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Abstract Genome-wide association studies (GWAS)

have been successful in identifying loci associated with a

wide range of complex human traits and diseases. Up to

now, the majority of GWAS have focused on European

populations. However, the inclusion of other ethnic groups

as well as admixed populations in GWAS studies is rapidly

rising following the pressing need to extrapolate findings to

non-European populations and to increase statistical power.

In this paper, we describe the methodological steps sur-

rounding genetic data generation, quality control, study

design and analytical procedures needed to run GWAS in

the multiethnic and highly admixed Generation R Study, a

large prospective birth cohort in Rotterdam, the Nether-

lands. Furthermore, we highlight a number of practical

considerations and alternatives pertinent to the quality

control and analysis of admixed GWAS data.
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Introduction

Genome-wide association studies (GWAS) analyze a large

number of single nucleotide polymorphism (SNPs) across

the genome in a large number of samples, aiming to

identify loci associated with complex traits at the popula-

tion level. Since 2007, well-designed studies have been

able to comprehensively test common genetic variation

across the genome [1]. Up to now, at least 11,680 SNPs

have been robustly associated with one or more complex

traits, providing biological insight in traits as different as

Alzheimer’s disease, prostate cancer, inflammatory bowel

disease, obesity, stroke, diabetes, asthma, height, choles-

terol levels and bone mineral density, to name only few

examples of the successful performance of this approach

[2].

Variants discovered by GWAS typically have small

effects which is why minor sources of systematic or ran-

dom error can lead to false positive associations or can

mask real effects (false negative associations). In order to

avoid bias, it is necessary to closely control the processes

underlying the production of GWAS data, extending from

laboratory processes (data generation) to imputation. It is

also necessary to conduct statistical analyses, which

incorporate factors into the models known to influence the

trait of interest, as well as being appropriate to the char-

acteristics of the study design.

Ethnicity is a confounder of epidemiological studies

which incorporates cultural, geographical and biological

dimensions. In the GWAS context spurious associations

between genetic variants and a trait of interest occur when

both allele frequencies and differences in trait distributions

(disease prevalence or magnitude of quantitative traits),

vary across ethnicities. From this perspective, adequate

correction for potential population stratification is required

for successful identification of genetics determinants of

complex traits and diseases.

To date, GWAS have mainly focused on populations of

European ancestry. Consequently, having another ethnic

background is a common reason for exclusion of GWAS

samples. As an illustration, from the 1734 GWAS papers

indexed in the GWAS catalogue, 66 % included only

individuals from European ancestry, 34 % included Non-

Europeans only (most of those carried out in Asian popu-

lations), and 12 % included both Europeans and Non-

European individuals [3]. Moreover, big consortia efforts

such as Cohorts for Heart and Aging Research (CHARGE)

or the Genetic Investigation of Anthropometric Traits

(GIANT) have focused primarily on European populations,

while efforts driven in populations of diverse ethnic

background are of modest sample sizes. However, the

inclusion of multiethnic and/or admixed populations in the

analysis of GWAS can actually result in additional power.

Firstly, larger datasets (representing higher power) can be

assembled when the ancestry criterion is not used for

sample exclusion. Keeping such ‘‘ethnic outliers’’ in the

study also represents a better use of resources considering

the logistic and burden behind sample collection and

genotyping, and their associated costs. Secondly, the

European-only approach has little power to detect asso-

ciation for genetic variants segregating at low frequency in

European populations and statistical power can be gained if

those variants are more common in other ancestries in-

cluded in the analysis [4]. Some examples are provided by

Fu et al., who describe variants associated with type 2

diabetes mapping to UBE2E2 and KCNQ1 that have higher

frequencies in East Asians [minor allele frequency (MAF)

of 0.22 and 0.38, respectively] as compared with Eur-

opeans (MAF of 0.093 and 0.08, respectively) [5]. Simi-

larly, Wu et al. showed examples of ethnic specificity in

variants associated with lipid levels mapping to APOA5

and APOB. These very rare variants identified in African-

Americans were not detected in either East Asian or Eur-

opean populations [6]. Further, (rare) variants specific to a

subpopulation (e.g. a diabetes susceptibility variant arising

in Native-Americans) can be identified in a derived highly

admixed population (i.e. Mexicans) as having the largest

effect [7]. In addition, population admixture, due to inter-

breeding of individuals from different origins, would have

brought together genomes from continental populations,

which are a product of genetic drift and different selective

pressures. Following this line of reasoning, it is expected

that recently admixed populations are likely to harbor a

larger number of genetic variants than the original popu-

lations they come from [8]. Theoretically, this will result in

a higher yield in the discovery of genetic determinants of

complex traits. Another important genetic approach, sui-

table in admixed population, to identify disease risk var-

iants is admixture mapping, which is powerful when the

ancestral populations differ both in allele frequencies and

disease prevalence. Then, in the vicinity of a disease locus,

an affected individual should have a higher proportion of

alleles inherited from the most affected ancestral popula-

tion [9].

As GWAS worldwide are expanding to include multi-

ethnic and admixed populations, we describe here the steps

used for genetic data generation, study design and analy-

tical procedures applied in the Generation R Study. The

Generation R Study is a population-based prospective

cohort following children and their mothers from fetal life

onwards, which comprises a multiethnic population,

including a high proportion of highly admixed individuals.

We here mainly focus on how this approach can allow

analyzing the whole set of individuals independent of

genetic background as a mean to increase sample size and

power to identify loci underlying complex traits and
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diseases. The different considerations described here can

be applied to other multiethnic studies, particularly those of

admix nature such as Hispanics or African Americans.

Methods

Study population

The Generation R Study is a multi-ethnic population-based

prospective cohort study, spanning from fetal life until

young adulthood, designed to identify early environmental

and genetic causes of normal and abnormal growth,

development and health during fetal life, childhood and

young adulthood. Study design, data collection in prenatal

and postnatal phases, and ethical issues of this study have

been previously described in detail [10]. The Generation R

Study is conducted in Rotterdam, the Netherlands, within a

multi-cultural metropolitan area. The study area includes

inhabitants of approximately 150 different ethnicities [11].

Pregnant women with a delivery date between April 2002

and January 2006 were informed about the study and

provided written informed consent through their prenatal

care provider during their first visit of the pregnancy. The

medical ethics committee of Erasmus University Medical

Center approved the study. In total, 9778 mothers were

enrolled in the study.

The ethnic background of the children was defined by

the parents’ country of birth, which was obtained by

questionnaire. The participating child was defined as of

non-Dutch ethnic origin if one of her/his parents was born

abroad, and further classified using a socio-demographic

definition as described by Statistics Netherlands [11]. If

both parents were born abroad, the country of birth of the

mother decided the classification of the ethnic background

of the child. The ethnic background of the mother and

partner were obtained in the same manner, based on their

parents’ (the child’s grandparents) country of birth.

Sample collection, biobanking and genotyping

Blood samples of the children were collected from the

umbilical cord at birth. Where an umbilical cord blood

sample could not be collected at birth, a blood sample was

obtained by venipuncture during the child’s visit to the

research center at a mean age of 6 years. All samples were

coded with a unique laboratory number. Umbilical cord

samples were collected in 10 ml EDTA tubes and stored

immediately at -80 �C, while samples obtained by veni-

puncture were collected in 5 ml EDTA tubes and stored

directly after transport at -20 �C. DNA was extracted

manually from white blood cells using the Qiagen Flex-

iGene Kit (Qiagen Hilden, Germany). Normalisation and

further processing of the DNA samples were performed on

a Caliper ALH3000 pipetting robot. A detailed description

of the Generation R Biobank has been previously published

[12].

Genotyping was performed using Illumina HumanHap

610 or 660 Quad chips—depending on collection time—

following manufacturer protocols, and intensities were

obtained from the BeadArray Reader. Genotype calling

was performed on normalized intensities using the Gene-

call module from the Illumina Genome Studio software

version 1.1.0.28426. A no-call threshold of 0.15 was

applied to a manufacturer-provided cluster file. Illumina

Genome Studio provides a quality metric used to identify

low-quality samples and, we used a threshold of 97.5 % for

exclusion of samples.

DNA quality control (QC)

The two Genome Studio projects (one each for the

HumanHap 610 array and for the 660 array), were merged

using SNPs common to both arrays. The QC procedures

were applied to the genotyped data using PLINK [13] in

two phases: marker- and sample-based.

Marker QC included filters for: (1) marker call rate

(calling \0.2 – \0.05, --geno option), checked in two

rounds, the initial with a threshold of 80 % and the second

one more stringent (95 %), after inspection of sample

quality, (2) minor allele frequency (MAF B 0.001, --maf

option), (3) differential missingness between the two pro-

jects (P \ 1 9 10-7, --test-missing option) and (4)

deviation from Hardy–Weinberg equilibrium proportion

(P \ 10-7 --hwe option). Sample QC included: (1)

duplicate detection (PLINK option IBS = 1), (2) sex dis-

cordance rates (--check-sex option), comparing the

reported sex of each participant with the sex predicted by

the genetic data (expected chromosome X heterozygosity).

When results were inconclusive, the Genome Studio plots,

log R ratios and B-allele frequencies, for both X and Y

chromosomes were inspected. (3) Genotype call rate

(\0.05 – \0.025--mind option) checked in two rounds,

the initial with a threshold of 95 % and the second one

more stringent (97.5 %), after inspection of marker quality

and (4) high heterozygosity rate, over 4 SD of the mean

heterozygosity of all samples (--het option). The step by

step summary of the applied QC pipeline is presented in

Fig. 1, and Online Resources 1 and 2.

Population sub-structure and family relationships

Additional sample QC assessments were applied to deter-

mine genetic-based ethnic background and to identify

potential family relationships.
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Genetic ancestry

To characterize the genetic ancestry of the children in the

Generation R Study, all samples passing QC procedures

were merged with the three genotyped panels from the

HapMap Phase II release 22 build 36 including: North-

western Europeans (CEPH collection or CEU), Sub-

saharan West Africans (Yoruba or YRI) and Asians (Han

Chinese from Beijing or CHB, and Japanese from Tokyo or

JPT) [14, 15] using only independent autosomal SNPs

(r2 [ 0.05). In the merged dataset, pairwise identity-by-

state (IBS) relations were calculated for each pair of indi-

viduals (representing the average proportion of alleles

shared by those individuals) using PLINK (--genome

option). In addition, principal axes of variation [or so-

called genomic components equivalent to Principal Com-

ponents (PCs)] were derived from this IBS matrix by multi-

dimensional scaling (MDS), to characterize the variability

present in the data using few variables (PLINK --

cluster --mds-plot). Participants were defined as

being of non- Northwestern European ancestry when

deviating more than 4 standard deviations (SDs) from the

CEU panel mean value in any of the first four genomic

components.

Sample relatedness

To identify cryptic family relationships within the Gen-

eration R samples, we first removed the HapMap samples,

recalculated the IBS matrix including only participants of

the Generation R Study and then determined pairwise, the

proportion of shared IBS alleles. By using this information

and the population allele frequency, PLINK is able to

estimate the number of these alleles coming from the same

ancestor, known as IBD (identity-by-descent), using the

methods of moments [13]. These familial relationships

detected using PLINK, were validated post hoc using the

recently released software REAP (Relatedness Estimation

in Admixed Populations). REAP estimates IBD proportions

in a similar way than PLINK. Nonetheless, it uses

Fig. 1 Flowchart overview of the entire GWAS QC process. Quality control of all samples from Generation R-1 and Generation R-2 after

merging of the projects. Red font denotes exclusion of either SNPs or samples from the dataset in the different QC steps. (Color figure online)
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individual-specific allele frequencies that are calculated by

conditioning on estimated individual genome-wide ances-

try [16].

Genotype imputation

A two-step genotype imputation, comprising a phasing step

to resolve the haplotypes of the genotyped markers (using

MACH software) and an imputation step in which unmapped

SNPs are imputed to a reference panel (using Minimac

software), was applied to the GWAS genotyped dataset after

QC. Data was divided in marker sets across chromosomes to

be processed using a parallel computing cluster. Thus far,

two different reference panels have been used to impute the

Generation R data: (a) HapMap Project Phase II Release 22,

build 36 phasing and (b) 1000 Genomes Project (phase III

release version), build 37 phasing. For the phasing of the

haplotypes we used the standard parameters recommended

by the MACH/minimac developers (http://genome.sph.

umich.edu/wiki/Minimac) consisting of 20 iterations of the

Markov sampler and 200 states (number of haplotypes that

should be considered when updating each individual). Par-

allelization was achieved by splitting jobs on chunks across

chromosomes. The window size was 2100 markers, of which

100 were flanking markers, when using assembly build 36,

and a window size of 2500 markers, using 500 as flanking

markers when using assembly build 37. Imputations were

performed following the same chunking strategy of paral-

lelization as mentioned for the phasing step. To evaluate

genotype imputation quality we used the MACH r-squared

(Rsq), metric based on the ratio of the empirically observed

variance of the allele dosage to the expected binomial var-

iance p(1 - p), assuming Hardy–Weinberg equilibrium,

where p is the observed allele frequency. When imputations

hold adequate information for predicting the unobserved

genotypes from the observed haplotype backgrounds, this

ratio should be distributed around unity [17]. By consensus

an Rsq [ 0.3 has been used to define sufficiently good

quality for analysis [18].

HapMap imputations

Imputations of autosomal chromosomes to HapMap used

all haplotypes available from Phase 2 of the International

HapMap Project reference panel, in the so-called ‘‘cos-

mopolitan approach’’. This combined reference panel

includes 210 individuals from the CEU, YRI and CHB/JPT

panels [15].

1000 Genomes imputations

A second round of imputations was performed using 1000

Genomes (1KG) data—phase 3 release (http://www.sph.

umich.edu/csg/abecasis/MACH/download/1000G.2012-03-

14.html), which comprises the genomes of 1092 indivi-

duals from 14 populations [19]. We employed the same

parameters as described for the phasing procedure in build

37, and included autosomal and chromosome X markers.

Chromosome X imputations were performed separately for

males and females.

Genome wide association analysis in the Generation R

Study

For illustration of possible pitfalls when using an admixed

population, association analyses in the Generation R Study

were performed with and without adjustment for population

substructure. Additionally, we evaluated the distribution of

the participant’s ethnicity along the genomic components,

in order to assess the adequacy of questionnaire-based

ethnicity to correct for population structure in the associa-

tion models. Finally, we contrasted the two most common

approaches used for correction of population stratification:

(1) the traditional method of inclusion of genomic compo-

nents as covariates in the association model, and (2) linear

mixed models, as implemented in the publicly available

software, Efficient Mixed-Model Association eXpedited

(EMMAX) [20]. The genome-wide significance (GWS)

threshold for the association was established at

P \ 5 9 10-8. For illustration, we present here examples

of association results in the whole Generation R population

obtained for two model phenotypes: (1) the dichotomous

red hair pigmentation (a highly stratified trait) and (2) the

continuous bone mineral density measured at the skull. For

the former example (n = 5731), logistic association ana-

lyses ran on directly genotyped markers were corrected by

four genomic components. Additionally, we used the two

imputed datasets—HapMap and 1KG—to show the fine

mapping resolution improvement of the genome-wide sig-

nal. For the latter skull BMD analyses (n = 4086), linear

association using HapMap imputed data including twenty

genomic components as covariates in the model. Further

details on collection and analysis of this phenotype have

been reported elsewhere [21]. For further illustration, we

ran GWAS for skull BMD with equal sample sizes

(n = 1909) in both the non-European and a randomly

selected sample of the European subgroup of the Generation

R Study, adjusting for 20 genomic components and com-

pared results for rs13223036, reported as the top-hit in a

meta-analysis of more than 9000 kids mainly from Eur-

opean ancestry [21].

All linear and logistic models were ran using the MACH

packages (http://www.unc.edu/*yunmli/software.html) as

available in the web-based tool GRIMP, which facilitates

high-speed analysis of large imputed datasets making use

of computational grid infrastructures [22].
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Results

Study population

A summary of the ethnic classification based upon ques-

tionnaire of the 9749 children participating in the Gen-

eration R Study is presented on Online Resource 3. Ethnic

classification was missing in 6.7 % of the population. The

largest ethnic groups in the cohort were of Dutch (57 %),

other European (7.4 %), Turkish (7.4 %), Surinamese

(7.3 %), and Moroccan (6.4 %).

Sample collection, biobanking and genotyping

At birth, 5908 samples were obtained from 30 ml cord blood

(Generation R-1). Additionally, 320 samples were drawn dur-

ing the visit to the research center at age 6 years (Generation

R-2). Of the DNA samples from the collection of Generation

R-1, 5815 (98.4 %) were genotyped using the Illumina

HumanHap 610 Quad chip [including 620,901 markers,

representing 592,532 SNPs and 28,369 copy number variation

(CNV) probes]. The 1.6 % of samples not genotyped were

discarded either for low quantity and/or low concentration of

DNA in the stock solution as well as possible unresolved

sample swaps. The extra 320 DNA samples in Generation R-2,

were genotyped with the Illumina HumanHap 660 Quad chip

(comprising 657,366 markers, 561,490 SNPs and 95,876 CNV

probes). The genotype data were exported on forward strand for

both collections. A total of 178 samples with genotyping rates

lower than 97.5 % (Genome Studio sample call rate), likely

arising due to low DNA quality, array problems or poor per-

formance of agents, were excluded from the final projects

(Generation R-1 and Generation R-2 sets).

DNA quality control

Marker QC

CNVs reported in the manifests of the arrays, together with

SNPs which could not be called in at least 95 % of the

samples or with a MAF B 0.001, were eliminated (Online

Resources 1 and 2) before merging the Generation R-1 and

Generation R-2 sets. The combined dataset, merged using

only SNPs common to both platforms (n = 5809), con-

sisted of 549,511 SNPs. No SNP was excluded in any of

the two call-rate inspections. One hundred and ninety-five

SNPs were removed due to differential missingness,

addressing possible bias induced by batch effects between

the sets. Improvements to our quality control pipeline could

be implemented, as to have more stringent standards. For

example, although PLINK will report alleles incompat-

ibilities when merging datasets, these would not be

detectable in case of palindromic SNPs (A/T and G/C).

Therefore, since strand issues would not be detected for

these type of SNPs checking allele frequencies before

merging is strongly recommended. In addition, 30,971

SNPs were excluded for deviations from Hardy–Weinberg

equilibrium (HWE) proportions (P \ 1 9 10-7). While

other causes of deviation exist, failure of this test is highly

indicative of genotyping errors at a given marker [23].

Sample QC

Unique laboratory codes together with an anonymous per-

son-unique study code were compared in order to identify

duplicates. Fifteen duplicated samples were removed from

analysis (10 from the Generation R-1 set and 5 from the

Generation R-2 set). Sex inconsistencies were flagged by

PLINK in 60 samples. Ten of them had incompatible sex data

while the others were assessed as ambiguous. After revision

of Genome Studio plots (Online Resource 4), we identified

discrepancies for 15 of those samples. In total, 25 samples

were excluded during this sex check. A sample genotyped

call rate test, based on the remaining SNPs after merging

projects, resulted in no samples exclusion. We found no

individual samples with excess of heterozygosity of more

than 4 SDs above the mean heterozygosity value of all

samples, thus the presence of sample cross-contamination

was unlikely. However, reduced heterozygosity (-4 SDs)

was identified in 34 samples, possibly as result of the mul-

tiethnic background of the samples. Excess of homozygosity

is typically seen in individuals from genetic isolates with

large stretches of linkage disequilibrium (LD) or in popula-

tions with substructure, in which there is partial admixture as

result of non-random mating, as is the case in the Generation

R Study [24, 25].

Population sub-structure

Genetic ancestry

Generation R and the three HapMap panels were merged

based on a common set of 36,845 independent (LD-pruned)

autosomal SNPs. After calculation of pairwise IBS genetic

distances between all individuals, we derived genomic

components, summarizing the structure of the data into

main genomic components explaining the genetic variation

(Fig. 2). Approximately 50.5 % of the samples deviated

more than 4 SDs from the mean CEU panel cluster on the

main four components and were classified as of ‘‘Non-

Northwestern European’’ origin. A previous release of the

Generation R data from 2009, included only individuals

whose samples were collected at birth, and who were

classified as of Northwestern European origin (N = 2661)

following the same steps mentioned above, and has been

used in some publications [10, 26, 27].
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Cryptic family relatedness

Two-hundred and eighty-nine possible pairwise sib-ships

were found by IBS-sharing using PLINK

(0.35 \ PI_HAT \ 1). Sixteen pairs of individuals shared

two alleles at every locus corresponding either to mono-

zygotic twins or a single sample processed twice. Twelve of

these relations were conflicting with the registry, and thus

most likely correspond to the same sample being processed

twice. In these cases both samples were removed from the

dataset. The four remaining pairs were twins when traced

back to registries. For these true twin pairs, the sample with a

lower call rate was removed from the dataset. First-degree

relationships discrepant with registry (13 samples) identified

using PLINK were not initially excluded. Nevertheless, they

were excluded after confirmation by REAP. Visualization of

kinship coefficients obtained from REAP revealed that

Generation R participants are (to a large extent) unrelated.

Sibling pairs are represented by the small peak around a

kinship coefficient of 0.25. Yet another peak (0.025\kinship

coefficient \0.0635) evidence the presence of third and

fourth degree related individuals (Online Resource 5).

Related individuals were not removed from the dataset to

allow exclusion/inclusion in association analyses to be done

specifically by phenotype availability. In addition, one more

individual was recently removed for retracted informed

consent. In summary, the current GWAS collection for the

Generation R Study consists of samples from 5732 children.

Genotype imputation

HapMap imputations

Using the three HapMap panels combined 3,021,329 SNPs

were imputed. The MAF distribution of imputed SNPs is

shown in Fig. 3. The mean Rsq for all the imputed data was

0.883, (median 0.972, IQR = 0.127); when markers with

MAF \ 0.01 were excluded (comprising 313,593 SNPs or

10.38 % of the markers), the mean Rsq was 0.914, (median

0.979, IQR = 0.083). Figure 3a, b shows how the increase

of Rsq is proportional to the increase in the MAF of the

markers. When grouping the markers into MAF bins, 83 %

of the SNPs with MAF \ 0.01 achieved sufficient quality,

while for the other bins more than 95 % of the SNPs were

well imputed. Nonetheless, there is a broad range of quality

scores for SNPs in each MAF bin. Statistical dispersion is

decreasing with MAF as seen by the interquartile range

represented by the size of the box in each bin. Patterns of

imputation quality by chromosome are shown in Online

Resource 6. In general, larger chromosomes tended to be

better imputed. Imputation quality was visually checked

across chromosomes and the only notorious fall in Rsq was

at centromeres and extremes of the telomeres, where the

density of markers is low. Markers on the sex chromo-

somes were not imputed to the HapMap reference panel.

1KG imputation

We were able to impute 30,072,738 autosomal variants

using the 1KG reference panel, in which 28,681,763 are

SNPs and 1,390,975 are insertion/deletions. The mean Rsq

for all variants was 0.574 (median 0.622, IQR = 0.636);

when markers with MAF \ 0.01 were excluded (com-

prising 18,804,120 SNPs or 62.52 % of the markers), the

mean Rsq increased to 0.815 (median 0.929,

IQR = 0.244). Figure 4 shows an assessment of imputa-

tion accuracy by MAF. Although imputation quality was

poor in the lower spectrum of allele frequencies

(MAF \ 0.05), 15,164,960 markers had an Rsq C 0.3 and

were suitable for analysis. Moreover, the number of mar-

kers comprising bins of common frequency (6,894,397

markers with MAF [ 0.05) is much lower than the number

Fig. 2 Genetic substructure of

the Generation R Study. Two-

dimensional plots from MDS

analyses of the Generation R

Study and the three initial

Panels form the HapMap

Project. Left panel First two

components explaining most of

the variability of the data. Right

panel Third and fourth

components explaining some of

the remaining data variability
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of markers comprising bins of low frequency (23,178,341

markers with MAF \ 0.05), which usually have low

imputation quality. Online Resource 6 summarizes the

performance of the imputation per chromosome. The

number of SNPs imputed on chromosome X was

1,264,877, of which 903,868 (71.5 %) were rare

(MAF \ 0.005). As expected, quality was not as high as

for the autosomal chromosomes, as a consequence of the

lower number of haplotypes contributed by men in this

chromosome. Considering markers of sufficient imputation

quality (Rsq C 0.3) on the autosomal chromosomes only,

the 1KG imputation resulted in 18,874,123 more markers

than those arising from the HapMap imputations including

7,892,440 markers with a MAF [ 0.01. There are minimal

differences in imputation quality when comparing the

2,972,940 SNPs common across the two datasets [mean

Rsq, 0.886 (median = 0.972, IQR = 0.123) for the Hap-

Map imputed dataset against 0.903 (median = 0.978,

IQR = 0.097) in the 1KG imputed dataset]. When further

filtering markers for MAF [ 0.01 and Rsq C 0.3, (result-

ing in 2,671,742 SNPs) the concordance rate, based on best

guess genotypes, between the Hapmap and the 1KG

imputed datasets was 0.983 as calculated by PLINK (using

the --merge-mode 7 option).

Fig. 3 Imputation quality metrics evaluation HapMap. a Boxplots of the MACH Rsq in function of the MAF of the imputed SNPs. b Imputation

quality distribution per MAF category. Blue and green denotes the poorly and well imputed SNPs based in a 0.3 quality score as threshold.

88,625 out of 3,021,329 (2.93 %) are poorly imputed SNPs (Rsq \ 0.3). (Color figure online)
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Correcting genome wide association analysis for ethnic

background in the Generation R Study

The socio-demographic ethnic definition in the Generation

R Study is based on country of birth of the parents of the

participants. To evaluate the degree of potential mis-

classification between definitions, we assessed the agree-

ment of the questionnaire definition with that of genetic

ancestry, using genomic components (Online Resource 7).

Groups classified as being of European and Dutch origin

have historically undergone high waves of migration dur-

ing the 1960s, 1970s or early 1980s. As a consequence, a

scattered distribution across the genomic components axes

was observed instead of a uniform one. A similar pattern

was also observed for participants of Surinamese origin,

arising from two clearly differentiated ethnic groups, the

Hindustani and the Creoles.

Statistical approaches based on EMMAX and genomic

components were tested for two different traits.). There is

no evidence of major degrees of residual population stra-

tification in the GWAS results for red hair color (Fig. 5 and

Online resource 8), within the Generation R Study (196

children with red hair (3.4 %) as gauged in the QQ-plots

(no early deviation from the test statistic or p value dis-

tribution) and genomic inflation factors (GIF) close to unity

for both EMMAX (GIF = 0.994) and genomic

Fig. 4 Imputation Quality metrics evaluation 1KG. a Boxplots of the MACH Rsq in function of the MAF of the imputed SNPs. b Imputation

quality distribution per MAF category. Blue and green denotes the poorly and well imputed SNPs based in a 0.3 quality score as threshold.

8,263,752 out of 30,072,738 (27.4 %) are poorly imputed SNPs (Rsq \ 0.3)
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components correction (GIF = 0.999). In contrast, when

no adjustment for population stratification was employed,

very early (artefactual) deviation was seen in the QQ plot,

erroneously indicating that the vast majority of markers

across the genome were associated with red hair pigmen-

tation (Fig. 5). After correction for population stratifica-

tion, only the markers on chromosome 16q24.3 mapping in

the vicinity of MCR1 reached GWS, variants in this gene

largely explain the presence of red hair pigmentation [28].

GWAS based on the imputed data gave rise to similar

results, but showed an even higher number of SNPs

underlying the MCR1 associated signal. Furthermore, the

leading SNP on these analyses was a missense variant

rs1805007, P \ 1 9 10-20, reported previously as asso-

ciated with this trait [29], which was not present in the

genotyped data (Online Resource 9). QQ-plots from the

skull BMD GWAS show adequate correction for popula-

tion stratification (Online Resource 10). Power for both

EMMAX and genomic components is similar in the two

tested traits, as gauged by the number of GWS signals and

their significant level (Online resources 8 and 11). More-

over the effect size of skull BMD associated SNPs is

practically identical across the two approaches.

Skull BMD analysis for equal sets of European and

Non-European children shows a GWS signal in the

WNT16/CPED1 locus only in the Non-European children,

although similar direction for the leading SNPs was found

in both sets (Online Resource 12). We compared the

association results for rs13223036 in this locus. The fre-

quency of the effect allele in Europeans was 0.622, while it

was 0.695 in non-Europeans. The effect size differed by

*27 % of the effect size in the European group (b = 0.15,

P = 6.8 9 10-6), being stronger and more significant in

the non-European set (b = 0.19, P = 2.5 9 10-8).

Discussion

In summary, we have described the methodology used to

genotype, impute, and analyze data for association with

phenotypes in the multiethnic Generation R Study, addres-

sing a number of practical issues that arise in implementing

imputation-based association for a multiethnic cohort.

Our genome-wide genotyped data, ready for analysis

after quality control (QC), comprises information for

518,245 markers in 5732 individuals of different ethnic

backgrounds, which is available in the most common

genome builds (i.e. 36 and 37). Enrichment by imputation

of our genotypes, following a cosmopolitan approach,

resulted in an increment of the number of markers of about

Fig. 5 Genome-wide association of red-hair pigmentation in the

Generation R cohort. a Q–Q plot showing the inflation of the test

statistics when correction for data structure is not applied (black dots)

and the slightly lower power when genomic components correction is

applied (red dots) in comparison with the EMMAX model (green

dots). b Manhattan plots of the red-hair pigmentation GWAS in the

Generation R Study using adjustment for genomic components.

c Manhattan plots of the red-hair pigmentation GWAS in the

Generation R Study using a linear mixed model as implemented in

EMMAX. (Color figure online)
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5.7 times for the HapMap imputed data and 46 times for

the 1KG imputed data (Rsq [ 0.3).

The Generation R Study withholds a special setting

determined by the admixed nature of its population con-

fined within a restricted area. This encompasses analytical

challenges as well as opportunities to design genetic stu-

dies, which take advantage of such characteristics. A joint

analysis including all Generation R participants represents

a considerable increase in power of the design, as about

half of the study population is of non-Northwestern Eur-

opean background. While, increment in sample size will in

principle boost the power of the study, differences in allele

frequency or LD relationships between the variants merit

further interpretation, as shown in the example of skull

BMD with equal number of individuals for both European

and non-European sets. Decrease in power due to the use of

an admixed population can appear when the association is

confined to one of the subpopulations (especially if small)

either because of differential tagging or due to the effect of

secondary signals [30].

GWAS meta-analyses are expanding to include Non-

European populations (i.e. Latinos, African-Americans,

etc.) with adequate methodology lagging behind due to

scarce available software for the processing and analysis

of multiethnic data. For example, as the most used soft-

ware, PLINK [13], relies on the assumption of homo-

geneous populations it cannot be applied directly to

establish family relatedness in multiethnic cohorts.

PLINK routine results in an overestimation of relatedness

between ancestrally similar individuals. Alternatively,

REAP [16] employs a routine that considers the presence

of more than one ancestral population and accounts for it

in the calculation of IBD probabilities. Nevertheless, in

our range of interest for QC purposes—greater than sec-

ond degree relatives—we found no misclassification of

the degree of relationship in the samples. Yet,

in situations where high sensitivity is required (e.g. for

the assessment of distant relatedness and/or fine pedigree

structure), REAP is recommended in studies with

admixed populations.

Choosing the optimal panel to impute the GWAS data

of a multiethnic population is critical. For the Generation

R Study, we have employed the so-called ‘‘cosmopolitan

approach’’, which has become the preferred approach

after the release of the 1000 Genomes Project panel [19].

Notably, nowadays all studies are being imputed to the

whole 1KG reference panel regardless of the background

of the population. Introducing such a combination of

reference panels, which achieve very large sample sizes

of sequencing reference sets, has been shown to improve

imputation accuracy [31–33]. This is mainly beneficial

for the imputation of rare variants, which have probably

arisen recently and are highly population specific.

New denser reference panels for imputation are

becoming available achieving a better characterization of

human genetic variation [7, 19, 34]. The 1KG project

data significantly increased the genomic coverage pro-

viding more variants suitable to be analyzed in a new

phase of the GWAS era [19], with already few reports of

novel findings [6, 35, 36], yet to be embraced at a larger

scale. Despite the higher density of markers in the 1KG,

only *63 % of the markers achieved good quality as

compared to 97 % of the HapMap imputed markers.

Nonetheless, the low imputation performance observed in

1KG markers is a consequence of the large amount of

low-frequency and rare markers in the panel in low LD

with the tagging SNPs in the array, which are thus,

difficult to impute. When the analysis is limited to

common variants (MAF [ 0.05) present in both datasets

(n = 2,144,906) the imputation quality was somewhat

higher in the 1KG (mean Rsq = 0.954, median = 0.989,

IQR = 0.037) than the HapMap panel (mean

Rsq = 0.947, median = 0.986, IQR = 0.046), an slight

improvement reflecting better imputation arising from a

more dense set of markers and a larger reference panel.

Special methods for imputation of admixed populations

such as MACH-Admix, have also emerged [37], claiming

better performance in admixed population and should be

part of future studies.

Ethnic background, as assessed by questionnaire did not

match the distribution of the samples in the genomic com-

ponents, mainly because it does not allow for the identifi-

cation of the third generation participants, i.e. the grand

children of those who originally migrated to the country, and

thus groups together children that are genetically divergent

as shown in Online Resource 7. This comparison together

with analysis of different traits, indicate that the genetic

structure of studies, such as the Generation R Study, cannot

be accounted for by considering the ethnic group definitions

based on questionnaire data alone. Another practical

advantage when using genomic components to adjust

GWAS, is the possibility to include participants even when

no information of the parents’ country of origin is available.

Although in other studies this percentage might be larger, in

the population under study, \7 % of the information on

ethnicity from the questionnaire was missing. The ethnic

distribution of the remaining children is in agreement with

the ethnic demography of the city of Rotterdam [11] and thus

we found no evidence of a systematic non-response.

We chose red hair pigmentation as an example of a

highly stratified trait since it is more common in countries

in the north of Europe and selected against in Africa due

to higher sensitivity of its carriers to UV rays. As shown

in Fig. 5, if adjustment for population stratification is not

used, alleles with different frequencies in Africa and the

North of Europe would spuriously show an association
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with the trait. Instead our association results show that

both genomic components and linear mixed models stra-

tegies cope well with the substructure of the data and

yield similar results. This conclusion can also be derived

from the skull BMD GWAS, where even magnitude of

effect sizes can be reliably compared. Thus, across all

tested scenarios subtle differences emerged not justifying

the use of the more computational intensive EMMAX

approach. Tests done on other traits such as height,

fractional exhaled nitric oxide, site-specific BMD (total

body, skull, arms and legs) produced similar results using

EMMAX as those published before using genomic com-

ponents [21, 38, 39].

It is important to emphasize possible drawbacks of

both association strategies. Those of using EMMAX

include: (1) for discrete traits obtained betas cannot be

translated to odd ratios, given the statistical model applied

and (2) its requirement for PLINK files, prevents the use

of allelic dosages for analysis. On the other hand, since

genomic components are calculated based on the varia-

bility of the input data, it is important to generate specific

sets of components for particular subsets of the data when

working with structured populations. Moreover, while

using between two and four genomic components is

common practice, the number of genomic components

needed to control for population stratification is trait-

specific (i.e. dependent on the actual genetic architecture

of the trait) [40]. The GIF is an indicator of the degree of

inflation of the test statistic due to true signals, cryptic

relatedness, assay bias and/or population stratification.

Hence, assessment of the GIF is instrumental to determine

the needed number of genomic components to be used as

covariates in the models. This strategy is not confined to

admixed populations and should be assessed even in

homogenous populations. In the examples mentioned

above, both height and BMD needed up to ten genomic

components (data not shown) to reach an acceptable

GIF \ 1.1 [18].

Although the general problem of stratification, differ-

ential ethnic allele frequencies, has been successfully

addressed in our cohort by the use of genomic components

or linear mixed models, the ethnic differences in patterns of

correlation between the underlying casual variant and the

surrounding SNPs which are under study (LD), can still

induce to false-negative findings [41].

As single-center GWAS are usually underpowered, the

standard strategy in the field is meta-analysis, the com-

bination of results from multiple independent studies,

increasing sample size and reducing false-positive find-

ings. Frequently, pooling studies from ethnically diverse

populations within a single transethnic meta-analysis can

be challenging. To cope with this, specialized software

such as MANTRA, which allows effect size to vary

across different populations, has been developed [42]. The

same strategy could also be applied to multiethnic studies

such as Generation R, if clear boundaries between dif-

ferent ethnic groups forming part of the study population

could be established. However, this is not plausible in our

highly admixed population.

The complex structure of the Generation R Study, where

admixture of individuals cannot be easily discerned just by

assessing the combination of two ancestral populations,

constrains the application of admixture mapping, which is

an important limitation of our study. Further, in the current

setting of the Generation R Study, the small sample size

resulting from defining well characterized ethnic groups (of

non-European background) is insufficient to allow fine

mapping of variants underlying complex traits, typically

withholding weak genetic effects. Yet, with new approa-

ches being developed [39], this analytical methodology

should be further implemented.

The Generation R Study is unusual in the international

arena due to its size, age range, quality of data and long-

itudinal study design, but particularly due to its multiethnic

nature. These characteristics represent the main strengths

of the cohort, allowing among others, the generalizability

of findings and ethnic comparisons in epidemiological

research, although complex routines might be required for

genetic association analysis.

In summary, we have described the methods used for

generating the GWAS data of the Generation R Study, as

well as general strategies for imputation and analysis

within a multiethnic setting. Such strategies have allowed

the Generation R Study to take part in several consortia

and collaborations, which have successfully identified

genetic factors underlying an ample range of complex

traits.
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