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Abstract
We show how to vary the physical properties of a Bose-Einstein condensate (BEC) in
order to mimic an effective gravitational-wave spacetime. In particular, we focus in
the simulation of the recently discovered creation of particles by a real spacetime
distortion in box-type traps. We show that, by modulating the speed of sound in the
BEC, the phonons experience the effects of a simulated spacetime ripple with
experimentally amenable parameters. These results will inform the experimental
programme of gravitational wave astronomy with cold atoms.
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Introduction
Quantum simulators [] were originally conceived by Feynman as experimentally amena-
ble quantum systems whose dynamics would mimic the behaviour of more inaccessible
systems appearing in Nature. Together with the exploration of this visionary insight in
countless quantum platforms at an increasingly accelerated rate, last years had witnessed
the birth of alternate approaches to quantum simulation. For instance, a quantum sim-
ulator can be used to emulate a phenomenon predicted by a well established theory but
very hard to test in the laboratory, such as Zitterbewegung []. Going a step further, it can
also be used to materialise an artificial dynamics that has never been observed in Nature
while being theoretically conceivable [, ] or even to emulate the action of amathematical
transformation [].
Einstein’s theory of general relativity [] predicts the existence of gravitational waves

[], namely perturbations of the spacetime generated by accelerated mass distributions.
Since sources are typically very far from Earth, the theory predicts that the amplitude of
gravitational waves reaching our planet is extremely small and thus, finding experimental
evidence of their existence is a difficult task. Indeed the quest for the detection of these
spacetime distortions [] has been one of the biggest enterprises of modern science and
the focus of a great amount of work during the last decades, both in theory and exper-
iment. Recently, some of the authors of this manuscript have proposed a novel method
of gravitational wave detection based on the generation of particles in a Bose-Einstein
condensate produced by the propagation of the gravitational ripple []. Detection is car-
ried out through a resonance effect which is possible because the range of frequencies of
typical gravitational waves is similar to the one of the Bogoliubov modes of a BEC con-
fined in a box-like potential. Then the gravitational wave is able to hit a particle creation
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resonance, in a phenomenon resembling the Dynamical Casimir Effect [, ]. Due to
the frequencies involved, this effect is completely absent in optical cavities. The use of
our technique would relax some of the most daunting demands of other programmes for
gravitational wave detection such as the use of highly-massive mirrors and km-long inter-
ferometer arms. However, due to the extremely small amplitude of the gravitational waves
when they reach the Earth, their detection is always challenging, since it requires an ex-
perimental setup extremely well isolated from possible sources of noise. It would be of
great benefit for the experiment if the amplitude of the spacetime ripples were larger.
In this paper, we show how to realise a quantum simulation of the generation of parti-

cles by gravitational waves in a BEC. We exploit the fact that the Bogoliubov modes of a
trapped BEC satisfy a Klein-Gordon equation on a curved background metric. The met-
ric has two terms [, –], one corresponding to the real spacetime metric and a second
term, corresponding to what we call the analogue gravity metric, which depends on BEC
parameters such as velocity flows and energy density. While in [] we analyse the effect of
changes in the real spacetimemetric, in this case we consider themanipulation of the ana-
logue gravity [–] metric, assuming that the real spacetime is flat. Since in this case the
experimentalist is able to manipulate artificially the parameters of the condensate, we are
able to simulate spacetime distortions with a much larger amplitude, as if the laboratory
were closer to the source of the gravitational ripples. We show that with realistic experi-
mental parameters, a physically meaningful model of gravitational wave can be simulated
with current technology.
The paper is organised as follows. First we review the effects of a real gravitational wave

in the Bogoliubov modes of the BEC. Then we consider the case in which there are non-
zero initial velocity flows in the BEC, showing that there is always a reference frame in
which we can modulate the speed of sound in such a way that the phonons experience an
effect analog to the one produced by the propagation of a real spacetime wave. Finally, for
the sake of simplicity we assume that there are no velocity flows in the BEC and we show
that the gravitational wave can be simulated with current technology.

Gravitational waves in a BEC
The metric of a gravitational wave spacetime is commonly modelled by a small perturba-
tion hμν to the flat Minkowski metric ημν , i.e. [],

gμν = ημν + hμν , ()

where

ημν =

⎛
⎜⎜⎜⎝
–c   
   
   
   

⎞
⎟⎟⎟⎠ ()

and c is the speed of light in the vacuum.We considerMinkowski coordinates (t,x, y, z). In
the transverse traceless (TT) gauge [], the perturbation corresponding to a gravitational
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wave moving in the z-direction can be written as,

hμν =

⎛
⎜⎜⎜⎝
   
 h+(t) h×(t) 
 h×(t) –h+(t) 
   

⎞
⎟⎟⎟⎠ , ()

where h+(t), h×(t) correspond to time-dependent perturbations in two different polarisa-
tions. Later on we will restrict the analysis to -dimensional fields, where the line element
takes a simple form,

ds = –c dt +
(
 + h+(t)

)
dx. ()

We are interested in simulating this particular spacetime in a BEC. To this end we use
the description of a BEC on a general spacetime metric following references [, ]. This
description stems from the theory of fluids in a general relativistic background [] and
thus is valid as long as the BEC can be described as a fluid []. In the superfluid regime,
a BEC is described by a mean field classical background � plus quantum fluctuations �̂.
These fluctuations, for length scales larger than the so-called healing length, behave like
a phononic quantum field on a curved metric. Indeed, in a homogenous condensate, the
massless modes of the field obey a Klein-Gordon equation

��̂ = , ()

where the d’Alembertian operator

� = /
√
–g ∂a

(√
–ggab ∂b

)
()

depends on an effective spacetime metric gab - with determinant g - given by [–]

gab =
ρc
cs

[
gab +

(
 –

cs
c

)
VaVb

]
. ()

The effective metric is a function of the real spacetime metric gab (that in general may be
curved) and background mean field properties of the BEC such as the number density n,
the energy density ρ, the pressure p and the speed of sound cs = c

√
∂p/∂ρ . Here p is the

total pressure, ρ the total density and Va is the -velocity flow on the BEC. In the absence
of background flows Va = (c, , , ) and then,

gab =
ρc
cs

⎡
⎢⎢⎢⎣gab +

⎛
⎜⎜⎜⎝
(c – cs )   

   
   
   

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ . ()

In the absence of a gravitational wave, the real spacetimemetric is gab = ηab, where ηab has
been defined in Eq. (). Therefore, the effective metric of the BEC phononic excitations
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on the flat spacetime metric is given by,

gab =
ρc
cs

⎛
⎜⎜⎜⎝
–cs   
   
   
   

⎞
⎟⎟⎟⎠ . ()

Ignoring the conformal factor - which can always be done in D or in the case in which is
time-independent - we notice that the metric is the flat Minkowski metric with the speed
of light being replaced by the speed of sound cs. By considering a rescaled time coordinate
t′ = (c/cs)t we recover the standardMinkowski metric ds = –c dt + dx. This means that
the phonons live on a spacetime in which, due to the BEC ground state properties, time
flows in a different fashion and excitations propagate accordingly.
The real spacetimemetric of a gravitational wave is given by Eq. () and thus, the effective

metric for the phonons is,

gab =
ρcs
c

⎛
⎜⎜⎜⎝
–cs   
  + h+(t) h×(t) 
 h×(t)  – h+(t) 
   

⎞
⎟⎟⎟⎠ . ()

For simplicity, we considered a quasi one-dimensional BEC. The line element is conformal
to,

ds = –cs dt
 +

(
 + h+(t)

)
dx. ()

In [], it is shown that the propagation of the gravitational wave generates particles in
a BEC confined in a box-like trap. This particle creation is characterised by the Bogoli-
ubov coefficients βmn = –(φ̂m,φ∗

n), where φ̂m, φn are the m and n mode solutions of Eq.
() given by the metrics in Eq. () and Eq. () respectively. In particular, if we model the
gravitational wave by a sinusoidal oscillation of frequency 
 that matches the sum of the
frequencies of a certain pair of modes m and n, the number of particles grows linearly in
time. We refer the reader to [] for more details.

Quantum simulation
The aim of this section is to show how to get a line element similar to the one in Eq. ()
by manipulating the parameters of the BEC while the real spacetime is assumed to be flat.
Going back to the effective metric Eq. () and restricting ourselves to D we perform the

following coordinate transformation []:

χ =
√
ct – x, ζ =

x√
ct – x

. ()

Next, we choose the velocity profile such that in this new coordinate system the BEC is
at rest, i.e.,

vχ = c; vζ = . ()
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The velocity profile in the original coordinate systemneeded in order to do this is therefore

vt = c
√
 + ζ ; vx = cζ . ()

The line element given by the metric in Eq. () then takes the form

ds = –ρ(χ )
cs(χ )
c

dχ + ρ(χ )
c

cs(χ )
χ dζ 

 + ζ  ()

in which we are assuming that the speed of sound cs and the density ρ might depend on
the coordinates.Wemake another coordinate transformation (this time only in χ ), so that

cs dτ  = ρ(χ )
cs(χ )
c

dχ. ()

Here, we denote by cs the constant value of the speed of sound in the absence of any
manipulation of the BECparameters. Sincewe still have the freedom to specify the velocity
of sound or the density of the BEC, we choose to let the density be constant, so that ρ = ρ

and we fix the velocity of sound such that

�
(
 + h+(τ )

) ≡ χρ
c

cs(χ )
, ()

where � is a constant with units of distance. In order to do this, χ as a function of τ must
be

χ (τ ) =

√
cs
ρ

�

∫ τ



√
 + h+(s)ds. ()

Modelling the oscillation of the +– polarisation of the gravitational wave in the standard
way as

h+(τ ) = A+ sin(
τ ), ()

expanding the root in the integral in powers of h+ and keeping only linear terms in A+,
Eq. () takes the more friendly form:

χ (τ ) ≈
√
�cs
ρ

∫ τ



(
 +

A+


sin(
s)

)
ds

=

√
�cs
ρ

[
τ +

A+



(
 – cos(
τ )

)]
, ()

up to first order in A+. With this, we can solve Eq. () for the velocity of sound in terms
of τ - substituting Eq. () in Eq. () as

cs(τ ) =
ccs
�

[

τ +A+( – cos(
τ ))


( +A+ sin(
τ ))

]

≈ ccs
�


(

τ +A+

[
 – cos(
τ ) – 
τ sin(
τ )

])
, ()
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up to first order in A+. Now that we obtained an explicit expression for the velocity of
sound as a function of the coordinate τ , it is natural to ask the significance of the constant
parameter �. For this, we see that in the absence of a simulated gravitational wave, Eq. ()
becomes � = χ

√
ρc/cs(χ), for a particular value χ = χ. A convenient choice is � =

cτ, so that the velocity of sound can be expressed as cs(τ) = cs for τ = τ. Hence, � is
represented by the hyperbola ct – x = �cs/(ρc) in the Minkowski coordinate system.
A final coordinate transformation is made, defining ξ as

ζ = sinh

(
ξ

�

)
, ()

such that dξ  = � dζ /( + ζ ), thus transforming the line element Eq. () into

ds = –cs dτ  +
(
 + h+(τ )

)
dξ , ()

as desired.

The case with no background flows. Experimental implementation
In the last section, we have shown how the speed of sound can be modified to mimic a
gravitational wave in a coordinate system (τ , ξ ) in which there are no background flows.
Now, we will consider for simplicity that this coordinate system is the lab frame (t,x) and
relate our results directly with experimental parameters.
As we have already seen above Eq. () - and assuming again a D spacetime - if vt = c

and vx = , then the line element is conformal to:

ds = –cs dt
 + dx. ()

Now, if we consider that the speed of sound can depend on t:

cs(t) = csf (t), ()

the corresponding line element is conformal to:

ds = –cs dt
 +


(f (t))

dx. ()

Therefore, if the speed of sound varies in time such that

f (t) =
(
 –

A+ sin
t


)
, ()

we find, up to the first order in A+:

ds = –cs dt
 + ( +A+ sin
t)dx. ()

So the experimental task is to modulate the speed of sound as:

cs(t) = cs
(
 –

A+ sin
t


)
. ()
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In a weakly interacting condensate [], the speed of sound is

cs =
√

ρg
m

, ()

where ρ is the density, m the atomic mass and the coupling strength is

g =
π�a
m

, ()

and a is the scattering length. So, finally:

cs =
�

m
√
πρa. ()

It is well-known [] that a can be modulated in time by using the dependence of the
scattering length on an external magnetic field around a Feshbach resonance. The aim is
thus to achieve:

a(t) = a()
(
 – h(t)

)
, ()

because then

cs(t) = cs
(
 –

h(t)


)
()

(up to the first order), where

cs =
�

m
√
πρa(). ()

To this end, we will exploit the dependence of the scattering length with an external mag-
netic field

a = abg
(
 –

ω

B – B

)
, ()

where abg is the background scattering length, B is the value of the magnetic field at
which the Feshbach resonance takes place, and ω is the width of the Feshbach resonance.
Considering a time-dependent magnetic field

B(t) = B()
(
 + δB(t)

)
, ()

and with a little algebra, we can write, to the first order in δB:

a(t) = a()
(
 +

B()ωδB(t)
(B() – B –ω)(B() – B)

)
. ()

So, if we identify:

h+(t) =
B()ωδB(t)

(B() – B –ω)(B() – B)
, ()

Schachenmayer et al. EPJ Quantum Technology (2015) 2:2
DOI 10.1140/epjqt16

http://www.epjquantumtechnology.com/content/1/1/17


Page 8 of 9

we are simulating a gravitational wave. Writing

δB(t) = δB sin
t, ()

the amplitude of the simulated wave is:

A+ =
B()ωδB

(B() – B –ω)(B() – B)
()

and 
 is the frequency of the simulated wave. Taking experimental values for B and ω,
[] and assuming that we can control the magnetic field in a .G scale (so we can take
δB � B()� .G), we estimate the amplitude of the simulated wave as

A+ � –. ()

This is much larger that the gravitational waves that we expect to see in the Earth A+ �
–, due to the fact that the Earth is far from typical sources of gravitational waves.
Therefore it is interesting to think of the physical meaning of the gravitational waves that
can be simulated with our techniques.
For instance, the amplitude and frequency of the + polarisation of the gravitational wave

generated by a Sun-Earth-like system are:

A+ =
GmM
cRr

; 
 = 
√
G(m +M)

r
()

respectively, where G is Newton’s gravitational constant, m and M are the masses of the
Earth and the Sun respectively, r the distance between the two bodies and R the distance
between the detector and the centre of the mass of the system, which is assumed to be
much larger than the wavelength λ of the gravitational wave R � λ. Thus, if we consider
the real masses of the Sun and the Earth, a distance between them of r =  m and R =
 m, we find 
 in the kHz range - which is very convenient to generate phonons in the
BEC - and the desired value of A+. In [] it is predicted that the changes in the covariance
matrix of the Bogoliubovmodes induced by gravitational waves of typical amplitudesA+ <
– are in principle detectable. Therefore, the changes generated by a simulated wave of
much larger amplitude, should be observed in an experiment with current cold-atoms
technology.

Conclusions
We have shown how to generate an artificial gravitational wave spacetime for the quan-
tum excitations of a BEC. In the case in which there are no initial background flows, we
show that the simulated ripple is obtained through a modulation of the speed of sound
in the BEC. In the laboratory, this can be achieved with current technology by exploiting
the dependence of the scattering length on the external magnetic field around a Fesh-
bach resonance. With realistic experimental parameters, we find that simulated gravita-
tional waves that can resonate with the Bogoliubov modes of the BEC. The amplitude of
these artificial ripples is much larger than the typical amplitude expected for gravitational
waves reaching the Earth, due to the fact that the Earth is very far from typical sources.
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Thus our simulated waves would mimic the waves generated by sources much closer to
the BEC. This feature would enhance the effects of the ripple in the system, facilitating
their detection. The experimental test of our predictions would be a proof-of-concept of
the generation of particles by gravitational waves and would pave the way for the actual
observation of real spacetime ripples in a BEC. More generally, our low-cost Earth-based
tabletop experiment will inform the whole programme of gravitational wave astronomy.
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