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Abstract In this paper we study the idea of theories with containers, like sets, pairs,
sequences. We provide a modest framework to study such theories. We prove two
concrete results. First, we show that first-order theories of finite signature that have
functional non-surjective ordered pairing are definitionally equivalent to extensions in
the same language of the basic theory of non-surjective ordered pairing. Second, we
show that a first-order theory of finite signature is sequential (is a theory of sequences)
iff it is definitionally equivalent to an extension in the same language of a system of
weak set theory called WS.
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300 A. Visser

1 Introduction

This paper is a study of theories in predicate logic that possess “containers”, like
pairs, sets or sequences, for all objects of the theory. We explicate the possession of
containers by a theory as direct interpretability of a suitable container theory. Here an
interpretation is direct iff it is unrelativized and has absolute identity.

We prove, for two specific container theories that we have an alternative character-
ization of when a containee theory has the containers provided by the container theory.
We show that, for these container theories, a containee theory has the corresponding
containers iff it is definitionally equivalent to an extension in the same language of the
container theory under consideration. Since definitional equivalence is the strictest
notion of sameness of theories after extensional identity, we could almost say that
in these cases the containee theories just are the extensions of the given container
theory.

We will say that a theory U is adaptive iff, whenever a theory V directly interprets
U , then V is definitionally equivalent to an extension of U . With this notion in hand,
we can rephrase our result: we will show of two specific container theories that they
are adaptive. We will provide some further good properties of adaptive theories.

The two specific container theories that we will study are the theory of non-sur-
jective, functional, ordered pairing and weak set theory (aka adjunctive set theory).
The theories directly interpreting weak set theory are, modulo some minor details,
the sequential theories. In a sequential theory U , we can reason about sequences of
all objects in the domain of the theory. Using sequences, we can define partial truth
predicates. Employing these truth predicates, we can prove restricted consistency state-
ments for the theory U relativized to appropriate definable cuts. As a consequence of
these facts, one can prove many results concerning local and global interpretability
for sequential theories.

The research reported in this paper has as “grand aim” finding coordinate free ways
of thinking about such notions as sequentiality. We explicate “coordinate free” in terms
of being defined in terms of an appropriate category of interpretations. Coordinate
free properties will be preserved by isomorphisms in the chosen category. The coor-
dinate free notion of adaptive theory studied in this paper is, admittedly, very far from
fulfilling this grand aim. However, we submit, it constitutes a modest step in the right
direction.

Thus, we have two motivations for studying adaptiveness. First, the fact that a theory
U is adaptive, provides us with a nice and perspicuous characterization of all containee
theories possessing the containers provided by U . Second, the study of adaptiveness
is interesting as the study of a coordinate free concept with good properties.

Plan of the paper

In Sect. 2, we introduce the basic concepts needed to understand the paper. Specifically,
we give the basics of interpretations and interpretability. Section 3 is an introduction
to container theories and their uses. In Sect. 4, we introduce the notion of adaptiveness
and we prove some of its elementary properties. In Sect. 5, we show that the theory of
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Pairs, sets and sequences in first-order theories 301

functional, non-surjective, ordered pairing is adaptive. In Sect. 6, we show that a very
weak set theory is adaptive.

2 Definitions and basic facts

We consider ∆b
1-axiomatized theories in predicate logic of finite signature with iden-

tity.1 Officially, we demand that our theories have relational languages, i.e., that they
lack function symbols and constants. However, we will be sloppy about this. Often
we will speak about languages as if they have function symbols and constants. We
assume implicitly that such function symbols and constants are eliminated using the
well known translation algorithm of functional to relational languages.

2.1 Translations and interpretations

Let Σ and Θ be finite signatures. A relative translation τ : Σ → Θ is given by a pair
〈δ, F〉. Here δ is a Θ-formula representing the domain of the translation. We demand
that δ contains at most v0 free. The mapping F associates to each relation symbol
R of Σ with arity n an Θ-formula F(R) with variables among v0, . . . , vn−1. Here
identity is also included among the relation symbols of Σ . We translate Σ-formulas
to Θ-formulas as follows:

− (R(y0, · · · , yn−1))
τ := F(R)(y0, · · · , yn−1);2

− (·)τ commutes with the propositional connectives;
− (∀y A)τ := ∀y (δ(y) → Aτ );
− (∃y A)τ := ∃y (δ(y) ∧ Aτ ).

Suppose τ is 〈δ, F〉. Here are some convenient conventions and notations.

− We write δτ for δ and Fτ for F .
− We write Rτ for Fτ (R).
− We will always use “=” for the identity of a theory. In the context of translating,

we will however switch to “E”. So, Eτ is the translation of identity.
− We write x : δ for: δ(x0) ∧ . . . ∧ δ(xn−1).
− We write ∀x : δ A for: ∀x0 . . . ∀xn−1 (x : δ → A).
− We write ∃x : δ A for: ∃x0 . . . ∃xn−1 (x : δ ∧ A).

We can compose relative translations as follows:

− δτν := (δν ∧ (δτ )
ν),

− Rτν = v : δτν ∧ (Rτ )
ν .

We write ν ◦ τ := τν. Note that (Aτ )ν is provably equivalent in predicate logic to
Aτν . The identity translation id := idΘ is defined by:

1 The demand on the complexity of the axiom set is not as restrictive as it seems, since we often can
diminish the complexity of the axiom set using versions of Craig’s trick.
2 Here F(R)(y0, . . . , yn−1) is our sloppy notation for: F(R)[v0 := y0, . . . , vn−1 := yn−1], the result of
substituting the yi for the vi . We assume that some mechanism for α-conversion is built into our definition
of substitution to avoid variable-clashes.
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302 A. Visser

− δid := (v0 = v0),
− Rid := R(v0, . . . , vn−1).

Note that translations as defined here only have good properties modulo provable
equivalence. For e.g., δid◦id = (v0 = v0 ∧ v0 = v0), which is not strictly identical to
δid.

We say that a translation τ is unrelativized if the domain formula δτ is v0 = v0.
A translation has absolute identity if it translates the identity relation to itself, i.o.w.,
Eτ = (v0 = v1). A translation is direct if it is unrelativized and has absolute identity.

A translation τ supports a relative interpretation of a theory U in a theory V , if, for
all U -sentences A, U � A ⇒ V � Aτ . (Note that this automatically takes care of the
theory of identity. Moreover, it follows that V � ∃v0 δτ .) We will write K = 〈U, τ, V 〉
for the interpretation supported by τ . We write:

− K : U → V for: K is an interpretation of the form 〈U, τ, V 〉,
− K : V � U iff K : U � V iff K : U → V . The �-notation is intended to be

suggestive of interpretability as a generalization of derivability.
− V � U iff U � V iff ∃K K : V � U .

If M is an interpretation, τM will be its second component, so M = 〈U, τM , V 〉, for
some U and V .

Par abus de langage, we write “δK ” for: δτK ; “RK ” for: RτK ; “AK ” for: AτK , etc.
Suppose T has signature Σ and K : U → V , M : V → W . We define:

− idT : T → T is 〈T, idΣ, T 〉,
− M ◦ K : U → W is 〈U, τM ◦ τK , W 〉.
We identify two interpretations K , K ′ : U → V if:

− V � δK v0 ↔ δK ′v0,
− V � v : δK → (RK v ↔ RK ′v).

One can show that, modulo this identification, the above operations give rise to a
category INT of theories and interpretations. We mention two further salient interpre-
tations. We say that a theory V is an extension of a theory U , or U ⊆ V if U and V
have the same signature and the set of theorems of U is a subset of the set of theorems
of V . We can view extension as an interpretation EU V with as underlying translation
the identical translation. We say that a theory V is an expansion of a theory U , if the
signature of V extends the signature of U and the set of theorems of U is a subset
of the set of theorems of V . We can view extension as an interpretation εU V with as
underlying translation the identical translation.

If two theories are isomorphic in INT will be say that they are definitionally equiv-
alent or synonymous. The monomorphisms of INT are precisely the faithful interpre-
tations, i.e., the interpretations 〈U, K , V 〉 such that, for all U -sentences A, we have
U � A ⇔ V � AK .

We say that an interpretation is unrelativized, has absolute identity, is direct, if its
underlying translation is unrelativized, has absolute identity, is direct. The restriction
of INT to direct interpretations is INTdir. It is easy to see that isomorphisms of INT
are direct.

We will also meet interpretations with parameters. Since these only play a minor
role in the paper, we treat them in Appendix A.
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2.2 Multifunctions

In this paper familiar notions like pairing will not generally be functional. This easily
causes formulas to become unreadable, because one cannot use familiar notations. A
lot of extra existential quantifiers are needed to compensate for the lack of the con-
venient notation for function composition. To diminish this awkwardness, we employ
“multifunction notation”. For some formulas Axy, we introduce a notation of the
form Fx ∼= y. We use: Ft0 . . . tn−1 ∼= y for: ∃y0, . . . , yn−1 (t0 ∼= y0 ∧ . . . ∧ tn−1 ∼=
yn−1 ∧ Fy0 . . . yn−1 ∼= y). We will only use this notation in formulas of the form
t ∼= y. We write t ↓ for: ∃y t ∼= y.

If τ is a direct translation, we will write Fτ y ∼= x for: (Fy ∼= x)τ .

2.3 U -theories

Consider any theory U . We say that a theory V is a U-theory iff U is directly inter-
pretable in V . We say that V is a parametric U -theory iff U is directly parametrically
interpretable in V . We have the following simple insight.

Theorem 1 The class of (parametric) U-theories is a subclass of the class of (para-
metric) V -theories iff U directly (parametrically) interprets V . The classes of (para-
metric) U-theories and (parametric) V -theories coincide iff U and V are mutually
directly (parametrically) interpretable.

Our intended application of the notion of U -theory is as an easy way to specify clas-
ses of theories having the containers provided by a given container theory.3 Suppose
we want a theory V to posses containers—like sets, pairs, sequences—for the ele-
ments of the domain of V . The presence of U via direct interpretation provides these
containers. We want to have containers for all elements of the domain of V , hence
the container theory U should be present via unrelativized interpretation. We want to
have our containees unmodified, hence U should be present via an interpretation with
absolute identity.

3 Three groups of container theories

In this section, we introduce three salient groups of container theories. We present
these groups in increasing order of strength.

3.1 Theories of pairing

The theory of unordered pairing, PAIRuno is given as follows. It has, apart from
identity, one binary relation symbol ∈. It has, apart from the axioms of identity, the
following axiom.

pu1 � ∀u, v ∃x ∀y (y ∈ x ↔ (y = u ∨ y = v)).

3 Of course, the notion of U -theory is far more general than this intended application.
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304 A. Visser

The theory non-surjective unordered pairing PAIRuno,ns is PAIRuno plus the axiom:

pu2 � ∃x ∀y y �∈ x .

The theory of ordered pairing PAIRo is given as follows. It has, apart from identity, one
ternary symbol pair. It has, apart from the axioms of identity, the following axioms.

po1 � ∀u, v ∃x pair(u, v, x),
po2 � ∀u, v, u′, v′, x ((pair(u, v, x) ∧ pair(u′, v′, x)) → (u = u′ ∧ v = v′)).
The theory of non-surjective ordered pairing PAIRo,ns is PAIRo plus the following
axiom.

po3 � ∃x ∀u, v ¬ pair(u, v, x).

The theory of ordered pairing with at least two elements PAIRo,2 is PAIRo plus the
axiom � ∃x, y x �= y.

The theories PAIRuno and PAIRo are mutually directly interpretable. We can inter-
pret the unordered pairs in the ordered pairs by interpreting x ∈ y as∃u (pair(x, u, y)∨
pair(u, x, y)). We can interpret the ordered pairs in the unordered pairs using
Kuratowski pairing. We interpret pair(x, y, z) as:

∃u, v ∀w ( (w ∈ z ↔ (w = u ∧ w = v))

∧(w ∈ u ↔ w = x)

∧(w ∈ v ↔ (w = x ∨ w = y)) ).

Similarly, for the theories PAIRuno,ns and PAIRo,ns. Thus, we can define the class
of theories with pairing both as the class of PAIRuno-theories and as the class of
PAIRo-theories. The non-surjective case of PAIRuno,ns and PAIRo,ns is similar.

The theory PAIRo,2 is mutually directly parametrically interpretable with
PAIRuno,ns and PAIRo,ns. Thus, we can define the class of theories that paramet-
rically have non-surjective pairing as the class of parametric PAIRo,2-theories.

Each of our theories of pairing has a functional variant obtained by adding the
functionality axiom for pairing. In the non-surjective case, we do not demand that
there is a unique non-pair, but we add a constant 0 of which it is postulated that it
is a non-pair. (Strictly speaking, we add a unary predicate, an axiom stating that it is
inhabited by a unique object, and an axiom stating that every inhabitant is a non-pair.)
We designate the functional variants using a superscript fun. For e.g., PAIRfun

o,ns is the
theory of functional non-surjective ordered pairing.

Example 1 We show that Robinson’s Arithmetic Q is not a PAIRo-theory, and, hence,
not a PAIRuno-theory. We construct a model. Consider the ordering ω + Z. We will
call the elements of the copy of ω: the finite cardinals. We will call the elements of
the copy of Z: the infinite cardinals. We define:

− 0 is the least finite cardinal.
− Successor S is the usual successor on the finite cardinals and is identity on the

infinite cardinals.
− Addition + is the usual addition on the finite cardinals and is the maximum of its

arguments if one of its arguments is infinite. Note that this gives us: a ≤ b ↔
∃c a + c = b.
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Pairs, sets and sequences in first-order theories 305

− Multiplication × is defined as follows. We set a×b to be the usual product, if both
a and b are finite. We take a×b := 0, if one of a, b is 0. We take a×b = max(a, b),
if 0 < min(a, b) and one of a, b is infinite.

Let σ be the identity on the finite cardinals and the order successor on the infinite
cardinals. It is easily seen that σ is an automorphism of our model.

Suppose we could define in the arithmetical language a total multivalued pairing
function 〈·, ·〉. Suppose a is an infinite cardinal and that n is a finite cardinal. Suppose
〈a, n〉 ∼= b. If b were finite we would have 〈σa, n〉 ∼= b, which contradicts the assump-
tion that 〈·, ·〉 is a pairing function. So b is infinite. Now note that 〈σ za, n〉 ∼= σ zb, for
all z in Z. It follows that every infinite cardinal instantiates a pair of the form 〈σ za, 0〉
and a pair of the form 〈σ z′

a, 1〉. A contradiction.
Note that our model also satisfies associativity and commutativity of + and ×.

For some results concerning the complexity of theories of pairing, see [3], Chap.
8. W.V. Quine showed that, for a certain theory of pairing, say U0, all U0-theories
are definitionally equivalent with theories with just one binary relation symbol. See
Quine’s paper [11]. We discuss Quine’s result in somewhat more detail in Remark 3.

3.2 Vaught theories of sets and sequences

We first specify the theory VSEQ of Vaught sequences. To simplify the presentation
of this theory and later ones, we introduce a fixed translation of theories of arithmetic.
Let U be any theory in the language of arithmetic. We assume that our language is
the relational variant, with a unary predicate symbol Z for zero, with a binary relation
symbol S for successor, a binary symbol < for the usual order, a ternary relation
symbol A for addition and a ternary relation symbol M for multiplication. Let Θ be
the signature of arithmetic, in its relational version, expanded with a unary relation
symbol N and binary relation symbol E. We translate the language of arithmetic to the
new language of signature Θ by a translation #, with δ# := N, E# := E,4 Z# := Z,
S# := S, <# := <, A# := A, M# := M. We define U # to be the theory axiomatized by
the usual axioms for identity, by axioms � A#, for every axiom � A of U (including
the axioms for identity), plus the axioms � Pv → v : N, where P is any of the
symbols E, Z, S, <, A, M.

We employ the arithmetical theory R of [14], which is given by the following
axioms.5

r1 � m + n = m + n,
r2 � m × n = m × n,
r3 � m �= n, if m �= n,
r4 � x < n → ∨

i<n x = i ,
r5 � x < n ∨ x = n ∨ n ≤ x .

4 Remember that we use “E” as a generic name of identity. In contrast, “E” is a new constant distinct from
“=” (aka “E”) in Θ . The symbol “E” will represent a congruence relation mimicking identity on the natural
numbers.
5 Our version is in fact a variation that is definitionally equivalent to the formulation of [14].
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306 A. Visser

The theory VSEQ is obtained by expanding the signature Θ with a ternary symbol β.
We will write (x)y ∼= z for βzyx . The theory VSEQ is axiomatized by the following
axioms.

vseq1 The axioms of R#.
vseq2 � (x)y ∼= u → y : N.
vseq3 � ((x)y ∼= u ∧ yEy′) → ∀v ((x)y′ ∼= v ↔ u = v).
vseq4 For all n and all sequences of variables z of length n, we have:

� ∀z ∃x
∧

i<n(x)i ∼= zi ,

The class of VSEQ-theories was introduced by Robert Vaught in his [15]. We call
these theories Vaught theories, following Pudlák in his [9]. Vaught’s definition differs
slightly from ours in that he works with a version of # that translates identity to iden-
tity. Since Vaught’s result also holds for our wider definition, we prefer the present
definition.

Vaught proves the surprising theorem that every recursively enumerable Vaught
theory of finite signature is axiomatizable by the embedded axioms of R plus one
single axiom-scheme with one single binary schematic letter. As we will see, Vaught
missed a simple argument that allows us to drop the embedded axioms of R from the
theorem.

In his paper, Vaught introduces also another kind of theory: in our terms these are
the VS-theories. The theory VS is a theory in the language with, apart from identity,
one binary predicate ∈. It is given by the axioms for identity plus the following axioms.

vs1 For each n ∈ ω, we have:
� ∀x0, . . . , xn−1 ∃y ∀u (u ∈ y ↔ ∨

i<n u = xi ).

For VS-theories, Vaught’s result is even better: every recursively enumerable VS-
theory of finite signature is axiomatizable by one single axiom-scheme with one single
binary schematic letter. We show that the stronger result also holds for VSEQ-theories.

Clearly, we can define (non-extensional) pairing in VSEQ. Define:

− x ∈τ y :↔ ∃u, v : N ∃w (〈u, w〉 ∼= y ∧ v < u ∧ (w)v ∼= x).

The numerical bound u is added to keep undesired candidate elements out. It is easy
to see that there is an interpretation based on τ witnessing the fact that VSEQ�dir VS.
So, Vaught’s stronger result also holds for Vaught theories.

One can also show that VS �dir VSEQ. Regrettably I know of no place where the
long verification is executed.

One can easily show that VS is locally directly interpretable in PAIRuno,ns, i.o.w.,
PAIRuno,ns directly interprets every finite subtheory of VS. As the next theorem shows
we cannot drop the locality.

Theorem 2 The theory VS is not interpretable in PAIRuno,ns.

Proof Since VS interprets the theory R of [14], we find that VS is essentially unde-
cidable. On the other hand it is well known that there are decidable extensions of
PAIRuno,ns. (see e.g., [3] and [2]) ��
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3.3 Sequentiality

In this subsection, we introduce the notion of sequential theory.

3.3.1 Weak set theories and theories of sequences

Let U be any arithmetical theory, i.e., a theory in the language of arithmetic that
extends Q. We define a theory PSEQ(U ) in the signature Θ+, which is the signature
Θ of VSEQ extended with a binary predicate seq. We will write 0 ∼= x , for Zx ,
Sx ∼= y for Sxy, (x)y ∼= z for βzyx .

pseq1 The axioms of U #.
pseq2 � seq(x, y) → y : N,

� (x)y ∼= z → ∃u : N (seq(x, u) ∧ y < u).
pseq3 � seq(x, y) → (yEy′ ↔ seq(x, y′)),

� ((x)y ∼= z ∧ yEy′) → ∀z′ ((x)y′ ∼= z′ ↔ z′ = z).
pseq4 � ∀u<y (seq(x, y) → ∃v (x)u ∼= v).
pseq5 � 0 ∼= x → ∃y seq(y, x).
pseq6 � (seq(x, y) ∧ Sy ∼= y′) →

∃x ′ (seq(x ′, y′) ∧ (x ′)y ∼= z ∧ ∀u<y ∀v ((x)u ∼= v → (x ′)u ∼= v)).

Let us say that an arithmetical theory is absolutely weak if it interpretable in
Robinson’s Arithmetic Q just by relativization to a definable class that is closed under
the arithmetical operations and downwards closed w.r.t. <. Such theories as Q, S1

2,
I∆0 +Ω1 and I∆0 +Ω17 +Σ1-collection are absolutely weak. Any Π0

1 -axiomatized
theory interpretable in Q is absolutely weak, and so is any Π0

1 -axiomatized theory
interpretable in Q plus Σ1-collection. For e.g., Q + incon(Q) is interpretable in Q,
but not absolutely weak. We have:

Theorem 3 If U and V are absolutely weak then PSEQ(U ) and PSEQ(V ) are
mutually directly interpretable.

The main point here is of course that we may restrict the interpretation of N, while
keeping the general object domain unrelativised. We can improve the theorem further
by adding operations like concatenation of sequences, restriction of sequences, inser-
tion of elements in sequences and the like. For the main ingredients of the proof see
[4] or [9].

Just as in the case of Vaught theories, there is a closely related set theory. We define
the container theory WS, weak set theory or adjunctive set theory, as follows. This
theory is a theory in the language with just identity and one binary predicate symbol
∈. It is given by the following axioms.

ws1 � ∃x ∀y y �∈ x ,
ws2 � ∀u, v ∃x ∀y (y ∈ x ↔ (y ∈ u ∨ y = v)).

We define the following multifunctions:

− ∅ ∼= x :↔ ∀y y �∈ x ,
− Svu ∼= x :↔ ∀y (y ∈ x ↔ (y ∈ u ∨ y = v)).
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308 A. Visser

We can now rephrase our axioms simply as: � ∅ ↓ and � Svu ↓. We have the following
remarkable theorem.

Theorem 4 Suppose T is absolutely weak. Then, PSEQ(T ) is mutually directly inter-
pretable with WS.

We provide some pointers for the proof of Theorem 4 in Appendix B.
A theory is sequential iff it is a WS-theory. A theory is parametrically sequential

iff it is a parametric WS-theory. Alternatively, sequential theories are precisely the
PSEQ(T )-theories for any absolutely weak T .

Clearly, the theory WS extends VS. The next theorem shows that WS is essentially
stronger than VS.

Theorem 5 VS does not interpret WS.

Proof Suppose VS interprets WS. Since PAIRuno,ns locally interprets VS and since
WS is finitely axiomatized, it follows that PAIRuno,ns interprets WS. But this is impos-
sible, since WS is essentially undecidable (e.g., since it interprets Q) and PAIRuno,ns
has a decidable extension. ��
So we have: PAIRuno,ns �dir VS �dir WS, and this sequence is strictly ascending.

In Appendix B, we provide some historical notes on the development of the notion
of sequentiality.

3.3.2 Examples, small facts and questions

We first provide some examples to illustrate that sequentiality is not preserved by
mutual interpretability.

Example 2 One can show that no consistent theory of the form U ⊕ U is sequential.6

Suppose U is consistent and sequential. Then U is mutually interpretable with U ⊕U ,
but U ⊕ U is not sequential.

Example 3 The theory Q interprets WS, but not directly, since Q is not even a
PAIRuno-theory. See Example 1.

Question 1 Is there a sequential arithmetical theory that is minimal w.r.t. direct inter-
pretability?

The following fact implies that WS does not interpret Q via an interpretation that
preserves identity.

Fact 1 No constants are definable in WS, in other words, there is no formula Ax with
at most x free, such that WS � ∃!x Ax.

6 The operation ⊕ is the sum in INT. For a definition of a specific choice of this operation on theories, see
[21].
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Proof It is clearly sufficient to produce a model of WS with an automorphism without
fixed points. Let N be any countable model of WS. We may assume that the domain
of N is the set of natural numbers. Let τ be the mapping that interchanges 2n and
2n + 1, for every n. We define a new model, N �, as follows:

− x ∈� y :↔ ∃z ((y = 2z ∧ x ∈ z) ∨ (y = 2z + 1 ∧ τ x ∈ z)).

If we use [·] for the entire function, we can rewrite this as: x ∈� y :↔ τ y x ∈ [ y
2 ]. It is

easily seen that N � is again a model of WS. Note that τ x ∈� τ y iff τ y x = τ τ yτ x ∈
[ τ y

2 ] = [ y
2 ]. Thus, τ is an automorphism of N � with no fixed points. ��

Question 2 It is well known that every sequential theory is mutually locally interpret-
able with an arithmetical theory. Is it also true that every sequential theory is mutually
interpretable with an arithmetical theory?

We provide an example of a parametrically sequential theory that is not sequential.

Example 4 We consider the theory U with a ternary predicate x ∈z y. The axioms
of U are obtained from those of WS by replacing subformulas of the form x ∈ y by
x ∈z y. (Here z does not occur in the original axioms and obtains a universal reading
in the axioms as a whole). Trivially U is parametrically sequential.

To see that U is not sequential, consider any countable model M of WS. We may
assume that the domain of M consists of the integers. We define a ∈c b :↔ (a + c) ∈
(b + c), thus obtaining a model N of U . Since for every a and b in the domain of N
there is an automorphism that sends a to b, to wit (·) + (b − a), every N -definable
class is either empty or the universe. Thus, there can be no interpretation of WS in U ,
since e.g., the class of empty sets cannot be defined.

Remark 1 In this paper, we do not consider multidimensional interpretations. We point
out here that under the most obvious reading of the notion of direct multidimensional
interpretation, we can replace a parametric interpretation of WS by a non-parametric
multidimensional one. For e.g., suppose that 〈K , A〉 : V � WS is a one-dimensional
interpretation with one parameter. We can replace 〈K , A〉 by a two-dimensional one
M by setting:

− (x, y) ∈M (u, v) :↔ A(u) ∧ ∃w (〈x, y〉K (u)
∼= w ∧ w ∈K (u) v).

As usual, we employ Kuratowski pairing: 〈x, y〉K (u) := {{x}, {x, y}}K (u).
Note that this argument works more generally for any PAIRuno-theory in the role

of WS.

Remark 2 In our framework, all theories were supposed to have identity. However, it
is nice to reduce the signature to just one binary relation without identity. For example,
we can easily show that modulo definitional equivalence identity can be eliminated
from WS. Define:

− x E∗y :↔ ∀u (u ∈ x ↔ u ∈ y) ∧ ∀v (x ∈ v ↔ y ∈ v)

Let WS∗ be the theory WS, in the language without identity, where we replace = in the
non-logical axioms by E∗. We claim that WS∗ and WS are definitionally equivalent.
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The interpretation K of WS∗ in WS is the identical one. The interpretation M of WS
in WS∗ is by interpreting = by E∗. The correctness of K follows from the fact that
WS � ∀v (x ∈ v ↔ y ∈ v) → x = y and hence WS � ∀x, y (x E∗y ↔ x = y).
The correctness of M is easy, the main part being the verification of the identity axioms
for E∗. We have that E K

M = E∗ and WS � x E∗y ↔ x = y. Moreover, M ◦ K is the
identity interpretation on WS∗. Thus, WS and WS∗ are definitionally equivalent.

4 Adaptiveness

We say that a theory U is adaptive iff every U -theory is definitionally equivalent with
an extension of U . (The theory U is such that every V that directly interprets U can
be “adapted” to a theory that extends U ).

In [22], it is shown that a morphism in INT is an epimorphism iff it can be split into
an extension followed by an isomorphism. Thus, a theory U is adaptive if and only iff,
for all V , if U �dir V , then U �epi V . Epimorphisms have the same characterization

in INTdir as in INT. Hence, adaptiveness is definable in terms of INTdir. This shows
that adaptiveness is coordinate free when we have INTdir as our background category.

Question 3 Is adaptiveness definable in terms of INT?

The next theorem shows that the property of adaptiveness is a “good property” w.r.t.
the category INT.

Theorem 6 Suppose U is adaptive and V is definitionally equivalent to U. Then V
is adaptive.

Proof Suppose U is adaptive and U is definitionally equivalent with V . Let K and K −1

witness the isomorphism of U and V . Let M : V → V ′ be direct. Since isomorphisms
are direct, it follows that M ◦ K : U → V ′ is direct.7

V ′

U �K −1

K
�

N
�

V

M
�

Hence, there is an epimorphism N : U → V ′. We may conclude that N ◦ K −1 : V →
V ′ is also an epimorphism. ��
Question 4 Consider the degree structures DEGdir of direct interpretability and
DEGepi of epimorphic interpretability. Does the embedding functor from DEGepi

into DEGdir have a left adjoint? (The elements in the image of such a functor would
be precisely the adaptive theories.) If the answer is no, can we find suitable restrictions
of the degree structures for which the answer is yes?

7 The small cross in the middle of the diagram tells us that the diagram does not necessarily commute.
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The next theorem gives a very modest “lower bound” result for adaptiveness. Let INF
be the theory, in the language of identity, stating, for every n, that there are at least n
elements.

Theorem 7 Every adaptive theory contains INF.

Proof Let U be an adaptive theory and suppose that U has a model of n elements.
Let P be a 0-ary predicate not in the signature of U . Let U P be the theory we obtain
from U by expanding the signature of U with P , adding no extra axioms. Clearly,
U P �dir U . Let W be an extension of U that is definitionally equivalent to U P . Sup-
pose U has N models (modulo isomorphism) on n elements. By assumption N > 0.
Then, U P has 2N models on n elements. Hence, W has 2N models on n elements.
But every model of W is ipso facto a model of U . A contradiction. ��
It follows, e.g., that predicate logic is not adaptive. The next question concerns the
possibility of a better lower bound.

Question 5 Does every adaptive theory directly interpret PAIRuno?

The next example illustrate that rather strong theories need not be adaptive.

Example 5 In this example we show that PA is not adaptive.8 Let PAP be Peano
Arithmetic with an additional propositional variable P . We add no further axioms
regarding this variable. Clearly, PA is directly interpretable in PAP . Suppose PA is
adaptive. Then, there is an extension T of PA, such that T is definitionally equivalent
to PAP . We work in PAP .

Let K : T → PAP be the isomorphism from T to PAP . Let M be its inverse. Using
Dedekind’s construction of an isomorphism of two models of second order arithmetic,
we can now build, PAP -verifiably, a definable isomorphism F between the PAP -num-
bers (the domain of the theory) and K -numbers (the domain of the interpretation K ).9

To verify that we did define an isomorphism, we need the fact that we have full induc-
tion both for the PAP -numbers and the K -numbers. It follows from the existence of
F , that, for arithmetical sentences C : (†) PAP � C ↔ C K .

But now we have PAP � P ↔ P M K , since M and K are each others inverses.
From the fact that P M is arithmetical, it follows, by (†), that PAP � P ↔ P M . Quod
impossible, because P M is arithmetical.

We provide a necessary condition for adaptiveness.

Theorem 8 Suppose U is consistent and adaptive. Then, U has a finitely axioma-
tized, essentially undecidable extension, which is complete Σ0

1 . Moreover U is itself
complete Σ0

1 .

Proof Suppose U is consistent and adaptive. We show that:

V := (IΣ2 + con(U + INF)) �dir U.

8 The fact that PA is not adaptive also follows from Theorem 8.
9 Note that F is an isomorphism between interpretations, and that K is an isomorphism between theories.
For elaboration of such ideas, see [21].
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(We have shown that U implies INF. We need, however, INF to be verifiably present.)
We first construct an interpretation using the Henkin-Feferman construction. Note that
the proof that the Henkin-Feferman construction yields an infinite path is precisely
a Σ2-induction. Moreover, both the “truth predicate” and the domain δ provided by
the Henkin-Feferman construction are ∆0

2. So the equivalence relation E between
the elements δ is also ∆0

2. Since U extends INF, we can “collapse” the domain to
the natural numbers assigning to each equivalence class precisely one number. The
collapsing function on δ can be defined as follows. We say that a sequence σ is accept-
ing iff (a) σ j is in δ for each j < length(σ ), and (b) σ j < σk and ¬ (σ j Eσk), for
j < k < length(σ ), and (c) for all y ≤ σlength(σ )−1 there is a j < length(σ ) such
that σ j Ey. We prove, by Σ2-induction that for every i there is an accepting sequence
of length i . Note that this uses the fact that INF is verifiably present. We set Fx = i iff
there is an accepting sequence σ with σi Ex . It is easy to verify that F has the desired
properties. Finally, we use F to transform our interpretation to a direct one.

Let U ′ be an extension of U that is definitionally equivalent with V . Since finite
axiomatizability is preserved by definitional equivalence, we may take U ′ to be finitely
axiomatized. Moreover, essential undecidability is also preserved under definitional
equivalence. Finally, V is complete Σ0

1 , hence, so is U ′. Since U ′ is finitely axioma-
tized, it follows that U too is complete Σ0

1 . ��
Note that it does not follow that adaptive theories are themselves essentially undecid-
able. Theorem 8 implies that PA and ZF (and, more generally, all essentially reflexive
theories) are not adaptive, since these theories have no finitely axiomatized extensions.

We provide a simple example of a group of adaptive theories.

Example 6 Let V be any PAIRuno,ns-theory. Let U := V P be the theory V , expanded
with a unary predicate P , without any further axioms concerning P . We show that U
is adaptive.

We will omit the translation via which PAIRuno,ns is directly interpreted in U . In
U we define:

− 〈x, y〉 := {{x}, {x, y}},
− 0 ∼= y :↔ ∀z z �∈ y,
− Sx := 〈x, 0〉,
− 0 := 0, n + 1 := Sn,
− [ ]0 := 0, [x, y]n+1 := 〈[x]n, y〉,
As usual we can verify that 〈·, ·〉 is a pairing, that 0 is no successor, that S is total
and injective, that the n are pairwise disjoint, and that the [x]n have the properties of
sequences of length n.

Suppose K : W �dir U . We order the predicates of W as Qi with arity ai . Let α be
the translation on which K is based. We define a new direct translation β as follows:

− Rβx :↔ Rαx, if R is a U -predicate unequal to P .
− Pβ x :↔ ∨

i ∃y (〈i, [y]ai 〉α ∼= x ∧ Qi y).

We translate the language of W in the language of U via the direct translation τ given
by:

− Qi,τ y :↔ ∃x (〈i, [y]ai 〉 ∼= x ∧ Px).
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It is easy to see that W � (Qi y)τβ ↔ Qi y. Define:

− T := U + {Aτ | A is an axiom of W }
+ {∀x (Rx ↔ (Rx)βτ ) | R is a predicate of U }.

It is now easy to see that 〈W, τ, T 〉 and 〈T, β, W 〉 form an isomorphism.

The above example gives us immediately the following theorem, which tells us that
(consistent) adaptive theories can be arbitrarily strong.

Theorem 9 Consider any consistent theory U, which contains INF. Then, there is an
adaptive consistent V such that V �dir U.

In Sect. 5, we show that PAIRfun
o,ns is adaptive. This leaves many loose ends.

Question 6 Is PAIR(fun)
uno,ns adaptive? Is PAIRo,ns adaptive? Is VS adaptive?

Remark 3 We briefly comment on the relation between Question 6 and the result by
Quine in his paper [11]. It is not very clear what precisely Quine proves. His own state-
ment is just that every first-order model is an internal model (with absolute identity)
of another first-order model for the signature of just one binary predicate symbol. His
construction is not the construction of an INT-isomorphism, because it allows exten-
sion of the domain and because it involves the use of standard numbers. Inspecting the
argument, one sees that the domain extension can be avoided. It is needed to add pairs
to the original model. We do not need it if we stipulate the pairs to be already present.
Second, the standard numbers only appear because Quine allows infinite signatures.
If we only consider finite signatures this feature disappears too.

Thus, upon inspection, we can extract the following result. Let PAIRfun
uno,q be the the-

ory given by PAIRfun
uno plus the following axioms: � x �= {x, y} and � x �= {{x}, y}.10

Then, Quine’s proof gives (for finite signatures!): every PAIRfun
uno,q-theory is definition-

ally equivalent with a theory in the language with just one binary relation symbol.
I conjecture that it should be possible to replace the use of PAIRfun

uno,q, by PAIRfun
uno,ns,

using methods analogous to those in the proof of Lemma 1.

5 Functional non-surjective ordered pairing

We prove that PAIRfun
o,ns is adaptive. Some of the ideas of our argument are taken from

a proof by Ferrante, Rackoff and Hossley, that PAIRfun
o,2 is undecidable.11 (see [3], pp

165–169)
We work, for the moment, in PAIRo,ns.12 We define:

− Pair(u) :↔ ∃v,w pair(v,w, u),

10 This last axiom is slightly stronger than Quine’s version, which is � x �= {{x}}. However, I think that
Quine’s proof needs the stronger variant.
11 This result was first proved by Hanf and Morley.
12 We think that it is of some independent interest that Lemma 1 also works in the absence of functionality.
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− 0 ∼= u :↔ ¬ Pair(u).13

− 〈u, v〉 ∼= w :↔ pair(u, v, w),
− πiw ∼= ui :↔ ∃u1−i 〈u0, u1〉 ∼= w,
− su := 〈0, u〉.
− 0̃ := 0, ñ + 1 := s̃n,
− u : D0 :↔ ∃v 〈0, v〉 ∼= u, u : D+

0 :↔ 0 ∼= u ∨ u : D0,
− 〈v〉1 := v, 〈v, w〉n+2 := 〈v, 〈w〉n+1〉.
We will often suppress the numerical indices of our sequence coding. Note that the
same object may code sequences of different lengths. An important insight is that
PAIRo,ns � x �= y → 〈x, u〉 �= 〈y, v〉. We will also suppress the tildes above our
numerals. Note that, for numbers i �= j , we have PAIRo,ns � ¬ (i ∼= u ∧ j ∼= u).
Moreover, we have: PAIRo,ns � i + 1 ∼= u → u : D0.

Here is the heuristics of our argument. Consider a theory U that directly interprets
PAIRfun

o,ns. Using the given pairing we want to redefine it in such a way that the new
pairing contains all information about the predicates of U . Our strategy is to regain
the predicate Pj via: Pj z ↔ ∃v 〈〈 j + 1, z〉, v〉 = v. In fact every step in the proof
follows from this basic design plan. To avoid unwanted cases of 〈〈 j + 1, z〉, v〉 = v

we need the following property for our original pairing: (†) � ¬ 〈u, v, w〉 ∼= w. How-
ever, PAIRfun

o,ns does not provide (†). So, first we directly interpret PAIRfun
o,ns plus (†)

in PAIRfun
o,ns. We proceed, assuming (†). We need some control over 〈 j + 1, z〉 of the

new pairing. To achieve this, we use D0 as a “safe domain” on which the new pairing
we are constructing behaves in well understood ways. We employ isomorphic copies
of the predicates of U on D0. We then construct the desired pairing for the isomorphic
copies on tD0. To regain the original properties on the full domain from their copies,
we need to code the isomorphism between the full domain and D0 in the new pairing.
This isomorphism is the successor function defined using the old pairing.

We first interpret (†). It turns out that we can do this without the extra assumption
of functionality.

Lemma 1 We have: PAIR(fun)
o,ns �dir (PAIR(fun)

o,ns + ∀u, v, w ¬ 〈u, v, w〉 ∼= w).

Proof The proof is a diagonal argument. We first give our proof for the non-functional
case. We provide a direct interpretation P with underlying translation � in PAIRo,ns
of the theory PAIRo,ns + ∀u, v, w ¬ 〈u, v, w〉 ∼= w. We define:

− 〈u, v〉� :=
{ 〈1, u, v〉 if ∃w, y, z (〈w, y, z〉 ∼= v ∧ 〈0, u, v〉 ∼= z)

〈0, u, v〉 otherwise
.

It is easy to see we did define a non-surjective pairing. Suppose 〈a, b, c〉� ∼= c, say
〈b, c〉� ∼= d and 〈a, d〉� ∼= c. By the definition, for some i, j in {0, 1}, we have
〈 j, b, c〉 ∼= d and 〈i, a, d〉 ∼= c. Note that i and j are uniquely determined. Suppose
i = 0. Then, by the first clause of the definition of � , we find i = 1. A contradiction.
So, we have i = 1. Thus, the first clause must be active and we have 〈0, a, d〉 ∼= c.

13 Remember that, by our convention for ∼=, this notation does not presuppose that there is a unique
non-pair. In case we are working in PAIRfun

o,ns, the definiens may be replaced by 0 = u.
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(Note that z in the first clause is uniquely determined by v.) But then we do not have
〈1, a, d〉 ∼= c. A contradiction. So, we cannot have 〈a, b, c〉� ∼= c.

Note that, if our original pairing is functional, then the new pairing constructed is
also functional. Here, of course, we use the constant 0 in stead of the defined 0 of the
non-functional case. So, we also have our result for functional pairing. ��

We turn to our main construction. We work with functional pairing. We use the
explicitly added constant 0 in stead of the defined 0, also in the previous definitions.
Suppose U �dir PAIRfun

o,ns. By Lemma 1, we can find a K such that

K : U �dir (PAIRfun
o,ns + (†)).

Let the underlying translation of K be τ . In the context of U we will suppress the
subscripts and superscripts τ . We define a “safe” isomorphic copy of U inside U , via
the translation µ, as follows.

− δµ := D0 (remember that D0 is the class of successors),
− Pµv :↔ ∃w (

∧
i swi = vi ∧ Pw).

Let M : U �U be the interpretation based on µ. Clearly, s is an isomorphism between
idU and M . We want our new pairing to behave decently on the safe domain. On this
domain it will coincide with the following pairing.

− 〈x, y〉ρ := 〈0, x, y〉.
By our conventions, we have example:

〈x, y, z〉3,ρ = 〈x, 〈y, z〉〉ρ = 〈0, x, 〈y, z〉ρ〉3 = 〈0, x, 0, y, z〉5.

We now define a direct translation ν from the language of PAIRfun
o,ns into the language

of U .

− 0ν := 0,

− 〈x, y〉ν :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈1, w, z〉 if, for some w, z, 〈0, w, z〉ρ = x and
〈1, w, z〉 = y and sw = z

· · ·
〈 j + 2, z〉 if, for some z : D0, we have 〈 j + 1, z〉ρ = x and

〈 j + 2, z〉 = y and Pj,µz
· · ·
〈x, y〉ρ otherwise

It is easy to see that we defined a functional non-surjective pairing. We really need the
functionality both of pairing and of 0 (and consequently of the numerals), even if we
do not demand the pairing given by ν to be functional. Otherwise, for example, in the
first clause, we could have 〈0, w, z〉ρ ∼= x and 〈0, w, z〉ρ ∼= x ′, where x �= x ′. Then
we would have 〈x, y〉ν ∼= y and 〈x ′, y〉ν ∼= y, contradicting the properties of pairing.
We verify that D0 is “safe”, i.e., that the complicated ν behaves like the simpler ρ on
D0.

Lemma 2 We have in U :
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1. If y is in D+
0 , then 〈x, y〉ν = 〈x, y〉ρ = 〈0, x, y〉 = s〈x, y〉 and, hence, in D0.

2. If y is in D+
0 , then 〈x, y〉ν is in D+

0 and 〈x, y〉ν = 〈x, y〉ρ .
3. nν = nρ = 2n.

The proof of the lemma is easy. Now consider the first clause of the definition of ν.
Since z is a successor, it is in D0. So, we have 〈0, w, z〉ν = 〈0, w, z〉ρ = x . Similarly,
in the clause involving Pj,µ, we find that 〈 j + 1, z〉ν = 〈 j + 1, z〉ρ = x . Note that we
need here that the last of the z is in D0.

Lemma 3 We have in U: ∃v 〈〈0, x, y〉, v〉ν = v ↔ sx = y.

Proof Suppose sx = y. Let 〈0, x, y〉ρ = u and 〈1, x, y〉 = v. Then, by defini-
tion, 〈u, v〉ν = v. Moreover, since y is in D0, u = 〈0, x, y〉ρ = 〈0, x, y〉ν . Hence
〈〈0, x, y〉, v〉ν = v.

Conversely, suppose that 〈〈0, x, y〉, v〉ν = v. So, for some u, 〈0, x, y〉ν = u and
〈u, v〉ν = v. We have:

a. If 〈u, v〉ν was determined by the last clause of the definition, we would have
〈0, u, v〉 = v, contradicting (†).

b. Suppose 〈u, v〉ν is determined by the first clause. We have, for some w, z, sw = z
and 〈0, w, z〉ρ = u. It follows that 〈0, w, z〉ν = u, and, hence, x = w and y = z.
So, sx = y.

c. Suppose 〈u, v〉ν is determined by the clause involving Pj,µ. We have, for some z
in D0, that 〈 j + 1, z〉ρ = u. It follows that 〈 j + 1, z〉ν = u. This contradicts the
fact that 〈0, x, y〉ν = u.

��
Lemma 4 In U: for z in D0, we have:

∃v 〈〈 j + 1, z〉, v〉ν = v ↔ Pj,µz.

It follows that, for any a:

∃z

(
∧

i

sai = zi ∧ ∃v 〈〈 j + 1, z〉, v〉ν = v

)

↔ Pj a.

Again it follows that, for any a:

(

∃z

(
∧

i

(∃w 〈〈0, ai , zi 〉, w〉 = w) ∧ ∃v 〈〈 j + 1, z〉, v〉 = v

))ν

↔ Pj a.

Proof We prove the first equivalence. Suppose Pj,µz. Let 〈 j + 1, z〉ρ = u and let
〈 j + 2, z〉 = v. Then, by definition, 〈u, v〉ν = v. Moreover, we have 〈 j + 1, z〉ρ =
〈 j + 1, z〉ν . Hence 〈〈 j + 1, z〉, v〉ν = v.

Conversely, suppose that 〈〈 j + 1, z〉, v〉ν = v. So, for some u, 〈 j + 1, z〉ν = u and
〈u, v〉ν = v. We have:
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a. If 〈u, v〉ν was determined by the last clause of the definition, we would have
〈0, u, v〉 = v, contradicting (†).

b. Suppose 〈u, v〉ν is determined by the first clause. We have, for some w, a, that
〈0, w, a〉ρ = u and a = sw. It follows that 〈0, w, a〉ν = u. This contradicts the
fact that 〈 j + 1, z〉ν = u.

c. Suppose 〈u, v〉ν is determined by the clause involving Pk,µ. We have, for some
c in D0, that 〈k + 1, c〉ρ = u. It follows that 〈k + 1, c〉ν = u. We also have that
〈 j + 1, z〉ν = u. It follows that j = k. We may conclude that the lengths of z and
c are equal and, thus, that z = c.14

The second equivalence follows immediately from the first, and the third equivalence
follows immediately from the second one. ��
We define a direct translation α from the language of U to the language of PAIRfun

o,ns.

− Pj,αz :↔ ∃z (
∧

i (∃w 〈〈0, ai , zi 〉, w〉 = w) ∧ ∃v 〈〈 j + 1, z〉, v〉 = v).

Lemma 4 tells us that U � (Pj z)αν ↔ Pj z. It follows that, for any U -formula B, we
have U � B ↔ Bαν .

Let W be PAIRfun
o,ns plus all � Aα , where � A is an axiom of U , plus the axiom

� (pair(u, v, w))να ↔ pair(u, v, w). Clearly, K := 〈U, α, W 〉 is an interpretation.
Moreover we have:

i. U � (PAIRfun
o,ns)

ν .
ii. Consider any axiom A of U . We have U � A, and, hence U � Aαν .

iii. We have U � (pair(u, v, w))ν ↔ (pair(u, v, w))ναν . So, we may conclude:
U � (pair(u, v, w) ↔ (pair(u, v, w))να)ν .

So, L := 〈W, ν, U 〉 is an interpretation. Evidently, K is an isomorphism with inverse
L , and, thus, U is definitionally equivalent to W .

6 The adaptiveness of weak set theory

In this section we show that WS is adaptive. It is easy to see that, if we had one extra
free floating unary predicate P , we could adapt the reasoning of Example 6 to do the
trick. All the work for our main result is to simulate the presence of such a P . To
implement this, we will build a set that is definable modulo extensional identity in a
suitable extension of WS such that certain elements of this set will do the work of P .

6.1 Restriction

In this subsection, we provide a method of restricting our sets to definable classes of
sets, plus the universal set: all sets outside the given class will be blown up to the
universal set. (We opt for blowing up rather than shrinking these sets to the empty one,
because this gives us better absoluteness properties for our restriction construction).

14 Remember that, in our coding of sequences, every representation of a sequence is also a representation
of a sequence of any smaller non-zero length. Thus, to identify sequences, one needs contextual information
about their intended length.
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We work in WS. Suppose that X is a definable class such that, provably, X contains
all empty sets and is closed under Sy , i.e.:

∀x∈X ∀y, z (Sy x ∼= z → z ∈ X ).

We define the direct translation ρX of the language of WS in itself as follows.

− x ∈ρX y :↔ (x ∈ y ∨ y �∈ X ).

As is easily seen ρX supports an interpretation RX : WS � WS. We define:

− {x0, . . . , xn−1} ∼= y :↔ ∀z (z ∈ y ↔ ∨
j<n z = x j ).

We claim that {x0, . . . , xn−1} is absolute w.r.t. ρ := ρX in the sense that, provably,
{x0, . . . , xn−1}ρ is equal to {x0, . . . , xn−1}, or, i.o.w.,

∀y

⎛

⎝∀z

⎛

⎝z ∈ρ y ↔
∨

j<n

z = x j

⎞

⎠ ↔ ∀z

⎛

⎝z ∈ y ↔
∨

j<n

z = x j

⎞

⎠

⎞

⎠ .

First suppose that ∀z (z ∈ y ↔ ∨
j<n z = x j ). In this case, Sx0 · · · Sxn−1∅ ∼= y, and,

hence, y ∈ X . So, by the definition of ρ, we are immediately done.
Next suppose ∀z (z ∈ρ y ↔ ∨

j<n z = x j ). Suppose also that y �∈ X . It follows
that ∀z

∨
j<n z = x j . We show that this is impossible. We define:

− �0� := ∅, �k + 1� := S�k��k�.

It is easy to show that each �k� contains precisely k elements and, thus, that there are
more than n elements in our domain. A contradiction. We may conclude that y ∈ X .
So, by the definition of ρ, we are immediately done.

We can easily show that absoluteness w.r.t. direct translations is preserved under
composition of multifunctions, i.e, if the k-ary F and G0, …, Gk−1 are absolute, then
so is λy · F(G0(y), . . . , Gk−1(y)). It follows that, 〈x, y〉 is absolute w.r.t. ρX . Also
the �n� are absolute.

6.2 Adding intersections

In this subsection we construct a class of sets that is closed under intersection.
We work in WS. Let x ∩ y ∼= z :↔ ∀u (u ∈ z ↔ (u ∈ x ∧ u ∈ y)). We define the

class X0 := {x | ∀y y ∩ x ↓}. We show that X0 is closed under empty sets, addition
of an element and under intersection. Closure under empty sets is trivial.

Consider x in X0 and consider any z and y. Suppose that Sz x ∼= u and y ∩ x ∼= v.
In case z ∈ y, we can take y ∩ u :∼= w, for any w with Szv ∼= w. In case z �∈ y, we
can take y ∩ u :∼= v.

Consider any x0 and x1 in X0. Suppose x0 ∩ x1 ∼= u. We have to show that, for any
y, y ∩ u ↓. Clearly, for some v, ((y ∩ x0) ∩ x1) ∼= v. So, we can take y ∩ u :∼= v.

It is easily seen that ρX0 supports R0 : WS �dir (WS + intersection), where
intersection is the axiom that intersection is a total multifunction.
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6.3 The Russell construction

We need to have sets from which at least some items of a specific ‘form’ are lacking.
To implement this, we can use the familiar argument leading to the Russell paradox.

We work in WS + intersection. Let F be any definable unary multifunction that
is provably total and injective modulo extensional equality in the following sense: if
Fx0 ∼= y and Fx1 ∼= y, then x0 =ext x1. We define:

− RF
x

∼= y :↔ ∀z (z ∈ y ↔ (z ∈ x ∧ ∃u (Fu ∼= z ∧ z �∈ u))).

We show that:

∀r, f ((RF
x

∼= r ∧ Fr ∼= f ) → f �∈ x). (1)

Let RF
x

∼= r and Fr ∼= f . Suppose f ∈ r . Then, f ∈ x and, for some u, Fu ∼= f and
f �∈ u. By the injectivity of F modulo extensional equality, we have u =ext r . Hence,
f �∈ r , a contradiction. So, we may conclude that f �∈ r . Suppose f ∈ x . Then, we
have: f ∈ x , Fr ∼= f , f �∈ r . So, f ∈ r . A contradiction. We may conclude that
f �∈ x .

Let X1 be the class of all x such that RF
x ↓. Clearly, X1 is closed under empty sets

and addition of an element. Moreover, since we have intersections, X1 is downwards
closed under ⊆. Note that it follows that, for x ∈ X1, and RF

x
∼= y, we have y ∈ X1.

Suppose F is absolute w.r.t. ρ1 := ρX1 . We write V ∼= x for: ∀u u ∈ x . We claim
that ρ1 supports R1 : (WS + intersection) �dir WF , where:

WF := WS + intersection + ∀x (V ∼= x ∨ ∃y ∀z (Fy ∼= z → z �∈ x)).

It is easy to see that, in WS+ intersection, we have closure under empty sets, addition
of elements and intersection in the theory interpreted via ρ1. It follows that F is total
and injective modulo extensional equality in the interpreted theory.

We prove the last principle. Consider any x . We first suppose x �∈ X1. Then,
Vρ1

∼= x . Next suppose x ∈ X1. Pick y such that RF
x

∼= y. Since x ∈ X1, we have
y ∈ X1. Suppose that Fρ1 y ∼= z. It follows that Fy ∼= z. So, by Equation 1, we have
z �∈ x , and, thus, z �∈ρ1 x .15

6.4 The main construction

In this subsection, we provide the main ingredient of our argument.
Par abus de langage, we write 0 for �0� and 1 for �1�. We define an auxiliary direct

translation α as follows:

− x ∈α y :↔ ∀u (〈0, u〉 ∼= y → x ∈ u).

Note that if y is not of the form 〈0, u〉, then y represents the universal set Vα . Clearly,
we have an interpretation Kα based on α such that Kα : WS � WS.

15 Note that RF
x need not be absolute w.r.t. ρ1.
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We may show by an argument, analogous to the proof that {x0, . . . , xn−1} is abso-
lute w.r.t. ρX , that {x0, . . . , xn−1}α = 〈0, {x0, . . . , xn−1}〉. We define Fx := 〈0, x〉α .
It follows that:

Fx = 〈0, {〈0, {〈0, 0〉}〉, 〈0, {〈0, 0〉, x}〉}〉.

It is easy to see that F is total and injective (and, thus, a fortiori, injective w.r.t. exten-
sional equality) because Kα is a direct interpretation of WS. By its definition F is
absolute w.r.t. any ρX . Let W be the “Russell theory” WF (as introduced in the previ-
ous subsection).

Suppose U �dir WS. It follows that we have a direct interpretation N : U �dir W .
Let ν be the translation associated to N . We work in U . We suppress the subscript and
superscript ν connected to set theoretical notions as given by N .

Suppose the predicate symbols of U are P0, …, Pn−1. We define a direct translation
β of the language of WS as follows.

− � := [ ]0 := ∅, [x, y]n+1 := 〈[x]n, y〉. Par abus de langage we will suppress the
subscripts in our sequence notation.

− C0(x) :↔ ∃v 〈0, v〉α ∼= x ,
− Ci+1(x) :↔ ∃y (〈�i + 1�, [ y ]〉α ∼= x ∧ Pi y).
− y ∈β x :↔ ∃u (〈0, u〉 ∼= x ∧ y ∈ u)

∨ ∃u (〈1, u〉 ∼= x ∧ (y ∈ u ∨ ∨
j C j (y)))

∨ ∀u ¬ (〈0, u〉 ∼= x ∨ 〈1, u〉 ∼= x).

Clearly, for any 〈0,∅〉 ∼= u, we have ∅β
∼= u. Consider any x . In case, for no u, we

have 〈0, u〉 ∼= x or 〈1, u〉 ∼= x , we find Sy,β x ∼= x . If 〈 j, u〉 ∼= x , for j = 0, 1, we
have, for any v with 〈 j, Syu〉 ∼= v, that Sy,β x ∼= v. Hence, β yields an interpretation
of WS.

We say that Ay is α, β-absolute, if, provably in U , ∀y (Aαy ↔ Aβy). G is
α, β-absolute iff Gy ∼= z is α, β-absolute. We show that {x0, . . . , xn−1} is α, β-abso-
lute. We have to show:

∀z

⎛

⎝z ∈α y ↔
∨

j<n

z = x j

⎞

⎠ ↔ ∀z

⎛

⎝z ∈β y ↔
∨

j<n

z = x j

⎞

⎠ .

Suppose that ∀z (z ∈α y ↔ ∨
j<n z = x j ). In case we do not have 〈0, v〉 ∼= y, for

any v, we get ∀z
∨

j z = x j . Quod impossible. So, 〈0, v〉 ∼= y, for some v. It follows
that ∀z (z ∈α y ↔ z ∈β y), so we are done.

Suppose that ∀z (z ∈β y ↔ ∨
j<n z = x j ). Suppose 〈1, v〉 ∼= y, for some v. We

have, for some w, 〈0, �0�〉α ∼= w0 ∈β y, …, 〈0, �n�〉α ∼= wn ∈β y. Since the 〈0, �n�〉α
are pairwise disjoint, we have a contradiction. So, for no v, 〈1, v〉 ∼= y. In the other
cases, we are easily done.

It is easily seen that the α, β-absolute multifunctions are closed under composition.
Thus, it follows that 〈x, y〉α = 〈x, y〉β , �n�α = �n�β , etc.

We define the following property:

− Q0(x) :↔ ∀y, z (〈0, y〉 ∼= z → z ∈ x).
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Suppose Qβ
0 (x). We show that, if 〈0, u〉 ∼= x , then Vβ

∼= x . Suppose that 〈0, u〉 ∼= x .
It follows that, for all y and z with 〈0, y〉β ∼= z, we have z ∈ u. Hence, by the α,

β-absoluteness of 〈0, u〉, we find that for all y and z with 〈0, y〉α ∼= z, we have z ∈ u.
By the Russellian principle of W , we find V ∼= u and hence Vβ

∼= x .

Note that, if, for no u, 〈0, u〉 ∼= x or 〈1, u〉 ∼= x , then again Vβ
∼= x . So, if Qβ

0 (x)

and, for no u, 〈1, u〉 ∼= x , then Vβ
∼= x .

Now suppose that 〈1, u〉 ∼= x . The C0-disjunct in the definition of ∈β tells us that,
for any y and z with 〈0, y〉α ∼= z, we have z ∈β x . By the α, β-absoluteness of 〈0, y〉,
we find that Qβ

0 (x).

Let 〈1,∅〉 ∼= x�. It is now easily seen that Qβ
0 (x�), and that, for all x with Qβ

0 (x),
we have x� ⊆β x . Let:

− Q(x) :↔ Q0(x) ∧ ∀y (Q0(y) → x ⊆ y).

We have shown that Qβ(x�). Note that, trivially, whenever Qβ(v) and Qβ(w), then
v =β

ext w.
Until now we have worked in U . We have defined a translation γ := β ◦ ν of the

language of WS into the language of U with various desirable properties. We are now
ready to define the translation τ of the language of U into the language of WS. This
translation is intended to be “inverse” to γ . We define:

− Pj,τ y :↔ ∃x (Q(x) ∧ ∃w (〈� j + 1�, [ y ]〉 ∼= w ∧ w ∈ x)).
− V := WS + {Aτ | A ∈ axU } + ∀x, y (x ∈ y ↔ (x ∈ y)γ τ ).

Trivially, M := 〈U, τ, V 〉 is an interpretation. We verify that K := 〈V, γ, U 〉 is an
interpretation. We verified that U � WSγ .

Lemma 5 We have: U � Pj y ↔ Pγ

j,τ y.

Proof We have Pγ

j,τ y iff ∃x (Qγ (x)∧∃w (〈� j + 1�, [ y ]〉γ ∼= w∧w ∈γ x)). We have
shown that Qγ is satisfied by an x� that is unique modulo γ -extensional equality. This
x� can be taken such that 〈1,∅〉 ∼= x�. Thus, we have: Pγ

j,τ y iff ∃w (〈� j + 1�, [ y ]〉γ ∼=
w ∧ w ∈γ x�).

We have w ∈γ x� iff, w is of the form 〈0, v〉αν , or, for some v,

〈�i + 1�, [v]〉αν
∼= w and Pi v.

By α, β-absoluteness, w ∈γ x� iff, w is of the form 〈0, v〉γ , or, for some v,
〈�i + 1�, [v]〉γ ∼= w and Pi v. Thus, we have, by the properties of pairing,
(〈� j + 1�, [ y ]〉γ ∼= w ∧ w ∈γ x�) iff Pj y. ��
By the lemma, we find that, for any axiom A of U , U � Aτγ . Moreover, we have:

U � (x ∈ y)γ ↔ (x ∈ y)γ τγ .

Hence, U � (x ∈ y ↔ (x ∈ y)γ τ )γ . It follows that K is an interpretation.
It is now immediate that K and M witness the fact that U and V are isomorphic.
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Remark 4 Alternatively, we could set up the argument as follows. We define V to
be the theory given by {A∈sentWS | U � Aγ }. We can give a p-time decidable
axiomatization of this theory using a version of Craig’s trick. Now it is clear that
M := 〈U, τ, V 〉 and K := 〈V, γ, U 〉 are interpretations and that K is a split epi.
Moreover, K is faithful (by construction) and, hence, mono. (see [21]) Ergo, K is an
isomorphism.
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Appendix A: Interpretations with parameters

In this appendix we treat interpretations with parameters. A translation with parame-
ters is of the form τ = 〈w, δ, F〉, where the w are the parameters.16 Such a translation
is defined as the obvious adaptation of the unparametrized version. For e.g., we take
Pτ v to be a formula Bwv with free variables among w, v. Here, the w are supposed
to be disjoint from the v. The domain δ is treated similarly. An interpretation with
parameters is a quadruple 〈U, τ, V, A〉. Here τ = 〈w, δ, F〉 is a translation from the
language of U to the language of V . The formula A is a V -formula with at most w
free. We demand:

− V � ∃w A,
− for all U -sentences B, if U � B, then V � ∀w (A → Bτ ).

Note that the second clause takes care automatically of non-emptiness of the domain
and the laws of identity. We also write 〈K , A〉 for 〈U, τ, V, A〉. If we want to stress
the presence of the parameters, we write K w, etc.

The identity interpretation idT : T → T has parameters � and is of the form
〈idΣ,�〉, where Σ is the signature of T . Suppose 〈K , A〉 : U → V and 〈M, B〉 :
V → W . We wish to define 〈N , C〉 := (〈M, B〉 ◦ 〈K , A〉) : U → W . Suppose
w is the parameter sequence of 〈M, B〉 and z is the parameter sequence of 〈K , A〉.
If necessary, we make these sequences disjoint (with the obvious adaptations of the
translations). The parameter sequence of the composition is wz. The composition of
the underlying translations is closely analogous to the case without parameters. The
parameter formulas transform as follows:

− Cwz :↔ Bw ∧ z : δMw ∧ AMwz.

The category of interpretations with parameters is a terra incognita. So, the sketchy
remarks that follow are only tentative. To form a category INTpar of interpretations with
parameters, we have to say when two interpretations are equal. Some experimentation

16 We allow the sequence w to be the empty sequence �. We read, e.g., B�v as Bv, and ∃� C as C .
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suggests the following definition. Suppose 〈K , A〉 : U → V and 〈M, B〉 : U → V .
We define:

− 〈K , A〉 � 〈M, B〉 :↔ ∀w : A ∃z : B (∀v (δK wv ↔ δMzv)

∧ ∀v : δK w (PK wv ↔ PMzv) ∧ . . .).

It is easy to see that � defines a preorder on interpretations. We take the induced
equivalence relation of � as our notion of equality of interpretations.

The fact that this notion of equality is a natural choice can be seen as follows. The
interpretation 〈K , A〉 can be viewed as a uniform construction of an A-indexed set
of internal models of U inside a model of V . The obtaining of the relation 〈K , A〉 �
〈M, B〉 tells us that the 〈K , A〉-models are a subset of the 〈M, B〉-models.

We can now show that we defined a category INTpar. If we enrich this category
with the relations � between morphisms, we obtain a 2-category.

We define 〈K , A〉−1[V ] to be the theory, suitably axiomatized, with theorems
{B∈sentU | V � ∀w:A BK w}. We obviously have:

Theorem 10 If 〈K , A〉 � 〈M, B〉, then 〈M, B〉−1[V ] ⊆ 〈K , A〉−1[V ]. It follows that,
if 〈K , A〉 � 〈M, B〉 and if 〈K , A〉 is faithful, then so is 〈M, B〉.
We remind the reader of Tarski’s way of treating interpretations with parameters. (see
[14]) A theory W is called an inessential extension of a theory V if, for some formula
Aw, we have V � ∃w Aw, and, and for some fresh constants c corresponding to the
w, we have W = V + Ac, where the signature of W is the signature of V expanded
by c. Tarski defines an interpretation with parameters w as an ordinary interpretation
in an inessential extension with fresh constants c matching w.

Tarski’s definition is justified, from our point of view, by the following immediate
insights:

〈K , A〉 : U → V ⇔ K c : U → (V + Ac).

Moreover, we have a splitting of 〈K , A〉 : U → V :

U
〈K c,�〉−→ (V + Ac)

〈γA,A〉−→ V .

Here γA, is based on the direct translation that sends Civ0, the unary predicate repre-
senting the constant ci , to wi = v0. It is easy to see that 〈γA, A〉 is a retraction (or: split
epimorphism) in INTpar, with as corresponding coretraction (or split monomorphism)
the expansion 〈ε,�〉 : V → (V + Ac).

Note that 〈γ +
A , A〉 := 〈ε,�〉◦〈γA, A〉 is not the identity 〈idV +Ac,�〉, since in going

back and forth we lose our “specific choice” of c. However, we do have: 〈idV +Ac,�〉 �
〈γ +

A , A〉, which shows that 〈γ +
A , A〉 is faithful.17

Question 7 We could plausibly call an inessential extension a Henkin extension, since
it embodies a step in the construction of a Henkin theory from a given theory. This

17 Thus, INTpar is not equivalent to the result of identifying over INT a theory and all its inessential
extensions, if such an idea makes sense at all.
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suggests that we could have a more encompassing notion of interpretation, if we
replace Henkin extension by Skolem extension, i.e., extension with a finite set of
Skolem functions. It would be interesting to see whether this gives a good notion of
interpretation.

Appendix B: Historical notes on sequentiality

The notion of sequential theory was introduced by Pavel Pudlák [9] in his paper.
Pudlák uses his notion for the study of the degrees of local multidimensional paramet-
ric interpretability. He proves that sequential theories are prime in this degree structure.
In [10], sequential theories provide the right level of generality for theorems about
consistency statements.

Remark 5 Pudlák’s definition is not precisely the same as ours.

1. He works in [9] with axiom sets of arbitrary complexity and possibly infinite
signatures.

2. He uses, as container theory, a theory in the style of our definition of PSEQ,
only his theory is lighter. In stead of an embedded theory of arithmetic, he uses
a theory of linear order in which each element has a successor. Moreover, he has
much more modest demands on the theory of sequences. These differences are
inessential modulo mutual direct interpretability.

3. Pudlák does not stipulate an initial element for his ordering. This initial element
has to be provided via a parametric interpretation.18

4. Pudlák demands that identity on the linear ordering of his container theory is abso-
lute. This corresponds, modulo mutual direct interpretability, with the demand that
E of our container theory PSEQ(T ) is identity.19

The demand that the identity of the embedded linear order (or, in our context, arith-
metical theory) is absolute is somewhat arbitrary. The elements of the order (numbers)
are part of the implementation of the containers. The precise individuation of the con-
tainers does not matter: they just have to do their job. After all, for the same reason, we
do not demand that our sequence coding is functional from containees to containers.

Clearly, Pudlák’s notion (assuming that we restrict ourselves to enumerable theories
of finite signature) is contained in our notion of parametric sequential theory.

Since all the known theorems work for parametric sequentiality in our sense, this
notion seems to be a good choice for the notion of sequentiality tout court.20

We opted for keeping the designation “sequential” for our weaker notion, just
because “unparametric sequentiality” and “non-parametric sequentiality” sound a bit
awkward. The result of Sect. 6, in terms of parametric sequentiality, becomes: a theory
is parametrically sequential iff it has an inessential extension that is (non-parametri-
cally) definitionally equivalent to an extension of WS.

18 One can easily provide a model of Pudlák’s container theory that has an automorphism with no fixed
points in the linear ordering. Thus, the use of a parametric interpretation is essential.
19 Fact 1 tells us that Q cannot be interpreted with absolute identity in WS.
20 As Pavel Pudlák pointed out in a personal communication, one could consider generalizing the notion
using the idea of direct multidimensional interpretability. See also Remark 1.
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At the end of [9], Pudlák introduces the notion of WS-theory in analogy of Vaught’s
notion of VS-theory. In the paper [7], WS-theories are called weak set theories. I do
not think the name “weak set theory” is a happy choice. For e.g., ZFC plus some large
cardinal axioms would be a weak set theory, under this terminology.

The notion of sequential theory was independently invented by Friedman who
called it adequate theory. See Smoryński’s survey [12].21 Friedman uses the notion to
provide the Friedman characterization of interpretability among finitely axiomatized
sequential theories. (See also [16] and [17]) Moreover, he shows that ordinary inter-
pretability and faithful interpretability among finitely axiomatized sequential theories
coincide. (See also [18] and [20])

The most important ingredient of the direct interpretability of PSEQ(Q) in WS is
the ordinary interpretability of Q in WS. Here is the brief history of this result.

1. In [13], Wanda Szmielew and Alfred Tarski announce the interpretability of Q in
WS plus extensionality (see also [14], p 34).

2. A proof of the Szmielew–Tarski result is given by George Collins and Joseph
Halpern in [1].

3. Franco Montagna and Antonella Mancini [6], give an improvement of the Szmie-
lew–Tarski result. They prove that Q can be interpreted in an extension of WS in
which we stipulate the functionality of empty set and adjoining of singletons.

4. In appendix III of [7], Jan Mycielski, Pavel Pudlák and Alan Stern provide the
ingredients of the interpretation of Q in WS.

In a forthcoming paper we will provide another proof of the interpretability of Q in
WS.

A very nice presentation of the converse interpretability of (an extension of) WS
plus extensionality in Q, is given in [8]. This is an interpretation with absolute identity.
We show in Example 3 that such an interpretation cannot be direct, and that, hence,
Q is not sequential.

For further work concerning sequential theories, see, e.g., [4,5,7,10,12,18–20].

Appendix C: List of questions

1. We could plausibly call an inessential extension a Henkin extension, since it
embodies a step in the construction of a Henkin theory from a given theory.
This suggests that we could have a more encompassing notion of interpretation,
if we replace Henkin extension by Skolem extension. It would be interesting to
see whether this gives a good notion of interpretation. This is Question 7.

2. Is there a sequential arithmetical theory that is minimal w.r.t. direct interpretabil-
ity? This is Question 1.

3. It is well known that every sequential theory is mutually locally interpretable
with an arithmetical theory. Is it also true that every sequential theory is mutually
interpretable with an arithmetical theory? This is Question 2.

21 An important difference is that in the definition, as given by Smoryński, Elementary Arithmetic EA
(aka I∆0 + EXP) is stipulated to be interpretable in adequate theories. This demand is evidently much too
strong.
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4. Is adaptiveness definable in terms of INT? This is Question 3.
5. Consider the degree structures DEGdir of direct interpretability and DEGepi of epi-

morphic interpretability. Does the embedding functor from DEGepi into DEGdir

have a left adjoint? (The elements in the image of such a functor would be
precisely the adaptive theories.) If the answer is no, can we find suitable restrictions
of the degree structures for which the answer is yes? This is Question 4.

6. Does every adaptive theory directly interpret PAIRuno? This is Question 5.
7. Is PAIR(fun)

uno,ns adaptive? Is PAIRo,ns adaptive? Is VS adaptive? This is Question 6.
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