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Abstract We present chaotic dynamics of flexible
curvilinear shallow Euler-Bernoulli beams. The con-
tinuous problem is reduced to the Cauchy prob-
lem by the finite-difference method of the second-
order accuracy and finite element method (FEM). The
Cauchy problem is solved through the fourth- and
sixth-order Runge—Kutta methods with respect to time.
This preserves reliability of the obtained results. Non-
linear dynamics is investigated with the help of a
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qualitative theory of differential equations. Frequency
power spectra using fast Fourier transform, phase
and modal portraits, autocorrelation functions, spa-
tiotemporal dynamics of the beam, 2D and 3D Morlet
wavelets, and Poincaré sections are constructed. Four
first Lyapunov exponents are estimated using the Wolf
algorithm. Transitions from regular to chaotic dynam-
ics are detected, illustrated and discussed. Depending
on signs of four Lyapunov exponents the chaotic, hyper
chaotic, hyper-hyper chaotic, and deep chaotic dynam-
ics is reported. Curvilinear beams are treated as sys-
tems with an infinite number of degrees of freedom.
Charts of vibration character, elastic—plastic deforma-
tions, and stability loss zone versus control parameters
of the studied beams are reported.

Keywords Chaos - Euler—Bernoulli beams -
Lyapunov exponents - Fourier transform - Wavelets

1 Introduction

Nonlinear vibrations of Euler—Bernoulli beams have
been studied for a long time. An Euler—Bernoulli
beam represents a continuous structural member and
its vibrations are governed by nonlinear partial differ-
ential equations, and hence, there is no hope to find
their exact analytical solutions. Therefore, the solutions
have been detected in an approximate way using either
analytical (mainly asymptotic) or numerical methods.
In this paper, we solve initial boundary-value problems
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using numerical techniques (a discussion on the advan-
tages and disadvantages of numerical versus analytical
approaches can be found elsewhere [1-3]).

It is clear that various types of beams, i.e. linear
and nonlinear, uniform and non-uniform, prismatic
and non-prismatic, etc. have been modeled and ana-
lyzed intensively in many mechanical, civil engineering
and mechatronic structures/mechanisms/devices such
as buildings, bridges, ships, turbines, helicopter blades,
aircraft measurement and control devices, sensors and
transducers just to mention a few of them.

There is a large number of papers devoted to the
analysis of beam vibrations, and also a rather wide
spectrum of different directions of research dedicated
to these problems. The reason is motivated mainly by
relatively simple PDEs that govern the dynamics of
beams, and hence, various numerical analytical meth-
ods can be applied in order to achieve reliable and val-
idated results.

On the other hand, various types of beam shapes
and design can be taken into account along with various
types of nonlinearity, including geometric, physical and
design.

Below, we briefly describe the state of the art of
recent directions in modeling and analysis of beam
vibrations putting emphasis on a novel research direc-
tion proposed in our paper.

The Euler-Bernoulli beam with simply supported
fixed ends modeling power transmission belts was stud-
ied both theoretically and experimentally by Moon
and Wickert [4]. Pitchfork bifurcations, the stability
of equilibria, as well as post-bifurcation velocity range
were detected, illustrated and discussed. This study was
extended by Pellicano and Vestroni [5], where the rub
and super-critical speed intervals and their influence on
the stability, bifurcation and global nonlinear dynam-
ics of the Euler—Bernoulli axially moving beam were
extensively analyzed. Exact solutions in closed form of
forced vibrations of prismatic damped Euler—Bernoulli
beams as well as Green functions for the beams with
different homogeneous and elastic boundary condi-
tions were reported by Abu-Hilal [6]. Naguleswaran [7]
investigated the transverse vibration of a homogeneous
Euler—Bernoulli beam of constant depth and linearly
varying breadth taking into account damped, pinned,
sliding and free boundary conditions, and derived asso-
ciated frequency equations. Park and Gao [8] pro-
posed a novel model for the bending of an Euler—
Bernoulli beam using a modified couple stress theory.
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A new model for prediction of bending rigidity of the
cantilever beam versus the classical beam model was
reported. Bifurcations and orbital stability loss exhib-
ited by N nonlinearly coupled Euler—Bernoulli micro-
electromechanical beams parametrically actuated were
studied by Gutschmidt and Gottlieb [9]. They com-
pared the analytically obtained results with numerical
ones and complemented them with a three-beam array
analysis. A new semi-analytical method to study non-
linear vibrations of Euler—Bernoulli beams with gen-
eral boundary condition was proposed and tested in
reference [10]. Recently, both variational iteration and
parameterized methods have been applied to study non-
linear vibration of Euler—Bernoulli beams subjected to
axial loads [11]. This type of study has been extended
to analyze nonlinear responses of a damped—damped
buckled beam [12].

The Euler—Bernoulli curved beams are less inves-
tigated. Lim et al. [13] derived exact relationships
between deflections and stress resultants of Timo-
shenko and Euler—Bernoulli curved beams. Hiller [14]
analyzed three elastic degrees of freedom for each
link as an Euler—Bernoulli beam assuming inner con-
straints for the other three elastic co-ordinates. Shi et al.
[15] derived a complete second-order deformation field
together with the governing equations within a graph-
theoretic formulation of the beam model. An enhanced
nonlinear 3D Euler—Bernoulli beam model governed by
ten coupled PDEs was proposed by Zohoor and Khor-
sandijou [16], and then, it was extended with newly
added elastic terms exhibiting tension—compression,
torsion and two spatial bending dynamical effects [17].

Our paper addresses a novel approach from the point
of view of reliable and validated results of strongly non-
linear governing PDEs and also in reference to modern
approaches to the detection and monitoring of regular
and chaotic dynamics of this type of structural mem-
bers. It extends our earlier studies reported in references
[18-24].

The paper is organized in the following manner.
In Sect. 2, equations governing nonlinear dynamics
of curvilinear Euler—Bernoulli beams are given in the
non-dimensional form and the initial boundary-value
problem is defined. Quantitative and qualitative analy-
ses of the results obtained via finite-difference method
(FDM) and finite element method (FEM) are carried out
in Sects. 3 and 4, respectively. Section 5 is devoted to
the computation of four Lyapunov exponents, whereas
the last Sect. 6 summaries the obtained results.
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Fig.1 A curvilinear beam

2 Modeling

In this work, we consider flexible one layer thin curvi-
linear beams of length a, height & and geometric curva-
ture k, = R , Where R, is the beam curvature radius.
The beam is loaded continuously along its external sur-
face g (x, ), acting in the normal direction to its middle
surface (Fig. 1).

A mathematical model of the investigated beam is
based on the following hypotheses:

(i) An arbitrary transversal beam cross section nor-
mal to its middle surface is straight and normal
before and after a deformation, and hence the
beam cross section height remains unchanged;

(i) Although the inertia of rotation of beam elements
is neglected, inertial forces, being responsible for
displacements along both normal and tangential
directions, are taken into account;

(iii) External forces do not change their directions dur-
ing beam deformations;
(iv) Geometric nonlinearity is taken in Karman’s form;

(v) Thin curvilinear beam exhibits shallow properties.

The hypotheses listed so far are based on the Euler—
Bernoulli ideas, and though they yield a mathematical
model of the first-order approximation, it is sufficiently
rigorous for the analysis of thin curvilinear beams.
A mathematical model of the beam is governed by
a system of nonlinear PDEs. They describe the way of
beam element movement taking into account energy
dissipation, and they are given in the following non-
dimensional form [25]
3x2 — kyx %zﬁ + L3(w, w) — 3t2 =
%{—ﬁmﬁ-k [ — kx w—j(%—f)z—wéz—w]
+L(u, w) +L2(w w)}+

—

+C]— Bt2 81631;}:05
92udw  du 9w

Liww) =25 o T ox ox2”

where Li(u, w), Ly(w, w), L3(w, w) are the nonlin-
ear operators; w(x, t) is the beam normal deflection;
u(x,t) is the beam element longitudinal displace-
ment; ¢j—coefficient of dissipation of a surround-
ing medium; E—Young modulus; 2—height of the
transversal beam cross section; y—unit weight den-
sity; g—FEarth acceleration; ky,—beam curvature; t—
time; g = go sin(w,t)—external load; go—amplitude
of the external load; w,—external load frequency.

Non-dimensional parameters are introduced in the
following way:

a _ w  _ ua _ x - t
)\‘ = -, w = ) u= I X = . t = —
h h h? T
a Eg _ a _ gqa*
T = —, p et —, E = -, q = s
p y p h*E
- kya
== (2.2)

and bars over non-dimensional quantities are omitted
in Eq. (2.1). The following boundary condition is sup-
plemented to Eq. (2.1):

w(0,1) = w(a, 1) =u0,1) = u(a, 1) = w(a,r)
—w".(0,1) =0, 2.3)

which means that one bar end is fixed (x = 0), whereas
the second one is pinned (x = a), and the following
initial conditions are taken:

w(x,0) =wkx,0) =u(x,0) =u(x,0)=0. 2.4)

In what follows we report numerical data for bound-
ary conditions (2.3) and initial conditions (2.4) tak-
ing into account periodic excitation ¢ = gg sin(wp?).
Equations (2.1)-(2.4) cannot be solved analytically,
and hence, they will be solved numerically applying
the FDM of the second-order accuracy with respect
to spatial coordinate x [26]. In order to reduce PDEs
to ODEs with respect to time co-ordinate, we use the
finite-difference approximations applying Taylor series
in the neighborhood of point x;. We consider a mesh

GN={0§XZ'§1, xi=i/N, i=0,...,N}.
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The following difference operators with the approxima-
tion of O(c?), where c is the step of spatial coordinate
partition, are introduced:

Aui) = (')H—lz—c(')i—]’
Vit = 2O + O
sz('i):()‘l’l 22)-{-() 1’
Ai() = itz — Ois1 + 62'4)1‘ - )iz + (')i—2.

Hence, PDEs (2.1) are reduced to the second-order
ODEs regarding time co-ordinate in the form

iy = A2 (ui) — ke Ay (wi) + Ay (wi) A2 (w;),

.. . 1
w; + Wy — )»2 [ —']Ti'/\XA-(lUj)

+ky |:Ax(ui) —ky Ay (w;) — %sz(wi)i| +
FA @) Ax(wi) + A2 (wi) Ay (u;)

+§(Ax(wi>)2sz<wi>] +4q. (2.5)

After the application of the second-order finite-
difference approximation, the obtained ODEs (2.5)
with the corresponding boundary and initial condi-
tions are solved using either the fourth- or sixth-order
Runge—Kutta method [27].

Reliability and validity of the obtained results
have been followed via two qualitatively different
approaches, i.e. FDM and FEM. A comparison of sig-
nals (time histories), Fourier power spectra, and Morlet
wavelets proved convergence of the results obtained by
both FDM and FEM. It should be noted that we use
further a standard fourth-order Runge—Kutta method
to solve Eq. (2.5), since the sixth-order Runge—Kutta
scheme yielded the same results while requiring twice
as long computational time.

In order to investigate the dynamics of a thin curvi-
linear flexible beam, the algorithms and associated pro-
grams were developed to construct and monitor signals,
frequency power spectra, phase and modal portraits,
Poincaré sections, autocorrelation function and the
Lyapunov exponents. Using the developed programs,
it is possible to choose go, ) to define and moni-
tor various types of vibrations (periodic, period dou-
bling bifurcations, quasi-periodic and chaotic vibra-
tions, etc.). Graphic interpretation of the results is given
in charts exhibiting beam vibration types versus control
parameters qo, wp.
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Fig. 2 Chart of beam vibration regimes

3 Numerical analysis via charts

We consider a curvilinear beam with the following
parameters n = 120, A = 100, ky = 48 and ¢1 = 1.
The constructed charts of vibration regimes not only
exhibit a picture of a studied nonlinear process, but
allow us to recognize validity and importance of the
chosen intervals of particular vibration zones. In this
case, they present the dependence of a vibration regime
on control parameters, here frequency w, and excita-
tion amplitude go. An optimal choice of the number of
nodes n applied in the FDM mesh, the number of parti-
tion of the investigated interval of excitation frequency
wp, and the excitation amplitude is equal to 90.

Figure 2 shows charts and color notation regarding
the type of curvilinear beam vibrations and zones of
qualitatively different vibrations with respect to control
parameters {wp, go}.

Besides the type of beam vibrations, we are also
interested in a series of quantitative characteristics of
the beam vibration process. This important informa-
tion is provided by bounded beam deflections intro-
duced via the hypotheses while deriving a mathemat-
ical model of the beam. This is why construction of
the chart requires monitoring of maximum (absolute
value) deflection. Figure 3 shows two charts of thresh-
old regimes, i.e. those allowed and not allowed owing to
the applied hypotheses. The first chart includes absolute
deflections, whereas the second one presents a deriva-
tive of the first one.

It should be emphasized that for large zones the
obtained deflections are out of the assumed hypotheses
(the chartin Fig. 3a has arather theoretical meaning and
explains character of the chart reported in Fig. 3b). In
Fig. 3, black (white) color corresponds to a minimum
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Fig. 3 Chart with absolute x103
deflection values: 200
min = 0, max = 33.4 (a) %
and with a cut regarding

deflection in 5 units:

min = 0, max = 5 (b) 100
(white zones are validated

by the applied hypotheses).

(Color figure online)

x103
200

9o

100

0 0 5.7 wWp 10.35

Fig. 4 Chart of threshold beam extension: min(e) =
1, max(e) = 1.2339 [black (white) color corresponds to their
minimum (maximum) values, whereas shades of gray present
intermediate values]. (Color figure online)

(maximum) deflection, whereas shades of gray present
intermediate values.

Another valid characteristic is a threshold extension
of the curvilinear beam. In order to construct charts
of threshold extensions, each numerical experiment
is supplemented with the maximum extension of the
curvilinear beam. The latter characteristic allows us
to detect zones of plastic—elastic deformations. Intro-
duction of relative beam extension & = %, implies
Hook’s law in relative units ¢ = Eg, where E is
the elasticity modulus. Knowing the limit of propor-
tionality and offset yield strength for chosen materi-
als one may construct charts with zones of elastic—
plastic deformations. Figures 4 and 5 present charts of
threshold deformations and a chart with elastic—plastic
zones for thermally strengthened aluminum 1915T
(this material is chosen owing to its high upper yield
point).

Averaged deflection per period yields a displace-
ment of the middle beam curve. Figure 6 shows
the chart of averaged deflections, where red (blue)
color corresponds to positive (negative) maximal beam
deflection, and the black one reflects the lack of dis-

x103
200

Qo

100

0 57 10.35

100

0 5.7 wWp 10.35

Fig. 5 Chart with zones of elastic—plastic deformations for
thermally reinforced aluminum: min(e) = 1, max(e) =
1.002785, omax = 195 (MPa), where white zone—plastic defor-
mations, and shades of gray and the black color correspond to
zones of elastic deformations. (Color figure online)

x103

200
9o

100

0
0 57 @ 10.35

Fig. 6 Chart of the averaged beam deflections, min = —0.22,
max = 10.69. (Color figure online)

placement. Owing to the reported chart, a rapid dis-
placement of the averaged beam surface on the defined
boundary occurs, which implies dynamical stability
loss of the beam. Another important result relating to
nonlinear analysis is yielded by a chart of signal diver-
gence which is constructed in the following way. Let a;
and b; be the deflections regarding “a” and “b” series,
respectively. Hence, one may define a distance between
signals using the formula S = Zf‘il |a; — b;|, where
M stands for the number of points in a signal. As a
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result, we get a scalar quantity characterizing diver-
gence (difference) between the series, being evaluated
through a metric applied to the set of signals with one
frequency of excitation. In order to avoid an abstract
quantity measuring the distance between series, we
transit to formula S = (Zfi] |a; — b;i|)/M. There-
fore, the averaged distance (quantified in deflections)
between points of the series “a” and “b” is obtained.
If the distance tends to zero, then signal “a” tends to
signal “b”, and if the distance is equal to zero then
we deal with one signal only. If a curvilinear beam
(system of equations) exhibits a linear behavior, then a
uniform increase of the load yields uniform divergence
of signals. On the contrary, if a linear behavior is not
observed, then a space of nonlinear behavior is fixed.
This kind of dependence is constructed for a load acting
on the beam. The latter is responsible for the amount of
energy entering the system. Construction of this depen-
dence is rather difficult with respect to frequency of the
exciting load owing to two main reasons: (1) the fre-
quency is responsible for both the observed vibration
regime and the way of energy transmission into the
system; (2) the frequency appears in a formula govern-
ing the excitation load which is usually described by
a trigonometric function, i.e. an essentially nonlinear
relation. Therefore, construction of the vibration chart
requires transition along a vertical line (up and down),

Fig. 7 Chart of signal x103
divergence: absolute— 200
min = 0, max = 9.95 (a), qo
cut per unit of the averaged

deflection convergence—

min = 0, max = 1 (b), cut 100
per 0.5 units of the averaged
deflection convergence—
min = 0, max = 0.5 (¢),
cut per 0.25 unit of the

1]
averaged deflection o 5.7
convergence— (a)
min = 0, max = 0.25 (d).
(Color figure online) x103
200
%
100
o V] 5.7
(c)
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and the monitored signal is compared with the previous
one in order to fix the estimated divergence.

Figure 7 shows charts of signal divergence in
absolute units and with maximum cuts of the amount
of 2, 0.5, and 0.25 deflection units (white color—signal
divergence exceeded the assumed maximum, green
color—result of modeling not defined). Figure 8 illus-
trates the chart of vibration regimes and the chart of
signal divergence with a maximum cut of 0.25 units.

On the basis of data reported in Fig. 8, the following
conclusions can be formulated:

1. Charts of vibration regimes and of signal diver-
gence are self-interacting and self-completed.

2. Series of hypotheses are applied while establish-
ing the beam mathematical model. Hence, putting
limitations to threshold deflections of the beam, one
may define the space of validity and reliability of the
applied mathematical model. Analysis of the results
beyond the space defined in this way yields also a
theoretical contribution to the studied problem.

3. The chart of threshold extension defines zones of
elastic—plastic deformations for different materials.
In Fig. 8, we deal with the thermally reinforced alu-
minum 1915T. It is evident that the zone of elastic
deformations almost coincides with the space of
validity of the applied mathematical model.

x103
200

1)

100

wp 10.35 d 0 5.7 Wp 10.35
(b)
x103
200
9o
100
1]
@p 10.35 5.7 wp 10.35

(@)
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Fig. 8 Chart of vibration x103 x103
regimes (a) and chart of 200 200
signal divergence (cut per 9% qQo
0.25 unit of the averaged
deflection convergence) (b)
100 100
0 % o 5.7 wp 10.35

4. The chart of averaged deflections allows us to
define a shift of the middle beam surface in the
beam central point. Observe that a significant shift
of the beam middle surface appears beyond the
hypothesis applicability space. However, taking
into account non-symmetric boundary conditions,
one may measure the middle beam surface shift
with respect to its central point. All beam ampli-
tudes achieving the threshold (limiting), values
appear out of the beam central point.

5. A more effective chart mapping can be achieved
applying an empirical approach.

For comparison, Fig. 9 shows charts of vibration
regimes for the following fixed parameters n =

x103

(b)

120, A =100, & = 1, and fork, =0, 12,48 (k, =0
corresponds to a classical beam).

One may conclude that the beam curvature increase
implies an increase of zones with periodic vibrations.
The increase of beam curvature causes an increase of
beam stiffness which yields an increase of the zones of
periodic vibrations. Figure 10 shows charts of threshold
deflection values (cut of 5 units).

It can be concluded that an increase of the beam
curvature implies a decrease of applicability of the
used mathematical model. Besides, a boundary (thresh-
old) of applicability is clearly visible through a sudden
change of the vibrations regime, i.e. dynamical stability
loss occurs. Figure 11 includes charts of signal diver-

200 x103 %103
200 200
9o q
o 9o
100 100 100
0 ° FEHE T . o
0 5.7 Wp 10.35
(b)
Fig. 9 Charts of vibration regimes k, = 0 (a), ky = 12 (b) and k, = 48 (¢)
x103 x103 x103
200 200 . H 200
9 % %
100 100 100
0 % 9 5.7 10.35 ° 9 5.7 10.35
0 5.7 @p 10.35 : Wp : : Wp :
(a) (b) (©

Fig. 10 Threshold beam deflections for 5 different curvatures: a k, = 0, bk, = 12, ck, = 48
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x103 x103
200 200
L) %
100 100

1035 0 4

o 5.7 wp

(a)

Fig. 11 Charts of signal divergence for different beam curvatures: a ky = 0, b ky = 12, ¢k, = 48

gence (truncation per (.25 units of the averaged deflec-
tion divergence). The attached charts can be used to
detect zones of dynamical stability loss.

One may conclude that an increase of the beam cur-
vature implies the increase of zones with dynamical
stability loss.

4 Further numerical investigations

A beam with the curvature of k, = 48 and parameters
n =120, A = 100, &1 = 1is further studied. Analysis
is carried out for the fixed excitation frequency value
(wp = 5,7615) and various external load amplitudes.
In each component of Fig. 12, the following cell char-
acteristics are reported: (1) Fourier power spectrum
(t € [1836,2348]; x = 0.5, i.e. the beam center); (2)
Poincaré pseudo-maps; (3) phase portrait; (4) modal
portrait; (5) autocorrelation function (ACF); (6) beam
deflection for t = 1836; (7) curve beam deflection in
time interval ¢ € [1836, 1852]; (8) 2D Morlet wavelet;
(9) 3D Morlet wavelet.

It is now well recognized that a wavelet transform
allows us to investigate time-frequency dependencies
of various dynamical systems. In this paper, we apply
the Morlet wavelet transform. More descriptions of the
application of different wavelets to study spatiotempo-
ral dynamics of structural members can be found in
references [19,28,29], where advantages of the use of
Morlet wavelet are illustrated and discussed in partic-
ular.

Analysis of the results given in Fig. 12 leads to
the following conclusions. For the excitation amplitude
qo = 57,500 (see Fig. 12a), the beam exhibits periodic
vibrations. The scale of the attractor is so small that it
does not influence the Fourier power spectrum. A rel-
atively small increase of the excitation amplitude up

@ Springer
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100
0
57 w, 10.35 o 57 wp 10.35
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to go = 62,500 (see Fig. 12b) generates one indepen-
dent and a set of dependent frequencies; phase portrait
exhibits an attractor, the modal portrait is collapsed,
and the Poincaré section exhibits the attractor. For
the amplitude interval go = 64,500 (see Fig. 12¢c)—
83,000 the situation does not change qualitatively,
though slight changes take place in the Poincaré sec-
tion as well as in the energy distribution along fre-
quencies in the power spectrum. For gg = 85,000 (see
Fig. 12d), a collapse of both previous Poincaré section
and phase portrait is observed, and a step-wise transi-
tion into a periodic vibration regime is manifested for
qo = 86,000. However, this state is not robust, and
already in the interval of go = 86,500 (see Fig. 12e)—
87,000 (see Fig. 12f) a transition into chaotic dynamics
is observed (2D Morlet wavelet exhibits an intermit-
tency of frequencies, whereas the 3D Morlet wavelet
shows a transition of the energy into the zone of low
frequencies; Poincaré section transits into a new attrac-
tor, phase and modal portraits exhibit this attractor,
and the autocorrelation function rapidly decreases). It
should be emphasized that changes discussed so far
refer not only to the vibration character but also to such
important characteristics as the maximum deflection.
Observe that for the excitation amplitude gp = 86,500
(see Fig. 12e) it is equal to 1.75, for g9 = 87,000
(see Fig. 12f) it is 4.25, whereas for go = 88,500
(see Fig. 12g) it is equal to 10.5. The maximum deflec-
tion moves to the beam center along the co-ordinate x,
and the system loses its sensitivity to non-symmetric
boundary conditions. In practice, our investigated thin
curvilinear beam exhibits buckling and loses a possibil-
ity to carry the external load, which is well illustrated
through the reported beam deflection.

A further analysis is mainly theoretical/speculative
one, because the deflection of the curvilinear beam
exceeded the value assumed in the applied hypothe-
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step by step into a cloud of points. The autocorrelation
function strongly decreases. Fourier frequency spec-
trum becomes a broad band, and in the last shown fig-
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ure cells the broad band spectrum is evident indicating
a deep chaotic state.

Analysis of the Fourier frequency power spec-
trum implies the following scenarios of transition into
chaos. For the excitation amplitude lesser than gy =
57,500 periodic orbits with frequency w, = 5.7615
are observed. An increase of the excitation ampli-
tude causes the Sacker—Neimark bifurcation, and fre-
quency @] = 2.614 non-commensurable with the fun-
damental one appears. In practice, the simultaneous
birth of linearly dependent frequency w; = w, — w1
is observed. Next, the Ruelle-Takens—Newhouse sce-
nario [30] is exhibited, which is clearly demonstrated
for go = 62,500 (see Fig. 12b). This scenario takes
place up to go = 86,000, and then the beam dynam-
ics becomes periodic with only one frequency (har-

10

1900
2000
2100
2200

| 2300 12
J t 4 6 8 10 ®

monic). Increasing the load from gp = 86,500 (see
Fig. 12e) up to go = 87,000 (see Fig. 12f) an inter-
mittency phenomenon appears (this is well reported by
the 2D Morlet wavelet), which yields a noisy frequency
spectrum. In spite of that three frequencies w; = 2.405,
wp, w2 = wp — o) are distinguishable, and again the
Ruelle-Takens—Newhouse scenario occurs. This clas-
sical version of the Ruelle-Takens—Newhouse scenario
takes place up to gop = 87,500. A further increase of
the excitation amplitude implies an interesting beam
dynamical behavior, i.e. it exhibits simultaneously two
scenarios. Namely, for gg = 88,500 (see Fig. 12g)
we may monitor fundamental frequency w,, two fre-
quencies w1 and wy = wp, — w; from the previous
Ruelle-Takens—Newhouse scenario, and frequencies
w3 = wp/2 = 2.884, wy = wp/4 = 1424, w5 =
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3/4 w, = 4.308. Since the values of frequencies
w3, w4, ws are obtained through Hopf bifurcations,
Feigenbaum’s scenario (see, for example, Chapter 9
of monograph [31]) governs the beam dynamics while
approaching chaos. Then, with a further increase of
excitation amplitude, the system prolongs this two-state
dynamics. However, for gy = 95,500 (see Fig. 12)),
the beam dynamics is qualitatively changed, since the
following frequencies, as well as frequencies wy =
1.387, w3 = 1497, wgs = 4.271 and w5 = 4.369
appear. It is remarkable that frequencies w» and w3 are
concentrated around wp /4 = 1.436, whereas frequen-
cies wg and ws around 3 /4w, = 4.307. In other words,
the Hopf bifurcation in the implicit and explicit forms,
as well as the damped Ruelle-Takens—Newhouse sce-
nario are observed. A more detailed analysis of the
beam vibrations within the interval from gg = 95,000
(see Fig. 12h) to go = 96,000 showed that the beam
moved between two illustrated dynamical states a few
times in a step-wise manner. Two-state system dynam-
ics is robust and also appears for higher values of ¢,
until it reaches a deep chaotic state with a broad band
of Fourier spectrum.

5 Lyapunov exponents

As it is well known, the Lyapunov exponents are used
to estimate quantitatively the order of dynamical chaos
of a studied system. The number of Lyapunov expo-
nents depends on the number of differential equations
governing the system dynamics. Each equation is asso-
ciated with one Lyapunov exponent. If a Lyapunov
exponent is negative, then we deal with a periodic
process, and when we have a positive exponent, then a
chaotic component within the system trajectory occurs.
Although there are different methods to compute the
Lyapunov exponents, we apply the Wolf method here
[32]. This method allows us to compute the largest
Lyapunov exponents by choosing only one coordinate
(time history), particularly suitable when the system
of governing equations is not known and we cannot
measure all of their coordinates. Let us have a time
series x (1),t = 1,..., N yielded by the measure-
ment of one coordinate of the chaotic process, and the
successive measurement carried out for equal time dis-
tances. Hence, the method of mutual information is
used to define time delay 7, whereas the method of false
neighborhoods yields the estimation of an embedding
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space dimension m. The so far described reconstruction
process yields a set of points of space R™:

xi= @), xG—1),...,x3{ —(m—1)%7))
=1 @), x20), ..., x50 1), (5.1

wherei = ((m — 1)t + 1), ..., N.Letus take a point
from series (5.1) and denote it by xo. Monitoring of
series (5.1) allows us to find such point x that the
following inequality holds || xo — xg|| = go < &, where
¢ is the fixed quantity, much lesser than the dimension
of a reconstructed attractor. It is necessary that points
x0 and X be separated in time. Then, evolution of these
two points is followed until the distance between them
achieves an a priori given quantity &,,,,. We denote the
obtained points by xj and x7, a distance between them
by &, and the interval of time evolution by 7}. After
that we again consider series (5.1), and we find point
x} close to x1, requiring the following non-equality to

be satisfied

X — X H = g1 < ¢&. Vectors X; — X

and x| — x1 should possibly have the same direction.
Further, the procedure is extended to points x; and ;i
Repeating the so far described procedure a few times
M, the largest Lyapunov exponent is estimated through
the following formula

M—1 M
= Z In(e}, /ex)/ Z Tx. (5.2)
k= k=1

A more detailed description of Wolf algorithm can be
found in reference [32]. In this work, the application of
Wolf’s method yielded Lyapunov exponents for signals
monitored in the beam middle point and for different
values of the excitation load amplitude gg (we have
investigated interval of go € [500; 199,500] with the
step of 500 units). The obtained results are reported in
Fig. 13.

In addition, a computation of the four Lyapunov
exponents was carried out for the signals given already
in the above.

Figure 13 illustrates a transition of the beam through
a periodic zone (all exponents are either less or equal
to zero), hybrid zone of system states (third and fourth
exponents change their values keeping mainly positive
values), and then it transits into a deep chaotic state
with all four exponents positive. These results coincide
in full with the analysis carried out in the previous part
of the paper.
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Fig. 13 Four Lyapunov 16
exponents A; versus g (a), Ai

and the enlarged window of 14
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It should be mentioned that in spite of the described
way of analysis we have also constructed the so-called
charts of the Lyapunov exponents. The charts of Lya-
punov exponents, similarly to the charts illustrated
in Sect. 3, are constructed versus control parameters
{wp. g0} with the same intervals as in the mentioned
section. Figure 14 shows three charts of the Lyapunov
exponents.

Comparison of the charts of Figs. 2 and 14c shows
qualitatively similar results perhaps in spite of the esti-
mation of quasi-periodic regimes. However, it should
be noted that quasi-periodicity detection using the Lya-
punov exponents is less sure in comparison to other

(b)

characteristics applied while constructing the chart of
Fig. 2, hence the latter one is more reliable.
Comparison of the results shown in Fig. 14 with the
results included in Figs. 8 and 9 implies high coin-
cidence obtained via the qualitatively different ways
of the analysis carried out. Figures 12 and 13 confirm
and complete the predictions from Fig. 2. The case of
presented windows of the g choice associated with
quasi-periodic regimes shown in Fig. 12 corresponds
to the case when all of the four Lyapunov exponents
are equal to zero. Furthermore, each chart form shows
a different aspect of the dynamical process, and match-
ing the results obtained in different ways give not only
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M quasi-periodicity (multi-frequencies) g periodic vibrations

B undefined regime

multiperiodicity

Fig. 14 Charts of Lyapunov exponents: a k, = 0, b ky = 12, ¢k, = 48

a reliable and validated picture of the system behavior
but also helps to understand it fully.

6 Concluding remarks

The flexible curvilinear beams are widely applied in
robotic manipulator arms, helicopter rotor blades, air-
craft propellers, flexible satellites, multi-packet blade
systems and wind turbines. The general theory of
flexible beam nonlinear dynamics proposed in this
paper gives arecipe for direct engineering applications.
Namely, the constructed charts of the beam vibration
regimes allow us to avoid dangerous ones, and hence
give hints to control regular and chaotic dynamics of
the studied beams.

In spite of the mentioned impact of the results on
the applications of flexible Euler—Bernoulli beam, the
paper offers anovel insight into reduction of the derived
partial differential equations to a set of nonlinear ordi-
nary differential equations putting emphasis on the reli-
ability and validation of the obtained results. We have
applied not widely used approaches to study bifurca-
tion and chaotic beam vibrations by 2D and 3D Mor-
let wavelets and four Lyapunov exponents computed
via the Wolf algorithm along with the classical numer-
ical tools like frequency power spectra, phase and
modal portraits, autocorrelation functions and Poincaré
maps.

In addition, the paper includes illustration and dis-
cussion of novel physical nonlinear phenomena yielded
by the studied flexible beams, which can be exhibited
also by other structural members. The research fits also
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plastic—elastic beam deformations. Since the paper is
written in a concise style, we omit here repeating of
the whole detected and illustrated changes of the vibra-
tional beam regimes implied by the changes of the cho-
sen control parameters, i.e. amplitude and frequency of
the continuously loaded harmonic excitation.

Let us emphasize only that our multi degree-of-
freedom nonlinear mechanical systems exhibit either
standard scenarios of a route from periodicity to chaos
(Feigenbaum’s and the Ruelle-Takens—Newhouse sce-
narios), or a simultaneous occurrence of both men-
tioned classical scenarios while entering the full chaotic
regime. Finally, it is worth mentioning that detection
of chaotic beam regimes associated with the so-called
hyper-hyper chaos and deep chaos (three and four Lya-
punov exponents are positive, respectively) belongs
certainly to new results and its validation via a labo-
ratory experiment is highly demanded.

Acknowledgments This work was supported by the National
Center of Science under the Grant MAESTRO 2, No. 2012/04/A/
ST8/00738 for the years 2012-2015 (Poland).

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the orig-
inal author(s) and the source are credited.

References

1. Andrianov, 1.V., Awrejcewicz, J., Danishevs’kyy, V.V.: An
artificial small perturbation parameter and non-linear plate
vibrations. J. Sound Vibr. 283, 561-571 (2005)



Flexible curvilinear Euler—Bernoulli beams

29

10.

11.

12.

13.

14.

16.

17.

18.

Andrianov, 1.V., Awrejcewicz, J.: Continuous models for
1D discrete media valid for higher-frequency domain. Phys.
Lett. A 345(1-3), 55-62 (2005)

Andrianov, LV., Awrejcewicz, J., Danishevs’kyy, V.V,
Ivankov, A.O.: Asymptotic Methods in the Theory of Plates
with Mixed Boundary Conditions. Wiley, New York (2013)
Moon, J., Wickert, J.A.: Non-linear vibration of power trans-
mission belts. J. Sound Vib. 200(4), 419-431 (1997)
Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifur-
cations of an axially moving beam. J. Vib. Acoust. 122(1),
21-30 (2000)

Abu-Hilal, M.: Forced vibration of Euler—Bernoulli beams
by means of dynamic Green functions. J. Sound Vib. 267,
191-207 (2003)

Naguleswaran, S.: Vibration of a Euler—Bernoulli beam of
constant depth and with linearly varying breadth. J. Sound
Vib. 153(3), 509-522 (1992)

Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based
on a modified couple stress theory. J. Micromech. Microeng.
16(11), 2355 (2006). doi:10.1088/0960-1317/16/11/015
Gutschmidt, S., Gottlieb, O.: Bifurcations and loss of orbital
stability in nonlinear viscoelastic beam arrays subject to
parametric actuation. J. Sound Vib. 329, 3835-3855 (2010)
Peng, J.-S., Liu, J., Yang, J.: A semianalytical method for
nonlinear vibration of Euler-Bernoulli beams with gen-
eral boundary conditions. Math. Probl. Eng. (2010). doi: 10.
1155/2010/591786

Barari, A., Kaliji, H.D., Ghadimi, M., Domairry, G.: Non-
linear vibration of Euler—Bernoulli beam. Lat. Am. J. Solids
Struct. 8, 139-148 (2011)

Bagheri, S., Nikkar, A., Ghaffarzadeh, H.: Study of non-
linear vibration of Euler—Bernoulli beam using analytical
approximate techniques. Lat. Am. J. Solids Struct. 11, 157—
168 (2013)

Lim, C.W., Wang, C.M., Kitipornchai, S.: Timoshenko
curved beam bending solutions in terms of Euler—Bernoulli
solutions. Arch. Appl. Mech. 67, 179-190 (1997)

Hiller, M.: Modelling, simulation and control design for
large and heavy manipulators. Robot. Autonom. Syst. 19,
167-177 (1996)

. Shi, P, McPhee, J., Heppler, G.R.: A deformation field

for Euler—Bernoulli beams with applications to flexible
multibody dynamics. Multibody Syst. Dyn. 5(1), 79-104
(2001)

Zohoor, H., Khorsandijou, S.M.: Enhanced nonlinear 3D
Euler-Bernoulli beam with flying support. J. Nonlinear Dyn.
51(1-2), 217-230 (2007)

Zohoor, H., Khorsandijou, S.M.: Generalized nonlinear 3D
Euler—Bernoulli beam theory. Iran. J. Sci. Technol. Trans. B
Eng. 32(B1), 1-12 (2008)

Awrejcewicz, J., Krysko, V.A., Saltykova, O.A., Chebo-
tyrevskiy, YuB: Nonlinear vibrations of the Euler—Bernoulli
beam subject to transversal load and impact actions. Non-
linear Stud. 18(3), 329-364 (2011)

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Awrejcewicz, J., Saltykova, O.A., Zhigalov, M.V., Hage-
dorn, P., Krysko, V.A.: Analysis of non-linear vibrations of
single-layered Euler—Bernoulli beams using wavelets. Int. J.
Aerosp. Lightweight Struct. 1(2), 203-219 (2011)
Awrejcewicz, J., Krysko, A. V., Bochkarev, V.V., Babenkova,
T.V., Papkova, I.V., Mrozowski, J.: Chaotic vibrations of
two-layered beams and plates with geometric, physical and
design nonlinearities. Int. J. Bif. Chaos 21(10), 2837-2851
(2011)

Awrejcewicz, J., Krysko, A.V., Soldatov, V., Krysko, V.A.:
Analysis of the nonlinear dynamics of the Timoshenko flex-
ible beams using wavelets. J. Comput. Nonlinear Dyn. 7(1),
011005-1-011005-14 (2012)

Awrejcewicz, J., Krysko, A.V., Yakovleva, T.V., Zelenchuk,
D.S., Krysko, V.A.: Chaotic synchronization of vibrations
of a coupled mechanical system consisting of a plate and
beams. Lat. Am. J. Solids Struct. 10(1), 161-172 (2013)
Awrejcewicz, J., Krysko, A.V., Kutepov, 1., Zagniboroda,
N., Zhigalov, M., Krysko, V.A.: Analysis of chaotic vibra-
tions of flexible plates using Fast Fourier Transforms and
wavelets. Int. J. Struct. Stab. Dyn. (2013). doi:10.1142/
S0219455413400051

Krysko, V.A., Awrejcewicz, J., Kutepov, L.E., Zagniboroda,
N.A., Papkova, L.V., Serebryakov, A.V., Krysko, A.V.:
Chaotic dynamics of flexible beams with piezoelectric and
temperature phenomena. Phys. Lett. A (2013). doi:10.1016/
j-physleta.2013.06.040

Vol’mir, A.S.: Nonlinear Dynamics of Plates and Shells.
Nauka, Moscow (1972). (in Russian)

Samarskii, A.A.: Introduction in Numerical Methods.
Nauka, Moscow (1987). (in Russian)

Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Dif-
ferential Equations I: Nonstiff Problems, 2nd edn. Springer,
Berlin (1993)

Awrejcewicz, J., Krysko, V.A.: Wavelets-based analysis of
parametric vibrations of flexible plates. Int. Appl. Mech.
39(10), 1-43 (2003)

Awrejcewicz, J., Krysko, A.V., Soldatov, V.: On the wavelet
transform application to a study of chaotic vibrations of the
infinite length flexible panels driven longitudinally. Int. J.
Bif. Chaos 19(10), 3347-3371 (2009)

Eckermann, J.P.: Roads to turbulence in dissipative dynam-
ical systems. Rev. Modern Phys. 53, 643-654 (1981)
Korsch, H.J., Jodl, H.-J., Hartmann, T.: Chaos. Springer,
Berlin (2008)

Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Deter-
mining Lyapunov exponents from a time series. Phys. D
16D, 285-317 (1985)

@ Springer


http://dx.doi.org/10.1088/0960-1317/16/11/015
http://dx.doi.org/10.1155/2010/591786
http://dx.doi.org/10.1155/2010/591786
http://dx.doi.org/10.1142/S0219455413400051
http://dx.doi.org/10.1142/S0219455413400051
http://dx.doi.org/10.1016/j.physleta.2013.06.040
http://dx.doi.org/10.1016/j.physleta.2013.06.040

	On the general theory of chaotic dynamics of flexible curvilinear Euler--Bernoulli beams
	Abstract
	1 Introduction
	2 Modeling
	3 Numerical analysis via charts
	4 Further numerical investigations
	5 Lyapunov exponents
	6 Concluding remarks
	Acknowledgments
	References


