for MSO model
checking. This is somewhat surprising, since the fixed-parameter tractability of MSO
optimization problems usually follows from the methods used for MSO model check-
ing. On the other hand, there are strictly more classes of bounded width for our
parameter than for rank-width and hence one cannot expect that every problem which
is FPT parameterized by rank-width would remain FPT when parameterized by the
well-structure number.

2 Preliminaries
The set of natural numbers (that is, positive integers) will be denoted by N. Fori € N

we write [i] to denote the set {1, ..., i}. If ~ is an equivalence relation over a set A,
then for a € A we use [a]~ to denote the equivalence class containing a.

@ Springer

Algorithmica

2.1 Graphs

We will use standard graph theoretic terminology and notation (cf. [15]). All graphs
we consider are finite, simple and undirected. The non-leaf vertices of a tree are called
its internal nodes. If S is a set of leaves of a tree T, then T(S) denotes the smallest
connected subtree spanning S.

Given a graph G = (V(G), E(G)) and A € V(G), we denote by N (A) the set of
neighbors of A in V(G)\A; if A contains a single vertex v, we use N (v) instead of
N({v}). We use V and E as shorthand for V(G) and E(G), respectively, when the
graph is clear from context. Two vertex sets A, B are overlapping if AN B, A\ B, and
B\ A are all nonempty. G — A denotes the subgraph of G obtained by deleting A.

Given a graph G = (V, E) and a graph class H, aset X C V is called a modulator
to Hif G — X € H. A graph class is called hereditary if it is closed under vertex
deletion. A graph H is an induced subgraph of G if H can be obtained by deleting
vertices (along with all of their incident edges) from G. For A C V(G) we use G[A]
to denote the subgraph of G obtained by deleting V (G)\A. Let F be a finite set of
graphs; then the class of F-free graphs is the class of all graphs which do not contain
any graph in F as an induced subgraph. We will often refer to elements of F as
obstructions, and we say that the class of F-free graphs is characterized by F.

2.2 Fixed-Parameter Tractability

We refer the reader to the standard textbooks [14, 16,34] for an introduction to param-
eterized complexity. A parameterized problem P is a subset of X* x N for some finite
alphabet X. For a problem instance (x, k) € £* x N we call x the main part and
the parameter.

A parameterized problem P is fixed-parameter tractable (FPT in short) if a given
instance (x, k) can be solved in time f (k) - |x |O(1) where f is an arbitrary computable
function of k. Algorithms with running time in this form are called fixed-parameter
algorithms, and we also slightly abuse notaton and refer to this runtime simply as FPT
time.

A parameterized problem P is paraNP-hard if the unparameterized problem cor-
responding to the restriction of P to some constant value of the parameter is NP-hard.
For instance, the classical MINIMUM VERTEX COVER problem parameterized by the
degree of a graph is paraNP-hard, since MINIMUM VERTEX COVER remains NP-hard
even on graphs of degree at most 3.

2.3 Splits and Graph Labeled Trees

The notions and terminology introduced in this subsection play an important role in
particular when formally defining our parameters (Sect. 3) and for computing them
(Sect. 3). The contents of this subsection are based on the original work of Cunningham
[13] as well as on more recent results by several authors [25-27].

@ Springer

Algorithmica

A split of a connected graph G = (V, E) is a vertex bipartition {A, B} of V such
that every vertex of A’ = N(B) has the same neighborhood in B’ = N(A). The sets
A’ and B’ are called frontiers of the split.

A split is said to be non-trivial if both sides have at least two vertices. A connected
graph which does not contain a non-trivial split is called prime. A bipartition is trivial
if one of its parts is the empty set or a singleton. Cliques and stars are called degenerate
graphs; notice that every non-trivial bipartition of their vertices is a split.

Let G = (V, E) be a graph. To simplify our exposition, we will use the notion of
split-modules instead of splits where suitable. A set A C V is called a split-module
of G if there exists a connected component G’ = (V’, E’) of G such that A C V’
and {A, V/\ A} forms a split of G’. Notice that if A is a split-module then A can be
partitioned into A1 and A; such that N(A>) € A and for each vy, vy € Aj itholds that
N(v))N(V'\A) = N(v2)N(V’'\A). For technical reasons, V and ¢ are also considered
split-modules. We say that two disjoint split-modules X, Y C V are adjacent if there
exist x € X and y € Y such that x and y are adjacent.

Our algorithms for computing well-structured modulators will rely on two deep
results related to splits, specifically Theorems 1 and 2. To formally state these theorems,
we will need to introduce a bit of extra notation.

A graph-labeled tree (which can be viewed as a more modern approach to the
previously used split-decompositions) is a pair (T, F), where T is a tree and F is a
set of graphs such that each internal node u of T is labeled by a graph G (u) € F and
there is a bijection between the edges of T incident to u and vertices of G (u). When
clear from the context, we may use u as a shorthand for G(u) € F; for instance, we
use V (u) to denote V(G (u)) and we say that an edge of T incident to u is incident to
the vertex of G (u) mapped to it. Graph-labeled trees were introduced by Gioan and
Paul [25,26], and in the following paragraphs we recall some useful definitions and
facts that also appeared in follow-up work [27].

For an internal node u of T, the vertices of V (i) are called marker vertices and the
edges of E(u) are called label-edges. Edges of T incident to two internal nodes are
called tree-edges. Marker vertices incident to a tree-edge e are called the extremities of
e, and each leaf v is associated with the unique marker vertex ¢ (in the neighbor of v)
mapped to the edge incident to v. Perhaps the most important notion for graph-labeled
trees with respect to split decomposition is that of accessibility.

Definition 1 Let (7, F) be a graph-labeled tree. The marker vertices g and g’ are
accessible from one another if there is a sequence IT of marker vertices ¢, . . ., ¢’ such
that the two following conditions holds.

1. Every two consecutive elements of [T are either the vertices of a label-edge or the
extremities of a tree-edge;

2. the sequence of edges obtained above alternates between tree-edges and label-
edges.

Two leaves are accessible if their associated marker vertices are accessible. The
accessibility graph of a graph-labeled tree (T, F), denoted Gr(T, F), is the graph
whose vertices are leaves of 7 and which has an edge between two distinct leaves [
and !’ if and only if they are accessible from one another. Conversely, we may say that
(T, F) is the graph-labeled tree of Gr(T, F). See Fig. 1 for an example.

@ Springer

Algorithmica

4

8

Fig. 1 A graph-labeled tree (right) and its accessibility graph (left)

Definition 2 ([27]) Let e be a tree-edge incident to internal nodes u and u’ in a graph-
labeled tree, and let g € V(u) and ¢’ € V (u’) be the extremities of e. The node-join
of u, u’ replaces u and u’ with a new internal node v labeled by the graph formed from
the disjoint union of G () and G(u’) as follows: all possible label-edges are added
between N(g) and N(q'), and then g and ¢’ are deleted. The new node v is made
adjacent to all neighbors of u and u’ in T. The node-split is then the inverse of the
node-join.

Notice that the node-join operation and the node-split operation preserve the acces-
sibility graph of the graph-labeled tree. A graph-labeled tree is reduced if all its labels
are either prime or degenerate, and no node-join of two cliques or two stars S and
S> where the center of S| is adjacent to a leaf of S is not possible. It is known that
for every connected graph G, there exists a unique reduced graph-labeled tree (7', F)
such that G = Gr(T, F) [13,25-27]; this unique reduced graph-labeled tree is called
the split-tree and is denoted ST(G).

Theorem 1 ([4,13,25-27]) Let (T, F) be the split-tree of a connected graph G. Every
split of G is the bipartition (of leaves) induced by removing an internal tree-edge from
T', where T' = T or T' is obtained from T by exactly one node-split of a degenerate
node.

Theorem 2 ([9,27]) The split-tree ST(G) of a connected graph G having n vertices
and m edges can be built incrementally in time O((n + m)a(n + m)), where « is the
inverse Ackermann function.

2.4 Rank-Width

Rank-width was introduced by Oum and Seymour [35] and is closely related to clique-
width. To define it, we first need to introduce the bipartite adjacency matrix Ag[U, W1.

For a graph G and U, W C V(G), let Ag[U, W] denote the U x W-submatrix
of the adjacency matrix over the two-element field GF(2), i.e., the entry a , u € U
and w € W, of Ag[U, W]is 1 if and only if {u, w} is an edge of G. The cut-rank
function pg of a graph G is defined as follows: For a bipartition (U, W) of the vertex

@ Springer

Algorithmica

d c
b a (\ sy () /<>
e TERN
1
a e e b

Fig. 2 A rank-decomposition of the cycle Cs

set V(G), pg(U) = pg(W)equalstherank of Ag[U, W]over GF(2). We note that pg
is a symmetric function, and observe that a split-module X can be seen as a subgraph
such that Ag[X, V(G)\X] = 1.

A rank-decomposition of a graph G 1is a pair (7',) where T is a tree of maximum
degree 3 and u : V(G) — {t : tis aleaf of T'} is a bijective function. For an edge e
of T, the connected components of 7 — e induce a bipartition (X, Y) of the set of
leaves of T. The width of an edge e of a rank-decomposition (7', i) is pg (M_l (X)).
The width of (T, u) is the maximum width over all edges of T. The rank-width of
G, rw(G) in short, is the minimum width over all rank-decompositions of G. A graph
class H is of unbounded rank-width if for each i € N there exists a graph G € H such
that rw(G) > i.

An example of a rank-decomposition is provided in Fig. 2.

Theorem 3 ([29]) Let k € N and n > 2. For an n-vertex graph G, we can output a
rank-decomposition of width at most k or confirm that the rank-width of G is larger
than k in time f (k) - n3, where f is a computable function.

2.5 Monadic Second Order Logic on Graphs

Here we introduce monadic second order logic, which will play a crucial role in our
positive (Sect. 6) as well as negative (Sect. 7) algorithmic results.

We assume that we have an infinite supply of individual variables, denoted by lower-
case letters x, y, z, and an infinite supply of set variables, denoted by uppercase letters
X, Y, Z. Formulas of monadic second-order logic (MSO) are constructed from atomic
formulas E'(x, y), X (x), and x = y using the connectives — (negation), A (conjunc-
tion) and existential quantification 3x over individual variables as well as existential
quantification 3X over set variables. Individual variables range over vertices, and set
variables range over sets of vertices. The atomic formula E (x, y) expresses adjacency,
x =y expresses equality, and X (x) expresses that the vertex x is in the set X. From
this, we define the semantics of monadic second-order logic in the standard way (this
logic is sometimes called MSOy).

Free and bound variables of a formula are defined in the usual way. A sentence is a
formula without free variables. We write ¢ (X1, ..., X,) to indicate that the set of free
variables of formula ¢ is { X1, ..., X,,}.If G = (V, E)isagraphand S1,..., 5, C V
we write G &= ¢(S1,...,S,) to denote that ¢ holds in G if the variables X; are

@ Springer

Algorithmica

interpreted by the sets S;, for i € [n]. For a fixed MSO sentence ¢, the MSO model
checking problem (MSO- MC,,) asks whether an input graph G satisfies G = ¢.

It is known that MSO formulas can be checked in uniformly polynomial time on
graphs of bounded rank-width.

Theorem 4 ([19]) Let ¢ and v = Y (X) be fixed MSO formulas. There exists a
computable function f and an algorithm such that, given an n-vertex graph G and
S C V(G), decides whether G |= ¢ and whether G = ¥ (S) in time f(rw(G)) - n>.

We review MSO-types roughly following the presentation in the textbook by Libkin
[32]. The quantifier rank of an MSO formula ¢ is defined as the nesting depth of
quantifiers in ¢. For non-negative integers g and /, let MSOy ; consist of all MSO
formulas of quantifier rank at most ¢ having at most / free set variables.

Letyp = o(X1,..., X)) and ¥ = ¥ (X1, ..., X;) be MSO formulas. We say ¢ and
Y are equivalent, written ¢ = 1, if for all graphs G and Uy, ..., U; € V(G),G E
Uy, ..., Uy ifandonlyif G = ¥ (Uy, ..., U). Given a set F' of formulas, let F'/=
denote the set of equivalence classes of F with respectto =. A system of representatives
of F/=1isaset R C F such that R N C # @ for each equivalence class C € F/=.
The following statement has a straightforward proof using normal forms (see [32,
Proposition 7.5 and Lemma 3.13] for details).

Fact 1 Let g and | be fixed non-negative integers. The set MSO,, /= is finite, and one
can compute a finite system of representatives of MSOy |/ =.

Note that the system of representatives obtained in this way need not be inclusion-
minimal, and we do not assume to have a mapping from this system of representatives
to elements of MSO,; ; /=. We will assume that for every pair of non-negative integers
q and [the system of representatives of MSO, ; /= given by Fact 1 is fixed.

Definition 3 (MSO Type) Let g, [be non-negative integers. For a graph G and an
[-tuple U of sets of vertices of G, we define MSO-type,, (G, U) as the set of formulas
¢ € MSOy s such that G = ¢(U). We call MSO-type,, (G, U) the MSO g-type of U
inG.

Since we will only be dealing with MSO logic, throughout the paper we will refer
to MSO-types simply as types. It follows from Fact 1 that up to logical equivalence,
every type contains only finitely many formulas. This allows us to represent types
using MSO formulas, as formalized in the next lemma. We remark that the statement
of the next lemma used in previous work [20] did not specify the (“fixed-parameter”)
dependence of the running time on the rank-width, and so here we give a proof of the
lemma for completeness.

Lemma 1 ([20]) Let g and | be non-negative integer constants. Let G be a graph, and
let U be anl-tuple of sets of vertices of G. One can compute a formula ® € MSOy ; such
that for any graph G’ and any l-tuple U’ of sets of vertices of G’ we have G' = @ (U’)
if and only if type, (G, U) = type, (G',U"). Moreover, @ can be computed in time
frw@) - VP,

@ Springer

Algorithmica

Proof Let R be a system of representatives of MSO,; ; /= given by Fact 1. Because ¢
and / are constant, we can consider both the cardinality of R and the time required to
compute it as constants. Let @ € MSO,;; be the formula defined as @ = /\(pE SO AN
/\(peR\S =, where S = {¢ € R | G = ¢(U)}. We can compute @ by deciding
G = ¢(U) for each ¢ € R. Since the number of formulas in R is a constant, this
can be done in time f(rw(G)) - |V|3 (for some computable function f) as checking
whether G satisfied ¢ (U) can be done in time g (rw(G)) - |V|3 (for some computable
function q).

Let G’ be an arbitrary graph and let U’ be an [-tuple of subsets of V (G’). We claim
that type, (G, U) = type,(G', U") if and only if G’ = @ (U"). Since @ € MSO,; the
forward direction is trivial. For the converse, assume type, (G, U) # type,(G',U").
First suppose ¢ € type, (G, U)\type, (G’, U’). The set R is a system of representatives
of MSO,; /=, so there has to be a ¢/ € R such that / = ¢. But G’ |= @(U’) implies
G’ = ¥ (U) by construction of @ and thus G’ = ¢(U’), a contradiction. Now suppose
¢ € type,(G', U)\type, (G, U). An analogous argument proves that there has to be a
¥ € R such that ¥ = ¢ and G’ = —y (U). It follows that G’ = ¢(U’), which again
yields a contradiction. O

The remainder of the section introduces the classical notion of MSO games (Def-
inition 5) and their relation to MSO types (Theorem 5). However, to formally define
MSO games, we first need the notion of partial isomorphism.

Definition 4 (Partial isomorphism)Let G, G’ be graphs,andletV = (Vy, ..., V})and
U= (Uj, ..., U) be tuples of sets of vertices such that V; € V(G) and U; C V(G’)
for each i € [I]. Letv = (vy,...,vy) and u = (uy, ..., u,) be tuples of vertices

such that v; € V(G) and u; € V(G’) for each i € [m]. Then (v, u) defines a partial
isomorphism between (G, V) and (G, U) if the following two conditions hold:

— Forevery i, j € [m],
vi=v; & u; =ujandviv; € E(G) & ujuj € E(G').
— Foreveryi € [m]and j € [I],
vi €V & u; €Uj.

In the definition of MSO games given below, we denote the concatenation of tuple
A by tuple B as A ~ B.

Definition 5 ([32], Definition 7.6) Let G and G’ be graphs, and let V¢ be a k-tuple of
subsets of V(G) and let Uy be a k-tuple of subsets of V(G’). Let g be a non-negative
integer. The g-round MSO game on G and G’ starting from (Vy, Up) is played as
follows. The game proceeds in rounds, and each round consists of one of the following
kinds of moves.

Point move: The Spoiler picks a vertex in either G or G'; the Duplicator responds
by picking a vertex in the other graph.

@ Springer

Algorithmica

Fig. 3 A graph witha
2-well-structured modulator to
K3-free graphs (in the two
shaded areas)

Set move: The Spoiler picks a subset of V (G) or a subset of V (G”); the Duplicator
responds by picking a subset of the vertex set of the other graph.

Letv = (vi,...,u),v; € V(G) andu = (uy,...,un),u; € V(G’) be the point
moves played in the g-round game, and let V. = (V1,..., V), V; € V(G) and U =
(U1, ...,Up),U; € V(G') be the set moves played in the g-round game, so that
| + m = g and moves belonging to same round have the same index. Then the
Duplicator wins the game if (v, u) is a partial isomorphism of (G, Vg —~ V) and
(G’,Up —~ U). If the Duplicator has a winning strategy, we write (G, Vg) EI;’ISO
(G, Uyp).

Theorem 5 ([32], Theorem 7.7) Given two graphs G and G’ and two [-tuples V), Uy
of sets of vertices of G and G’, respectively, we have

type, (G, Vo) = type,(G', Up) < (G, Vo) =17 (G, Up).

3 Well-Structured Modulators

Recall that a modulator to a graph class H is a vertex-subset of a graph G such that
its deletion puts G into H (see Sect. 2.1).

Definition 6 Let 7 be a hereditary graph class and let G be a graph. A set X of
pairwise-disjoint split-modules of G is called a k-well-structured modulator to H if

1. IX| < k, and
2. UX,_ ex Xi is a modulator to H, and
3. rw(G[X;]) <k foreach X; € X.

An example of a 2-well-structured modulator is provided in Figure 3. For the sake
of brevity and when it is clear from the context, we will sometimes identify X with
Ux,ex Xi (for instance G — X is shorthand for G — (Jy, x Xi). To allow a concise
description of our parameters, for any hereditary graph class H we let the well-structure
number (wan in short) denote the minimum k such that G has a k-well-structured
modulator to H. Similarly, we let mod™ (G) denote the minimum k such that G has
a modulator of cardinality & to H.

Proposition 1 Let H be an arbitrary hereditary graph class of unbounded rank-width.

1. rw(G) > wan(G)fOr every graph G. Furthermore, for every i € N there exists
a graph G; such that rw(G;) > wsn(G) + i, and

@ Springer

Algorithmica

2. mod™(G) > wsn™(G) for every graph G. Furthermore, for every i € N there
exists a graph G; such that modH(Gi) > wan(Gi) +1i.

Proof 1. Forrw(G) > wsn™(G) notice that for every graph G of rank-width k, the
set {V(G)} is a k-well-structured modulator to the empty graph. For the second
claim, since H has unbounded rank-width, for every i € N it contains some graph
G, such that rw(G;) > i; by definition, wsn(G;) = 0.

2. For mod™(G) > wsn™(G), let G be a graph containing a modulator X =
{vi,..., vk} to H. It is easy to check that X = {{v1}, ..., {vk}} is a k-well-
structured modulator to H. For the second claim, let G’ ¢ H and let k = rw(G’).
Consider the graph G; consisting of i 4+ 1 + k disjoint copies of G’ and a vertex ¢
which is adjacent to every other vertex of G. Since H is hereditary, we may assume
without loss of generality that it contains the single-vertex graph. It is then easy
to check that {V(G)\{q}} forms a k-well-structured modulator in G to H. Now
consider an arbitrary set X C V(G) of cardinality at most i + k. Clearly, there
must exist some copy of G', say G';, such that X N V(G;) = ¢. Since G, ¢ H,
it follows from the hereditarity of A that G — X ¢ H and hence X cannot be a
modulator to H. We conclude mod™(G;) > i + k =i + wsn'(G;).

O

4 Finding Well-Structured Modulators

The objective of this subsection is to prove the following theorem.

Theorem 6 Let H be a graph class characterized by a finite obstruction set. There
exists a fixed-parameter algorithm parameterized by k which for every input graph
G ceither finds a k-well-structured modulator to 'H, or detects that no such k-well-
structured modulator exists.

Interestingly, the techniques we will use to prove Theorem 6 only work if the rank-
width of the graph is sufficiently large. This is not a problem though, since on graphs
of small rank-width we can always directly use rank-width to find k-well-structured
modulators.

Our first course of action is the statement of several useful properties of splits in
graphs. We remark that for most of this section we will restrict ourselves to connected
graphs, and show how to deal with general graphs later on; this allows us to use the
following result by Cunningham.

Theorem 7 ([13]) Let {A, C}, {B, D} be splits of a connected graph G such that
[ANB|>2and AU B # V(G). Then {AN B, C U D} is a split of G.

Lemma 2 [f A and B are overlapping split-moduleof a connected graph G = (V, E),
then A U B is also a split-module. Moreover, if AU B # V, then also AN B isa
split-module.

Proof If V.= AU B, then A U B is clearly a split-module. So, assume AU B # V
and let C = V\A and D = V\B; note that C U D # V since A, B are overlapping.
We make the following exhaustive case distinction:

@ Springer

Algorithmica

—if|]ANB|=1and |CND|=1,thenboth AN Band AU B = V\(C N D) are
easily seen to be split-modules;

— if |JANB| >2and |C N D| =1, then AN B is a split-module by Theorem 7 and
A U B is also a split-module because C N D is a split-module;

—if [JANB| = 1land |C N D| > 2, then A N B is a split-module and A U B is
also a split-module because C, D satisfy the conditions of Theorem 7 and hence
C N D = V\(AU B) forms a split-module;

— if |[ANB| > 2and |C N D| > 2, then A N B is a split-module by Theorem 7 and
AU B is also a split-module because C, D satisfy the conditions of Theorem 7, as
in the previous case.

O

Lemma3 Let G = (V, E) be a connected graph and A, B be overlapping split-
modules. Then A\B is also a split-module.

Proof The lemma clearly holds if |[A\B| < 1, so we may assume that |A\B| > 2.
Let Z = V\B; since B is a split module, so is Z. Furthermore, since A and B are
overlapping, it holds that B\ A is nonempty and hence V # ZUA. Since ZNA = A\B,
we have |Z N A| > 2 and hence we conclude that Z N A = A\ B is a split module by
Theorem 7. O

Lemmad4 Let k € N,G = (V, E) be a graph, and A, B, C be pairwise disjoint
split-modules such that AUBUC = V. Leta, b, c be arbitrary vertices such that a €
N(A),b € N(B),andc € N(C). Ifmax (rw(G[AU{a}]), rw(G[BU{b}]), rw(G[CU
{c}])) <k, thenrw(G) < k.

Proof Let Ty = (Ta, ua), 7g = (T, up), and T¢c = (T¢, u¢) be witnessing rank
decompositions of G[A], G[B], and G[C], respectively.

We construct a rank decomposition 7 = (7, n) of G as follows.

Let [, be the leaf (note that 11 4 is bijective) of T4 such that p4(a) = [,. Similarly,
let I, and /. be the leaves such that up(b) = I and pc(c) = I, respectively. We
obtain T from T4 by adding disjoint copies of Tp and T¢ and then identifying I, with
the copies of [, and ;. Since T4, Tp, and T¢ are subcubic, so is 7.

We define the mapping i : V(G) — {t | tisaleaf of T } by

Ha (V) ifveA,
n() = g c(up(v)) ifv € B,
c(ue(v)) otherwise,

where ¢ maps internal nodes in T U T¢ to their copies in 7. The mappings (14, 4B,
and pc are bijections and c is injective, so u is injective. By construction, the image
of V(G) under u is the set of leaves of 7', so u is a bijection. Thus 7 = (T,) is a
rank decomposition of G.

We prove that the width of 7 is at most k. Given a rank decomposition 7* =
(T*, u*) and an edge e of T*, the connected components of 7* — e induce a bipartition
(X, Y)oftheleavesof T*. Weset f : (7%, e) — (,u*_l (X), /,L*_l (Y)). Take any edge

@ Springer

Algorithmica

e of T. There is a natural bijection 8 from the edges in T to the edges of T4 UTp U T¢.
Accordingly, we distinguish three cases for ¢’ = B(e):

1. ¢ € Ta.Let (U, W) = f(74, ¢'). Without loss of generality assume thata € W.
Then by construction of 7 , we have f(7,e) = (U, WU BUC). Letu € A and
v € BUC. Since A is split-module either v ¢ N(A) and Ag(u, v) = 0 for all
u € A,orv € N(A) in which case Ag(u, v) = Ag(u, a) forallu € A. Therefore,
to obtain Ag (U, W U B U C) one can simply copy the column corresponding to a
in Ag (U, W) or add some empty columns. This does not increase the rank of the
matrix.

2. ¢’ € Tg. This case is symmetric to case 1, with A and B switching their roles and
b taking the role of a.

3. ¢’ € T¢. This case is symmetric to case 1, with A and C switching their roles and
c taking the role of a.

Since f is bijective, this proves that the rank of any bipartite adjacency matrix induced
by removing an edge e € T is bounded by k. We conclude that the width of 7 is at
most k and thus rw(G) < k. m]

By repeating the proof technique of Lemma 4 without the set C, we obtain the
following corollary.

Corollary 1 Let k € N, G = (V, E) be a graph, and A, B pairwise disjoint split-
modules such that AUB = V. Leta,b € V be such thata € N(A) and b € N(B).
If max (rw(G[A U {a}]), rw(G[B U {b}])) <k, then rw(G) < k.

Lemma 5 Letk € Nandlet G = (V, E) be a connected graph having split-modules
My, Mywhere M{UM> = V andmax(rw(G[M]), rw(G[M>])) < k. Thenrw(G) <
k4 1.

Proof Let My, = M\ M. Clearly, {M1, M»>} is a split. Since rank-width is preserved
by taking induced subgraphs, the graph G[M>;] has rank-width at most k. Let v; €
N(M2) and vo € N(My). It is easy to see that graphs G| = G[M; U {v>}] and
G2 = G[M2 U {v1}] have rank-width at most k 4 1. We finish the proof by applying
Corollary 1, using My, M»; inroles of A, B and vy, vz inroles of a, b, respectively. O

The following lemma in essence shows that the relation of being in a split-module of
small rank-width is transitive (assuming sufficiently high rank-width). The significance
of this will become clear later on.

Lemma6 Let k € N. Let G = (V, E) be a connected graph of rank-width at
least k + 2 and let M|, M> be split-modules of G such that M1 N My # @ and
max(rw(G[M1]), rw(G[M>])) < k. Then My U M> is a split-module of G and
rw(G[M; U M;]) <k

Proof If M1 € M, or My C M the result is immediate, hence we may assume that
they are overlapping. Lemma 5 and rw(G) > k42 together imply that M UM, # V.
Let M1 = M1\M>, M>; = M>\M1,and M1> = M1 N M. It follows from Lemmas 2
and 3 that these sets are split-modules of G. Let vi; € N(V\M11), v € N(V\M22),

@ Springer

Algorithmica

and vip € N(V\M132). We show that rw(G[M; U M>]) < k. By assumption, both
G[M;] and G[M>] have rank-width at most k. Since rank-width is preserved by taking
induced subgraphs, the graphs G1; = G[M11 U {vi2}], G12 = G[M12 U {v22}], and
G2 = G[M>;U{v12}] also have rank-width at most k. We finish the proof by applying
Lemma 4, where M1, M>>, M, take the roles of A, B, and C and vy, vi2, and vy,
take the roles of a, b, and c, respectively. O

Definition 7 Let G be a graph and k € N. We define a relation ~,§ on V(G) by
letting v ~kG w if and only if there is a split-module M of G such that v, w € M
and rw(G[M]) < k. We drop the superscript from N,((; if the graph G is clear from
context.

Using Lemma 6 to deal with transitivity, we prove the following.

Proposition 2 For every k € N and graph G = (V, E) of rank-width at least k + 2,
the relation ~y is an equivalence relation, and each equivalence class U of ~y is a
split-module of G such that rw(G[U]) < k.

Proof Let G beagraphand k € N.Forevery v € V, the singleton {v} is a split-module
of G, so ~ is reflexive. Symmetry of ~y is trivial. For transitivity, let u, v, w € V
be such that u ~; v and v ~; w. Then there are split-modules M1, M> of G such
that u,v € My, v, w € My, and rw(G[M1]), rw(G[M>]) < k; in particular, since
rw(G) > k42 this implies that there exists a connected component G’ of G containing
u, v, w. By Lemma 6, M1 U M, is a split-module of G’ (and hence also of G) such that
rw(G[M; U M>]) < k. In combination with u, w € M| U M, that implies u ~; w.
This concludes the proof that ~ is an equivalence relation.

Now let v € V, G’ be the connected component containing v, and let U = [v]~,.
For each u € U there is a split-module W, of G’ (and of G) such that u,v € W,
and rw(G[W,]) < k. By Lemma 6, W = UueU W, is a split-module of G’ (and
hence also of G) and rw(G[W]) < k. Clearly, [v]~, € W. On the other hand, u € W
implies v ~ u by definition of ~¢, so W C [v]~,. Thatis, W = [v]~,. O

Corollary 2 Every graph G of rank-width at least k + 2 has its vertex set uniquely
partitioned by the equivalence classes of ~ into inclusion-maximal split-modules of
rank-width at most k.

Next, we state a simple but useful observation.

Observation 1 Let k € N, G be a disconnected graph having rank-width at least

/

k+2, and C(G) be the set of connected components of G. Then ’vaz UG’eC(G) NkG .

Now that we know ~ is an equivalence relation, we show how to compute it in
FPT time. It will be useful to recall Theorems 1 and 2 from Sect. 2.3.

Proposition 3 Let k € N. Given an n-vertex graph G of rank-width at least k + 2
and two vertices v, w, we can decide whether v ~ w in time f (k) - n3 for some
computable function f.

@ Springer

Algorithmica

Proof From Observation 1 it follows that if the proposition holds for connected graphs,
then it holds for disconnected graphs as well; hence we may assume that G is con-
nected. By Theorem 2 we can compute the unique split-tree ST(G) = (7, F) in
O((m + n)a(m + n)) time. Due to Theorem 1, every split in G is the bipartition of
leaves of T induced either by removing an internal tree-edge of 7' or an edge created
by a node-split of a degenerate vertex of 7.

Vertices of G are leaves of 7" and we can find a path P between v and w in 7 in time
linear in size of T'. Since the number of nodes in a split-decomposition is linear in the
number of vertices of the original graph [23], there are at most linearly many vertices
on the path. Moreover, if u € T is a degenerate node on P, then we can split it into
two nodes u1, up in a way such that G (u1) contains exactly the two marker vertices
of G(u) incident to an edge of 7 on P and a new marker vertex connecting it to u;.
We split all degenerate nodes on P in this way and denote the new tree by 7’. Note
that now every degenerate node on a new path P’ between u and v has 3 vertices.

Now every edge between P" and T'\ P’ corresponds to a minimal split-module con-
taining v and w. Conversely, as a consequence of Theorem 1 every minimal
split-module containing v and w is induced by removing an edge between P’ and
T'\ P’, and let M, be the set containing all of these at most |7 | minimal split modules.
Hence, v ~; wifand only if there is a split-module X in M,,, suchthatrw(G[X]) < k.
By Theorem 3 we can decide, for each such X, whether rw(G[X]) < kintime f (k) n3,
where f is some computable function. O

In the rest of this section we show how to find a k-well-structured modulator to
any graph class H characterized by a finite obstruction set F. We first present the
algorithm and then show its running time and correctness.

Algorithm 1: FindWSM ¢

Input 1 k € Np, n-vertex graph G, equivalence ~ over a superset of V(G)
Output : A k-cardinality set X of subsets of V(G), or False

if G does not contain any D € F as an induced subgraph then
| return ¢
else
‘ D’ := an induced subgraph of G isomorphic to some D € F;
end
if £ = O then return False
foreach [a]- of G which intersects with V (D') do
X =FindWSMr(k — 1, G — [a]~, ~);
if X # False then
10 ‘ return X U {[a]~}
11 | end
12 end
13 return False

o 0 N A R W N -

We will use ~ as the input for FindWSM r, however considering general equiva-
lence relations as inputs is useful for proving correctness. Recall that the equivalence

@ Springer

Algorithmica

relation ~ (or, more precisely, the set of its equivalence classes) can be computed in
time n? - f (k) - n for some function f thanks to Proposition 3, and this only needs
to be done once before starting the algorithm. The following two lemmas show that
Algorithm 1 is correct and runs in FPT time. For fixed F, let ¢ denote the maximum
number of vertices of a graph in F.

Lemma 7 FindWSM g runs in time O(c - n°%).

Proof The time required to perform the steps on lines 2—6 is O(n“¥) since F is finite.
Similarly, it holds that |V (D’)| and hence also the number of times the procedure on
lines 8-13 is called are bounded by cr.

For the rest of the proof, we proceed by induction on k. First, if k = 0, then the
algorithm is polynomial by the above. So assume that £ > 1 and the algorithm for
k — 1 runs in time at most c'}fl -n°F . Then the algorithm for k& will run in polynomial
time up to lines 8-13, where it will make at most ¢ calls to the algorithm for k — 1,
which implies that the running time for & is bounded by O(cé_- -nF). O

Lemma 8 Letk > 0, G be a graph and ~ an equivalence relation over a superset of
V. Then FindWSM £ (k, G, ~) outputs a set X of at most k equivalence classes of ~
such that G — X is F-free.

Proof If G does not contain any D as an induced subgraph, then we correctly return
the empty set. So, assume there exists an induced subgraph D’ of G isomorphic to D.
We prove the lemma by induction on k.

Clearly, if k = 0 but there exists some obstruction, then the algorithm outputs False
and this is correct; if k = 0 and no obstruction exists, then the algorithm correctly
outputs . Let k > 1 and assume that the algorithm is correct for k — 1. If G does
not contain any such X, then for any equivalence class [a]~, FindWSM r(k — 1, G —
[a]~, ~) will correctly output False.

On the other hand, assume G does contain some X with the desired properties. In
particular, this implies that X must intersect V (D). Let X; be an arbitrary equivalence
class of X which intersects V(D). Then X'\{X;} is a set of at most k — 1 equivalence
classes of ~ in G — X;, and hence FindWSMr(k — 1, G — le, ~) will output some
solution X" for G — X! by our inductive assumption. Since any obstruction in G
intersecting X/ is removed by X; and G — X! is made F-free by X", we observe that
X" U X intersects every obstruction in G and hence the proof is complete.]

From Lemma 8 and Corollary 2 we obtain the following.

Corollary 3 Let k € N, G be a graph of rank-width at least k + 2 and ~y be the
equivalence relation computed by Proposition 3. Then FindWSM r(k, G, ~) either
outputs a k-well-structured modulator to H or correctly detects that no such modulator
exists.

Proof of Theorem 6 Consider the following procedure. First, we test whether G has
rank-width at most k + 1 [29], and if this is the case then one can find a k-well-
structured modulator to by using standard techniques. For instance, one may use
the extension of Courcelle’s Theorem [11] to counting monadic second order logic

@ Springer

Algorithmica

(CMSO); see for instance the work of Courcelle and Oum [12]. CMSO extends MSO
logic by adding atomic formulas which express that the cardinality of a set is divisible
by a (fixed) number. The property of “having rank-width at most £” is known to be
expressible in CMSO logic [12], the properties of “being a split-module” and “not
containing any obstruction from a finite set” are easily verified to be expressible in
CMSO and even MSO logic, and CMSO logic can be model checked in polynomial
time on graphs of bounded rank-width [12,29].

On the other hand, assume that the input graph G has rank-width at least £ 4 2.
Then the theorem follows by using Proposition 3 and then Algorithm 1 in conjunction
with Lemma 7 and Corollary 3. O

5 Examples of Algorithmic Applications

This section contains several examples of how the notion of k-well-structured modu-
lators can be used to design fixed-parameter algorithms.

5.1 Results for Specific Problems

Our first examples deal with two classical NP-hard graph problems, specifically MINI-
MUM VERTEX COVER (MINVC) and MAXIMUM CLIQUE (MAXCLQ). Given a graph
G,aset X C V(G) is a vertex cover if every edge is incident to at least one v € X
and a clique if G[X] is a complete graph.

MINVC, MAXCLQ

Instance: A graph G and an integer m.

Task (MINVC): Find a vertex cover in G of cardinality at most m, or determine that
it does not exist.

Task (MAXCLQ): Find a clique in G of cardinality at least m, or determine that it
does not exist.

Establishing the following theorem is the main objective of this subsection.

Theorem 8 Let P € {MINVC, MAXCLQ} and H be a graph class characterized by
a finite obstruction set. Then P is FPT parameterized by wsn't if and only if P is
polynomial-time tractable on 'H.

Since wsn’(G) = 0 for any F-free graph G, the “only if” direction is immediate;
in other words, being polynomial-time tractable on H is clearly a necessary condition
for being fixed-parameter tractable when parameterized by wsn’t(G). Below we prove
that for the selected problems this condition is also sufficient.

Lemma 9 If MINVC is polynomial-time tractable on a graph class 'H characterized
by a finite obstruction set, then MINVC parameterized by wsn™ is FPT.

Proof Let G = (V, E) be a graph and let k = wan(G). If rw(G) < k + 2,
then we simply use known algorithms to solve the problem in FPT time [19]. Oth-
erwise, we proceed by using Theorem 6 to compute a k-well-structured modulator

@ Springer

Algorithmica

X = {X1y, ..., Xi} in FPT time. For each i € [k], we let A; be the frontier of X; and
we let B; = N(A)).

Since for each i € [k] the graph G[A; U B;] contains a complete bipartite graph,
any vertex cover of G must be a superset of either A; or B;. We can branch over these
options for each i in 2k time; formally, we branch over all of the at most 2k functions
f :[i] — {A, B}, and refer to these as signatures. Each vertex cover Y of G can be
associated with at least one signature f, constructed in the following way: for each
i € [k]suchthat A; C Y, weset f(i) = A, and otherwise we set f (i) = B.

Our algorithm then proceeds as follows. For a graph G and a signature f, we
construct a partial vertex cover Z = | J;zy f(i). We let G’ = G — Z. Consider any
connected component C of G’. If C intersects some X;, then by the construction of Z
it must hold that C C X;. Hence it follows that C either has rank-width at most k (in
the case C C X; forsome i), or C is in H (if C does not intersect X), or both. Then we
find a minimum vertex cover for each connected component of G’ independently, by
either calling the known fixed-parameter algorithm (if C has bounded rank-width) or
the polynomial algorithm (if C is in) at most |C| times. Let Z’ be the union of the
obtained minimum vertex covers over all the components of G’, andlet Yy = ZU Z'.
After branching over all possible functions f, we compare the obtained cardinalities
of Yy and choose any Y of minimum cardinality. Finally, we compare |Y /| and the
value of m provided in the input.

We argue correctness in two steps. First, assume for a contradiction that G contains
an edge e which is not covered by Y for some f. Then e cannot have both endpoints
in G', since Y contains a (minimum) vertex cover for each connected component of
G’, but e cannot have an endpoint outside of G’, since Z C Y. Hence each Yy is a
vertex cover of G.

Second, assume for a contradiction that there exists a vertex cover Y’ of G which
has a lower cardinality than the vertex cover found by the algorithm described above.
Let f be the signature of Y’. Then it follows that Z C Y, and since Z C Y, there
would exist a component C of G\Z such that [Y' N C| < [Y; N C|. However, this
would contradict the minimality of Z’NC = Y N C. Hence we conclude that no such
Y’ can exist, and the algorithm is correct. O

We deal with the second problem below.

Lemma 10 If MAXCLQ is polynomial-time tractable on a graph class H character-
ized by a finite obstruction set, then MAXCLQ parameterized by wsn™ is FPT.

Proof We begin in the same way as for MINVC: let G = (V, E) be a graph and let
k = wsn™(G). If rw(G) < k + 2, then we simply use known algorithms to solve the
problem in FPT time [19]. Otherwise, we proceed by using Theorem 6 to compute a
k-well-structured modulator X = {X1, ..., X¢} in FPT time. For each i € [k], we let
A; be the frontier of X; and we let B; = N(A;).

Let Xo = G — X and let s C {0} U [k]. Then any clique C in G can be uniquely
associated with a signature s by letting i € s if and only if X; N C #). The algorithm
proceeds by branching over all of the at most 25*! possible non-empty signatures s. If
|s| = 1, then the algorithm simply computes a maximum-cardinality clique in X (by
calling the respective FPT or polynomial algorithm at most a linear number of times)
and stores it as Y.

@ Springer

Algorithmica

*——o

Fig. 4 From left to right 2K», fork, K3 3-e, banner, twin-house, and 73 » »

If |s| > 2, then the algorithm makes two checks before proceeding. First, if 0 € s
then it constructs the set X{, of all vertices x € X such that x is adjacent to every A;
for i € s\{0}. If X, = @ then the current choice of s is discarded and the algorithm
proceeds to the next choice of s. Second, for every a # b such that a, b € s\{0} it
checks that X ; = A, and X l/: = A, are adjacent; again, if this is not the case, then
we discard this choice of s and proceed to the next choice of s. Finally, if the current
choice of s passed both tests then for each i € s we compute a maximum clique in
each G[X If] and save their union as Y;. In the end, we choose a maximum-cardinality
set Y and compare its cardinality to the value of m provided in the input.

We again argue correctness in two steps. First, assume for a contradiction that Y
is not a clique, i.e., there exist distinct non-adjacent a, b € Ys. Since Y, consists of
a union of cliques within subsets of X l’ s it follows that there would have to exist
distinct ¢, d € s such thata € X/, and b € X;. This can however be ruled out for ¢ or
d equal to 0 by the construction of X;,. Similarly, if ¢ and d are both non-zero, then
this is impossible by the second check which tests adjacency of every pair of X/. and
X/, forevery c,d € s.

Second, assume for a contradiction that there exists a clique Y’ in G which has a
higher cardinality than the largest clique obtained by the above algorithm. Let s be
the signature of Y’. If |s| = 1 then |Yg| > |Y’| by the correctness of the respective
FPT or polynomial algorithm used for each X;. If |s| > 2 then ¥’ may only intersect
the sets X’ constructed above for s. Moreover, if there exists i € [k] U {0} such that
|Y" N X!| > |Yy N X]| then we again arrive at a contradiction with the correctness of
the respective FPT or polynomial algorithms used for X’. Hence we conclude that no
such Y’ can exist, and the algorithm is correct. O

Finally, let us review some concrete graph classes for use in Theorem 8. We use
K;, C; and P; to denote the i-vertex complete graph, cycle, and path, respectively. 2K»
denotes the disjoint union of two K3 graphs. The fork, K3 3-e, banner, twin-house and
152> graphs are depicted in Fig. 4.

Fact 2 MINVC is polynomial-time tractable on the following graph classes:

1. (2K3, Cy, Cs)-free graphs (split graphs);

2. Ps-free graphs,

3. fork-free graphs;

4. (banner, T 2 2)-free graphs and (banner, K3 3-e, twin-house)-free graphs.

Proof Foritem 1, recall that split graphs are graphs whose vertex set can be partitioned
into one clique and one independent set, and such a partitioning can be found in linear

@ Springer

Algorithmica

time. If each vertex in the clique is adjacent to at least one independent vertex, then the
clique is a minimum vertex cover, otherwise the clique without a pendant-free vertex
is a minimum vertex cover. Item 2 follows from [33]. Item 3 follows from [1]. Item 4
follows from [24] and [5]. O

Fact 3 MAXCLQ is polynomial-time tractable on the following graph classes:

1. Any complementary graph class to the classes listed in Fact 2 (such as cofork-free
graphs and split graphs);
2. Graphs of bounded degree.

Proof 1. It is well-known that each maximum clique corresponds to a maximum
independent set (and vice-versa) in the complement graph.

2. The degree bounds the size of a maximum clique, again resulting in a simple
folklore branching algorithm. The class of graphs of degree at most d is exactly
the class of F-free graphs for F containing all (d + 1)-vertex supergraphs of the
star having d leaves. O

5.2 Results for Other Graph Classes

Next, we turn our attention to computing k-well-structured modulators to examples
of graph classes which are not characterized by a finite obstruction set (i.e., by a finite
set of forbidden induced subgraphs). In the following lemmas, n denotes the size of
the vertex set of the input graph.

Lemma 11 [t is possible to compute a k-well-structured modulator to the class of
forests in time f (k) - n> for some computable function f.

Proof We begin by describing our algorithm .4, and then proceed to argue correctness
and runtime bounds. A begins by checking whether the rank-width of the input graph
G is at least k + 2; if not, then a k-well-structured modulator can be computed using
Courcelle’s Theorem in time at most f (k) - n> for some computable function f. A
then proceeds in four steps.

— First, it uses Proposition 3 to partition V (G) into equivalence classes of ~ in time
atmost f (k)-n> for some computable function f,andsets j 1= k; § := ; ~:=~.

— Second, for each tuple (X, Y, Z) of equivalence classes of ~, A checks whether
G[X UY U Z] is acyclic. If this is not the case, then A chooses (by branching)
one class out of {X, Y, Z} to delete from ~, saves the deleted equivalence class
in S, and restarts the second step with j := j — 1. If j = —1, then the algorithm
terminates the given branch.

— Third, A constructs an auxiliary graph G’ = (V’, E’) by setting V' to be the set of
equivalence classes of ~ and E’ to contain an edge between A, B € V' iff there
exist vertices a € A, b € B such that ab € E(G).

— Finally, A tries to find a feedback vertex set in G’ of size at most j in time
O(3.837 - j|V'|?) [7]. If no such feedback vertex set exists, then .4 terminates the
given branch; otherwise it adds the feedback vertex set to S and outputs S.

@ Springer

Algorithmica

It is easy to verify that the running time of A is upper-bounded by O(f (k) - n°)
for some computable function f. As for correctness, let us assume for a contradiction
that A outputs a set S and the graph H obtained from G after deleting all vertices in
elements of S contains a cycle C. Clearly, neither C nor any other cycle in H intersects
less than 4 equivalence classes of ~, since otherwise such a cycle would have been
detected and removed in step 2 of A.

Moreover, assume |C N X| > 1 for some equivalence class X of ~. Since C spans
at least 4 equivalence classes, H must contain at least two neighbors of X in C\X
which are adjacent to at least two vertices in X (indeed, recall that X is a split-module
and hence all vertices of X with a neighbor outside X have the same neighborhood
outside X); let us denote these vertices y, z, x1, X2, respectively. Since x1, xp are in
the frontier of X, the vertices y, x1, z, xo must form a cycle in H which spans at most
3 equivalence classes, contradicting our previous conclusion that no such cycles are
present in H. Hence we may conclude that |C N X| < 1 for every equivalence class
X.

The only case we are left with now is that C intersects each equivalence class at
most once. But then it must be the case that C also forms a cycle in G’, which would
have necessarily been removed in step 4 of A, a contradiction. So H must indeed be

acyclic.
For the other direction, assume that G contains a minimal k-well-structured modu-
lator X = {X1, ..., X} to the class of forests. Then consider the branch of step 2 of A

which hits a maximal number of elements of X, and let us denote the elements removed
by A in this way Y. By the same argument as above, each cycle remaining in G after
deleting Y intersects each equivalence class at most once and hence corresponds to a
cycle in the graph G’ constructed by .A. In particular, the equivalence classes in X\ Y
form a feedback vertex set of size £ = |X\Y| in G’. By the correctness of the feedback
vertex set algorithm used in step 4, at least one branch of A is guaranteed to output a
solution S D Y of size at most j. O

For the next result, recall that a cycle is chordless if it is also an induced cycle of
length at least 4, and a graph is chordal if it contains no chordless cycles.

Lemma 12 [t is possible to compute a k-well-structured modulator to the class of
chordal graphs in time f (k) - nOW,

Proof We once again first describe our algorithm A. A begins by checking whether
the rank-width of the input graph G is at least k + 2; if not, then a k-well-structured
modulator can be computed using Courcelle’s Theorem in time at most f (k) - n> for
some computable function f. A then proceeds in four steps.

— First, it uses Proposition 3 to partition V (G) into equivalence classes of ~ in time
at most f (k) -n°, and sets ji=k;§:=0; ~i=~.

— Second, for each tuple (X, Y, Z) of equivalence classes of ~, A checks whether
G[X UY U Z]is chordal in linear time [36]. If this is not the case, then A chooses
(by branching) one class out of {X, Y, Z} to delete from ~, saves the deleted
equivalence class in S, and restarts the second step with j := j — 1. If j = —1,
then the algorithm terminates the given branch.

@ Springer

Algorithmica

— Third, A constructs an auxiliary graph G’ = (V’, E’) by setting V' to be the set of
equivalence classes of ~ and E’ to contain an edge between A, B € V' iff there
exist verticesa € A, b € B such that ab € E(G).

— Finally, A tries to find a modulator to chordal graphs of size at most j in G’ using
the algorithm by Marx [8], which takes time at most 20%*10gk) . |y/|OM) [f no
such modulator exists, then A terminates the given branch; otherwise it adds the
modulator to S and outputs S.

It is easy to verify that the running time of A is upper-bounded by f (k) -)
for some computable function f. As for correctness, let us assume for a contradiction
that A outputs a set S and the graph H obtained from G after deleting all vertices in
elements of S contains a chordless cycle C; without loss of generality, let us assume C
is such a chordless cycle of minimum length. Clearly, neither C nor any other chordless
cycle in H intersects less than 4 equivalence classes of ~, since otherwise such a
cycle would have been detected and removed in step 2 of .A.

We now claim that C contains at most one vertex from each equivalence class
of ~. To see this, assume for a contradiction that C contains two vertices in some
equivalence class Z. Since C must also intersect other equivalence classes, it follows
that C must in fact contain at least two vertices, say x, y, in the frontier of Z which have
distinct neighbors, say x’, y’ respectively, in C\ Z. First, observe that x, y cannot occur
consecutively along C, as that would violate the assumption that C is a minimum-
length chordless cycle. Hence by the chordality of C we also see that xy cannot be
an edge of G, and the same also applies for the non-edge of x'y’. But then x’, x, ¥/, y
forms a chordless cycle which intersects at most 3 equivalence classes, contradicting
our previous assumptions.

Let us now consider the set C’ of equivalence classes which intersect C; recall
that |C’| > 3. By the above claim, it follows that C’ would also be a chordless cycle
in V(G’), contradicting the correctness of the chordal vertex deletion algorithm [8].
Hence we conclude that H must in fact be chordal.

For the other direction, assume that G contains a minimal k-well-structured mod-
ulator X = {Xy,..., X;} to the class of chordal graphs. Then consider the branch
of step 2 of A which hits a maximal number of elements of X, and let us denote the
elements removed by A in this way Y. By the same argument as above, each chord-
less cycle remaining in G after deleting Y intersects each equivalence class at most
once and hence corresponds to a chordless cycle in the graph G’ constructed by A. In
particular, the equivalence classes in X\ Y form a modulator to chordal graphs of size
¢ = |X\Y| in G’. By the correctness of the chordal vertex deletion algorithm used in
step 4, at least one branch of A is guaranteed to output a solution S O Y of size at
most j. O

6 MSO Model Checking with Well-Structured Modulators

Here we show how well-structured modulators can be used to solve the MSO model
checking problem, as formalized in Theorem 9 below. Note that our meta-theorem
captures not only the generality of MSO model checking problems, but also applies

@ Springer

Algorithmica

to a potentially unbounded number of choices of the graph class H. Thus, the meta-
theorem supports two dimensions of generality.

Theorem 9 Let ¢ be a MSO sentence and 'H be a graph class characterized by a finite
obstruction set. If MSO- MCy is FPT parameterized by mod™(G), then MSO- MCy

is also FPT parameterized by wsn™(G).

The condition that MSO- MCy is FPT parameterized by mod H(G)isa necessary
condition for the theorem to hold by Proposition 1. However, it is natural to ask
whether it is possible to use a weaker necessary condition instead, specifically that
MSO- MCy is polynomial-time tractable on H (as was done for specific problems
in Sect. 5). Before proceeding towards a proof of Theorem 9, we make a digression
and show that the weaker condition used in Theorem 8 is in fact not sufficient for the
general case of MSO model checking.

Lemma 13 There exists an MSO sentence ¢ and a graph class H characterized by
a finite obstruction set such that MSO- MCy is polynomial-time tractable on 'H but
NP-hard on the class of graphs having wsn(G) < 2 and even mod™(G) < 2.

Proof Consider the sentence ¢ which describes the existence of a proper 5-coloring of
the vertices of G, and let H be the class of graphs of degree at most 4 (in other words,
let F contain all 6-vertex supergraphs of the star having 5 leaves). There exists a trivial
greedy algorithm to obtain a proper 5-coloring of any graph of degree at most 4, hence
MSO-MCy is polynomial-time tractable on . Now consider the class of graphs
obtained from H by adding, to any graph in H, two adjacent vertices y, z which are
both adjacent to every other vertex in the graph. By construction, any graph G’ from
this new class satisfies mod’t(G’) < 2 and hence also wsn’t(G’) < 2. However,
G’ admits a proper 5-coloring if and only if G’ — {y, z} admits a proper 3-coloring.
Testing 3-colorability on graphs of degree at most 4 is known to be NP-hard [30], and
hence the proof is complete. O

Our strategy for proving Theorem 9 relies on a replacement technique, where each
split-module in the well-structured modulator is replaced by a small representative.
We use the notion of similarity defined below to prove that this procedure does not
change the outcome of MSO- MC,,.

Definition 8 (Similarity) Let g and k be non-negative integers, 7 be a graph class,
and let G and G’ be graphs having k-well-structured modulators X = {X, ..., X}
and X' = {X g X ,/(} to H, respectively. For 1 <i < k, let S; contain the frontier
of split module X; and similarly let S/ contain the frontier of split module X/. We say
that (G, X) and (G’, X') are g-similar if all of the following conditions are met:

1. There exists an isomorphism 7 between G — X and G’ — X'.

2. Forevery v € V(G)\X and i € [k], it holds that v is adjacent to S; if and only if
7(v) is adjacent to S/.

3. If k = 2, then for every 1 <i < j < kit holds that every s; € §; is adjacent to
every s; € §; if and only if every s/ € S is adjacent to every 5. € §',.

4. For each i € [k], it holds that fype, (G[X], Si) = type, (G'[X]1.S).

@ Springer

Algorithmica

Lemma 14 Let g and k be non-negative integers, H be a graph class, and let G
and G’ be graphs having k-well-structured modulators X = {X1, ..., X3} and X' =
{X1..... X} to H, respectively. If (G, X) and (G',X') are gq-similar, then it holds
that type (G,) = type,(G', 9).

Proof For i € [k], we write G; = G[X;] and G} = G'[X]]. Let Xo = V(G)\X
and X, = V(G)\X'. By Theorem 5, Condition 4 of Definition 8 is equivalent to
(Gi, S;) E}}ASO (G}, S)). That is, for each i € [k], Duplicator has a winning strategy
7; in the g-round MSO game played on G; and G; starting from (S;, S7). We construct

a strategy witnessing (G, ¥) EI(;/ISO (G, ¥) in the following way:

1. Suppose Spoiler makes a set move W and assume without loss of generality that
W C V(G).Fori € [k],let W; = X; N W, and let Wi/ be Duplicator’s response to
W; according to 7;. Furthermore, let W(/) = {t(v) | v € WNXg}. Then Duplicator
responds with W' = Wj U Uf:l w.

2. Suppose Spoiler makes a point move s and again assume without loss of generality
that s € V(G). If s € X; for some i € [k], then Duplicator responds with s’ € Xl’
according to m;; otherwise, Duplicator responds with 7(s) as per Definition 8§
item 1.

Assume Duplicator plays according to this strategy and consider a play of the g-
round MSO game on G and G’ starting from (4,). Let v = (vy, ..., vy) and
u = (uy,...,uy) be the point moves in V(G) and V(G’) respectively, and let
V=W,....,V)and U = (Uy,...,U)) be the set moves in V(G) and V(G’)
respectively, so that [+ m = g and the moves made in the same round have the same
index. We claim that (v, u) defines a partial isomorphism between (G, V) and (G, U).

— Let ji, jo € [m]andletv;,, vj, € Xo.Since 7 is anisomorphism as per Definition 8
item 1, it follows that v;;, = vj, ifand only if u;, =uj, and v, v;, € E(G) if and
only ifujuj;, € E(G').

— Let j1, jo € [m] and let i € [k] be such that v;, € X¢ and v, € X;. Then clearly
vj, # vj, and uj # uj,. Consider the case vjvj, € E(G). Then v;, must lie in
the frontier of X;, and hence v;, € §;. Since Duplicator’s strategy m; is winning
for (G;, S;) and (G}, S)), it must hold that u;, € S;. By Definition 8 item 2, it
then follows that T(v;)uj, € E(G’). So, consider the case vjvj, ¢ E(G). Then
either vj, ¢ §;, in which case it holds that u;, ¢ Si’ because of the choice of 7;
and hence there cannot be an edge u j,u j, in G’, or vj, € §;, in which case it holds
once again that u j,u j, ¢ E(G’) by Definition 8 item 2.

— Let ji, j» € [m] and let i € [k] be such that v;,v;, € X;. Since Duplicator
plays according to a winning strategy 7; in the game on G; and G, the restriction
(v]i,u|;) defines a partial isomorphism between (G;, (V)|;) and (G;,). It
follows that (v, vj,) € E(G) if and only if (u;,uj,) € E(G’) and vj, = v, if
andonlyifuj =uj,.

— Let ji, jo € [m]andletiy, io € [k]be pairwise distinctnumbers such thatv;, € X;,
andvj, € Xj,.Thenv;, # vj, andalsou, # uj, sinceu;, € X; anduj, € X; by
the Duplicator’s strategy. Suppose v; v, € E(G). Thenv;, € S;;,and vj, € S,
and §;, and §;, are adjacent in G. From the correctness of m;, and 7;, it follows
thatu; € S; andu;, € S; , and from Definition 8 item 3 it follows that S; and

@ Springer

Algorithmica

S}, are adjacent in G’, which together implies u j,u j, € E(G’). On the other hand,
suppose v vj, ¢ E(G). Then either v;, ¢ §;,orvj, ¢ S;,, or §; and §;, are
not adjacent in G. In the first case we have uj, ¢ Slfl , in the second case we have
uj, ¢ S;z, and in the third case it holds that S| and S/ are not adjacent in G’; any
of these three cases imply u ju;, ¢ E(G").

— Let j € [m]suchthatv; € X¢. Then by the Duplicator’s strategy on X it follows
that for any V; such that v; € V, it holds that u; € U, and for any V, such that
vj ¢ Vyitholds thatu; ¢ U,.

— Let j € [m]andi € [k] such that v; € Xj. Let V, be such that v; € V,,. Since 7;
is a winning strategy for Duplicator, it must be the case thatu; € U,. Similarly, if
vj ¢ V, then the correctness of 77; guarantetes that u; ¢ Uj. O

Next, we show that small representatives can be computed efficiently.

Lemma 15 Let g € Ny. There exist functions f, g such that one can compute, for an
input graph G of rank-width atmostk and S C V (G), intime f (k)-|V (G)|O(1) agraph
G’ andaset ' C V(G') suchthat |V(G")| < g(q) and type, (G, S) = typeq(G/, SH.

Proof By Lemma 1 we can compute a formula @ (Q) capturing the type 7 of (G, S) in
time f (k) - |V(G)|°D. Given ®(Q), a constant-size model (G’, ') satisfying @ (Q)
can be computed as follows. We start enumerating all graphs (by brute force and in
any order with a non-decreasing number of vertices), and check for each graph G*
and every vertex-subset S* C V(G™*) whether G* = @ (S*). If this is the case, we
stop and output (G*, §*). Since G |= @ (S) this procedure must terminate eventually.
Fixing the order in which graphs are enumerated, the number of graphs we have to
check depends only on 7. By Fact 1 the number of g-types is finite for each ¢, so
we can think of the total number of checks and the size of each checked graph G* as
bounded by a constant. Moreover the time spent on each check depends only on T
and the size of the graph G*. Consequently, after we compute @ (Q) it is possible to
find a model for @ (Q) in constant time. O

Finally, in Lemma 16 below we use Lemma 15 to replace any well-structured
modulator by a small but “equivalent” modulator.

Lemma 16 Let g be a non-negative integer constant and H be a graph class. Then
given a graph G and a k-well-structured modulator X = {X1, ... Xy} of G into 'H,
there exists a function f such that one can in time f (k) - IV (G)|9D compute a graph
G' with a k-well-structured modulator X' = (X, ... X} } into H such that (G, X) and
(G, X" are g-similar and for each i € [k] it holds that |Xl’.| is bounded by a constant.

Proof Fori € [k],let S; € X; be the frontier of split-module X;, let G; = G[X;] and
let Go = G\G[X]. We compute a graph G/ of constant size and a set S € V(G})
having the same MSO g-type as (G;, S;). By Lemma 15, this can be done in time
fk) - |V(G)|O(1) for some function f. Now let G’ be the graph obtained by the
following procedure:

1. We construct a disjoint union of G and G; foreach i € [k];
2. If k > 2 then for each 1| <i < j < k such that S; and S are adjacent in G, we
add edges between every v € S} and w € S}.

@ Springer

Algorithmica

3. forevery v € V(Go) and i € [k] such that S; and {v} are adjacent, we add edges
between v and every w € .

It is easy to verify that (G, X) and (G', X'), where X' = {V(G)), ..., V(G})}, are
g-similar. O

Proof of Theorem 9 Let G be a graph, k = wsn(G) and q be the nesting depth of
quantifiers in ¢. By Theorem 6 it is possible to find a k-well-structured modulator to
‘H in time f (k) - |V|O(1). We proceed by constructing (G’, X") by Lemma 16. Since
each X; e X' has size bounded by a constant and |X'| < k, it follows that [J X' is a
modulator to the class of F-free graphs of cardinality O(k). Hence MSO- MCy can
be decided in FPT time on G’. Finally, since G and G’ are g-similar, it follows from
Lemma 14 that G = ¢ if and only if G’ = ¢. O

For completeness, we remark that the same proof can be used to obtain analogues of
Theorem 9 for any graph class H which admits a fixed-parameter algorithm for finding
well-structured modulators (i.e., even if it is not characterized by a finite obstruction
set; see for instance Lemma 11 and 12).

We conclude the section by showcasing an example application of Theorem 9. c-
COLORING asks whether the vertices of an input graph G can be colored by ¢ colors
so that each pair of neighbors have distinct colors. From the connection between c-
COLORING, its generalization LIST ¢- COLORING and modulators [6, Theorem 3.3]
and tractability results for LIST c¢- COLORING [28, Page 5], we obtain the following.

Corollary 4 For each ¢ € N, c-COLORING parameterized by wsn's77¢ js FPT.

7 Hardness of MSO Optimization

In the wake of Theorem 9 and the positive results for the two problems in Sect. 5,
one would expect that it should be possible to strengthen Theorem 9 to also cover
LinEMSO problems [11,19], which extend MSO model checking by allowing the
minimization/maximization of linear expressions over free set variables. Surprisingly
this is not possible if we wish to retain the same necessary conditions, as will be shown
in this section. For our proof, it suffices to consider a simplified variant of LinEMSO,
defined below. Let ¢ be an MSO formula with one free set variable.

MSO- OPT;
Instance: A graph G and an integer r € N.
Question: Is there a set S € V(G) such that G = ¢(S) and |S| < r?

We say that § € V(G) is a dominating set if every vertex in G either is in S or
has a neighbor in S. We will need the following lemma before we proceed to the main
result of this secton.

Lemma 17 The problem of finding a p-cardinality dominating set in a graph G having

a k-cardinality modulator X C V(G) to the class of graphs of degree at most 3 is
FPT when parameterized by p + k.

@ Springer

Algorithmica

Proof Let L = V(G)\X and consider the following algorithm. We begin with D = @,
and choose an arbitrary vertex v € L which is not yet dominated by D. We branch
over the at most k + 4 vertices ¢ in {v} U N(v), and add ¢ to D. If |D| = p and
there still exists an undominated vertex in G, we discard the current branch; hence
this procedure produces a total of at most (k + 4)” branches.

Now consider a branch where |D| < p but the only vertices left to dominate lie
in X.Fora,b € L,weleta = bifandonlyif N(a)NX = N(b)NX. Notice that = has
at most 2 equivalence classes and that these may be computed in polynomial time.
For each non-empty equivalence class of =, we choose an arbitrary representative and
construct the set P of all such chosen representatives. We then branch over all subsets
Q of P U X of cardinality at most p — | D|, and add Q into D. Since |P U X| < 2K +k,
this can be done in time bounded by O(27%). Finally, we test whether this D is a
dominating set, and output the minimum dominating set obtained in this manner.

It is easily observed from the description that the running time is FPT. For correct-
ness, from the final check it follows that any set outputed by the algorithm will be a
dominating set. It remains to show that if there exists a dominating set of cardinality p,
then the algorithm will find such a set. So, assume there exists a p-cardinality domi-
nating set D" in G. Consider the branch arising from the first branching rule obtained
as follows. Let v; be the first undominated vertex in L chosen by the algorithm, and
consider the branch where an arbitrary g € D’ N N (v;) is placed into D. Hence, after
the first branching, there is a branch where D C D’. Similarly, there exists a branch
where D C D’ for each v; chosen in the i-th step of the first branching. If D’ = D
after the first branching, then we are done; so, let D] = D"\ D be non-empty. Let
Dy be obtained from D] by replacing each w € D] by the representative of [w]=
chosen to lie in P. Since D’ dominates all vertices in L and D dominates the same
vertices in X as D1, it follows that D* = (D'\D}) U Dy is also a dominating set of
G. Furthermore, |D*| = |D’|. However, since D; € P and |D;| < p — |D|, there
must exist a branch in the second branching which sets Q = Dj. Hence there exists
a branch in the algorithm which obtains and outputs the set D* = D U D;. O

Theorem 10 There exists an MSO formula ¢ and a graph class 'H characterized by

a finite obstruction set such that MSO- OPTf is FPT parameterized by mod™ but

paraNP-hard parameterized by wsn't.

Proof To prove Theorem 10, we let dom(S) express that S is a dominating set in G,
and let cyc(S) express that S intersects every Cys (cycle of length 4). Then we set
©(S) = dom(S) Vv cyc(S) and let H be the class of C4-free graphs of degree at most 3
(obtained by letting the obstrucion set F contain C4 and all 5-vertex supergraphs of
K1.4).

Claim MSO- OPT(; is FPT parameterized by the cardinality of a modulator to H.

To argue that the above claim holds, let (G = (V, E), r) be the input of MSO- OPT(f
and k be the cardinality of a modulator in G to H. We begin by computing some
modulator X C V of cardinality k in G to ‘H; this can be done in FPT time by a simple
branching algorithm on any of the obstructions from F located in G. Let L = V\X.

@ Springer

Algorithmica

Next, we compare r and k, and if » > k then we output YES. This is correct, since
each C4 in G must intersect X and hence setting S = X satisfies ¢(S5).

So, assume r < k. Then we check whether there exists a set A of cardinality at
most r which intersects every Cy; this can be done in time O*(4") by a simple FPT
branching algorithm. Next, we check whether there exists a dominating set B in G of
cardinality at most 7; this can also be done in FPT time by Lemma 17.

Finally, if A or B exists, then we output YES and otherwise we output NO. Hence
the claim is indeed true.

Claim MSO- OPT% is paraNP-hard parameterized by wsn™(G).

We proceed by arguing that this claim is also correct. It is known that the DOM-
INATING SET problem, which takes as input a graph G and an integer j and asks to
find a dominating set of size at most j, is NP-hard on C4-free graphs of degree at most
3 [31] (see also subsequent work [2, Theorem 8]). We use this fact as the basis of our
reduction. Let (G, j) be a C4-free instance of DOMINATING SET of degree at most 3.
Then we construct G’ from G by adding (|G| 4 2)-many copies of Cy, a single vertex
q adjacent to every vertex of every such Cy, and a single vertex ¢ adjacent to g and
an arbitrary vertex of G. It is easy to check that wsn’t(G') < 2.

We claim that (G, j) is a YES-instance of DOMINATING SET if and only if (G', j +
1) is a yes-instance of MSO- OPTf. For the forward direction, assume there exists a
dominating set D in G of cardinality j. Then the set D U {¢} is a dominating set in
G’, and hence satisfies ¢.

On the other hand, assume there exists a set D’ of cardinality at most j + 1 which
satisfies ¢. If j + 1 > |G| 4 2 then clearly (G, j) is a YES-instance of DOMINATING
SET, so assume this is not the case. But then D’ cannot intersect every Cy4, and hence
D’ must be a dominating set of G’ of cardinality at most j + 1. But this is only possible
if ¢ € D'. Furthermore, if ¢' € D’, then replacing ¢’ with the neighbor of ¢’ in G
is also a dominating set of G’. Hence we may assume, w.l.0.g., that D’ N V(G) is
a dominating set of cardinality at most j in V(G). Consequently, (G, j) is a YES-
instance of DOMINATING SET and the claim holds.

The theorem now follows from the two claims proved above. O

8 Conclusion

We have introduced a family of structural parameters which push the frontiers of
fixed-parameter tractability beyond rank-width and modulator size for a wide range
of problems. In particular, the well-structure number can be computed efficiently
(Theorem 6) and used to design fixed-parameter algorithms for MINIMUM VERTEX
COVER and MAXIMUM CLIQUE (Theorem 8) as well as any problem which can be
described by a sentence in MSO logic (Theorem 9). We remark that while our results
are of a theoretical nature, there is hope that some of the ideas behind the presented
algorithms may be useful in practice once faster algorithms for computing rank-width
become available.

For future work, it would be interesting to see whether the notion of split-modules
introduced in this work can be naturally generalized. In particular, a split-module

@ Springer

Algorithmica

X can be seen as a subgraph such that Ag[X, G — X] = 1, and in this sense split-
decompositions naturally correspond to rank-width 1. Itis easy to define corresponding
decompositions also for higher values of rank-width, however it is not at all clear how
such decompositions could be computed. We believe this is an interesting question
on its own; furthermore, obtaining such decompositions would allow an immediate
extension of our framework to the arising more general notions of split-modules.

Finally, we remark that well-structured modulators have also found applications
in the area of data reduction and kernelization [16]. In particular, since wsn lower-
bounds rank-width and rank-width is known not to admit polynomial kernels for nearly
any NP-hard problems, one cannot hope to use wsn’ for polynomial kernelization.
However, a number of polynomial kernels have been developed for a restriction of
wsn™ where each split module induces a graph whose rank-width is bounded by a
constant [17].

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). This work was
partially supported by the Austrian Science Fund (FWF), Projects P26696 and W1255-N23. Robert Ganian
is also affiliated with FI MU, Brno, Czech Republic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks.
Discrete Appl. Math. 135(1-3), 3-16 (2004)
2. Alekseev, V.E., Korobitsyn, D.V., Lozin, V.V.: Boundary classes of graphs for the dominating set
problem. Discrete Math. 285(1-3), 1-6 (2004)
3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle problems. In: IPEC,
pp. 145-158 (2011)
4. Bouchet, A.: Digraph decompositions and Eulerian systems. SIAM J. Algebra Discr. 8,323-337 (1987)
5. Brandstddt, A., Lozin, V.V.: A note on alpha-redundant vertices in graphs. Discrete Appl. Math. 108(3),
301-308 (2001)
6. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415-429 (2003)
7. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures. Algorithmica
73(1), 63-86 (2015)
8. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75(1), 118-137 (2016)
9. Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete
Math. 26(2), 499-514 (2012)
10. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3,
163-174 (1981)
11. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of
bounded clique-width. Theory Comput. Syst. 33(2), 125-150 (2000)
12. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic and a conjecture by Seese. J. Comb.
Theory Ser. B 97(1), 91-126 (2007)
13. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebra Discr. 3(2), 214-228 (1982)
14. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, New York (2015)
15. Diestel, R.: Graph Theory, Volume 173 of Graduate Texts in Mathematics, 2nd edn. Springer, New
York (2000)

@ Springer

http://creativecommons.org/licenses/by/4.0/

Algorithmica

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science.
Springer, Berlin (2013)

Eiben, E., Ganian, R., Szeider, S.: Meta-kernelization using well-structured modulators. In: Husfeldt,
T., Kanj, I.A. (eds.) 10th International Symposium on Parameterized and Exact Computation, IPEC
2015, September 1618, 2015, Patras, Greece, volume 43 of LIPIcs, pp 114—126. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015)

Gajarsky, J., Hlinény, P., Obdrzélek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, E.S., Sikdar,
S.: Kernelization using structural parameters on sparse graph classes. In: Algorithms—ESA 2013.
21st Annual European Symposium, volume 8125 of Lecture Notes in Computer Science, pp 529-540.
Springer (2013)

Ganian, R., Hlinény, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded
rank-width. Discrete Appl. Math. 158(7), 851-867 (2010)

Ganian, R., Slivovsky, F., Szeider, S.: Meta-kernelization with structural parameters. In: MFCS, pp.
457-468 (2013)

Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Zivny, S.: Backdoors into heterogeneous classes of
SAT and CSP. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, pp. 2652-2658. AAAI Press (2014)

Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, E.V.,
Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond—Essays Dedicated to Michael
R. Fellows on the Occasion of His 60th Birthday, Volume 7370 of Lecture Notes in Computer Science,
pp. 287-317. Springer (2012)

Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete Math. 273(1-3),
115-130 (2003)

Gerber, M.U., Lozin, V.V.: Robust algorithms for the stable set problem. Graphs Comb. 19(3), 347-356
(2003)

Gioan, E., Paul, C.: Dynamic distance hereditary graphs using split decomposition. In: Algorithms and
Computation, Volume 4835 of LNCS, pp. 41-51. Springer (2007)

Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic
algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708-733 (2012)

Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient split decomposition via graph-
labelled trees. Algorithmica 69(4), 789-843 (2014)

Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring problems on h-free
graphs. Inf. Comput. 237, 204-214 (2014)

Hlinény, P, Oum, S.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput.
38(3), 1012-1032 (2008)

Kochol, M., Lozin, V.V., Randerath, B.: The 3-colorability problem on graphs with maximum degree
four. SIAM J. Comput. 32(5), 1128-1139 (2003)

Korobitsyn, D.: On the complexity of determining the domination number in monogenic classes of
graphs. Diskret. Mat. 2(3), 90-96 (1990). In Russian, translation in. Discrete Math. Appl. 2(2), 191-199
(1992)

Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004)

Lokshantov, D., Vatshelle, M., Villanger, Y.: Independent set in ps-free graphs in polynomial time.
In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, pp. 570-581. SIAM (2014)

Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and
its Applications. Oxford University Press, Oxford (2006)

Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4),
514-528 (2006)

Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J.
Comput. 5(2), 266-283 (1976)

@ Springer

	Solving Problems on Graphs of High Rank-Width
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Fixed-Parameter Tractability
	2.3 Splits and Graph Labeled Trees
	2.4 Rank-Width
	2.5 Monadic Second Order Logic on Graphs

	3 Well-Structured Modulators
	4 Finding Well-Structured Modulators
	5 Examples of Algorithmic Applications
	5.1 Results for Specific Problems
	5.2 Results for Other Graph Classes

	6 MSO Model Checking with Well-Structured Modulators
	7 Hardness of MSO Optimization
	8 Conclusion
	Acknowledgements
	References

